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a b s t r a c t

Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic
Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly
between protein-bound spin labels separated by 1.5–8 nm. From the experimental data, a distance dis-
tribution PðrÞ is extracted using Tikhonov regularization. The disadvantage of this method is that it does
not directly provide error bars for the resulting PðrÞ, rendering correct interpretation difficult. Here we
introduce a Bayesian statistical approach that quantifies uncertainty in PðrÞ arising from noise and
numerical regularization. This method provides credible intervals (error bars) of PðrÞ at each r. This allows
practitioners to answer whether or not small features are significant, whether or not apparent shoulders
are significant, and whether or not two distance distributions are significantly different from each other.
In addition, the method quantifies uncertainty in the regularization parameter.

� 2016 Published by Elsevier Inc.
1. Introduction

Double Electron-Electron Resonance (DEER), also called Pulse
Electron-Electron DOuble Resonance (PELDOR), is a solid-state
pulse Electron Paramagnetic Resonance (EPR) experiment that
measures long-range (1.5–8 nm) distances, r, between paramag-
netic species to sub-ångström resolution [1–3]. It is commonly
applied to proteins and other biomacromolecules immobilized in
frozen glassy solutions, and has been used to investigate systems
that can be challenging to NMR and X-ray crystallography, such
as membrane proteins [4–10]. DEER provides complete distance
distributions, PðrÞ, by measuring the through-space magnetic
dipole-dipole interaction between two stable paramagnetic spin
labels.

DEER data consist of an oscillatory time-domain signal that can
be transformed via regularized numerical inversion into an inter-
spin distance distribution function PðrÞ. Since this inversion is
mathematically ill-conditioned, numerical regularization is neces-
sary. Tikhonov regularization is the most widely used regulariza-
tion procedure. It is a least-squares method that imposes a
degree of smoothness in PðrÞ, reflecting the inherent width in the
distribution owing to spin label and protein mobility [11–13].
The magnitude of the roughness penalty is scaled with a regular-
ization parameter, a. This regularization scheme complicates error
analysis and uncertainty quantification [13].

The distance distribution PðrÞ is, in principle, rich in structural
information, but in practice its usable information is often limited
to the dominant spin-spin distance. Peak widths and shapes, which
describe structural heterogeneity, are more uncertain as they are
highly sensitive to noise levels, degree of regularization, time-
domain truncation, background correction, etc. There does not cur-
rently exist a general and robust method for fully quantifying
uncertainty in the Tikhonov estimate of PðrÞ [4,12–14]. As a result,
it can be difficult to draw robust conclusions from DEER distance
distributions. The lack of uncertainty quantification prevents
access to important structural information.

Concerningly, it is very uncommon for any error or uncertainty
estimates to be displayed in PðrÞ. After surveying over 100 recently
published papers containing DEER distance distributions, we have
found that nearly 90% lacked error estimates on PðrÞ (see SI). This
state of affairs may hinder more widespread adoption of DEER
spectroscopy. Enabling robust statistical analysis of DEER data will
significantly expand the reliability, and therefore the utility, of
DEER.

In this paper, we present a Bayesian statistical method to quan-
tify the uncertainty arising from measurement noise and regular-
ization in the DEER distance distribution estimated with
Tikhonov regularization. The effects of other sources of uncer-
tainty, such as background correction, can be assessed by extend-
ing the method. When evaluating a given PðrÞ, DEER practitioners
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often request to see the time-domain trace in order to qualitatively
assess uncertainty in the PðrÞ. There is an empirical understanding
that data with a higher signal-to-noise ratio (SNR) yield more reli-
able distance distributions, particularly in the case of multi-modal
distributions, but quantifying the reliability of PðrÞ remains an
open issue. Further, the selection of the value for the regularization
parameter a, which is required for Tikhonov regularization, is a
source of bias and uncertainty.

Bayesian methods have been successfully implemented in
many applications involving the solution of ill-conditioned inverse
problems, including medical imaging, underground resource
exploration, image reconstruction, and astronomical spectroscopy
[15–18]. Recently, the utility of Bayesian statistics has been recog-
nized in the estimation and analysis of model parameters related
to biophysical measurements [19–21].

The next section summarizes the basics of DEER and Tikhonov
regularization. Then, we introduce a new Bayesian approach that
provides a full probabilistic analysis of PðrÞ using a Markov-Chain
Monte Carlo (MCMC) algorithm. After that, we illustrate its perfor-
mance using model distributions. Finally, we discuss how the
method can be applied to answer interpretational questions about
PðrÞ and how it relates to other forms of error assessment.

2. DEER and Tikhonov regularization

2.1. The DEER signal

The time-domain DEER signal, VðtÞ, is the integrated spin echo
measured as a function of the timing of the pump pulse relative
to the probe pulses within the DEER pulse sequence. VðtÞ is mod-
ulated by the dipolar interaction between spin labels. It is a combi-
nation of the desired modulation due to intramolecular spin-spin
dipolar interactions, FðtÞ, and an undesired background contribu-
tion due to intermolecular interactions, BðtÞ (Fig. 1). In dilute solu-
tions, VðtÞ can be expressed as a product [1,2]

