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1.  INTRODUCTION 

Only the simplest of cw ESR spectra, those with few, sharp, well-resolved and 
sufficiently intense lines, can be analyzed in a straightforward manner. The mag-
netic parameters of the paramagnetic species can directly be obtained from line 
positions, amplitudes, and widths using simple analytical formulae. However, such 
formulae do not exist for all cases. Often, physical information is implicit and hid-
den in the details of the line shape. It is not always possible to assign lines, espe-
cially in spectra from molecules with many magnetic nuclei. When several interac-
tions are of similar strength, line positions and intensities behave in a nontrivial 
manner. A straightforward analysis by read-out may also be impeded by high spec-
tral noise levels and by very broad or strongly overlapping lines. 

Thus, for many cw ESR spectra, a full-scale quantum-theoretical numerical 
simulation, possibly combined with least-squares fitting, is necessary to reproduce 
the spectrum and to recover the underlying structural and dynamic parameters. 
Spectral simulation is therefore an important ingredient of the successful applica-
tion of ESR spectroscopy. 

In this overview, we describe EasySpin, a software package that is able to 
simulate cw ESR spectra of most paramagnetic systems under a wide range of dy-
namic conditions. EasySpin is a collection of functions and programs intended to 
run on Matlab, a commercial software platform for technical and scientific compu-
tation and visualization, available for several operating systems (Windows, Linux, 
and others). EasySpin 2.5 is included on the CD accompanying the book, and that 
version is also the one referred to and used in this overview. The latest version is 
available from www.easyspin.ethz.ch. 

This overview summarizes the core concepts of the ESR simulation algorithms 
implemented in EasySpin. Full details can be found in Stoll and Schweiger (2006) 
and the references cited therein, as well as in the EasySpin documentation included 
on the CD. Many of the examples in this overview are related to simple nitroxide 
radicals, as often applied in membrane biophysics, but the programs in EasySpin 
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can handle complex paramagnetic molecules with several unpaired electrons and 
several magnetic nuclei. 

The Matlab code for all simulated spectra shown in this overview is included 
in the text. The code snippets should be almost self-explanatory to readers who are 
familiar with the basics of Matlab. 

2.  FOUR DYNAMIC REGIMES IN CW ESR 

All the static ESR spectroscopic properties of a paramagnetic molecule are de-
termined by the strengths and geometries of the interactions between the various 
magnetic moments present. For a molecule with one unpaired electron, these in-
clude the g tensor of the electron, its hyperfine couplings to nearby magnetic nuclei, 
their magnetogyric ratios, and their nuclear quadrupole tensors. For systems with 
more than one unpaired electron, couplings between the electrons are present as 
well. 

All static interactions are to some extent anisotropic. They consist of an iso-
tropic, orientation-independent part and a part that depends on the orientation of 
the paramagnetic molecule with respect to the spectrometer with its fixed magnetic 
field direction. Thus, a cw ESR spectrum is in general orientation-dependent: the 
resonance lines shift if the molecule is rotated. 

The appearance of the ESR spectrum does not only depend on static interac-
tions in the paramagnetic molecule, but on dynamic processes on the timescale of 
the ESR experiment as well. This ESR timescale is determined by the spectral ani-
sotropy, Δω, i.e., the maximum difference between resonance line positions when 
the orientation of the molecule is varied. Any dynamic process that is not ex-
tremely slow (“frozen”) on this timescale will affect the shape of the ESR spectrum. 

The most important and most visible dynamic process in solutions or mem-
branes observable by ESR is the tumbling of molecules. This rotational motion 
modulates the resonance frequencies and gives rise to fluctuating local magnetic 
fields that induce transitions. The rotational diffusional motion is a random process, 
and its timescale is characterized by rotational correlation time τc, denoting the 
characteristic time after which molecules with initially identical orientations lose 
their alignment. 

By comparing the speed of the rotational diffusion (τc
−1) to the spectral anisot-

ropy (Δω), we can distinguish four dynamic regimes with distinct types of ESR 
spectra: (1) isotropic limit, (2) fast motion, (3) slow motion, and (4) rigid limit. 
They are illustrated in Figure 1, together with sample spectra of a nitroxide radical. 

In the isotropic limit, paramagnetic molecules are tumbling extremely fast, so 
that any anisotropic property is completely averaged out. Only the isotropic parts 
of all interactions are observable, that is, the isotropic g factor and the isotropic 
hyperfine coupling constants. The spectrum consists of a series of symmetric lines 
with equal widths. This is the case, for example, for many organic radicals in low-
viscosity solutions at room temperature. 
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Figure 1. Schematic representation of the timescale of rotational dynamics accessible by cw 
ESR. τc: isotropic rotational correlation time, Δω: spectral anisotropy. The borders between 
the four regimes are only approximate. For each regime, representative X- and W-band cw 
ESR spectra of a nitroxide radical are shown. 
 
 
 
At the other end of the range, in the rigid limit, the paramagnetic molecules are 

immobilized. There is neither translational nor rotational motion. The ESR spectra 
reveal the full anisotropy of all interactions. This is generally the case in powder 
materials, glasses, and frozen solutions at low temperatures. 

Between these two extremes, there are dynamic regimes where the rotational 
motion is visibly affecting the spectrum but is too slow to completely average the 
anisotropic interactions. In the fast-motion regime, the rotational motion is fast 
enough so that the spectrum still appears similar to an isotropic-limit spectrum, 
although with line widths varying substantially from line to line. 

In the slow-motion regime, the rotational diffusion is slower, so that the spec-
trum loses its similarity to the isotropic limiting case. The lines broaden and distort 
in an intuitively not easily understandable way. As the rotational motion slows 
down further, the spectrum successively approaches its rigid-limit shape. 

