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Tikhonov regularization is the most commonly used method for extracting distance distributions from
experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the
selection of a regularization parameter, o, and a regularization operator, L. We analyze the performance
of a large set of o selection methods and several regularization operators, using a test set of over half a
million synthetic noisy DEER traces. These are generated from distance distributions obtained from in sil-
ico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare
the methods and operators based on their ability to recover the model distance distributions from the
noisy time traces. The results indicate that several o selection methods perform quite well, among them

DEER the Akaike information criterion and the generalized cross validation method with either the first- or

PELDOR
Penalized least-squares

second-derivative operator. They perform significantly better than currently utilized L-curve methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Double electron-electron resonance (DEER) spectroscopy, also
called pulsed electron-electron double resonance (PELDOR) spec-
troscopy, measures the magnetic dipolar coupling between two
or more paramagnetic centers, such as spin labels attached to pro-
teins [1-3]. DEER data analysis usually involves the removal of a
background signal followed by a transformation of the oscillatory
time-domain signal into a distance-domain distribution function
describing the distances between nearby paramagnetic centers
(1.5-10 nm).

There exist several different approaches for extracting distance
distributions from DEER data: Tikhonov regularization [4-7], Gaus-
sian mixture models [8-10], Tikhonov regularization post-
processed with Gaussians [11,12], Tikhonov regularization com-
bined with maximum entropy [13], Bayesian inference (based
upon Tikhonov regularization) [14], regularization by limiting the
number of points in the distance domain [15], wavelet denoising
[16], truncated singular-value decomposition [6,17], and neural
networks [18]. Among them, Tikhonov regularization is the most
widely employed method.

In this paper, we are concerned with the determination of opti-
mal settings for Tikhonov regularization. This involves the choice
of a regularization operator L and of a value for the regularization
parameter o. An optimal choice of L and o ensures good distance
distribution recovery and prevents overfitting the data; a bad
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choice causes poor recovery and either under- or overfitting to
the data. There are several operators to choose from, and many
methods are available for selecting «, each based on a defensible
rationale. However, they vary greatly both in terms of theoretical
justification and empirical track record. Therefore, the selection
of the method/operator combination ought to be based on a thor-
ough comparison of their performance for a practically relevant
benchmark set of data analysis problems.

Tikhonov regularization was introduced to NMR for de-Pake-ing
[19], for the extraction of internuclear distances from dipolar time-
domain signals such as those from REDOR [20], for the determina-
tion of orientational distributions from 2H NMR data [21,22], and
for the calculation of relaxation rate distributions [23,24]. These
approaches used the self-consistent method for selecting o, as
introduced and implemented in the program FTIKREG [25,26]. In
the context of extracting distance distributions from DEER data,
Tikhonov regularization was initally mentioned in 2002 [27,28],
and first applications appeared in 2004 [4,5]. In these papers, the
regularization parameter was selected manually or using FTIKREG.
A thorough paper examining Tikhonov regularization and intro-
ducing the use of the L-curve maximum-curvature criterion
appeared in 2005 [6]. A different L-curve method, the minimum-
radius criterion, was introduced in 2006 in the program DeerAnal-
ysis [7] and is used in its current release (2016).

Despite the long history and the widespread use of Tikhonov
regularization for DEER data analysis, there has been no systematic
assessment and efficiency comparison of regularization operators
and regularization parameter selection methods. This is what we
present here. We evaluate a large number of regularization param-
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eter selection methods and three regularization operators with
respect to their performance against a large set of synthetic DEER
time-domain data derived from model distributions obtained by
in silico spin labeling of a PDB crystal structure of T4 lysozyme.
We examine and compare all methods by their efficiency in recov-
ering the underlying model distributions. The results indicate that
the performance of the methods varies significantly, and that there
are methods that perform better than the currently employed L-
curve o selection methods.

The paper is structured as follows. Section 2 summarizes the
principles of Tikhonov regularization for DEER and introduces the
necessary notation. Section 3 explains the construction and charac-
teristics of the large test set of distance distributions and associ-
ated synthetic DEER time-domain traces. Section 4 describes the
assessment methodology. Section 5 presents the results and dis-
cusses benefits and drawbacks of various methods in light of these
results. The paper ends with recommendations regarding the pre-
ferred methods. Mathematical details of the various regularization
parameter selection methods are given in the Appendix.

2. DEER and Tikhonov regularization

DEER measures the electron spin echo intensity V as a function
of the position in time of one or more pump pulses, t. For dilute
samples of doubly-labelled proteins or complexes, V is a product
of an overall amplitude, Vy, a modulation function due to intra-
complex coupling, F, and a background modulation function due
to the interaction between spins on different complexes, B:

V(t) = Vo - F(t) - B(t) = Vo - (1 — 2) + iS(t)) - B(t) (1)

/. is the modulation depth parameter related to the excitation effi-
ciency of the DEER experiment. When utilizing Tikhonov regulariza-
tion, a background model is typically fitted to V(t)/V, and divided
out, yielding the isolated intra-complex modulation function S(t)
after scaling by 2. S(t) is normalized such that S(0) =1 in the
noise-free limit.

