2014 Student Program Lesson Plan

For step-by-step help in completing this document, please see the accompanying guide.

| Date: | July 29, 2014 | Class: | LEGO-Robotics & Astronomy Project. Lesson 5 “Creating LEGO-robot which can solve target goal of team project” |

Definition and Guiding Question

LESSON

For the purpose of this STARTALK template a **lesson** is defined as a single learning experience lasting no more than ninety minutes. Learning experiences occur both in the classroom and/or in other settings. Longer blocks of time will involve several learning episodes and lesson plans.

LEARNING EPISODE

For the purpose of this STARTALK template a **learning episode** is defined as a learning experience that addresses a specific aspect of a learning target or can-do statement. Learning episodes typically provide a limited amount of input with time allowed for guided and independent practice. The amount of time allotted for a learning episode is approximately equivalent to the age of the learner and will rarely be more than twenty minutes.

Questions to Consider Before and During Lesson Planning

Do the activities in the lesson

- provide sufficient opportunities for understanding new words **before** expecting production?
- provide multiple, varied opportunities for students to hear new words/expressions used in highly visualized contexts that make meaning transparent?
- provide students with an authentic purpose for using words and phrases?
- engage all students (as opposed to just one or two students at a time)?
- give students a reason for needing to/wanting to pay attention and be on task?
- vary in the level of intensity and the amount of physical movement required?
- take an appropriate amount of time considering the age of the learner?
- make the learner, not the teacher, the active participant?

STAGE 1: What will learners be able to do with what they know by the end of this lesson?

<table>
<thead>
<tr>
<th>DO</th>
<th>KNOW</th>
</tr>
</thead>
</table>
| *What are the learning targets for this lesson?* | *What vocabulary, grammatical structures, language chunks, cultural knowledge, and content information do learners need to accomplish the lesson can-do?*

Interpretive Listening
The students can understand teacher’s presentation with some unexpected details on topics related to Physics&Math&Astronomy. **Int. H.**

Terms related to Astronomy, Physics, Math:

Physics terms: плотность, ускорение, расстояние, время, сила тяжести, сила реакции, период, масса;

Astronomy terms: планета, атмосфера, поверхность, радиус, окружность, сфера, сфероид, Марс, Земля, динамические характеристики, траектория, орбита, оборот, сутки, год;

Math terms: объем, формула, длина окружности, эллипс, фокус, эксцентриситет.

Interpersonal Communication
The students can get and discuss factual information from articles and teacher’s presentation. **Adv.M.**

The students work in groups. The students ask and answer each other’s questions on Astronomy topics and do research on existing problems in Mars exploration

The main stages of research: поставить задачу, сделать исторический обзор, провести исследование, провести эксперимент, наблюдение, опыт, сделать обзор литературы, сделать выводы, проанализировать полученный результат;

Planetary science: поставить задачу, определить условия существования, определить начальные и конечные условия, температура поверхности, рельеф, период обращения, состав, гора, равнина, каньон, кратер.
Interpretive Listening

The students can ask for, follow, and give directions in the process of coding robotics program and in some complicated situations during math problem solving **Int. H.**

The students solve math and computer science problem and exchange their findings during the astronomy research project.

Math terms: длина окружности, радиус колеса, пройденное расстояние, угол поворот, число, значение, отношение, уравнение, множество, переменная, функция, радиус, диаметр, длина окружности;

Engineering terms: устройство, управление, зарядка, технические характеристики, меню управления, сенсоры, мотор, соединительный кабель, детали, шестеренки;

Terms related to Computer Science: цикл, если…то…, пока… делать…, повторить, переменная, константа, связи, блок, подпрограмма, язык программирования, отладка, скачат, запустить, окно, проект.

Understanding the structure of a math problem genre (“body”-narration and a question): Определите расстояние; нанесите полученные данные на график, найдите отношение (наклон, угол), постройте график зависимости скорости от времени, заполните таблицу данных для нескольких испытаний, найдите среднее значение.

STAGE 2: How will learners demonstrate what they can do with what they know by the end of the lesson?

<table>
<thead>
<tr>
<th>What will learners do (learning tasks/activities/formative assessments) to demonstrate they can meet the lesson can-do?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of the physical and dynamical characteristics of Mars related to chosen research project theme.</td>
</tr>
<tr>
<td>LEGO robotics research: Building and programming LEGO robots which can solve target goals of the team project.</td>
</tr>
</tbody>
</table>

STAGE 3: What will prepare learners to demonstrate what they can do with what they know?

How will you facilitate the learning?

What activities will be used to ensure learners accomplish the lesson can do? What will the teacher be doing? What will the students be doing?

Opening Activity

Teacher sets the main goal of the lesson for the students by briefly discussing “Comparing the two space objects: Mars and the Earth. What is similar and what is different”

Time: 10 min
<table>
<thead>
<tr>
<th>Learning Episode</th>
<th>Time: 15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students read and understand articles about the different physical characteristics of Mars and the Earth. The students then discuss the characteristics and fill out rubrics.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Episode</th>
<th>Time: 25 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students study write code on manipulating the EV3 software: continue study the simple programming options such as forward, backward, and turning robot movements</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Episode</th>
<th>Time: 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students discuss design of their LEGO robot which can solve target goals of the team project. The students turn their base robot into a challenge model.</td>
<td></td>
</tr>
</tbody>
</table>

Materials needed for this lesson

- PowerPoint Presentation about the main characteristic of Mars and the Earth
- LEGO EV3 educational software
- LEGO EV3 educational kit

Reflection/Notes to Self