The terms “slow” and “fast” do not refer to the absolute speed of reorientation, 
but are understood relative to the spectral broadening. Hence, a “fast” motion at the 
X band may become a “slow” motion at high spectrometer frequencies. Note that 
the borders between the four regimes in Figure 1 are not sharp. They also depend 
on the type of experiment: saturation-transfer ESR can detect movements in sys-
tems that appear completely “frozen” in a cw ESR experiment. 
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3.  SIMULATION OF CW ESR SPECTRA 

For the four dynamic regimes, different theoretical approaches and, conse-
quently, different algorithms are used to simulate the resulting cw ESR spectra. All 
of them compute line positions, intensities, and widths before the spectrum is con-
structed. However, depending on the regime, various simplifications can be made. 
In the rigid and isotropic limits, rotational dynamics can be entirely ignored. In the 
fast-motion regime, the rotational diffusion can be treated as a small perturbation 
affecting only line widths. Only in the slow-motion regime is a full quantum-
dynamical treatment necessary. In the following, we present each of the four re-
gimes and their associated algorithms, including some illustrative simulations us-
ing EasySpin. 

3.1.  Isotropic limit 

The simulation of cw ESR spectra of paramagnetic centers that tumble fast 
enough to completely average out all anisotropic interactions is simple. Spectral 
line intensities and widths are identical for all transitions. There are two methods 
for computing the line positions. Usually the hyperfine couplings are much smaller 
than the electron Zeeman splitting. Therefore, for a long time, the method of choice 
was based on explicit formulae for the energy levels obtained from perturbation 
theory: 
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where the first term in the sum is the electron Zeeman splitting, followed by per-
turbational correction terms of increasing order for the hyperfine splitting. To ob-
tain the resonance line positions, the above expressions are inserted into resonance 
condition 
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I I mw2 2( , ) ( , )E m E m hv+ − − = , 

which is then solved for B0. For order n, this involves solution of a polynomial of 
degree n. For small hyperfine couplings, an evaluation to second order is sufficient 
to obtain accurate resonance fields. The convergence, though, can be very slow for 
large hyperfine couplings. To achieve convergence, high orders have to be incorpo-
rated. 

There is a second, more general and more accurate way to obtain the reso-
nance fields (Stoll et al. 2006). The isotropic spin Hamiltonian of a system with an 
unpaired electron and one nucleus with arbitrary spin can be diagonalized analyti-
cally, even for a large hyperfine coupling. The resulting energy levels as a function 
of the magnetic field are given by the Breit-Rabi formulae (Weil 1971). It is not 
possible to rearrange the resonance condition with these expressions to obtain an 
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explicit solution for the resonance field, but numerically, a few fixed-point itera-
tions based on 
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can solve the equation quickly. An excellent starting B0 value is obtained by setting 
gn to zero. Numerically, this method is very efficient: after two to four iterations, 
the value of Bk converges to the exact resonance field within numerical accuracy 
(i.e., 10−16 relative), even for hyperfine couplings almost as large as the electron 
Zeeman interaction. 

In EasySpin, isotropic-limit spectra are computed by the function garlic, 
which implements this second approach. The following Matlab code simulates the 
isotropic spectrum of a nitroxide radical as shown in Figure 2a: 

Nitroxide = struct('g', 2.0059, 'Nucs', '14N', 'A', 40, 'lw', [0.1, 0.15]); 
XBand = struct('mwFreq', 9.5, 'CenterSweep', [338.4, 8]); 
[B,spc] = garlic(Nitroxide,XBand); 

The first line defines the nitroxide radical parameters. The g value, the nuclear iso-
tope, the A value (in MHz), and the line width (in mT) are given. Here, the line 
width is specified to be a Lorentzian broadening with an FWHM (full width at half 
maximum) of 0.1 mT, convoluted with a Gaussian one with an FWHM of 0.15 mT. 
This way, the effect on the line shapes of unresolved hyperfine splittings, e.g., from 
protons, is easily accounted for. Experimental conditions are listed in the second 
line: the microwave frequency (in GHz) and the magnetic field range in terms of 
the center field and the sweep width (both in mT). The third line calls garlic, the 
EasySpin function that simulates the spectrum. The magnetic field axis and the 
spectrum are returned in B and spc, respectively. 

garlic also works for more complicated radicals with several magnetic nuclei. 
The following code computes the solution spectrum of the anthracene radical anion. 
The resulting spectrum is shown in Figure 2b: 

A = mt2mhz([-0.5337, -0.2740, -0.1509], gfree); 
Anthracene = struct('g', gfree, 'Nucs', '1H,1H,1H', 'n', [2, 4, 4], 'A', A, 'lw', 0.02); 
Params = struct('mwFreq', 9.6, 'nPoints', 16384); 
[B,spc] = garlic(Anthracene,Params); 

Often, hyperfine couplings of radicals are given in magnetic field units. In the 
first line, they are converted from mT to MHz using mt2mhz, a utility function of 
EasySpin. The second line defines the spin system. There are three types of protons. 
For each proton type, the hyperfine coupling and the equivalence number are given. 
The remaining lines are similar to those of the nitroxide example. Note that the 
field range is not specified: in this case, garlic determines it automatically. 
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Figure 2. Isotropic cw ESR spectra simulated with EasySpin: (a) a generic nitroxide radical, 
(b) the anthracene radical anion. All simulation parameters are given in Matlab code in the 
text. 
 