In the absence of orientation selection, exchange coupling, dif-
ferential relaxation, and multi-spin effects, S(t) is related to the dis-
tance distribution between the two spins on the complex, P(r), by

S(t) = /3C dr K(t,r)P(r) (2)
0
where
"T0/2
K(t,r) = / dfsin6cos [(1—3cos*O)w. t] 3)
0

and o, = [y 3ga8s/(4Thr?). P(r) integrates to one: [;° dr P(r) = 1.

When S is discretized as an n;-element vector with elements
Si = S(t;), and P as an n,-element vector with elements P; = P(r;),
the integral transformation from P to S is represented by the
matrix-vector multiplication

S=KP 4)

where K is the n;xn, kernel matrix. Its elements are
K = K(t;, ;) - Ar, with the distance increment Ar. Usually, n, is set
equal to n.

The matrix K is close to singular, and the calculation of the
inverse of K"K—needed to obtain P from S in an ordinary least-
squares fitting procedure—is very inaccurate. To enable the solu-
tion, Tikhonov regularization is used:

P, = argmin <|\s —KP|? + ocZHLPHZ) (5)
P>0

This is a form of penalized least-squares fitting. The first term is
the least-squares term capturing the misfit between the model KP

and the data S. The second term penalizes for unwanted properties
of the solution P and depends on a specific form for the regulariza-
tion operator L and a specific value for the regularization parame-
ter o The fit is constrained by the requirement that all elements of
P be non-negative (P > 0). The subscripts in P, indicate that the
solution depends on the particular choices of « and L.

L defines the criterion by which P should be penalized. Physi-
cally reasonable distance distributions between spin labels on pro-
teins are smooth on a tenths-of-nanometer scale. Three L choices
are possible that all encourage smoothness and penalize roughness
of P, in one sense or another. The second derivative, represented by
the (n, — 2) x n, second-order difference matrix

1 -2 1 0

L= S (6)
0 | 1. —é 1

penalizes sharp turns in the distribution, which arise from sharp

peaks. The first derivative, represented by the (n, — 1) x n, first-
order difference matrix

-1 1 0
L= . )
0 -1 1
penalizes steep slopes, which are also associated with sharp peaks.
Note that the matrices defined in Egs. (6) and (7) do not contain Ar.
Lastly, the n, x n, identity matrix Ly = [ can be used. It penalizes tall
peaks, which tend to be narrow due to the overall normalization of
P.

The value of o determines the balance between the two terms in
Eq. (5). Large o values lead to oversmoothing of P and a poor fit to
the time-domain data S, while small « values lead to unrealistically
spiky distributions (undersmoothing) and overfitting of the data.
Therefore, a proper choice of « is essential. A large number of o
selection methods are described in the literature, and we include
many of them in our performance analysis. They are described in
the Appendix.

The optimal values of both o and L, oop: and Loy, are the ones

which together best recover the underlying true distribution Py,
i.e. the ones for which the model recovery error (mre), defined as

mre(o, L) = ||Pu — Pol| (8)

is minimal. For synthetic data, as used in this study, this error and
thereby oo, and Loy can be determined, since Py is given. However,
in experimental practice P, is not known, and one has to resort to
other methods to choose a form for L and select a value for o.

3. The test set

In order to test o selection methods and regularization opera-
tors on DEER data from practically relevant distance distributions,
we numerically generated a large set of synthetic noisy DEER time-
domain signals based on a crystal structure of T4 lysozyme (PDB ID
2LZM, 1.7 A resolution); its structure is shown in Fig. 1. We use this
protein since it is currently one of the most thoroughly investi-
gated proteins by DEER and other EPR techniques [29-37] and is
of a size commensurate with the typical DEER distance range of
1.5-6 nm. We in silico labeled the 2LZM protein structure with
the nitroxide spin label MTSSL which is to date, by a wide margin,
the most commonly used label for DEER. In this section, we detail
the construction of the test set.
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Fig. 1. Crystal structure of T4 lysozyme (164 residues, PDB 2LZM, 1.7 A resolution).
Residues with low predicted labeling probabilities that were excluded from the test
set are shown in grey. Several residues are labeled as guides to the eye.

3.1. Construction of model distributions

Using scripts based on MMM 2017.1 [38-40] with the default
216-member rotamer library R1A_298K_UFF_216_r1_CASD for
MTSSL at ambient temperature, we calculated rotamer distribu-
tions for all 164 sites on the protein. For each site, this yielded
coordinates of the mid-points of the N—O bonds of all 216 rota-
mers and their associated populations, as well as the site partition
function. In order to keep the test set realistic, we eliminated all
sites with low predicted labelling probability (partition function
smaller than 0.05), leaving 129 sites. These sites are indicated in
Fig. 1.