VðtÞ ¼ V0 � FðtÞ � BðtÞ ð1Þ

FðtÞ ¼ ð1� kÞ þ kSðtÞ ð2Þ

BðtÞ ¼ expð�ðktÞD=3Þ ð3Þ
where V0 is the unmodulated integrated echo intensity, k is the
modulation depth (a measure of the efficiency of the DEER pump
Fig. 1. The normalized time-domain DEER signal, VðtÞ=V0 (solid black), is the
product of two signals: the oscillatory intramolecular modulation, FðtÞ, that
provides information about spin-spin distances in biradicals, and an averaged
intermolecular signal in the form of a decaying exponential background, BðtÞ
(dashed gray). The background is removed and FðtÞ is shifted and rescaled by k, the
modulation depth, to obtain the dipolar modulation function, SðtÞ.
pulse, 0 6 k 6 1), and SðtÞ is the intramolecular dipolar modulation
function. Eq. (2) is based upon the assumption that the sample con-
tains only A-B spin pairs, and is not valid for the case where an A-A
pair is excited by the observer sequence. This case is unavoidable in
homogenous labeling schemes, as in the common case of two
nitroxide radical labels on one protein. A more complete expression
contains additional terms, as explained in [22,23]. For the purposes
of this work, the specific forms of BðtÞ and FðtÞ are irrelevant; the
analysis is only concerned with SðtÞ.

The background BðtÞ is a decaying exponential, where D is the
dimensionality of the system (3 for soluble proteins). The decay
constant k depends upon the spin concentration and inversion effi-
ciency. For coupled pairs of spin-1/2 in an amorphous glass or
powder, and in the absence of orientation selection, SðtÞ is given
by the integral

SðtÞ ¼
Z 1

0
drKðt; rÞPðrÞ ð4Þ

where the integral kernel Kðt; rÞ describes the powder average of
the dipolar interaction and PðrÞ is the distance distribution proba-
bility density function (PDF)

R
drPðrÞ ¼ 1

� �
that describes the con-

formational heterogeneity of the ensemble of spin-labeled protein
molecules in the sample. The dipolar kernel is [1,2,24]

Kðt; rÞ ¼
Z p=2

0
dh sin h cos 1� 3 cos2 h

� � �x?t
� � ð5Þ

¼ CðzÞ
z

� cosðx?tÞ þ SðzÞ
z

� sinðx?tÞ ð6Þ

where x? ¼ l0
4p

l2
B
�h

gAgB
r3 is the perpendicular dipolar frequency,

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x?t=p

p
, and CðzÞ and SðzÞ are the cosine and sine Fresnel

integrals, respectively [25,26]. The frequency of oscillation in the
time domain is proportional to the inverse cube of the spin-spin dis-
tance. With this kernel and the normalized PðrÞ, SðtÞ is normalized
such that Sð0Þ ¼ 1 in the absence of noise.

Experimentally, SðtÞ is measured at n discrete time points ti. For
the data analysis, P is also discretized, typically at n points rj,
although a different number of points is possible. The discretized
form of Eq. (4) is

S ¼ KP ð7Þ
where K is here an n� n matrix, and S and P are n� 1 vectors, with
elements:

Kij ¼ Kðti; rjÞ � Dr ð8Þ

Si ¼ SðtiÞ ð9Þ

Pj ¼ PðrjÞ ð10Þ
The step size in the distance domain, Dr, has been incorporated into
K in order to simplify notation. This discretization preserves nor-
malization of S and P. After background correction, the DEER exper-
iment yields the noisy signal, S. However, the practitioner seeks the
distance distribution, P.

2.2. Tikhonov regularization

In order to extract P from S, it is necessary to solve Eq. (7) for P.
This would require inverting the matrix K. Unfortunately, K has a
large condition number, and so the computation of its inverse is
prone to large numerical errors. Thus, Eq. (7) is an ill-conditioned
inverse problem [27]. To obtain a solution, numerical regulariza-
tion is required. The regularization method preferred in the DEER
literature is Tikhonov regularization [11–13,27], which solves the
multidimensional least-squares minimization problem:



T.H. Edwards, S. Stoll / Journal of Magnetic Resonance 270 (2016) 87–97 89
Pa ¼ min
PP0

kS� KPk2 þ a2kLPk2
� �

¼ min
PP0

qþ a2g
� � ð11Þ

where L is commonly the ðn� 2Þ � nð Þ-dimensional second-
derivative operator matrix

L ¼

1 �2 1 0
1 �2 1

. .
. . .

. . .
.

0 1 �2 1

0
BBBB@

1
CCCCA ð12Þ

a is the regularization parameter [11–13], and k . . . k is the Eucli-
dean norm (‘2-norm).

The first term in Eq. (11), q, is the residual sum of squares and
captures how well the solution Pa fits the data in the time domain
(time-domain misfit, or prediction error). The second term, g, is a
measure of the overall roughness of the solution. The regulariza-
tion parameter a determines the importance of the roughness rel-
ative to the prediction error in the fitting.

Since P is a probability density, it is constrained to be non-
negative. Therefore, the simple analytical solution to the uncon-
strained problem, which is

Pa ¼ KTK þ a2LTL
� ��1

KTS ¼ QaK
TS ð13Þ

cannot be used. In order to solve the constrained problem, numer-
ical iterative algorithms have to be employed [27,28].

2.3. Regularization parameter selection

The regularization term in Eq. (11) represents an assumption
about the distance distribution: it should be smooth. This is a rea-
sonable assumption as it is difficult to imagine a biologically rele-
vant, or microscopically realistic, scenario where the distance
between two intrinsically mobile spin labels varies in a very rough
and discontinuous fashion on a sub-ångström scale. The degree of
regularization is determined by the magnitude of the scalar param-
eter a, which is a nuisance parameter that must be separately
determined. For very small a, roughness is not penalized, the solu-
tion is extremely spiky and over-fits the noise. For large a, rough-
ness is over-penalized, Pa will be over-smoothed, and the fit to the
data will be poor.