 
In such many-nuclei systems, garlic treats each group of equivalent nuclei 

separately and then combines the results in a first-order manner, neglecting any 
effect of one group of nuclei on the others. However, if one nucleus has a suffi-
ciently large hyperfine coupling that it strongly influences the unpaired electron, it 
will also affect other nuclei via the electron. These indirect nuclear–nuclear cross-
effects are neglected by garlic. In such cases, the rigid-limit algorithm described in 
§3.4 should be used. It is accurate for any number of nuclei and any magnitude of 
the hyperfine couplings, though much slower. 

3.2.  Fast-Motion Regime 

If, starting from the very fast tumbling in the isotropic limit, the rotation of the 
paramagnetic molecules is slowed down either by cooling or by increasing the vis-
cosity of the solvent, we enter the fast-motion regime. The spectral lines do not 
shift, and their shapes are still Lorentzian (possibly with a Gaussian contribution 
due to unresolved hyperfine couplings), but their widths increase relative to the 
isotropic limiting case. This broadening depends on the nuclear magnetic quantum 
numbers mI and is thus different for each line. 

In this fast-motion regime, the tumbling can be treated as a small perturbation, 
as long as the spectral anisotropy is small compared to the microwave frequency. 
The theory (Redfield theory) leads to practical expressions for the line widths. For 
the case of one nucleus with small hyperfine coupling, they are given by the quad-
ratic formula (see, e.g., Atherton 1993) 

 2
0 I I

2

1 A A Bm Cm
T
= + + + , 

where 1/(πT2) is the FWHM of the Lorentzian line in the frequency domain. The 
terms with coefficients A, B, and C describe the broadening contribution from the 
rotational motion, whereas the first term, A0, collects all other broadening effects. 
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With accurately known g and A tensors, the isotropic rotational correlation time τc 
can be obtained from A, B, and C according to 
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with spectral densities j0 = τc and 2
1 cc /(1 )j τ ω τ2

0= + . Δg and ΔA are the anisotropic 
parts of the g and A tensors, i.e., Δg = g – giso1 and ΔA = A – aiso1. (ΔA is assumed 
to be given in frequency units). The symbol X:Y indicates element-by-element 
multiplication of the matrices followed by summation, giving a number character-
izing the corresponding anisotropy. 

From the formulae we see that the line widths are affected by both anisotropic 
hyperfine coupling ΔA and g shift Δg. Coefficients A and B are a function of mag-
netic field B0, and, as a consequence, a larger magnetic field leads to larger values 
for A and B. The broadenings for a given molecule are thus different at different 
spectrometer frequencies. This is illustrated in Figure 3. 

 
Figure 3. Fast-motion examples: (a) a generic nitroxide radical at 9.5 GH, (b) the same ni-
troxide radical at 95 GHz. All simulation parameters are given in Matlab code in the text. 
 
 
EasySpin’s simulation algorithm for the fast-motion regime is identical to the 

one used for isotropic spectra, with the only difference that each spectral line is 
constructed with a different line width according to the expressions given above. 
Only the isotropic rotational correlation time needs to be supplied to the function 
garlic, which then computes the line widths and builds the spectrum. In the follow-
ing is the code for a nitroxide radical spectrum, with a rotational correlation time 
of 1 ns: 

A = mt2mhz([5.8, 5.8, 30.8]/10); 
Sys = struct('g', [2.0088, 2.0061, 2.0027], 'Nucs', '14N', 'A', A, 'lw', 0.1); 
Sys.tcorr = 1e-9; 
Exp = struct('mwFreq', 9.5); 
[B, spc] = garlic(Sys, Exp); 
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The resulting spectrum is shown in Figure 3a. 
Note that here, in contrast to the isotropic limit, garlic has to be given the full 

anisotropic g and A tensors in terms of their principal values, since they are needed 
to compute the line width parameters. 

If we go from the X to W band by changing the spectrometer frequency in the 
above code to 95 GHz, but leaving the correlation time untouched, the line widths 
change significantly (see Figure 3b), as is expected due to their dependence on the 
magnetic field: The spectral anisotropy increases, the ESR timescale shrinks, and 
the same rotational motion is now “slower” relative to it. 

Naturally, this method is not limited to nitroxide radicals. e.g., the fast-motion 
spectra of vanadyl or copper complexes can be computed by setting the corre-
sponding isotope and changing the numerical values of g and A in the above code. 

For paramagnetic molecules in which the unpaired electron interacts with 
more than one nucleus, the broadenings are not a simple sum over all nuclei of the 
quadratic line width formula. Cross-terms between the hyperfine anisotropies of 
different nuclei have to be added (Atherton 1993). garlic can handle this many-
nuclei case. A simulation example, for the radical anion of p-fluoronitrobenzene, is 
shown in Figure 4. The code used contains full tensor information for all nuclei: 

A_N = 40.40 + [24, -12, -12]; A_F = 22.51 + [34.9, -19.8, -15]; 
A_oH = [1, 1, 1]*9.69; A_mH = [1, 1, 1]*3.16; 
Sys = struct('g', [2.0032, 2.0012, 2.0097], 'lw', 0.01); 
Sys.Nucs = '14N,19F,1H,1H,1H,1H'; 
Sys.A = [A_N; A_F; A_oH; A_oH; A_mH; A_mH]; 
Sys.tcorr = 8e-11*2*pi; 
Exp = struct('mwFreq', 9.5, 'nPoints', 1e4); 
[B, spec] = garlic(Sys, Exp); 

3.3.  Slow-Motion Regime 

When the rotational motion of the paramagnetic molecules slows down further, 
we leave the fast-motion regime and enter the slow-motion regime. The symmetric 
Lorentzian lines broaden substantially, become asymmetric, distort, and gradually 
converge to rigid-limit powder line shapes, revealing the full anisotropy of the un-
derlying magnetic interactions (see the sample spectra in Figure 1). 