For each of the resulting 8256 site pairs, we calculated the asso-
ciated model distance distribution, consisting of a sum of Gaussian
lineshapes, with centers corresponding to the inter-rotamer dis-
tances, intensities corresponding to the products of the respective
populations, and with a uniform full width at half maximum

(FWHM) of 0.15 nm to account for structural heterogeneity around
the energy minimum of each rotamer due to librational motion
[38]. Each distribution was discretized with a high resolution of
Ar = 0.005 nm, corresponding to 1/30 of the FWHM. To keep the
test set experimentally realistic, we discarded all distributions
with more than 5% integrated population below 1.7 nm. This guar-
antees that there is no population below 1.5 nm. Site pairs with
population at such short distances are always avoided in experi-
mental studies in order to avoid potential distortions due to
exchange coupling and incomplete excitation.

This procedure resulted in a set of 5622 model distance distri-
butions. Their properties are summarized in Fig. 2. The distribution
modes (location of the distribution maxima) range from 1.7 to 6.1
nm, and the inter-quartile ranges (iqr; range of central 50% inte-
grated population) are between 0.09 and 1.1 nm wide. Long, short,
narrow, wide, unimodal, multimodal, symmetric, and skewed dis-
tributions are all well-represented in the test set. Skewness is rel-
atively evenly distributed across both the mode and iqr. The
number of significant peaks is evenly distributed across modal dis-
tance, but there is a positive correlation between iqr and number of
peaks. Fig. 3 shows several representative example distributions.

An alternative strategy of constructing a test set would be to
generate completely artificial distributions without reference to a
protein where the center, width, multi-modality, and skewness is
varied either systematically or randomly. However, such a test
set will be less experimentally relevant. Fig. 2 shows that the
structure-based test set used here covers a sufficiently diverse
range of distribution centers, widths, and shapes.

3.2. Generation of time-domain traces

Each model distribution was used to generate a set of time-
domain traces S with varying maximum evolution times t,., time
increments At, noise levels ¢, and noise realizations, subject to the
constraints that: (1) each S must be long enough to permit accurate
recovery of the longest distances in the corresponding P, and (2)
the sampling rate must be high enough to recover the shortest dis-
tances. The starting time for all time traces was set to ty,i, = 0. We
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Fig. 2. Summary statistics of the 5622 model DEER distance distributions derived from the crystal structure of T4 lysozyme (PDB 2LZM). The inter-quartile range (iqr) of r is
plotted vs the mode of r for each distribution. Color indicates the number of peaks (significant maxima), and the symbol indicates the type and degree of skew. The histogram
colors correspond to the number of peaks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Examples of distance distributions calculated via in silico double labeling of
the 2LZM structure of T4 lysozyme with MTSSL. The site pairs corresponding to
each distribution are listed in the figure.

used multiple values of t,x and At for each model distribution in
order to be able to assess whether or not any « selection methods
display uneven performance with respect to these parameters.

To choose a set of appropriate tn., for a given distribution, we
take as an upper limit t,, = 3T, 95, Where T o5 is the period corre-
sponding to the perpendicular-orientation dipolar frequency of the

95-percentile distance, i.e., T, g5 = (rgs/nm)3/(52 MHz). The factor 3
prolongs the time in order to completely capture the long-distance
tail of the distribution, which has the lowest frequencies. With this,
we choose the set of ty,.x according to the following procedure: if
tmm > 6.4 s, then tma is 6.4 and 3.2 ps; if 3.2Us < tmm < 6.4 s,
then tnax is 3.2 and 1.6 ps; if 1.6 Us < tmm < 3.2 s, then tnax is 1.6
and 0.8pus; if 0.8Us < tmm < 1.6s, then tmax is 0.8us; and if
tmm < 0.8 s, then tnax is 0.4 s. Fig. 4 shows an example distribu-
tion for which tym = 2.36 s, hence tnay is 1.6 and 0.8 ps. Note that
even the shorter tp, value of 0.8 s is long enough to accommodate
a full oscillation of period T, 95 = 0.786 is.

To find a reasonable set of time increments At for each distri-
bution, we first determined the longest allowable increment,
Atmax, that correctly samples all frequencies in the signal. This is
dictated by the highest dipolar frequency in the time-domain sig-
nal, which corresponds to the shortest distance in the distribution.
We use the period Tjos of the parallel-orientation dipolar fre-
quency corresponding to the 5-percentile distance. According to
the Nyquist theorem, Aty must be less than T os5/2 to avoid fre-
quency aliasing. To capture the short-distance tail of the distribu-
tion and to obtain enough time-domain points to achieve
reasonable distance resolution in the Tikhonov fits in all cases,
we chose Atmax = T)0s5/6. This resulted in values from 8ns to
280 ns. Atmax now guides the choice of At: If Atyax > 200ns, then
At is 50, 100, and 200 ns; if 100ns < At < 200ns, then At is
20, 50, and 100 ns; if 50ns < Atmax < 100ns, then At is 10, 20,
and 50 ns; if 20ns < Atpa < 50ns, then At is 10 and 20 ns; if
10ns < Atgax < 20ns, then At is 10 ns; and if Aty < 10ns, then
At is 5ns. For the example distribution in Fig. 4,
Atmax = Tj05/6 = 31.3ns, so At was set to 10 and 20 ns.

