Formation of MgO-Supported Manganese Carbonyl Complexes by Chemisorption of Mn(CO)\textsubscript{5}CH\textsubscript{3}

Supattra Khabuanchalad,†,*‡ Jatuporn Wittayakun,*† Rodrigo J. Lobo-Lapidus,‡ Stefan Stoll,§ R. David Britt,§ and Bruce C. Gates*,†§

†School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand 30000
‡Department of Chemical Engineering and Materials Science and §Department of Chemistry, University of California, Davis, California 95616, United States

\textbf{ABSTRACT:} MgO-supported manganese carbonyl complexes were prepared by chemical vapor deposition of Mn(CO)\textsubscript{5}CH\textsubscript{3} on partially dehydroxylated, high-area MgO powder. X-ray absorption spectra identify the resultant surface species, on average, as Mn(CO)\textsubscript{4}(O\textsubscript{2})\textsubscript{2} (where the two oxygen ligands are part of the MgO surface), and infrared spectra show that the chemisorption results from the reaction of Mn(CO)\textsubscript{5}CH\textsubscript{3} with OH groups of the MgO surface. Electron paramagnetic resonance and X-ray absorption near edge data indicate that the manganese was in a positive oxidation state other than +2, but the value is not determined, and the IR spectra indicate the presence of a mixture of manganese carbonyls. Extended X-ray absorption fine structure spectra determine the average Mn−CO bond distance to be 1.87 Å and the average Mn−O bond distance to be 2.12 Å. The surface complex was found to be stable in O\textsubscript{2} at room temperature.

\section{INTRODUCTION}

Supported transition metal catalysts, which are widely applied in technology, include many that are molecular analogues bonded to the surfaces of high-area porous metal oxides.1,2 The catalytic properties of a supported metal complex are influenced by the metal, its oxidation state and ligands, and the support, which itself is typically a ligand bonded to the metal by metal−oxygen bonds.3 The structures of supported metal complexes are usually determined spectroscopically, but interpretation of the spectra is often challenging because of the nonuniformity of the support surfaces and the species bonded to them.4 A set of complementary spectroscopic methods is usually required for a good structure determination, and interpretation of the spectra is challenging when the surface species are present in mixtures.

The synthesis of nearly uniform supported metal complexes is often optimized when the precursor is a molecular species with reactive ligands—typically, an organometallic complex.5,6 Metal carbonyl complexes are especially useful, because the CO ligands allow tracking of the surface chemistry by infrared (IR) and complementary spectroscopies. For example, the chemisorption of Fe(CO)\textsubscript{5} on MgO leads to a mononuclear surface species represented as \{[CO\textsubscript{2}]Fe(CO\textsubscript{2})2−[Mg\textsubscript{2+}]\} (the braces represent groups on the support surface). Adsorption of H\textsubscript{2}O\textsubscript{2}(CO)\textsubscript{4} on MgO simply gives species represented as {CO}\textsubscript{3}−H(CO)\textsubscript{2}OsHCO−{Mg\textsubscript{2+}}1,8 Adsorption of Re(CO)\textsubscript{5}H on MgO results in surface species represented as an ion pair \{Re(CO)\textsubscript{5}\}−−H+[Mg\textsubscript{2+}] 9 All of these metal carbonyls on surfaces were characterized by their Cu\textsubscript{Kα} infrared (IR) spectra.

Beyond its value as a probe of structure of metal complexes, CO offers other advantages in investigations of supported metal catalysts: (a) CO is a weak electron-donor and a good π-acceptor that stabilizes metal centers while being small enough to allow coordinative saturation of the complexes, (b) CO ligands are reactive intermediates in numerous catalytic reactions (such as CO oxidation and olefin hydroformylation), and (c) decarbonylation of supported metal carbonyls is sometimes possible under mild conditions, so that the surface species can be converted into metal complexes with a wide variety of ligands.10,11

The chemistry of reactions of metal carbonyls with metal oxide surfaces is rich in complexity, including chemisorptions that are categorized as follows: those that involve (a) (partial) decarbonylation of the precursor,12 (b) cleavage of metal−metal bonds,13 (c) adduct formation via bridging CO ligands,14 and (d) replacement of carbonyl ligands with other ligands,15−17 such as oxygen of the support surface. Furthermore, metal carbonyl cluster formation18 has been observed frequently on metal oxide surfaces, and it may be accompanied by or followed by fragmentation of the metal framework.19

The most widely investigated supported metal complexes are those of group-8 and group-9 metals, and only little has been reported for complexes of group-7 metals, almost all of them complexes of rhenium.15−17,20−22 Routes applied for the preparation of group-7 metal carbonyls on metal oxides include the reaction of Re\textsubscript{2}(CO)\textsubscript{10} with partially dehydroxylated MgO to give supported [Re\textsubscript{2}(CO)\textsubscript{9}]12−20. Treatment of these species in vacuum, helium, or air led to cluster fragmentation and the