Since the value of a significantly influences the form of the solu-
tion, it is important to choose an optimal value for a. One com-
monly employed method is the L-curve criterion [12,13,29]. The
L-curve is a parametric curve in the log-log plot of g against q. This
curve typically adopts a characteristic ‘‘L” shape. The L-curve crite-
rion considers the optimal value for a to be found at the corner of
the L-curve [29]. In practice, the corner is often determined by eye.
Alternatively, the point of maximum curvature can be found auto-
matically [30]. This removes some practitioner bias from the data
processing procedure and increases reproducibility.

Leave-One-Out Cross Validation (LOO-CV) is another approach
[30]. Generally, CV approaches withhold a subset of the data from
the Tikhonov analysis and then iteratively adjust a to reduce the
error between the fit and the withheld data [30]. The LOO variant
of CV excludes each data point, one at a time, from the analysis and
then minimizes the total prediction error. This can be expressed as
the minimization problem [31]

aLOOCV ¼ min
a

Xn
i¼1

Kð:; iÞPa � SðiÞ
1� haði; iÞ

				
				
2

 !
ð14Þ

where ha is the a-dependent matrix KQaK
T and Pa is the Tikhonov

solution for a particular a. In our hands, LOO-CV outperforms the
L-curve criterion. However, it is still a heuristic method and does
not provide uncertainty estimates for a.
3. Bayesian uncertainty quantification

In this section, we present an MCMC method based on Bayesian
statistics for quantifying uncertainty in P and a. It utilizes SðtÞ and
assumes that background correction has already been performed.
We introduce the basic probabilistic equations, show the connec-
tion to Tikhonov regularization, and describe the MCMC algorithm,
generate representative samples of P and a, and analyze them
statistically.

3.1. The posterior distribution

We start by considering what is observable and given, and what
is unknown, uncertain, and wanted. Here, we consider the
intramolecular dipolar modulation function SðtÞ observable and
given. SðtÞ is obtained from the experimental data VðtÞ after back-
ground correction. It is an inseparable sum of the true signal and
corrupting noise. A second useful quantity that can be obtained
from experiment is the noise variance. We obtain it experimentally
by acquiring and storing each phase-cycled DEER trace separately
and then statistically analyzing the distribution of values for each
ti across the set of acquired traces. As shown in the SI, this noise
is Gaussian with amplitude roughly independent of ti. The noise
deviations at adjacent time points are not correlated. Therefore,
we can characterize the noise by a single noise variance, r2

S . (If
recording separate traces is not possible on a particular spectrom-
eter, one may use the root mean square difference between a
Tikhonov fit and the data as a stand-in. We do not recommend this,
as errors in the fit will propagate to the final results.) For notational
convenience, we will henceforth use its inverse, called the
precision

s ¼ 1 r2
S



: ð15Þ

Next, we consider the unknown and uncertain quantities. These
include the desired underlying distance distribution P. However,
since the problem is not solvable without regularization, a regular-
ization parameter is required as well. There is no absolute certainty
about its optimal value. Here, we will use the symbol d and show
later that d is proportional to a2.

To summarize, S and s are observable and fixed, and P and d are
unknown and desired. Our goal is to fully characterize the condi-
tional probability distribution for P and d, given the measured S
and s: pðP; djS; sÞ. First, we construct an expression for
pðP; djS; sÞ. Like any conditional probability, it is proportional to
the full joint probability

pðP; djS; sÞ ¼ pðP; d; S; sÞ
pðS; sÞ / pðP; d; S; sÞ ¼ pðS; P; d; sÞ: ð16Þ

In the second step we omitted the marginal probability pðS; sÞ, since
it is a constant independent of P and d. In the last step, we reordered
the variables. This joint probability can be written as a chain pro-
duct of four probabilities

pðS; P; d; sÞ ¼ pðSjP; d; sÞ � pðPjd; sÞ � pðdjsÞ � pðsÞ: ð17Þ
Next, we introduce specific expressions for the factors on the

right-hand side. The first term indicates the conditional probability
of a certain S given P, d and s. For this, we can use a Gaussian with
the weighted sum-of-squares-deviation in the exponent

pðSjP; d; sÞ ¼ pðSjP; sÞ ¼ s
2p

� �n=2
exp � s

2
kS� KPk2

� �
: ð18Þ

(We omit d in the notation, since the expression does not directly
depend on it). This expression captures the essence of least-
squares fitting: if P is such that KP fits S well, the magnitude of
the exponent is small and the probability large. On the other hand,
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if the fit is poor, the exponent is large in magnitude, and the prob-
ability is small (Fig. 2).

The second term in Eq. (17) is the conditional probability of a
certain P given values for d and s. For this, we choose a Gaussian
smoothness requirement:

pðPjd; sÞ ¼ pðPjdÞ ¼ d
2p

� �n=2

exp � d
2
kLPk2

� �
ð19Þ

where L is the same operator as in Tikhonov regularization (com-
monly the second derivative) and d determines the roll-off rate of

the probability as a function of the roughness kLPk2. This expression
assigns higher probabilities to smoother P, as illustrated in Fig. 2.