To generate the noise-free time trace for a particular combina-
tion of tnin, tmax, and At (with n, = 33, 41, 65, 81, 129, 161, 321, or
641 points), we used in Eq. (4) the high-resolution model distribu-
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Fig. 4. Generation of time traces (S(t)) from a distance distribution. Top panel: the
model distribution (for labeled residues 112 and 143). In this case, 3T, 95 = 2.36 s,
SO tmax Was set to 1.6 and 0.8 s in accordance with the rules given in Section 3.2.
T)05/6 =31.3 ns, so At was set to 10 and 20 ns. Middle panel: the four resulting
time-domain traces generated using Eq. (4). Bottom panel: three noisy realizations
with ¢ = 0.1, 0.05, and 0.02 for the 3rd (dark blue) trace in the middle panel. A total
of 120 noisy time-domain traces were generated from this particular distribution.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

tion (np = 1341 points) and generated the n,-element time trace
using an n; x ny kernel matrix. Therefore, the model distributions
used for this forward modeling have a higher resolution than the
ones obtained via Tikhonov regularization (Eq. (5)) of the simu-
lated noisy data, with n, = n,. This avoids circular reasoning and
committing the “inverse crime” [41,42]. Fig. 4 shows the synthetic
time-domain traces resulting from the above rules for an example
distribution.

The combinations of At,ty,, and ty.x resulted in a total of
20701 noise-free time-domain traces with between 33 and 641
points. A few traces with fewer than 33 points were thrown out,
since such short traces are not acquired in practice.

Finally, we generated 30 noisy traces from each noise-free trace.
We utilized uncorrelated Gaussian noise [14] with standard devia-
tions ¢ = 0.02,0.05, and 0.1. These noise levels span the range typ-
ically obtained experimentally for proteins. In experimental
settings, the background removal step typically increases the mag-
nitude of the noise at the end of the S(t) trace relative to the start.
This effect is more pronounced for steeper background functions
and can be negligible for shallower ones. We did not attempt to
simulate this characteristic of the data. For each noise level,
m =10 noise realizations were generated using a random-
number generator. For reproducibility, seeds for the random-
number generator are stored as part of the test set.

Altogether, with these selections for ty.x, At, g, and m, the 5622
model distributions Py resulted in 621030 noisy time-domain
traces S. These constitute the final test data set, which is available
online (see Appendix B).
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4. Performance evaluation

For each of the traces in the test set, we use 60 different variants
of o selection methods to determine an appropriate regularization
parameter value o and the associated Tikhonov solution. Mathe-
matical details of the methods are given in the Appendix. Each
method is referred to via a short acronym, which is listed in Table 1.
We evaluate each « selection method for each of the three regular-
ization operators L (identity, first derivative, and second deriva-
tive). Thus, we examine Tikhonov regularization along both its
degrees of freedom (L and o), with a total of 180 approaches.

Each method determines o by minimizing or thresholding some
cost function over o. To search for these points, we use an « range

from 10~ to 10° with 61 points on a logarithmic scale, i.e. 10
points per decade (1 dB increments). All methods require the data
S as input and need to calculate P, over the entire o range for each
L. For this, P,; can be determined with or without the constraint
P >0 in Eq. (5), and we test both variants in all cases. Several
methods require knowledge of the time-domain noise standard
deviation, 0. The cost functions of a few methods are equipped
with a tuning or scaling parameter that can be adjusted to increase
stability.

The analysis procedure also requires the choice of a distance
range and resolution for P,;. We use a range of 1.0-7.0 nm for all
cases. These limits encompass the full ranges of all model distribu-
tions in the test set. The number of points in the distance domain,
n,, is determined separately for each case and is set equal to the
number of points in the time-domain trace, n,.

Since the goal of analyzing the time-domain data is to reveal the
underlying model distribution, we base our performance evalua-
tion of the various selection methods not on « (which is a nuisance
parameter whose numerical value is physically irrelevant), but on
the model recovery error defined in Eq. (8). It quantifies how close
the calculated Tikhonov solution, P,;, for a given o and L is to the
model distribution Py. This error is generally non-zero, since noise
in the data and the fundamental ill-posedness of the problem pre-
vent full recovery of the model from the data, no matter which o
and L are used. As the actual performance measure, we use the
inefficiency [43]

Table 1

List of acronyms for regularization parameter selection methods. To indicate the use
of unconstrained P(r) in a method, the suffix ‘u’ is appended to the acronym. If a
tuning parameter is used, its value is appended as well.