\textbf{Received:} August 12, 2012
\textbf{Revised:} April 5, 2013
\textbf{Published:} April 24, 2013

\textcopyright 2013 American Chemical Society

\url{dx.doi.org/10.1021/la303269h} | Langmuir 2013, 29, 6279–6286
formation of rhenium subcarbonyls identified as \([\text{Re}-(\text{CO})_x\text{Mg}]+(\text{OMg})_y\text{HOMg})_{3-x}\).\(^{22}\) The adsorption of \(\text{H}_2\text{Re}_2(\text{CO})_{10}\) or of \(\text{Re}(\text{CO})_5\text{H}\) on \(\text{MgO}\) involved breaking of \(\text{Re}−\text{H}\) bonds, giving \([\text{H}_x\text{Re}_x(\text{CO})_{12}]_y[\text{MgO}]_z\) or \([\text{MgO}]_z\)-\(\text{H}^+−[\text{Re}(\text{CO})_{10}]_y\), respectively. Treatment of each of these surface species in \(\text{H}_2\) or helium gave mononuclear rhenium tricarbonyl.\(^{9,15,16}\)

Supported manganese complexes are represented by only a few reports,\(^{23,24}\) although they are of potential value because soluble manganese complexes are used as catalysts for oxidation reactions.\(^{25,26}\) There are several attractive manganese carbonyl precursors available for the preparation of supported complexes, including \(\text{Mn}_2(\text{CO})_{10}\), \(\text{Mn}(\text{CO})_5\text{H}\), and \(\text{Mn}(\text{CO})_5\text{Br}\).\(^{30}\) In contrast to the adsorption of \(\text{Re}_2(\text{CO})_{10}\), the adsorption of \(\text{Mn}_2(\text{CO})_{10}\) on \(\text{MgO}\) produced a complex mixture of surface species, including physisorbed \(\text{Mn}_2(\text{CO})_{10}\) manganese pentacarbonyl, and manganese tricarbonyl.\(^{24}\)

Characterization of the sample was complicated by the presence of a mixture of surface species, but when the sample was treated in \(\text{O}_2\), more nearly uniform surface species formed, represented as manganese tricarbonyl.\(^{24}\)

Thus, the surface chemistry of manganese complexes is related to that of rhenium complexes but is much more limited, and our goal was to extend this chemistry and develop a route to simple, nearly uniform manganese carbonyls. We chose a precursor with a high \(\text{CO}\) to \(\text{Mn}\) ratio, \(\text{Mn}(\text{CO})_5\text{H}\), and, for comparison with the work cited above,\(^{24}\) \(\text{MgO}\) as the support. Because numerous manganese complexes are catalysts for oxidation reactions, the reactivity of the supported species with \(\text{O}_2\) was also investigated.

\(\text{Mn}(\text{CO})_5\text{CH}_3\)\(^{31}\) is volatile, providing the opportunity to prepare supported samples by chemical vapor deposition (CVD)—that is, in the absence of solvents and the complications of solvent–support interactions. We set out to prepare supported species on \(\text{MgO}\) from \(\text{Mn}(\text{CO})_5\text{CH}_3\) and to determine their structure by complementary spectroscopic methods, IR, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (the latter including X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy).

EXPERIMENTAL METHODS

Synthesis of \(\text{Mn}(\text{CO})_5\text{CH}_3\)

\(\text{Mn}(\text{CO})_5\text{CH}_3\) was synthesized by a route analogous to that reported for \(\text{Re}(\text{CO})_5\text{CH}_3\).\(^{32}\) The starting material was \(\text{Mn}_2(\text{CO})_{10}\) (Strem, 98.0%) (instead of the \(\text{Re}_2(\text{CO})_{10}\) used to prepare \(\text{Re}(\text{CO})_5\text{CH}_3\)). Mercury (Quicksilver Products, Inc.), sodium (Aldrich, 99%), anhydrous tetrahydrofuran (Aldrich, 99.9%), and methyl iodide (Acros Organics, 99%) were used without further purification. To prepare a supported sample containing 1.0 wt % \(\text{Mn}\) on \(\text{MgO}\), the \(\text{Mn}(\text{CO})_5\text{CH}_3\) was treated in \(\text{O}_2\), more nearly uniform surface species formed, and our goal was to extend this chemistry and develop a route to simple, nearly uniform manganese carbonyls. We chose a precursor with a high \(\text{CO}\) to \(\text{Mn}\) ratio, \(\text{Mn}(\text{CO})_5\text{H}\), and, for comparison with the work cited above,\(^{24}\) \(\text{MgO}\) as the support. Because numerous manganese complexes are catalysts for oxidation reactions, the reactivity of the supported species with \(\text{O}_2\) was also investigated.