The third term in Eq. (17) is the probability of a given d. Since
we are uncertain about the value of d, we use a very broad distri-
bution. For mathematical convenience and because of its highly
tunable shape, we choose a gamma distribution [17]

pðdjsÞ ¼ pðdja; bÞ ¼ ba

CðaÞ d
a�1 expð�bdÞ ð20Þ

where we omitted s because it is independent of d. The fixed
parameters a and b determine the shape and width of the distribu-

tion such that its mean is a=b and its variance is a=b2. We use a ¼ 1,
in which case the expression simplifies to a decaying exponential,
b expð�bdÞ (see Fig. 2). We discuss the selection of b in Section 3.3.
It is not currently clear if our choice of Eq. (20) is optimal; other
superior choices could exist. The gamma distribution is, however,
commonly used in conjunction with Gaussian priors.

Finally, the last term in Eq. (17), pðsÞ, is a constant, since s is
known from experiment. We can therefore drop it and use the
experimental s value.

To summarize, our target expression for the conditional proba-
bility for P and d, given S and s, is

pðP; djS; sÞ / pðSjP; sÞ � pðPjdÞ � pðdja; bÞ ð21Þ
with the right-hand side quantities given by Eqs. (18)–(20) and
illustrated in Fig. 2. This expression is a form of Bayes’ law and con-
stitutes a Bayesian hierarchical model. pðP; djS; sÞ is called the pos-
terior PDF, or simply the posterior. pðSjP; sÞ is called the likelihood
and describes how likely it is to measure a certain S given a partic-
ular P and s. pðPjdÞ is a called the prior PDF, or simply the prior. It
describes our knowledge about P prior to the acquisition of the data
Fig. 2. Illustration of the factors composing the posterior distribution: the
likelihood, prior, and hyperprior. The likelihood function (left) is a Gaussian in
kS� KPk, the fit error. Its width is determined by s. The prior (middle) is also a
Gaussian, this time in kLPk, the roughness. It biases towards zero roughness with
width determined by d. The hyper-prior (right) is a gamma distribution with the
form of a slowly decaying exponential, given a ¼ 1 and small b.
(i.e. P is not rough). pðdja; bÞ is a hyper-prior which describes prior
knowledge about d. The reason we use a gamma distribution in d is
that this makes the total expression a gamma function in d. Eq. (20)
is therefore called a conjugate hyper-prior [15]. Similarly, the Gaus-
sian prior in P is conjugate with the likelihood, since the total
expression is also Gaussian in P.

3.2. Connection to Tikhonov regularization

The particular P that maximizes the posterior probability is the
most likely P and is called the maximum a posteriori (MAP) solu-
tion: PMAP ¼ maxPP0pðP; djS; sÞ. The same P can be obtained by
minimizing the negative logarithm of that probability:
maxPP0pðP; djS; sÞ ¼ minPP0ð� logpðP; djS; sÞÞ. Dropping all P-
independent prefactors in pðP; djS; sÞ, taking the negative loga-
rithm, and dividing by s=2 gives

� logpðP; djS; sÞ / kS� KPk2 þ d
s
kLPk2: ð22Þ

This is identical to the Tikhonov functional in Eq. (11) if [15,32,33]

a2 ¼ d
s

ð23Þ

Consequently, the Pa obtained by Tikhonov regularization is equal
to PMAP in the special case where Eq. (23) is true. Eq. (23) is not a
general constraint on d or a: s and d are independent variables in
the Bayesian model.

3.3. Gibbs sampling

In order to obtain visualizable and interpretable results, we
need to compute the average and other measures of P over the dis-
tribution given in Eq. (21). Due to the multivariate and constrained
nature of the expression, this is not possible analytically. Therefore,
we need to resort to numerical sampling techniques to generate a
set of P and d such that any expectation (e.g. mean) over this set
approximates well the corresponding analytical expectation value
over the entire posterior distribution, pðP; djS; sÞ.

For this, we use the Gibbs sampler, which is a Markov-Chain
Monte-Carlo (MCMC) algorithm for drawing numerical samples
from a multivariate probability distribution [34]. The Gibbs sam-
pler generates samples of P and d from pðP; djS; sÞ by successively
sampling from the posterior of each variable (P and d) in turn. In
our case, the necessary posteriors are pðPjd; S; sÞ and pðdjP; S; sÞ.

To get pðPjd; S; sÞ, we take Eq. (21) and omit terms that do not
contain P. As shown in the SI, the resulting expression gives a mul-
tivariate normal distribution in P

pðPjd; S; sÞ / exp �1
2
ðP � PMAPÞTR�1ðP � PMAPÞ


 �
ð24Þ

with mean PMAP ¼ sRKTS and covariance matrix

R ¼ sKTK þ dLTL
� ��1

. Drawing a random sample of P from this mul-

tivariate normal distribution under the nonnegativity constraint
P P 0 can be done by solving the following randomized minimiza-
tion problem ([33], see SI):

min
PP0

PTR�1P þ PT sKTSþ C�1
L

� �T
v

� �
 �
ð25Þ

where v is a random vector sampled from the normal distribution
Normalð0; IÞ with an identity covariance matrix, and CL is the lower
triangular Cholesky factor of R such that CLC

T
L ¼ R (see SI). To solve

Eq. (25), we use the Fast Non-Negative Least Squares (FNNLS) algo-
rithm [28] (see Section 7).
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To get pðdjP; S; sÞ, we again take Eq. (21) and omit terms inde-
pendent of d. This results in a gamma distribution with parameters
~a ¼ aþ n

2 and
~b ¼ bþ 1

2 kLPk2:

p djP; S; sð Þ / gammaðd; ~a; ~bÞ: ð26Þ
One common approach with gamma hyper-priors is to use small

values for a and b that satisfy a � n=2 and b � kLPk2=2. With these

values, a and b have little influence on ~a and ~b and on the posterior
of d in Eq. (26), therefore introducing minimal bias [33]. Initially, to
achieve such an uninformative flat distribution, we chose b values
between 10�6 and 10�3, which render the decay rate of the expo-
nential very slow [33], as in Fig. 2. We found that b had to be
10�5 or smaller to avoid influencing the results. This choice resulted
in estimates for a that were unreasonably large, so we instead used
the LOO-CV estimate of a to select b. Recalling the relationship

between d and a from Eq. (23), we set the mean of Eq. (26) ð~a=~bÞ
equal to a2

LOOCVs and solve for b to obtain:

b ¼ ~a
a2
LOOCVs

� 1
2
kLPinitk2 ð27Þ

where Pinit is calculated via Eq. (25) using d ¼ a2
LOOCVs. To draw ran-

dom samples from the gamma distribution, we use the algorithm of
Marsaglia and Tsang [35].