Acronym Full name

AIC Akaike information criterion

AICC corrected Akaike information criterion
BIC Bayesian information criterion

BP balancing principle

cv leave-one-out cross validation

DP discrepancy principle

EE extrapolated error

GCV generalized cross validation

GML generalized maximume-likelihood
hBP hardened balancing principle

ICOMP information complexity criterion

LC L-curve, maximum curvature

LR L-curve, minimum radius

LR2 L-curve, minimum radius 2

MCL Mallows’ C;,

mGCV modified generalized cross validation
NCP normalized cumulative periodogram
(0]0] quasi-optimality criterion

rGCV robust generalized cross validation
RM residual method

SC self-consistency method

srGCV strong robust generalized cross validation
tDP transformed discrepancy principle

rmsd (o, L)

inefficiency = msdl L Gope, Lon)

9)
with rmsd(o, L) = mre(e,L)/\/f; = ||Py — Pol|/v/Nr. This measure
relates the model recovery error for a given L and the particular o
value chosen by a selection method to the smallest possible model
recovery error, obtainable with oy and Loy This error, and the
associated optimal solution P,y are found by minimizing the mre
as a function of o and L. The inefficiency equals 1 when Py = Pop
and is greater otherwise. The closer the inefficiency is to 1, the bet-
ter the method.

5. Results and discussion
5.1. Histograms

Fig. 5 shows an overview of the calculated inefficiencies for all
621030 time traces, 60 o selection methods, and three regulariza-
tion operators. Each histogram shows the distribution of inefficien-
cies for a particular combination of method and operator. The
methods are sorted by increasing 75th-percentile inefficiency from
top left to bottom right. There is a wide range of performances.
Most methods in the top row achieve low inefficiencies that are
sharply peaked at 1. Methods shown lower down have a propen-
sity towards worse inefficiencies. The high-inefficiency tails of
the histograms are not shown, but are protracted in many cases,
indicating a not insignificant failure rate for those methods. It is
apparent from the histograms that the L, operator, shown in blue,
tends to perform worse than the others for the same method,
except for some with overall bad performance. For most methods,
L; and L, appear to give similar results.

5.2. Performance comparison

To compare the method/operator combinations more quantita-
tively, we use the 99th percentile from each inefficiency histogram
as the metric. This stringent choice is motivated by the considera-
tion that a method/operator combination can be deemed good and
safe if it delivers overall low inefficiencies with negligible risk of
large inefficiencies (i.e. severe under- or oversmoothing). Fig. 6
shows the results. There is a group of methods that perform simi-
larly well, leading to small 99th-percentile inefficiencies just above
2. Mallows’ C; (MCL), the Akaike information criterion (AIC) and
the generalized cross validation (GCV) perform equally well with
L; and L,, whereas the generalized maximum likelihood method
and its unconstrained variant (GML and GMLu) perform well only
with Ly. Ly is the worst-performing operator for these top methods.
The methods ranking below this top group are modifications of
GCV and AIC. Since they are inferior to their parent methods, they
can be disregarded. Currently, the most commonly applied o selec-
tion methods are based on the L-curve. The results show that the L-
curve methods LC, LCu, LR, LRu, LR2, LR2u are not competitive with
the top group. Their overall tendency is to oversmooth. Similarly,
the self-consistent methods (SC and SCu) display elevated ineffi-
ciency for DEER. The computational cost of all methods is essen-
tially identical, since it is dominated by the solution of the
Tikhonov minimization problem for each o.

5.3. Sensitivity to metric

The performance comparison shown in Fig. 6 is based on our
particular choice of metric, the 99th percentile of the ratio of rms-
ds, defined in Eq. (9). Varying the percentile to 90, 75, or 50 does
not significantly affect the composition of the top group, although
it affects the detailed rankings (see SI). Altering the definition of
inefficiency in Eq. (9) by using the difference instead of the ratio,
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prolonged tails are not visible. The histograms are scaled such that the maxima in all panels are identical. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

inefficiency
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hBP —

Fig. 6. Performance comparison of all combinations of « selection methods and regularization operators, based on their 99th-percentile inefficiency. The methods are sorted

based on best 99th-percentile inefficiency among Ly, L, and L,. The gray lines serves
the reader is referred to the web version of this article.)

or by using the maximum absolute deviation (mad) instead of the
rmsd, yields similar results (see SI). Therefore, we conclude that
the identity of the top methods is insensitive towards the particu-
lar choice of ranking metric, and that our assessment procedure is
overall robust.

as guides to the eye. (For interpretation of the references to color in this figure legend,

5.4. Sensitivity to data characteristics

To check for uneven performance for certain subsets of the test
set, we examined the performance across noise level, the ratio of
iqr to mode (a measure of the damping rate of oscillations in S),
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number of points, and number of modal periods, using the 99th
percentile rmsd ratio inefficiency metric. The breakdowns are
available in the SI. For all values of these variables, MCL, AIC,
GCV, GML, and GMLu are usually within 5% of the optimal
method/operator combination and never deviate by more than
11%. The specific rankings vary between subsets, but actual perfor-
mance changes to such a small degree that this is not significant.
The conclusions reached above regarding the three operators gen-
eralize to the subsets considered in the SI. In addition to poor per-
formance relative to L, and L, Ly also displays much higher
variation in performance across test subsets. Several variations
on GCV (mGCV, mGCVuy, rGCV, and rGCVu) with varied tuning
parameter values, as well as AICC, come within 10% of the best case
for many of the test subsets. However, none display sufficient con-
sistency or quality of performance to surpass MCL, AIC, GCV, GML,
or GMLu.