\(\text{Mn}(\text{CO})_5\text{CH}_3\)\(^{31}\) is volatile, providing the opportunity to prepare supported samples by chemical vapor deposition (CVD)—that is, in the absence of solvents and the complications of solvent–support interactions. We set out to prepare supported species on \(\text{MgO}\) from \(\text{Mn}(\text{CO})_5\text{CH}_3\) and to determine their structure by complementary spectroscopic methods, IR, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (the latter including X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy).

Synthesis of \(\text{Mn}(\text{CO})_5\text{CH}_3\) on \(\text{MgO}\)

\(\text{Mn}(\text{CO})_5\text{CH}_3\) on \(\text{MgO}\) (before and after \(\text{O}_2\) treatment) were characterized with a Bruker IFS 66v IR spectrometer equipped with DTGS and HgCdTe detectors. In the glovebox, each sample (0.1 g) was pressed between two KBr windows and placed in a gas tight cell (International Crystal Laboratories, Garfield, NJ). The cell was then loaded into an airtight container. The container was removed from the glovebox and mounted in the spectrometer, and then the sample chamber was evacuated immediately (pressure \(\approx\) 1 mbar), and the vacuum was maintained as spectra were recorded at room temperature, in transmission mode, with a resolution of 4 cm\(^{-1}\). Each reported spectrum is the average of at least 128 scans.

X-ray Absorption Spectroscopy (XAS)

The supported samples (before and after \(\text{O}_2\) treatment) were characterized by XANES and EXAFS spectroscopies. Data were collected at beamline X-18B at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, Upton, NY. The beamline was equipped with a Si(111) double-crystal monochromator which was detuned by approximately 25–30% at the Mn K edge to minimize the effects of higher harmonics in the X-ray beam. The intensity of the X-rays entering and exiting the sample was measured with two gas-filled ion chambers, and a third ion chamber was used to collect the spectrum of a manganese foil used as a reference for energy calibration.

Each sample was loaded into a stainless-steel tube sealed with O-rings and transferred to the synchrotron, where it was handled in an N\(_2\)-filled glovebox. The \(\text{O}_2\) and moisture contents of the glovebox were less than 1 ppm. The mass of each sample (0.041 g) was calculated to provide an absorbance of about 2.5 to give a nearly optimized signal-to-noise ratio in the data.

The samples were weighed, mixed with inert boron nitride powder (Aldrich, 98.0%, particle diameter \(\approx\) 1 \(\mu\)m), packed into the cavity of a stainless-steel plate, and then sealed with Kapton tape. All the sample preparation steps were carried out in the glovebox to minimize the air exposure. The sample cell was transferred to the beamline and mounted between the first two ion chambers. Each sample was scanned at room temperature in transmission mode at the Mn K edge (6539 eV). Each reported spectrum is the average of at least four spectra.

EPR Spectroscopy

The calcined \(\text{MgO}\) and the supported samples before and after \(\text{O}_2\) treatment were characterized by EPR spectroscopy. Each sample (0.05 g) in the \(\text{N}_2\)-filled glovebox was loaded into a 4 mm O.D. quartz EPR tube and sealed with an Ultratorr fitting. The EPR tube was removed from the glovebox and evacuated (pressure \(\approx\) 1 \(\times\) 10\(^{-3}\) mbar) for 30 min and then flame-sealed. EPR data were collected at the CalEPR Center at the University of California, Davis. Each sample was scanned at 50 K in a Bruker ECS 106 X-band spectrometer equipped with a Bruker ER4102ST cavity operating in the T\(_{E10}\) mode resonating at about 9.5 GHz. Measurements were performed with a microwave power of 10 mW, a field modulation of 0.2 mT at 100 kHz, and a sweep rate of 0.1 mT/s. Ten scans were accumulated for each reported spectrum.
XAS Data Analysis. EXAFS Data Analysis. EXAFS data analysis was conducted with a “difference file” technique by use of the software XDAP. The functions used to construct the structural models and minimize the error are shown elsewhere. In the first step of the data analysis, all scans of a given sample were aligned and averaged. Reference backscattering amplitudes were calculated by using the FEFF7.0 software from crystallographic data characterizing Mn(CO)$_5$H$_3$ for representation of Mn–C and Mn–O$_{\text{CO}}$ contributions (O_{CO} is carbonyl oxygen). The Mn–C–O moiety is characterized by colinear multiple scattering. Mn$_2$(CO)$_{10}$ was used as a reference for Mn–Mn contributions, and Mn$_2$O$_3$ and MnMg alloy were used as references for Mn–O, (Mn–O, refers to a relatively short Mn–O distance in supported samples incorporating oxygen of the support surface) and Mn–Mg contributions, respectively.