The Gibbs sampler explores the full (P, d) space by taking ran-
dom steps (Monte Carlo) along each parameter dimension, using
the last value sampled for the other parameter (Markov Chain)
[15,36]:

Set d0 ¼ sa2
LOOCV

Set P0 ¼ PaLOOCV
Set t ¼ 1
while not converged do
dt � pðdjPt�1; S; s)
Pt � pðPjdt; S; sÞ
t ¼ t þ 1

end while

The symbol � denotes drawing a random sample from the dis-

tribution to its right, and subscripted t refers to the sample index.
Note that dt , the sampled value of d, is used immediately in the
generation of a sample of P, Pt .

TheGibbs sampler produces a chain of P and d values that is guar-
anteed to converge to the true distribution [15,17,34]. Upon conver-
gence, the algorithm yields a large set of (Pt , dt) samples, distributed
over parameter space such that their density is proportional to
pðP; djS; sÞ. The initial part of the chain (called the burn-in) is usually
discarded, since initially the distribution is not yet stationary and
depends on the particular choice of the starting value.

Assessment of convergence needs to be done carefully. We con-
sider the sampling converged when the 2nd, 25th, 50th, 75th, and
98th percentiles for each point in P change by less than 10�3 nm�1.
For more easily computed values such as a and the mean of P, we
use a multi-chain convergence test [33,37]. This method requires
that multiple chains are run from different starting points. At each
convergence check, the intra- and inter-chain variances of some
test statistic are compared. When the inter- and intra-chain vari-
ances coincide, the sampler is considered converged. The details
are discussed in the SI.

3.4. Analyzing the Gibbs samples

Next, we calculate the median and spread estimates for the set
of P vectors and d values from the Gibbs sampler to obtain mea-
sures of uncertainty for P and d. For each rj, the values of PtðrjÞ
are sorted into quantiles, using method 8 from [38]. Specifically,
we calculate the 2nd, 25th, 50th, 75th, and 98th percentiles. We
generate distance distribution plots, where the median P (50th
percentile) is shown as a line, and the other quantiles are used to
draw error bands. The 2nd and 98th percentiles encapsulate the
96% Bayesian credible interval (BCI). This interval indicates that
the parameter in question has a 96% probability of falling within
the interval [17]. Likewise, the 25th and 75th percentiles bound
the 50% credible interval.

We analyze the distribution of d, and consequently a, in a sim-
ilar fashion. From the set of d samples, we obtain a mean and the
root-mean-square deviation. The method therefore automatically
determines a, starting from the LOO-CV estimate, without the need
of user choices and the danger of user bias and inconsistency. How-
ever, any systematic error in the LOO-CV estimate will affect the
final results. We next show that the Bayesian method described
above captures well the effect of noise on P.
4. Results

4.1. Unimodal and bimodal distributions

4.1.1. Credible intervals
Fig. 3 shows DEER time-domain traces generated from two

model distance distributions (one unimodal and one bimodal)
and three different levels of noise. For these data, six independent
chains per data set converged within 11,500–20,500 iterations. The
sets of P and d from the resulting chains represent the posterior
distribution and are illustrated in Fig. 4. The results are plotted
in terms of a, rather than d. This scatter plot of the value of P at
r ¼ 3 nm vs. a for each iteration of two chains of the Gibbs sampler
reveals that most of the samples fall near to the model value for P
and the a that best recovered the model through Tikhonov regular-
ization. As the distance from the maximum of the posterior
increases, the density of points decreases. To illustrate the Markov
chains that built this particular posterior, the initial values and the
first 25 iterations for two chains are highlighted. The sampler alter-
nates between steps in the d and P dimensions. The initial value
starts the Markov Chain in a region of low probability, and then
quickly finds the region of high probability, sampling around the
posterior. Though highly informative, this view of the posterior
would be difficult to visualize for all n ¼ 400 points in each P con-
sidered, so we examine the results in terms of quantiles.

The resulting median and the 50% and 96% credible intervals
obtained from the Gibbs sampler for simulated data are shown in
Fig. 5. The width of the credible intervals increases with the noise
level and decreases with increasing d: variance is reduced at the
cost of increased bias (see SI), but s dominates. High noise levels
may lead to much more drastic deviations in the distance distribu-
tion. Bimodal distributions display wider credible intervals than
unimodal distributions for a given noise level, again matching
our expectations. The average and standard deviations of a,
obtained from d via Eq. (23), are given in Fig. 5.

Small features adjacent to the primary peaks are likely to be
artifactual. For example, the small feature at 4.8 nm in the uni-
modal PðrÞs in Fig. 3 is shown in Fig. 5 to be indistinguishable from
zero and therefore artifactual at all noise levels considered.