Since there is no correlation between the performance of any
top method and these subset characteristics, the results are there-
fore likely to be applicable to situations with different relative rep-
resentations of distance distribution characteristics, such as other
spin labels or proteins with more f sheets than T4 lysozyme.

5.5. Method choice

The performance differences among the top method/operator
combinations are so small that we cannot identify one as an evi-
dent best choice. However, additional considerations can provide
some guidance. MCL requires the time-domain noise variance o2
as an input. An under- or overestimation of a2, which is likely in
experimental settings, will affect the performance and likely
degrade it. GML and GMLu depend on a thresholding value to
remove eigenvalues close to zero, and the choice of this value
can affect the performance. In contrast, AIC and GCV do not require
a priori knowledge of ¢? nor do they depend on thresholding or
tuning parameters. Therefore, the parameter-free AIC and GCV
methods with either L, or L, appear to be the simplest, best, and
safest choices for practical applications.

Due to the diversity of distribution shapes and time traces, and
due to the wide range of inefficiencies, it is impossible to visualize
method performances with a few sample datasets. Nevertheless,
for the sake of illustration, Fig. 7 shows the relative performance
of LR2u, GCV, and AIC for a typical test dataset. This example is typ-

model
L-curve
GCV
AIC
1 2 3 4

time (us) distance (nm)

Fig. 7. Example case comparing the LR2u L-curve, GCV, and AIC methods (dataset
115333). For this particular test case, each method features an inefficiency very
close to that method’s overall median inefficiency (LR2u 1.38, GCV 1.09, AIC 1.09).
Left column: the simulated data are shown as grey dots, the Tikhonov fit with
optimum o is shown as a black line, and the Tikhonov fits for LR2u, GCV, and AIC are
shown as blue, orange, and purple lines, respectively. Right column: the model P is
shown in grey, the Tikhonov solution for P with optimum « is shown as a black line,
and the Tikhonov Ps for LR2u, GCV, and AIC are shown as blue, orange, and purple
lines, respectively. In all cases, the L, operator was used. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

ical in these sense that the inefficiency of each method is very close
to the method’s median inefficiency. The figure shows that the L-
curve has a tendency to oversmooth, and that AIC and GCV perform
similarly well. Fig. S1 in the Supplementary Material illustrates the
uncertainty in the extracted P(r) based on these o selection meth-
ods, quantified using Bayesian inference [14].

6. Conclusions

Our performance analysis of a large number of regularization
parameter selection methods over a large set of protein-based syn-
thetic DEER data indicates that there are several method/operator
combinations that perform equally well. Among these, the Akaike
information criterion (AIC) and the generalized cross validation
(GCV) are preferable, as they are parameter-free and do not require
accurate knowledge of the noise level. They work equally well with
the first- and second-derivative operator, but not with the identity.
L-curve methods, some of which are currently widely employed,
perform distinctly worse.

The structure-based test set developed in this work is useful
beyond Tikhonov regularization, as it can be used to assess the per-
formance of other existing analysis methods (truncated singular-
value decomposition, Gaussian mixture models) and of any new
solution approaches.
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Appendix A. Selection methods

Here, we summarize all o selection methods included in this
study and give the expressions necessary to implement them. Fur-
ther details about the methods can be found in the cited statistics
literature.

Most methods are derived assuming an unconstrained Tikho-
nov regularization, i.e. without the P > 0 constraint in Eq. (5). In
this case, the solution P,; can be expressed in closed form as

— _ -1
Py =KuS with Kyu= (KTK n aZLTL) KT (10)

For the physically relevant constrained problem (with P > 0), a
closed-form solution is not possible, and we obtain P,; via an iter-
ative optimization algorithm [44]. In either case, once P, is
obtained, the time-domain fit is

Sy =KPy (11)

We apply each method described below in two ways, one using
the unconstrained solutions and one using the constrained solu-
tions. The methods are referred to by short acronyms (see Table 1).
A suffix ‘0’ is appended to the method acronym when uncon-
strained P, are used. In addition, if the method contains a tuning
or scaling parameter, then its value is appended to the acronym
as well.

L-Curve methods (LC, LR, LR2)

Several methods select o based on heuristic considerations
about a parametric log-log plot of the Tikhonov penalty term,
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1 = ||LP,.||, against the residual norm, p = ||S — Sy.||, as a function of
o [45,46]. Such a plot shows a monotonically decaying #(p) and is
called the L-curve since it tends to form a characteristic “L” shape
with a visual corner. The optimal value for o is considered to cor-
respond to this corner, since it intuitively represents a reasonable
balance between the fitting error p and the regularization error
1. The corner is not a mathematically defined quantity, therefore
different operational definitions of locating such a corner exist.