The data fitting was done in R-space (distance space) by using three k-weightings (k^0, k^1, and k^2). The candidate models accounted for all the plausible contributions, Mn–Mn, Mn–C, and Mn–O. For a candidate model to be considered appropriate, it was required to fit satisfactorily with all the k-weightings. In the fitting with each candidate model, the parameters characterizing each contribution (the coordination number N, the Δr^2 value (disorder term), the interatomic distance r, and the inner potential correction ΔE_{in}) were varied until an optimized fit was obtained for all k-weightings. The number of parameters used in the fitting did not exceed the statistically justified number calculated with the Nyquist theorem. The multiple scattering in Mn$_2$(CO)$_{10}$ was calculated with FEFF7.0 was used to identify and fit the colinear Mn–C–O contributions.

Two criteria (besides the overall goodness of fit) were used to determine whether an EXAFS fit was satisfactory: first, analysis was done to determine whether the addition of each shell to the model improved the fit by decreasing the value of $(\Delta \chi)^2$; and, second, the parameters for each shell were checked to determine whether they were physically appropriate. Specifically, the value of ΔE_{in} was constrained to be in the range -10 to 10 eV, and the magnitude of Δr^2 was not to exceed 1.5×10^{-2} Å$^{-2}$.

XANES Data Analysis. Data in the XANES region were analyzed with the software package Athena. The edge position of the manganese in each sample was taken as the intersection point in the measured X-ray absorption spectrum. The energy scale of the spectrum was calibrated by setting the edge position calculated with the Nyquist theorem.

RESULTS

Chemisorption of Mn(CO)$_5$CH$_3$ on MgO. Observations during Synthesis. When the volatile white solid Mn(CO)$_5$CH$_3$ was allowed to vaporize and come in contact with MgO powder by CVD, the color of the powder changed from white to pale yellow, indicating that the manganese complex adsorbed on the MgO.

Spectroscopic Characterization of Initially Prepared Sample. IR Spectroscopy; Spectra in the ν_{OH} Region. IR spectroscopy was used to characterize the OH groups on MgO and their reaction with the organomanganese precursor. The spectrum of the MgO before adsorption of the precursor (Figure 1, spectrum A) includes an intense band at 3765 cm$^{-1}$, attributed to singly coordinated OH groups (with the oxygen atom bonded to only one surface cation), as expected, and consistent with the inference that the support had been only partially dehydroxylated in the pretreatment. The IR spectrum of the sample incorporating the adsorbed manganese complex (Figure 1, spectrum B) shows a decrease in the intensity of the band assigned to the 1-coordinated OH groups on MgO, indicating that the precursor reacted with these groups.

Spectra in ν_{CH} and ν_{CO} Regions. IR bands corresponding to the CH$_3$ group (located at 2948(w) and 2908(w) cm$^{-1}$ in the spectrum of the precursor Mn(CO)$_5$CH$_3$) were not observed in the spectrum of the supported sample, and so we infer that the CH$_3$ groups were removed from the manganese or otherwise converted as a result of the adsorption. The spectrum of the supported sample is characterized by ν_{CO} bands in positions different from those of Mn(CO)$_5$CH$_3$ in CH$_2$Cl$_2$ solution (Figure 2, spectrum A) [$\nu_{\text{CO}} = 2012$(vs) and 1987(m)] in the spectrum of the supported sample.

![Figure 1](image1.png)
Figure 1. IR spectra in the ν_{OH} region of characterizing MgO (A), sample prepared by CVD of Mn(CO)$_5$CH$_3$ on MgO (<1.0 wt % Mn) (B), and sample prepared by treatment of the sample represented by spectrum B in O$_2$ at 298 K and $P_{\text{O}_2} = 0.1$ bar (C).

![Figure 2](image2.png)
Figure 2. IR spectra of Mn(CO)$_5$CH$_3$ in CH$_2$Cl$_2$ solution (A); of sample prepared by adsorption of Mn(CO)$_5$CH$_3$ on MgO (<1.0 wt % Mn) (B); and of sample represented by spectrum B after O$_2$ treatment at 298 K and $P_{\text{O}_2} = 0.1$ bar (C). The peak deconvolutions are shown.
The IR spectra suggest that a CO ligand was removed from Mn(CO)₅CH₃ upon adsorption, but these spectra alone are not sufficient to determine the structure of the supported species—because the manganese carbonyl compounds with spectra incorporating three or more ν_{CO} IR bands include tri-, tetra-, and pentacarbonyl complexes (Table 1).

EXAFS Spectroscopy. The EXAFS parameters representing the supported sample (Table 2) include Mn−C and Mn−OCO contributions (ν_{CO} is oxygen of carbonyl groups), each with a coordination number of approximately 4, showing that there exist four carbonyl ligands per Mn atom, on average; this result points to manganese tetracarbonyls as the average supported species.