The credible intervals in Fig. 5 show the persistence of a second
peak at 3.9 nm for bimodal PðrÞs in the mid- and high-SNR cases. In
the low-SNR case, where Tikhonov regularization is unable to
recover a bimodal distribution due to poor data quality, the credi-
ble intervals reflect that the second peak cannot be resolved. In
some cases, as in Fig. 5 top right panel, the BCIs do not encapsulate
all of the original model distribution. This is likely due to a system-
atic error introduced by the LOOCV method that is unable to deter-



Fig. 3. Simulated model data. Left panel: DEER time traces with varied SNR generated from unimodal and bimodal distributions are shown as black dots in the top and bottom
plots, respectively. The unimodal distribution is a normalized Gaussian centered at 3 nm with a FWHM (full-width at half maximum) of 0.8 nm. The bimodal distribution is a
normalized sum of two Gaussians with centers of 3 and 3.9 nm, FWHM of 0.8 and 0.7 nm, and weights of 1 and 0.4, respectively. For all S and P, n ¼ 400. Right panel: the
corresponding unimodal and bimodal PðrÞ vectors obtained from Tikhonov regularization are displayed in the top and bottom plots, respectively. The model PðrÞ is shown as a
dotted line and the low-, medium-, and high-SNR solutions are shown as magenta, green, and blue curves, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Illustrative plot of the result of a Gibbs sampler, showing PtðrjÞ vs. at from
the unimodal s ¼ 900 (medium noise) case (Fig. 3), including marginal histograms
for both variables. The scatter plot shows two chains of Gibbs sampled values for
Pðrj ¼ 3 nmÞ vs. the sampled d values (converted to a through Eq. (23)). This
distance corresponds to the peak maximum of the model P. Chain 1 begins at a ¼ 1
and chain 2 begins at a ¼ 100. The dashed line in the a dimension corresponds to
the a that minimizes the error between the Tikhonov solution and the model P.
After a brief burn-in for both chains, the algorithm finds and samples the posterior
distribution, visiting regions of high probability more often than those of low
probability. The offset from the model values is due to noise and the systematic bias
introduced by the LOO-CV estimate of a.
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mine the optimal regularization parameter. This error affects the
MCMC procedure because the LOOCV estimate is used to deter-
mine the hyperprior.

4.1.2. Histograms
By generating histograms of single-point estimators such as the

mean, the mode, or the variance for each Pt , we can gain additional
insight. Fig. 6 shows an example for the model data from Fig. 3. The
histograms for the high-noise cases are larger than those for the
low- and medium-noise cases because the Gibbs sampler took
many more iterations to converge. In both the unimodal and bimo-
dal cases, the location of the most populated distance does not sig-
nificantly change with increasing SNR, though it does become
more precise. This stability of the mode with respect to noise has
been previously observed [11]. In contrast, the peak width is statis-
tically significantly different at different noise levels, and unrelated
to the precision of the mode. However, the confounding effect of
overestimation of d due to the systematic error in the LOOCV esti-
mator, which would tend to increase peak width via oversmooth-
ing, cannot be ruled out. The mean likewise shifts with increasing
noise.

4.1.3. Regularization parameter
In Tikhonov regularization, error assessment for a is not per-

formed. One distinct advantage of the method described here is
that it generates a distribution of d and thereby a, allowing statis-
tical analysis of this parameter. Fig. 7 shows an example. For the
high- and medium-SNR cases from Fig. 3, the Bayesian MCMC
approach generates a narrowly distributed set of as close to the
value that minimizes error between Pa and the model P. The dis-
crepancy is greater in the low-SNR case. LOO-CV outperforms the
‘L’-curve, but both heuristic methods overestimate a. This system-
atic overestimation may result in an underestimation of the cred-
ible intervals (see Fig. S2).

4.2. Mixed-width distribution

One example that is frequently brought up to describe the lim-
itations of Tikhonov regularization is a bimodal PðrÞ consisting of a
wide and a narrow Gaussian peak of roughly equal area (Fig. 8)
[11,14]. From the noisy time-domain signal corresponding to this
PðrÞ, Tikhonov regularization predicts the narrow peak well, but
represents the wide peak as a combination of features that have
widths similar to that of the narrow peak. The smoothness bias
in Tikhonov regularization applies approximately equally over
the entire range of r and, in this case, this bias prevents faithful
recovery of the original mixed-width bimodal PðrÞ. The Bayesian
method outlined here provides error bands that visually indicate



Fig. 5. Bayesian credible intervals on PðrÞ from model data (Fig. 3). Median P
solutions and Bayesian credible intervals for the unimodal and bimodal models are
displayed in the left and right columns, respectively. Low-, medium-, and high-SNR
cases are in the top, middle, and bottom rows, respectively. The 96% and 50%
credible intervals are light and dark bands, respectively. The model Ps are shown as
black dashed lines. Model S traces with variable SNR (black dots) and time-domain
fits from the median Ps are shown as insets. a is reported as the mean plus or minus
2r.
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that the shape of PðrÞ is quite uncertain in the area of the wide fea-
ture. This shows that the wide peak cannot be recovered as faith-
fully as the narrow feature.
5. Discussion

Although not the only source of uncertainty in DEER distance
distributions, noise in the time-domain signal contributes spurious
features and partially determines the degree of regularization
required. Researchers often go to great lengths to minimize the
presence of noise. As a first step towards full uncertainty quantifi-
cation in DEER analysis, the present work successfully quantifies
the uncertainty in PðrÞ stemming from experimental noise. This
will make the interpretation of DEER data easier and more robust,
as more quantitative arguments about the significance or insignif-
icance of a given feature can be made.