One of them is the maximum-curvature method (LC) [46]. It
selects the o corresponding to the point of maximum (positive)
curvature of the L-curve, given by

p’/’/_p/n (-12)

Olse] = argmax e

o (p/z + f?/Z
where ) = 1g ||LP,.||, p = 1g||S — Su.||, and the primes indicate deriva-
tives with respect to Iga or «. This method picks the global maxi-
mum of the curvature, even though there can be several local
maxima.

Another possible definition of corner is the point closest to the
lower left corner of the L-curve plot [45]. DeerAnalysis uses one
implementation of this idea [7]. The two coordinates p and 7] are
evaluated over a range of « values and then rescaled to the interval
[0,1]. The corner is determined as the location on the L-curve that
is closest to the origin in these rescaled coordinates:

PN 2 L 2
ocselzargmin<(Ap'0rf'i“ ) +<A17717”ﬂ“" ) > (13)
o pmax - pmin nmax - nmin

The results from this method depend on the « range. We refer to
this method as the minimum-radius method and use two variants
of it. In the first one (LR), we use the same « range as for all other
methods (1072 to 10°%), and in the other one (LR2), we employ the
same o range as DeerAnalysis2016. The latter extends from the lar-
gest generalized singular eigenvalue of K and L, Spax, to a value ¢Smax
with ¢ = 16€ - 10° - 2779925 '\where € ~ 2.2 - 107 '° and ¢ is the noise
level. In order to keep the range large enough, we limit c to < 107,

Cross validation (CV, GCV, mGCVc, rGCV?y, srGCVy)

We use several methods based on the idea of cross validation.
Leave-one-out cross validation (CV) [47,48] is conceptually the
simplest of them. For a given o, it minimizes the total prediction
error, which is obtained as the sum of the prediction errors for each
individual data point. For that, a single data point is excluded and a
fit to the remaining data is calculated. That fit is judged based upon
its ability to reproduce the excluded data point. By repeating the
method for each data point, the total prediction error is obtained,
and the o value is selected that minimizes it. This procedure can
be condensed into the following expression:

Olsel = Argmin (En: S =S () 2) (14)

o |1 — Hu (i, 1)
with the a-dependent influence matrix H,; = KK,;.

Generalized cross validation (GCV) [49,50] is very similar to
leave-one-out cross validation, but the diagonal matrix element
H, (i,i) in the denominator is replaced by the average of all diago-
nal elements, rendering the method more stable. The expression
simplifies to

_ IS Sul?
Ogel = argmin ————————
o [1—tr(Hu)/n

The modified GCV (mGCVc) [51,52] method is a simple tunable
modification to GCV intended to stabilize the method further.

(15)

[IS = Su
(1 — ctr(Hy)/n?
with the tuning parameter ¢ > 1. We use this with c =1.2, 1.5, 2,
and 3, to test a range of stabilizations.

The robust GCV (rGCVy) method [53,54] is also designed to
exhibit greater stability than the GCV method. It is given by

Olse = argmin (16)
o

IS — Sacl®

s a7

Olse; = argmin (
o

with the tuning parameter y < 1. With y = 1, the method reduces to
GCV. As y gets smaller, the method becomes increasingly stable and
less likely to undersmooth. We examine y values of 0.1, 0.5, and 0.9,
with increasing contributions from the second term.

Strong robust GCV (srGCVy) [55] is another tunable modifica-
tion to GCV that is based on stronger statistical arguments than
rGCV. It selects o via

IS — Sacl®
(1 — tr(H.)/n?

with y > 1. Like rGCV, with y = 1, the method reduces to GCV. We
use y values of 0.8 and 0.95.

Ose] = argmin ( (y+(1- y)tr(@LKﬂ)/nt)> (18)

Quasi-optimality (QO)

This criterion, from Tikhonov and coworkers [56-58], selects o
such that a small change in « from that selected value has minimal
effects on the resulting P,; :

dP,;

digo

Olse; = argmin (19)
o

The underlying rationale is that the model recovery error is flat
at its minimum.

Discrepancy principle (DPt)

This principle [59-61] is predicated upon the idea that the root-
mean-square residual, ||S — S,.||/v/n, should be on the order of the
noise standard deviation in the data, . It requires a priori knowl-
edge of ¢. The value for « is selected as the largest value such that

IS = Sull/ve < 70 (20)

where 7 is a safety factor > 1 to guard against undersmoothing in
the case ¢ is underestimated. We use this principle with 7 =1
and 1.5.

The transformed discrepancy principle (tDP7) [62-64] performs
the comparison in the distance domain, choosing the largest o that
satisfies

_ boo
HI<1L(S_51L)H/\/E;< T?T (21)
where by = 3v/3/16 ~ 0.325. We use T = 1.5.