The EXAFS data (Figure 3, Table 2) also indicate another Mn−O contribution, identified as Mn−O_{support} (where O_{support} refers to a surface oxygen atom of MgO) and a Mn−Mg contribution, with coordination numbers of approximately 2 and 1, respectively. The former was not characterized by colinear multiple scattering, confirming that it does not represent a Mn−O_{CO} contribution. The presence of the Mn−O_{support} contribution confirms that the manganese carbonyl precursor reacted with the MgO and identifies the support as a bidentate ligand in the average surface species. Consistent with this inference, the Mn−O_{support} distance of 2.12 Å is characteristic of bonding between manganese cations and oxygen ligands. For example, the distance between Mn₂⁺ and O₂⁻ in MnO determined by electron counting ref 53 is 2.2 Å, which matches the Mn−O distance of bulk MnO, determined crystallographically. The role of the MgO support as a bidentate ligand matches that in presumably rough analogous samples such as MgO-supported iridium complexes formed from Ir(C₂H₄)₂(acac)²⁶ and MgO-supported gold complexes formed from Au(CH₂)₃(acac). The Mn−Mg contribution shows that the manganese complexes were

Table 1. Manganese Carbonyl Compounds Incorporating Three or More Carbonyl Ligands and Supported Sample Prepared by Adsorption of Mn(CO)₅CH₃ on MgO

<table>
<thead>
<tr>
<th>Sample/compound</th>
<th>ν_{CO} (cm⁻¹)</th>
<th>Valence electrons on Mn determined by electron counting</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(CO)₅CH₃ in CH₂Cl₂</td>
<td>2012(vs) and 1987(m)</td>
<td></td>
<td>this work</td>
</tr>
<tr>
<td>Sample formed by CVD of Mn(CO)₅CH₃ on MgO</td>
<td>2055(s), 2038(w), 1981(w), 1954(sh, m), 1944(s), and 1914(sh, m)</td>
<td>18</td>
<td>this work</td>
</tr>
<tr>
<td>[Mn(CO)₅(P(Ph)₃)]Hg</td>
<td>2053, 2021, 1977, 1965, 1954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Mn(CO)₅(CN)]⁺</td>
<td>2070(w), 2000(sh, m), 1980(s), and 1960(sh, m), (CH₃)1590(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)₅(CH₃CN)]⁻</td>
<td>2086(w), 2015(vs), 1978(s), 1936(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)₅(CH₃CN)]⁺</td>
<td>2095(w), 2020(vs), 2003(s), 1965(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Mn(CO)₅(CH₃CN)]⁺</td>
<td>2065(m), 1975(s), 1965(s), 1945(s), (CH₃)1605(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Mn(CO)₅(CH₃CN)]⁺</td>
<td>2045(sh), 2023.6(vs), 2002(s,sh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Mn(CO)₅(CH₃CN)]⁺</td>
<td>2077, 2000, 1980, 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Mn(CO)₅(CH₃CN)]⁺</td>
<td>2077, 2000, 1980, 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn[IPr(CO)]Br</td>
<td>2078, 1995, 1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn(CO)₅CH₃</td>
<td>2045(sh), 2023.6(vs), 2002(s,sh), 1961(w,sh) (gaseous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)₅(PPh₃)][BF₄]</td>
<td>2140(m), 2049, 2045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn[IPr(CO)][BF₄]</td>
<td>2134, 2049, 2045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)₅]²⁻</td>
<td>2090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)₅(tripod)]⁻</td>
<td>2030(s), 1962(s), 1902(ms), 1860(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn[IPr(Me₂)₂(CO)]Br</td>
<td>2048, 1926, 1864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fac-Mn(CH₃CN)(CO), [H(pzAnMe)],[PF₆] (a manganese tricarbonyl with 3 nitrogen-containing ligands)</td>
<td>2052, 1956, 1919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fac-MnBr(CO)₅(H[pzAnMe])</td>
<td>major: 2029, 1936, 1913; minor: 2050, 1954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese carbonyl complexes formed from Ir(C₂H₄)₂(acac)²⁶ and MgO-supported iridium complexes formed by CVD of Mn(CO)₅CH₃ on MgO</td>
<td>2042(s), 1947(s), 1905(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See text. "IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene. "[IPr] = B{C₆H₃(3,5-CF₃)₂}₄. "IPr = 1,3-bis(2,6-disopropylphenyl)imidazol-2-ylidene. "(tripod) = 1,1,1-tris((diphenylphosphino)methyl)ethane. [H(pzAnMe)] = 2-(pyrazolyl)-4-toluidine ligand.