The theory necessary to compute cw ESR spectra in this slow-motion regime 
is rather complicated. A full exposition of all aspects can be found in (Gamliel and 
Levanon 1995). The theory was developed and implemented by Freed and cowork-
ers in a well-known program (Schneider and Freed 1989). We will shortly summa-
rize the main aspects of the theory, as EasySpin’s slow-motion simulation algo-
rithm is based on it. 

The central equation is the stochastic Liouville equation (SLE) 

 [ ]0( , ) i[ ( ( )), ] ( (t H t t t
t
ρ ρ Γ ρ ρ∂ =− ( , ) − , )− )

∂ ΩΩ Ω Ω Ω Ω , 
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Figure 4. Fast-motion spectrum of the para-fluoronitrobenzene radical anion. All simulation 
parameters are given in Matlab code in the text. 

 
 
which describes the time dependence of density matrix ρ in terms of spin Hamilto-
nian H and diffusion superoperator ΓΩ. ρ0 is the density matrix at thermal equilib-
rium, and all quantities depend on orientation Ω. 

The SLE can be recast into a simpler form: 

 ( , ) i ( ( ))t H t t L t t
t

χ Γ χ χ×∂ ⎡ ⎤=− + ( , )=− ( , ) ( , )⎢ ⎥⎣ ⎦∂ ΩΩ Ω Ω Ω Ω , 

with out-of-equilibrium density χ = ρ – ρ0 , Hamiltonian commutation superopera-
tor Hx, and stochastic Liouville superoperator L, a shorthand notation for the term 
in square brackets. The absorption signal measurable in a cw ESR experiment is 
given by 

 †(Δ ) Re( )I ω ∝ v u   with  ( )iΔL ω+ =u v , 

where v is the supervector describing the x magnetization, and Δω is the frequency 
offset from the center of the spectrum. In numerical simulations, superoperators are 
represented by matrices, and supervectors by column vectors. 

The diffusion matrix ΓΩ depends on the exact model for the rotational motion. 
The most common is rotational Brownian diffusion, analogous to translational 
Brownian motion. Other models include jump diffusion (the molecule is at rest for 
a certain time and the jumps instantaneously to another orientation) and free diffu-
sion (the molecule is at rest for a certain time and the rotates directly and unim-
peded to another orientation). 

In contrast to the isotropic limit and the fast-motion regime, we are dealing 
with orientation-dependent quantities Hx, ΓΩ, and v. How can this orientation de-
pendence be represented? The orientations are best described by three Euler angles, 
and the orientational distribution could be modeled using discrete orientations as 
basis functions. It is better, though, to use Wigner rotation functions DL

KM(Ω), 
where L ≥ 0 and –L  ≤ K, M ≤ L. These functions are perfectly suited for the de-
scription, since they are the eigenfunctions of the rotational diffusion operator. 
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Each of these functions describes a continuous orientational distribution; by linear 
combinations any distribution can be modeled. Rotation functions for some values 
of L, K, and M are illustrated in Figure 5. (EasySpin’s function spherharm was 
used to compute the plots.) The higher the parameters L, K, and M, the stronger the 
functions oscillate. 

 
 

 
Figure 5. Illustration of rotational basis functions. Black (white) corresponds to negative 
(positive) values. The depicted functions have M = 0 und thus depend only on two of the 
three Euler angles describing the orientation of the paramagnetic molecule. 
 
 
 
In general, a given orientational distribution is represented by a linear combi-

nation of an infinite number of such rotational basis functions. This is of course 
impractical, and the basis size is usually truncated to a finite number N of functions 
by specifying maximum values for L, K, and M. These values are chosen so 
that the error introduced is acceptable. The degree of truncation has to be deter-
mined by trial and error and depends on the speed of rotational diffusion and on 
the diffusion model used. If too few orientational basis functions are used, the 
spectrum will exhibit oscillating noise, just as in the case of the rigid-limit spectra 
described in §3.4. 

For each possible rotation function, all ESR transitions involved in the dy-
namic process are included in the computation. For a nitroxide radical, this in-
cludes three allowed transitions as well as several forbidden ones, giving a total of, 
say, P. The total number of basis functions for representation of the Hamiltonian 
and the diffusion operators in matrix form is thus PN. The larger P and N, the lar-
ger the matrices. 

The overall simulation procedure for slow-motional ESR spectra is schemati-
cally shown in Figure 6. It consists of three steps. First, matrices Hx and Γ and vec-
tor v are constructed in the basis described above. Then matrix L= iHx + Γ is re-
duced to tridiagonal form, using appropriate transformation algorithms. In these, 
vector v is used as a “starting vector.” In the last step, each point in the spectrum is 
computed by evaluating a continued fraction expression containing the nonzero 
elements of the tridiagonal matrix. 
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Figure 6. Illustration of the algorithm for solving the SLE: (1) Hx, Γ, and v are constructed 
in an appropriate basis, (2) matrix L is tri-diagonalised, (3) the tridiagonal matrix is used to 
compute the spectrum. 
 