Balancing principle (BP, hBP)

The balancing principle (BP) [65,66] balances the propagated
noise error with the unknown model recovery error. Using

_ [P — Po||
B0 = max(max g7 @)
and ¢(a) = tr(EL@L), it selects o, as the largest o value that sat-

isfies B(a) < 1. The hardened balancing principle (hBP) [66] selects
o using
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e = argmin (B)V9(@) (23)

Residual method (RM)

This method [43,67] determines ¢ by minimizing a scaled norm
of the residual vector

2
Olsel = argmin M
“ tr(B"B)

(24)

where B = K'(I — H,). The scaling penalizes undersmoothing.
Self-consistency method (SC)

This method [25,26], utilized in FTIKREG, seeks to minimize the
sum of the estimated model recovery error and the propagated
data noise variance.

Olse] = argmin (H (I- RmLK)PmLH2 + aztr(Rﬂ@L)) (25)

This expression is valid for the unconstrained case. In order to
include the non-negativity constraint, further steps are necessary.
First, o for the unconstrained case is determined. Next, the con-
strained solution is determined using this o value and the indices
q of the active non-negativity constraints are stored. Finally, the
columns of K and L with indices q are removed and Eq. (25) is re-
evaluated.

Generalized maximum likelihood (GML)

This method [68] selects the « that maximizes the likelihood
(or, equivalently, minimizes the negative log-likelihood) and is
given by

ST(S—S.)
v/dety, (1 — Hyyp)
where det,,(-) indicates the product of the non-zero eigenvalues,
and m is the their number. To account for numerical errors, we treat
all eigenvalues with magnitude below 108 as zero.

Olse] = argmin (26)

Extrapolated error (EE)

This method [69-71] minimizes an estimate of the regulariza-
tion error via

IS =Sal?
Olsel = argmin IS = Sul

" -] “

Normalized cumulative periodogram (NCP)

This method [72-74] is based on the idea that the power spec-
trum of the residuals should match the power spectrum of the
noise. The unscaled power spectrum (periodogram) for a given o
is a vector p with elements

p(k) = |dft(S — ), [ (28)

where k =1, ..., n., dft refers to the discrete Fourier transform. The
normalized cumulative periodogram is an (n; — 1)-element vector ¢
with elements

P2 i+ D,
(i) ==—m—— 29
U= bl )
where ||...||; is the ¢ norm (sum of absolute values). The zero-

frequency component, p,, is omitted. c represents the integrated

power spectrum of the residuals. The « value is selected that mini-
mizes the deviation between c and the integrated power spectrum
Cnoise €Xpected for the noise:

Osel = Argmin ||c(ot) — Croisell4 (30)
o

where Cpise 1S a (1, — 1)-element with elements

Cnoise; = i/ (N — 1) for white noise.

vector,

Mallows’ C; (MCL)

This method [75] minimizes an approximation to the model
recovery error, derived under the assumption of unconstrained
regularization and uncorrelated Gaussian noise.

ot = argmin (S - Su||* + 20°tr(Ha) — 2,07 ) (31)
o
This requires the knowledge of the noise level .
Information-theoretical criteria (AIC, AICC, BIC, ICOMP)

In the context of information theory [76,77], the set of P, is
regarded as a set of candidate models, and criteria have been
developed that select a parsimonious model that balances a small
fitting error with a low model complexity. The general expression
is

_ . IS — Swul®
Olsel = Argmin | n; lnni +ctr(Hay) (32)
o t

where the second term is a measure of model complexity, which
decreases with increasing o. The term tr(H,;) can be regarded as
the effective number of free parameters in the model. The constant
¢ depends on the particular criterion: ¢ = 2 for the Akaike informa-
tion criterion (AIC) [78], ¢ = 2n./(n; — tr(H,;) — 1) for the corrected
AIC (AICC) [79,80], and ¢ = In(n;) for the Bayesian information crite-
rion (BIC) [81]. The information complexity criterion (ICOMP)
[82,83] is yet another information-theoretical procedure and is
given by

Olse = argmin (lz IS — Sut|* + 2tr(Hy) + n¢ In f_;.) (33)
. \O Sg

where s, and 5, are the arithmetic and geometric means of the sin-

gular values of (K'K + ochTL)fl. The last term penalizes for interde-
pendence among model parameters. In contrast to the other
information-theoretical criteria, this one requires knowledge of
the noise level o.

Appendix B. Supplementary material

The online supplementary material associated with this article
can be found at https://doi.org/10.1016/j.jmr.2018.01.021. It con-
tains (a) tables of relative performance based on different metrics
and percentiles, including breakdowns into subsets based on data
characteristics, (b) Bayesian uncertainty analysis for the test case
in Fig. 7. The complete set of synthetic model distributions and test
time-domain traces is freely available for download from the
University of Washington ResearchWorks public repository at
https://doi.org/10.6069/H5S75DCG.
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