The data indicate another Mn−O contribution, identified as Mn−O_{support} (where O_{support} refers to a surface oxygen atom of MgO) and a Mn−Mg contribution, with coordination numbers of approximately 2 and 1, respectively. The former was not characterized by colinear multiple scattering, confirming that it does not represent a Mn−O_{CO} contribution. The presence of the Mn−O_{support} contribution confirms that the manganese carbonyl precursor reacted with the MgO and identifies the support as a bidentate ligand in the average surface species. Consistent with this inference, the Mn−O_{support} distance of 2.12 Å is characteristic of bonding between manganese cations and oxygen ligands. For example, the distance between Mn²⁺ and O⁻ in MnO determined by electron counting ref 53 is 2.2 Å, which matches the Mn−O distance of bulk MnO, determined crystallographically. The role of the MgO support as a bidentate ligand matches that in presumably rough analogous samples such as MgO-supported iridium complexes formed from Ir(C₂H₄)₂(acac)²⁶ and MgO-supported gold complexes formed from Au(CH₂)₃(acac). The Mn−Mg contribution shows that the manganese complexes were

Table 2. EXAFS Parameters Characterizing Sample Prepared by Adsorption of Mn(CO)₅CH₃ on MgO

<table>
<thead>
<tr>
<th>Absorber−backscatter pair</th>
<th>N</th>
<th>Δσ²×10⁵ (Å²)</th>
<th>R (Å)</th>
<th>ΔE₀ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn−C</td>
<td>3.7</td>
<td>10.3</td>
<td>1.87</td>
<td>1.82</td>
</tr>
<tr>
<td>Mn−OCO</td>
<td>3.8</td>
<td>7.10</td>
<td>2.96</td>
<td>1.82</td>
</tr>
<tr>
<td>Mn−O₂</td>
<td>2.2</td>
<td>9.37</td>
<td>2.12</td>
<td>8.34</td>
</tr>
<tr>
<td>Mn−Mg</td>
<td>1.2</td>
<td>2.05</td>
<td>3.48</td>
<td>9.71</td>
</tr>
</tbody>
</table>

"Notation: N, coordination number; R, distance between absorber and backscatterer atoms; Δσ², sigma-squared value (disorder term); ΔE₀, inner potential correction; O_{CO}, oxygen of carbonyl group; O_{support}, oxygen atom of MgO surface. In the fitting, the ΔE₀ values for Mn−C and Mn−O_{CO} contributions were constrained to be equal within error because the multiple scattering identified C and O atoms as present in linear Mn−C−O−C combinations (terminal manganese carbonyls). Typical accuracies are estimated to be as follows: N, ±20%; R, ±0.04 Å; Δσ², ±20%; ΔE₀, ±20%."

Langmuir
bonded to the MgO surface near Mg cations, and the lack of Mn−Mn contributions confirms that the surface species remained mononuclear.

XANES Spectroscopy. The XANES spectrum characterizing the sample prepared from Mn(CO)$_5$CH$_3$ and MgO is characterized by an edge energy of 6549 eV, which is 10 eV higher than that of manganese foil, indicating that the manganese was predominantly present as cationic species.

EPR Spectroscopy. The EPR spectrum of the calcined MgO (Figure 4) shows evidence of a CO$_3^{2-}$ radical on MgO. This spectrum also includes a weak sextet ascribed to the hyperfine-split signal characterizing a small amount of divalent Mn (I = 5/2) that is known to contaminate commercial MgO. The EPR spectrum of the sample prepared from Mn(CO)$_5$CH$_3$ and MgO shows no significant increase in the intensity of this contaminating Mn$^{2+}$ signal (Figure 4, spectrum B). Six-coordinate Mn$^{2+}$ complexes—a coordination number suggested for the Mn species formed on MgO (Table 1)—are typically characterized by a similar sextet signal. Therefore, we conclude that the oxidation state of manganese in the supported species in this sample was not +2 and could have been either +1 (as in the precursor Mn(CO)$_5$(CH$_3$)) and/or +3, as these species are EPR silent under standard X-band conditions. Because the EPR spectra of samples formed from Mn(CO)$_5$CH$_3$ and MgO do not show new signals associated with manganese, any nascent paramagnetic species would have to have been present in low concentrations, to have an integer number of unpaired electrons (e.g., Mn$^{3+}$), or have oligomerized to yield EPR-silent species. This last possibility is not consistent with the EXAFS results, which give no evidence of Mn−Mn contributions with a Mn−Mn distance short enough to support such antiferromagnetic exchange.

Characterization of Samples after O$_2$ Treatment.

IR Spectroscopy. The IR spectra in the νOH region of the sample prepared from Mn(CO)$_5$CH$_3$ and MgO remained essentially unchanged after the sample was treated in O$_2$ at room temperature (Figure 1, spectrum C). This result shows that there was essentially no change in the OH groups on MgO as a result of the exposure to O$_2$. The IR spectrum of this sample in the νCO region also includes no evidence of a significant change resulting from the O$_2$ treatment (Figure 2, spectrum C).