 
In EasySpin, the above algorithm for solving the SLE is implemented in the 

function chili. A simple simulation of a slow-motional ESR spectrum of a nitroxide 
radical, assuming Brownian rotational diffusion with an isotropic diffusion tensor, 
is shown in Figure 7a. The corresponding Matlab code is 

Sys = struct('g', [2.008, 2.0061, 2.0027], 'Nucs', '14N', 'A', [16, 16, 86]); 
Exp = struct('mwFreq',9.8); 
Dynamics = struct('lw', 0.01, 'tcorr', 32e-9); 
[x, spc] = chili(Sys, Exp, Dynamics); 

The input is similar to that for the fast-motion regime. In the third line, all dynamic 
parameters are collected into a new structure, given as the third input argument to 
the function. In the above example, only the isotropic rotational correlation time 
and a residual line width are given. chili also supports an axial rotational diffusion 
tensor. 

To rerun the simulation with another value for the rotational correlation time, 
two lines are sufficient: 

Dynamics.tcorr = 100e-9; 
[x, spc] = chili(Sys, Exp, Dynamics); 

The spectrum depicted in Figure 7b is obtained. 
If the hyperfine splittings from two or more nuclei are visible in the ESR spec-

trum, the simulation in the slow-motion regime gets more difficult, since the num-
ber of transitions, the dimensions of the matrices, and, consequently, the computa-
tion times increase tremendously — e.g., including another 14N nucleus increases 
the matrix dimension by a factor of nine, giving 81 times more matrix elements. 

Often, however, the spectral anisotropy is governed almost entirely by the ani-
sotropy of the g tensor and of the hyperfine coupling of one nucleus only, and the 
hyperfine anisotropies of the other nuclei can be neglected. Then an approximative 
two-step technique can be used: the slow-motion spectrum is computed for the 
system with the first nucleus only. The hyperfine splitting pattern due to the other 
nuclei is accounted for by convoluting the slow-motion spectrum with a simple 
isotropic-limit stick spectrum due to all others. This post-convolution technique 
(Della Lunga et al. 1994) is implemented in chili. To simulate the slow-motional 
spectra of a planar Cu2+ complex, the following code is used. The main difference 
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to the nitroxide example of Figure 7 is that now five nuclei (one 63Cu and four 14N) 
are included: 

CuPc = struct('g', [2.0525, 2.0525, 2.1994], 'Nucs', '63Cu,14N', 'n', [1, 4]); 
CuPc.A = [-54, -54, -608; 52.4, 41.2, 41.8]; 
Exp = struct('mwFreq', 9.878, 'Range', [260, 380]); 
Dynamics.tcorr = 10^-7.35; 
Dynamics.lw = 3; 
Opt.LLKM = [14, 0, 0, 4]; 
[x, spc] = chili(CuPc, Exp, Dynamics, Opt); 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 7. Two slow-motion examples of a generic nitroxide radical with isotropic Brownian 
rotational diffusion. All simulation parameters are given in Matlab code in the text. 
 
 
The resulting spectrum is shown in Figure 8. The sixth line contains an explicit 

specification of the orientational basis size by giving maximum values for odd L, 
and even L, K, and M. Usually, however, chili chooses a reasonable basis size in-
ternally. 

3.4.  Rigid Limit 

In the rigid limit, the paramagnetic molecules in the sample are fixed, and their 
orientations do not change with time. In crystals, only one or at most a few orienta-
tions are present, whereas in a powder, a glass, or a frozen solution all orientations 
occur with equal probability. As for the isotropic-limit and the fast-motion regime, 
the simulation of rigid-limit spectra entails two steps: the first positions, intensities, 
and widths of all resonance lines are computed for each orientation. In the second 
step, the total spectrum is constructed from this line information by summation or 
an equivalent procedure. 

The following contains only an outline of the basics of EasySpin’s computa-
tion of rigid-limit cw ESR line positions, intensities, and widths and the efficient 
procedure used to obtain the spectrum from these. More details can be found in 
Stoll et al. (2006) and the references cited therein. 
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Figure 8. Slow-motion spectrum of Cu2+ phthalocyanine. All simulation parameters are 
given in Matlab code in the text. 
 
 
To compute the resonance field positions for a given orientation of the para-

magnetic molecule, various methods are commonly employed. For spin systems 
with hyperfine couplings and zero-field splittings small compared to the Zeeman 
splitting, explicit analytical formulae based on second-order perturbation theory 
can be used. EasySpin uses another much more general method (Stoll et al. 2003), 
which adaptively models the energy level diagram, from which the positions of 
resonance lines are then obtained. 

The adaptive modeling of the energy levels as a function of the magnetic field 
works as follows (see Figure 9). First the energy levels at the left and right ends of 
the requested field range are computed by diagonalizing the associated spin Hamil-
tonians, giving the left and right ends of the diagram. Next, the levels at the center 
of the range are computed, yielding another set of energies. These are then com-
pared to the approximate values obtained by cubic spline interpolation between the 
values at both ends of the range. If the interpolated and the exact energies are suffi-
ciently close, the procedure terminates. If not, exact energies at the centers of the 
left and right half of the range are computed and then compared to values obtained 
by interpolation from the left and right ends of these segments. The algorithm 
works iteratively: any segment where the center modeling error is not small enough 
is subdivided further. The subdivisions continue until all segments are accurately 
modeled, resulting in a faithful cubic spline representation of the energy level dia-
gram. Resonance positions for a given microwave frequency are readily obtained 
by searching though all the segments and solving the associated cubic equation if a 
resonance is possible. 

This iterative segmentation method automatically adapts the number of field 
positions where energy levels are computed to the complexity of the energy level 
diagram. For simple systems only three diagonalizations are necessary, whereas in 
complex situations more than 50 can occur. Figure 9 illustrates this. 
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Figure 9. Energy level diagrams, resonances, and diagonalization positions of the iterative 
segmentation approach. (a) Tb4+ in ThO2 (S = 7/2), 25 GHz (b) a generic nitroxide radical, 
9.5 GHz 
 
 
After the line positions, line intensities are computed. For a given transition 

between two energy levels, they are products of three factors: the ESR transition 
probability, the polarization term, and a frequency/field conversion factor. 