5.1. Interpretation guidelines

Bayesian credible intervals are a natural way to visualize the
uncertainty in PðrÞ given a certain noise level in the data. Features
lying within a given credible interval are statistically indistinguish-
able at that level of credibility. The credible intervals can therefore
guide interpretation of DEER distance distributions and help guard
against overinterpretation. Next, we consider the following typical
interpretative questions: (a) Significance of small peaks, (b) pres-
ence of shoulders, and (c) relevance of the difference between
two distributions.

(a) Small side peaks are not uncommon in experimental DEER
distance distributions. With the credible intervals, it is pos-
sible to assess whether they are significant or not. If the
credible interval of a small peak includes the baseline, then
the small peak is statistically indistinguishable from zero
at that level of credibility and must be considered insignifi-
cant given the data. For example, in the top left panel of
Fig. 5, the small feature at about 4.7 nm can be considered
insignificant. Likewise, the small feature about 1.7 nm in
Fig. 8 can be discounted.

(b) Shoulders in distributions can indicate conformational sub-
populations. If a straight reference line (or a spline) connect-
ing two points on the median distribution to the left and to
the right of the shoulder fully falls within the credible inter-
vals, then the shoulder is not significant. In such a case, a P
with a shoulder is statistically indistinguishable from a P
without a shoulder. For example, in the bottom right panel
of Fig. 5, a reference line connecting the median P from the
left and right of the higher distance feature about 3.9 nm
runs outside of the credible interval, implying that the
shoulder is statistically significant. In Fig. 8, the shoulder
feature at about 2.6 nm can be considered insignificant, as
a line connecting the median P local maximum at about
3.2 nm to the same curve at about 2.2 nm falls entirely
within the BCI. Overall, this indicates that both the Tikhonov
solution and the P median show detail between 2.5 and
3.5 nm that is not significant.

(c) When comparing two distributions, the credible intervals
allows the practitioner to quickly identify whether the dis-
tributions are significantly different. If the credible intervals
of two P do not overlap, then they are different. If there is
overlap in the credible intervals, then significance testing
can be employed to answer basic questions such as: are
the mean spin-spin distances significantly different between
these two samples? For example, the BCIs in Fig. 5 for the
unimodal and bimodal high- or mid-SNR cases are clearly
distinct, revealing a statistically significant difference. Addi-
tionally, one can construct histograms as in Fig. 6 and per-
form a Student’s t-test. Fig. 6 demonstrates that PðrÞ peak
width can be significantly affected by experimental noise.
This implies that quantifying uncertainty in the width of
PðrÞ is crucial in studies that compare the relative widths
of distributions.

5.2. Comparison with other methods

In the literature, the quality of a given PðrÞ is most often
assessed by examining the time-domain data, considering the
magnitude of the regularization parameter, and then making a
qualitative judgement call (see SI). Several attempts have been
made to quantify uncertainty in DEER. Those quantitative esti-
mates of error from signal noise that the authors have encountered
come from one of three methods: the noise feature of the Valida-
tion Tool in the software DeerAnalysis [13]; error propagation
[13,27]; and various model-based approaches [14,24,39–45].

5.2.1. DeerAnalysis
DeerAnalysis [13] is the most commonly used software for

DEER data processing, and it uses Tikhonov regularization to calcu-



Fig. 6. Analysis of the Gibbs sampler output. Left column: unimodal case. Right column: bimodal case. Top row: PðrÞ mode. Middle row: PðrÞ 1st moment. Bottom row: PðrÞ
2nd moment. The mode of the PðrÞ is largely invariant to noise, but its precision does correlate with SNR. Added noise does cause statistically significant shifts in the 1st
moment and especially in the 2nd moment. Such analysis can be used to demonstrate the statistical difference or similarity of two separate PðrÞs.

Fig. 7. Comparison of a values for the model data in Fig. 3 determined from the maximum curvature of the L-curve (orange), LOO-CV (dark red), and Gibbs sampling (dark
blue), with the value that best recovers the model using Tikhonov regularization (black). Left column: unimodal case. Right column: bimodal case. Top row: low SNR. Middle
row: medium SNR. Bottom row: high SNR. The Gibbs sampler out-performs point estimates for a in all cases. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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late PðrÞ. The method proposed here quantifies uncertainty in the
Tikhonov solution for PðrÞ, so DeerAnalysis is the most comparable
extant method. DeerAnalysis provides the capability to assess error
from time-domain noise by repeatedly adding additional normally
distributed synthetic noise to the data V=V0 and then examining
the resulting changes in the P vectors. This approach falls under



Fig. 8. Bayesian analysis applied to a bimodal mixed-width distribution. The model
was generated with two equally weighted Gaussian peaks centered at 3 and 3.8 nm
with FWHM of 1 and 0.25 nm, respectively. Normally distributed noise with
s ¼ 2500 (SNR = 50) was added to the corresponding S. Both the Tikhonov solution
and the Gibbs median P fail to recapitulate the model distribution. The Bayesian
credible intervals indicate that there is increased uncertainty in the regions where
the Tikhonov solution is the most incorrect.
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the category of bootstrapping methods. The user sets several
parameters, including the magnitude of the added synthetic noise
and the number of iterations. The noise is therefore not guaranteed
to be equal in magnitude to the experimental noise level, compro-
mising accuracy. Convergence is likewise not guaranteed. The error
bars displayed are the �2r bands of the set of calculated P vectors.
This visualization is useful if the population is normally, or close to
normally, distributed. This is not guaranteed to be the case, espe-
cially where P is zero or close to zero. The confidence intervals
often include regions of negative probability, which is not physi-
cally valid, so negative valued indices of the �2r bands are set to
0. No error analysis regarding the uncertainty in the choice of a
can be performed.