XANES Spectroscopy. The lack of any change in the edge energy of the sample prepared from Mn(CO)$_5$CH$_3$ and MgO after the O$_2$ treatment indicates the lack of change in the electronic properties of the manganese in this sample during the O$_2$ treatment, consistent with the IR data.

Mass Spectra of Effluent Gas. The mass spectra characterizing the effluent gases flowing from the reactor during the O$_2$ treatment of the sample prepared from Mn(CO)$_5$CH$_3$ and MgO do not show any evidence of CO$_2$ indicating that the CO ligands on manganese were not removed during the treatment.

Figure 3. EXAFS data characterizing sample prepared by chemisorption of Mn(CO)$_5$CH$_3$ on MgO (<1.0 wt % Mn) before O$_2$ treatment (—, data; ⋅⋅⋅, best-fit): k-weighted EXAFS function in k-space (A); imaginary part and magnitude of EXAFS function in R-space with Fourier transform (FT) k^2-weighting (B), FT k^1-weighting (C), and FT k^3-weighting (D) ($\Delta k = 3.08−11.54$ Å$^{-1}$).

Figure 4. EPR spectra of pretreated MgO (A); sample prepared by adsorption of Mn(CO)$_5$CH$_3$ on MgO (B), and sample prepared by adsorption of Mn(CO)$_5$CH$_3$ on MgO after treatment in O$_2$ (C). Measurement conditions: temperature, 50 K; microwave power, 10 mW; modulation frequency, 100 kHz.
Evidence of Manganese Oxidation State. A comparison of our XANES edge shifts with reported values of XANES calibration data characterizing manganese oxides (which are not consistent with each other)57–59 indicates that the manganese was cationic and that its oxidation state could have been as high as +5.57–59 Comparison of the XANES features characterizing the supported species with those of the XANES calibration samples indicate that the supported species are not analogues of those compounds. The EPR data rule out the value of +2, but otherwise the EPR and XANES data do not provide a sufficient basis for determining the manganese oxidation state. We address this point further in the Discussion.

Summary. The IR, XANES, and EPR spectra, combined with the mass spectrometric data, are all consistent with the stability of the supported manganese complexes prepared from Mn(CO)\textsubscript{5}CH\textsubscript{3} and MgO in O\textsubscript{2} at room temperature.

\section{DISCUSSION}

Chemisorption of Mn(CO)\textsubscript{5}CH\textsubscript{3} on MgO. The spectra characterizing the sample prepared from Mn(CO)\textsubscript{5}CH\textsubscript{3} and partially dehydroxylated MgO show that the chemisorption involved the reaction of the precursor with surface OH groups and the removal of CO and CH\textsubscript{3} ligands from the precursor. The EXAFS data show that the average supported species was manganese tetracarbonyl bonded to the MgO support by two Mn−O bonds. The initial manganese loading and the geometry of this average surface species indicated by the EXAFS data imply a coverage of the MgO of about 0.96 monolayers, but this value is an upper limit because any manganese carbonyl that was only physisorbed in the CVD process was removed by the subsequent overnight evacuation.

The XANES data are insufficient to determine the manganese oxidation state, beyond the statement that it is positive, and the EPR data rule out only the value of +2. The IR frequencies and their comparison with values characterizing carbonyl compounds of manganese in known oxidation states (Table 1) might be thought to provide additional information regarding the manganese oxidation state. These data characterizing the supported species are consistent with those of Mni compounds and, less likely, Mniii compounds. Compounds in the latter class are not common, and so we infer that it is more likely that the predominant surface species was a Mni complex (although we do not rule out the possibility that it was a Mniii complex or that minority Mniii species were present).

Consistent with this suggestion, organomanganese complexes with manganese in the +1 oxidation state are commonly stabilized by \pi-acceptor ligands60 (several examples are shown in Table 1). Assuming that the surface species was a Mni complex, we did the electron counting, considering surface oxygen ligands (like carbonyl ligands) to be two-electron donors. The results indicate that the surface species were 18-electron complexes, which are expected to be stable.

Because the EXAFS results indicate that the average surface species was a manganese tetracarbonyl, we suggest that the majority species might incorporate Mni with 18 valence electrons. The average Mn−C bond distance determined by EXAFS spectroscopy (1.87 Å, Table 2) agrees satisfactorily with the reported crystallographic data characterizing [Mni(CO)\textsubscript{5}(PR\textsubscript{3}Me)\textsubscript{2}][BAR\textsubscript{4}] containing Mni, which incorporates two Mn−CO\textsubscript{trans} to CO at 1.862 and 1.864 Å, and two Mn−CO\textsubscript{trans} to NH\textsubscript{3} at 1.830 and 1.823 Å, but the symmetry arguments do not lead to the identification of a single manganese carbonyl compound that, on the basis of its IR spectrum, is analogous to the surface manganese species. We infer that the surface manganese carboxyls were present in a mixture that we cannot resolve.