The ESR transition probability is the modulus-square of the transition matrix 
element connecting the two energy levels. For nitroxide radicals, this probability is 
identical for all three allowed ESR transitions. However, for more complicated 
systems such as the one shown in Figure 9a, it can vary substantially from line to 
line. 

The polarization term accounts for the fact that the line intensity is propor-
tional to the population difference of the two levels involved in the transition. The 
populations can be in thermal (Boltzmann) equilibrium, or they can deviate from it 
due to a chemical or physical preparation process. 

A frequency/field conversion factor is included since cw ESR spectra are not 
acquired as a function of the microwave frequency at constant magnetic field, but 
rather as a function of the magnetic field given constant microwave frequency. To 
obtain correct spectra, line intensities and line widths have to be multiplied by the 
difference of the inverse slopes of the energy levels involved. For simple systems, 
this factor is 1/g. 

Next come the line widths. Often, they are anisotropic due to the presence of 
many small and unresolved hyperfine couplings. Their orientation dependence is 
modeled by using a phenomenological anisotropic line width “tensor.” 

Another origin of anisotropic line widths are random static variations of the 
molecular structure around the unpaired electron, resulting in small distributions of 
the principal values of the interaction tensors (so-called g and A strain). In 
EasySpin simulations, these distributions are assumed to be Gaussian, and the de-
pendence of the resonance line position on them is approximated as linear. 

Both types of broadening give orientation-dependent line widths in frequency 
units. To convert them to magnetic field units, they have to be multiplied by the 
frequency/field conversion factor, as already discussed for line intensities. 
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In the next step, the ESR spectrum is constructed from the positions, intensi-
ties, and widths of all transitions. For single crystals, this is done by simply sum-
ming over all lines using Gaussian or Lorentzian line shapes for each of them. For 
disordered systems (powders, glasses, frozen solutions), these spectra have to be 
summed over all contributing orientations. The more orientations are included in 
this summation, the closer the total spectrum approximates the real spectrum, 
where more than 1011 molecules are usually contributing. If not enough orienta-
tions are included, the spectrum shows oscillating artefacts, so-called simulation 
noise. 

First, a relatively small set of almost uniformly distributed orientations is set 
up by a very simple procedure. This is shown in Figure 10. Each orientation in this 
set is taken as a representative of all orientations that lie in its immediate neighbor-
hood, which is called its Voronoi cell (see Figure 10). The area of the Voronoi cell 
(or a good estimate of it) is then used as a weight for the orientation’s contribution 
to the powder spectrum. 

 

 
 
Figure 10. A simple spherical grid over one octant. Orientations are shown as dots; Voronoi 
cells and Delaunay triangles are indicated as well. 
 
 
This weighted-sum-of-orientations approach is far from optimal: for small in-

trinsic line widths and large spectral anisotropies, thousands of orientations have to 
be evaluated and added. There exists a more efficient method, used in EasySpin, 
that automatically takes advantage of the anisotropy of the spectrum. Three 
neighboring orientations form the vertices of a small spherical triangular region, 
called a Delaunay triangle (see Figure 10). If the triangle is small enough, the total 
spectrum due to all orientations lying in it has a simple triangular shape, as shown 
in Figure 11. By constructing these subspectra for all Delaunay triangles and sum-
ming them up, the total powder spectrum is obtained (Stoll et al. 2006). This way, 
between 50 and 500 orientations per octant are sufficient for most simulations. 

In EasySpin, the rigid-limit cw ESR spectra are computed by the function 
pepper. Its usage is similar to the one of garlic in the fast-motion regime. A rigid-
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limit powder ESR spectrum of a generic nitroxide radical is shown in Figure 12a. 
The necessary code is 

Sys = struct('g', [2.008, 2.0061, 2.0027], 'Nucs', '14N', 'A', [16, 16, 86]); 
Sys.lw = 0.1; 
Exp = struct('mwFreq', 9.5, 'Range', [334 344]); 
[B, spc] = pepper(Sys, Exp); 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. The set of orientations from a small spherical Delaunay triangle (left) give a 
powder subspectrum in the form of a triangle (right). B1, B2, and B3 indicate resonance fields 
for the orientations corresponding to vertices of the spherical triangle. 

 
 

It is not necessary to specify the number of orientations, which is a mandatory 
user-supplied parameter in many other powder cw ESR simulation programs. For 
most common systems, pepper is able to automatically choose this parameter to 
yield a smooth spectrum. 

Instead of the entire powder spectrum, pepper can return one powder subspec-
trum for each ESR transition. This is demonstrated in Figure 12b. The following 
lines generate the group of spectra: 

Sys = struct('g', [2.008, 2.0061, 2.0027], 'Nucs', '14N', 'A', [16, 16, 86]); 
Sys.lw = 0.1; 
Exp = struct('mwFreq', 9.5, 'Range', [334 344], ‘Harmonic’, 0); 
Opt = struct(‘Output’, ‘separate’); 
[B, spcs] = pepper(Sys, Exp, Opt); 

In the fourth line, it is specified that pepper should return each transition in a sepa-
rate spectrum. For demonstration, the harmonic is set to zero in the third line. 