Compared to the validation tool in DeerAnalysis, the present
method is more time consuming because of the large number of
required iterations. DeerAnalysis also considers additional sources
of uncertainty, such as background correction and pulse band-
width. However, the Bayesian method features convergence crite-
ria, utilizes real noise information, reduces user bias, and provides
uncertainty estimates for a.
5.2.2. Propagation
The next method is more limited in scope than either DeerAnal-

ysis or the proposed Bayesian approach. The variance of the noise
in SðtÞ, r2

S , can be propagated from the time domain to the distance

domain using r2
P ¼ r2

Sdiag Q 0
aQ

0T
a

� �
where the primes indicate that

only rows and columns in Qa (as defined in Eq. (13)) are retained
that correspond to the indices where the constrained Tikhonov
solution is non-zero. Commercial EPR spectrometers store acquired
data only after signal averaging, so noise statistics are usually
unavailable. In this case, the fit RMSD (root mean square differ-
ence) between the Tikhonov fit KP and the data S is often used as
a stand-in for rS. As a result, any error in the fit will corrupt the cal-
culation. This approach gives no error estimate for regions where
the Tikhonov solution is zero. This method is used in the program
FTIKREG [27], which was used by DeerAnalysis until 2016. We
have used this method in the past [46,47].
Unlike the propagation method, for which true noise statistics
are usually unavailable, the proposed Bayesian method uses
observed noise information. It also provides estimates for the full
r domain, including regions where PðrÞ has been constrained to
non-negative values. Finally, the propagation method considers a
to be given and fixed, and so provides no uncertainty estimates
for the level of regularization applied.
5.2.3. Model fitting
In addition to the Bayesian approach, it is possible to use classi-

cal frequentist methods. One such approach to quantify uncer-
tainty is to assume a particular model for PðrÞ, fit the model to
the data, and then statistically evaluate the error in the various
fit parameters, usually with some variant of the v2 cost function.
This method has been employed in LongDistances [45], DeerSim
[40–43], and DEERconstruct [44]. Alternatively, DEFit fits Gaussian
distributions directly to the time-domain data [39]. Hustedt and
coworkers have implemented a model-based approach that simul-
taneously fits the background function and PðrÞ to time-domain
data, thereby uncovering potential correlations between back-
ground parameters and features in PðrÞ [14,24].

The Bayesian method proposed here quantifies uncertainty aris-
ing from time-domain noise and regularization, ameliorating one
of the disadvantages associated with Tikhonov regularization com-
pared to model-based approaches. The Bayesian approach so far
does not take into account background correction. As with Tikho-
nov regularization, the proposed method is model-free with
respect to PðrÞ. The credible intervals produced by the present
method do not include any negative values.

With the Bayesian credible intervals in hand, it is now possible
to quantitatively compare model-based and model-free methods.
This will require an extensive benchmark set of distributions that
are likely to be encountered in practice.
6. Conclusions

We introduce a Bayesian statistical method for the analysis of
DEER spectroscopic data. The method extends the existing method
of Tikhonov regularization: First, it not only determines PðrÞ, but it
also fully quantifies the associated uncertainty (error) due to noise
in the data. Second, it automatically determines the regularization
parameter a and provides an associated error estimate. The uncer-
tainty regarding a is included in the overall error estimates for P.
The statistically determined uncertainty estimates are visualized
using quantiles. This is an important improvement to the applica-
tion of DEER spectroscopy as it guides interpretation, reduces prac-
titioner bias, increases reliability, and helps reproducibility.

Although it outperforms current methods, the LOOCV method,
used to set the hyperparameter b in the d hyperprior (Eq. (20)),
introduces a systematic overestimation of the level of regulariza-
tion. This error is propagated into the final results, where it may
have the effect of underestimating the credible intervals, and
should be kept in mind. We hope that a better hyperprior will be
found in the future to eliminate this bias.

The Bayesian treatment is far from complete. There are still
many other sources of uncertainty affecting the DEER distance dis-
tribution that need to be addressed. The error estimates deter-
mined here do not capture uncertainty arising from background
correction, time-domain truncation, and discretization. Uncer-
tainty in the background correction, in particular, can give rise to
very significant uncertainty in the distance distribution [11,13].
The proposed method may be combined sequentially with the val-
idation tool of DeerAnalysis to assure that a good choice for the
background function has been used. The Bayesian statistical
approach outlined here is flexible, general and robust enough to
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be extended to capture the influences of, and correlations between,
these other sources of uncertainty.
7. Methods

All computations were carried out using MATLAB R2016a [48].
The dipolar kernel matrix K was calculated using Fresnel integrals
[49]. Non-negativity constrained minimization for Tikhonov regu-
larization and for Gibbs sampling was done using the Fast Non-
Negative Least Squares (FNNLS) algorithm [28]. Each minimization
took between 0.01 and 0.1 s on a standard laptop computer. Uni-
form and normally distributed pseudo-random numbers were gen-
erated with the Mersenne Twister pseudo-random number
generator (PRNG) as implemented in MATLAB R2016a using a seed
value of 19,560 to generate model data and 12,345 for Gibbs sam-
pler runs. The PRNG was reset before each MCMC run, but not dur-
ing a run, i.e. not between chains. The gamma-distributed pseudo-
random numbers were generated using the algorithm of Marsaglia
and Tsang [35,50].
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