The shoulders in the IR spectra observed at 1954 and 1914 cm-1 characterizing the supported species formed from Mn(CO)\textsubscript{5}CH\textsubscript{3} and MgO and the sample formed by treatment of that supported sample in O\textsubscript{2} are suggested to be indications of minority surface species. The manganese complexes might have been bonded at various MgO surface sites (including defects), with different geometric arrangements of the support oxygen atoms as ligands, and there might have been hydrogen bonds between some of the carbonyl groups of the manganese complexes and surface hydroxyl groups of MgO which would alter the frequencies of those groups. The data are consistent with such a hydrogen-bonded species.61 The minority species would not be expected to be detected by EXAFS spectroscopy, which does not provide such subtle details of the structure, especially when the species are minority species.

In the formation of the surface manganese species, the removal of OH groups from MgO and the removal of CH\textsubscript{3} groups from the precursor were both observed. The CH\textsubscript{3} groups might have reacted with OH groups to form CH\textsubscript{4}, as suggested by the work of Becker et al.,62 who investigated the amounts of gases liberated as helium flowed through samples made from Mn(CO)\textsubscript{5}CH\textsubscript{3} and dehydroxylated alumina (DA) and partially dehydroxylated alumina (PDA). Their results indicated that the CO removal from the sample prepared with PDA was significantly faster than when the support was DA. The liberation of CH\textsubscript{4} was observed when the sample was made from PDA but not when it was made from DA (a result that is attributed to the low OH content of the DA). Thus, on dehydroxylated alumina, the protonolysis of the CH\textsubscript{3} ligand occurred during the adsorption of the precursor, resulting in CH\textsubscript{4} removal. By analogy, we infer that the same reaction likely occurred as Mn(CO)\textsubscript{5}CH\textsubscript{3} was chemisorbed on our MgO sample.

In our previous work, we prepared manganese complexes on the same support, using a similar synthesis procedure but a different precursor.54 Deposition of Mn\textsubscript{5}(CO)\textsubscript{10} on MgO resulted in a sample with a complex IR spectrum indicating several surface species, and the characterization data indicate breaking of the Mn−Mn bonds as a result of the adsorption. After treatment in O\textsubscript{2}, a nearly uniform surface species, suggested by EXAFS spectra to be Mn(CO)\textsubscript{5}(O\textsubscript{support}), was obtained; decarbonylation took place during treatment of the sample with O\textsubscript{2}. In the present work, deposition of Mn(CO)\textsubscript{5}CH\textsubscript{3} resulted in a mixture of surface species that are relatively stable in O\textsubscript{2} and are characterized by a higher CO to Mn ratio than was formed by the aforementioned sample represented as Mn(CO)\textsubscript{5}(O\textsubscript{3}). The comparison shows that by changing the manganese precursor one can prepare different manganese surface species with different numbers of carbonyl ligands. The stability of our new surface species in O\textsubscript{2} might suggest their stability under conditions of catalytic oxidation.

\section{CONCLUSIONS}

The reaction of Mn(CO)\textsubscript{5}CH\textsubscript{3} with the surface OH groups of partially dehydroxylated MgO led to the formation of supported manganese carbonyl species, which EXAFS spectra show, on average, to be Mn(CO)\textsubscript{5}(O\textsubscript{support})\textsubscript{2}, where the two oxygen ligands are part of the MgO surface. The average bond distances determined by EXAFS spectroscopy are the following: Mn−C, 1.87 Å; Mn−O\textsubscript{support}, 2.12 Å; and C−O,
1.09 Å. IR spectra show that a mixture of manganese carboxyls formed. The supported cationic manganese species were found to be stable in O₂ at room temperature.

AUTHOR INFORMATION

Corresponding Author
E-mail: jatuporn@sut.ac.th (J.W.); bcgates@ucdavis.edu (B.C.G.)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank T. A. Stich for helpful comments and an anonymous reviewer for insightful comments that led to an improved interpretation of the IR spectra. S.K. is grateful for support from DOE, Office of Energy Research, Basic Energy Sciences, Grant Numbers DE-FG02-04ER15513 and FG02-87ER15600 (R.J.L.-L.). We acknowledge beam time and the support of DOE, Office of Science, Materials Sciences, for its role in the operation and development of beamline X-18B of the National Synchrotron Light Source. We acknowledge the CalEPR Center at UC Davis for access to the EPR instrument.

REFERENCES