An example of a transition metal complex is shown in Figure 13a. Instead of a 
single well-defined hyperfine coupling, the simulation includes a distribution of A 
values (A strain), as specified via AStr and AStrain in the second and third lines. In 
addition, an anisotropic line width to model unresolved hyperfine splittings is 
specified by res and HStrain in the first and third line: 
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g = [2.28, 2.19, 2.01]; res =[1 1 1]*60; 
A = [70, 30, 309]; AStr = [45, 25, 40]; 
Sys = struct('S', 1/2, 'Nucs', '59Co', 'g', g, 'A', A, 'AStrain', AStr, 'HStrain', res); 
Exp = struct('Range', [261, 411], 'mwFreq', 9.475); 
Opt = struct('Output', 'separate'); 
[B, specs, Transitions] = pepper(Sys, Exp, Opt); 

 

 

Figure 12. Powder cw ESR spectra of a generic nitroxide radical: (a) first-derivative spec-
trum, (b) absorption spectrum, separate transitions. All simulation parameters are given in 
Matlab code in the text. 
 

 
Figure 13. Powder cw ESR spectra simulated with pepper. (a) Co2+ complex including dis-
tributions of A values. The dashed spectrum represents the contribution of the forbidden ESR 
transitions. (b) A triplet state in thermal equilibrium (top) and with nonequilibrium popula-
tions of the three levels (bottom). All simulation parameters are given in Matlab code in the 
text. 

 

 

Again, the simulation function was asked to return the simulated spectrum 
transition by transition. In the figure, the contributions from the forbidden transi-
tions are shown separately. As a consequence of the A strain, the hyperfine lines in 
the high field region exhibit mI-dependent broadenings. As mentioned above, in 
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contrast to the fast-motion regime, these asymmetric broadenings are due to static 
distributions, and not to dynamic processes. 

pepper can handle molecules with several unpaired electrons and several 
magnetic nuclei. High-order interaction terms for the electron spins are imple-
mented. The simulation of spectra in oriented phases such as liquid crystals and 
membranes is supported by including appropriate weight factors during the sum-
mation of subspectra. Nonequilibrium populations are also possible: a sample 
simulation of the cw ESR spectrum of a molecule in an exited triplet state is 

Sys = struct('S', 1, 'g', [2, 2, 2], 'lw', 0.3, 'D', [-1, -1, 2]*100); 
Exp = struct('mwFreq', 9.5, 'Harmonic', 0, 'CenterSweep', [340, 30]); 
Exp.Temperature = 298; 
[B, spc1] = pepper(Sys, Exp); 
Exp.Temperature = [0.85, 1, 0.95]; 
[B, spc2] = pepper(Sys, Exp); 

In the third line, a temperature in Kelvin is given. In the fifth line, the same field is 
used to specify a nonequilibrium population vector for the zero-field states. The 
resulting two spectra are shown in Figure 13b. 

5.  OTHER EASYSPIN FUNCTIONS 

Aside from the modules for simulating cw ESR spectra, EasySpin contains 
functions for a variety of ESR-related tasks. A list of all functions is included at the 
end of this overview. Here, we shortly focus on a few of them. 

5.1.  ENDOR Spectra 

salt is an EasySpin function for simulating rigid-limit ENDOR spectra. Both 
disordered systems and single crystals are supported. The algorithm is very similar 
to that used for rigid-limit ESR spectra: The powder averaging is identical to the 
one in pepper, only the computation of line positions, intensities, and widths is 
different. 

The ENDOR line positions of a nucleus in a paramagnetic molecule depend on 
its Larmor frequency and on its hyperfine coupling to the unpaired electron. Via 
the electron, it can feel the presence of other, strongly coupled nuclei, resulting in 
second-order line shifts. In addition, the nuclear quadrupole interaction can 
strongly affect the line positions. All these effects are accurately treated by salt, as 
it relies on a numerical computation of the energy levels by diagonalizing the spin 
Hamiltonian. Since the external magnetic field is kept constant in ENDOR experi-
ments, the energy levels have to be computed only once for each orientation of the 
paramagnetic molecule. This makes the computation of powder ENDOR spectra 
much faster compared to the cw ESR case described above. 

For each ENDOR transition, the line intensity is the product of three terms: (1) 
the ENDOR transition rate, which includes the hyperfine enhancement, (2) a factor 
giving the polarization of the transition, and (3) a selectivity factor taking into ac-
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count that the only ENDOR transitions observed are those where one level is also 
involved in the ESR transition that is saturated. More details about the formulae 
implemented in salt can be found in Stoll et al. (2006). 

5.2.  Pulse ESR Spectra 

Although EasySpin currently does not include a black-box function for the 
simulation of pulse ESR spectra, it provides various tools to support the necessary 
time-dependent simulations based on the density matrix formalism. The most im-
portant function is evolve, which evolves a given density matrix under a given 
Hamiltonian over a certain time. Both time-dependent and time-independent Ham-
iltonians are possible. evolve supports various pulse sequences. 

5.3.  Other Tools 

levels and levelsplot are functions for computing and plotting energy level 
diagrams. The plot in Figure 9a was generated by levelsplot: 

TbSys = struct('S', 7/2, 'g', [1, 1, 1]*2.0136); 
b = -2527.53/60; c = -24.84/1260; 
TbSys.B40 = b; TbSys.B44 = [5*b, 0]; 
TbSys.B60 = c; TbSys.B64 = [-21*c, 0]; 
levelsplot(TbSys, [1; 1]*pi/50, [0, 1600], 25); 

Gaussian and Lorentzian line shapes, of almost daily necessity in ESR, are 
provided by gaussian and lorentzian. EasySpin also includes functions for Voig-
tian (convolution of Gaussian and Lorentzian, voigtian) and pseudo-Voigtian (lin-
ear combination of Gaussian and Lorentzian, lshape) line shapes. 

Another convenient function, pseumod, emulates the effect of field modula-
tion on a cw ESR spectrum (Hyde et al. 1990). The following Matlab lines gener-
ate the spectra shown in Figure 14, which demonstrates the influence of the modu-
lation amplitude on the spectral line shape of a nitroxide radical: 

Nit = struct('g', 2, 'Nucs', '14N', 'A', 40, 'lw', 0.1); 
Exp = struct('mwFreq', 9.5, 'Range', [336, 343], 'Harmonic', 0); 
[B, spc0] = garlic(Nit, Exp); 
spc1 = pseumod(B, spc0, 0.05); 
spc2 = pseumod(B, spc0, 0.4); 

For data analysis, Savitzky-Golay smoothing filters (smooth) as well as poly-
nomial and exponential fitting routines (basecorr and exponfit) are available. 
rcfilt is a digital equivalent to the common RC filter employed in cw ESR spec-
trometers. A set of functions (erot, eulang, vec2ang, ang2vec, rotaxi2mat, rot-
mat2axi) supports interconversion between rotation matrices, rotation axes and 
Euler angles. sop can be used to generate matrix representations of cartesian and 
shift spin operators for arbitrary spin systems. 

 
 



318 STEFAN STOLL AND ARTHUR SCHWEIGER 

 
Figure 14. Effect of field modulation on a nitroxide spectrum. All simulation parameters are 
given in Matlab code in the text. 
 
 

LIST OF EASYSPIN FUNCTIONS 

General  

easyspininfo Information about EasySpin installation 
eprload Read spectrum files in common ESR data formats 

Utilities 
eprconvert Graphical frequency/field/g value conversion utility 
fastmotion Fast-motion regime line widths 
isotopes A browsable list of isotopes 
mhz2mt Unit conversion from MHz to mT 
mt2mhz Unit conversion from mT to MHz 

Spectral Simulations 
chili Slow-motion cw ESR spectra 
garlic Isotropic and fast-motion cw ESR spectra 
pepper Solid-state cw ESR spectra 
salt ENDOR spectra 
nucfrq2d Sketch of HYSCORE spectra 

Spin Systems 
nucspinadd Adds a nucleus to a spin system 
nucspinrmv Removes a nucleus from a spin system  

Data Analysis 
basecorr Polynomial baseline correction 
ctafft Cross-term averaged FFT 



EASYSPIN: SIMULATING NEW ESR SPECTRA 319

  

deriv Numerical differentiation 
exponfit Exponential fitting 
fdaxis Frequency domain axis for FFT 
pseumod Pseudo-modulation of ESR absorption spectra 
rcfilt RC filtering of ESR spectra 
smooth Moving averages: smoothing and differentiation  

Vectors, Orientations, and Angles 
ang2vec Converts polar angles to cartesian unit vector 
erot Computes rotation matrix from Euler angles 
eulang Euler angles from rotation matrix 
rotaxi2mat Convert rotation axis plus angle to rotation matrix 
rotmat2axi Convert rotation matrix to rotation axis plus angle 
vec2ang Polar angles from cartesian unit vector  

Line Shapes and Windows 
apowin Apodization windows. 
convspec Convolute spectrum with line shape 
gaussian Gaussian line shape 
lorentzian Lorentzian line shape 
lshape General line shape function 
makespec Construct spectrum from peak positions and amplitudes 
voigtian Voigtian line shape function  

Physical Constants 
nucabund Natural abundance of nuclear isotopes 
nucdata Nuclear spin data 
nucgval Nuclear g values 
nucqmom Nuclear electric quadrupole moments 
nucspin Nuclear spin quantum numbers 
amu Atomic unit of mass 
avogadro Avogadro constant 
barn Unit of nuclear quadrupole moments 
bmagn Bohr magneton 
bohrrad Bohr radius 
boltzm Boltzmann constant 
clight Vacuum speed of light 
echarge Elementary electric charge 
emass Mass of electron 
faraday Faraday constant 
gfree g value of the free electron 
hartree Atomic unit of energy 
molgas Molar gas constant 
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nmagn Nuclear magneton 
nmass Mass of neutron 
planck Planck constant 
pmass Mass of proton 
rydberg Rydberg constant  

Basic Spin Physics 
commute Commutator of two matrices 
equivcouple Coupling of equivalent spins 
equivsplit Splitting pattern for equivalent spins 
hsdim State space dimension of a spin system 
larmorfrq Larmor frequency of nuclear spins 
sop Spin operator matrices 
spinvec Spin quantum numbers in a spin system 
stev Extended Stevens operator matrices  

Angular Momentum 
clebschgordan Clebsch-Gordan coefficients 
plegendre Legendre polynomials and Associated Legendre polynomials 
spherharm Spherical harmonics 
wigner3j Wigner 3-j symbols 
wigner6j Wigner 6-j symbols  

Energy Levels, Resonances, and Propagations 
eigfields Resonance fields using eigenfield equation 
endorfrq ENDOR frequencies and amplitudes 
evolve Evolves density matrices in time-domain 
levels Energy levels computation 
levelsplot Energy levels and resonances plot 
orisel Orientation selection 
propint Compute pulse propagator 
resfields General resonance fields and amplitudes  

Hamiltonians and Densities 
eeint Electron-electron interactions 
hfine Hyperfine interactions 
internal Internal interactions 
nquad Nuclear quadrupole interactions 
sham Full Spin Hamiltonian 
sigeq Thermal equilibrium density matrix 
symm Hamiltonian symmetry determination 
zeeman Zeeman interactions 
zfield Zero field interactions 
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Orientations 
sphgrid Triangular orientational grids 
sphrand Random orientational grids 
sphtri Triangulation of orientational grids 
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