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ABSTRACT: Double electron−electron resonance (DEER) spectroscopy
measures distance distributions between spin labels in proteins, yielding
important structural and energetic information about conformational
landscapes. Analysis of an experimental DEER signal in terms of a distance
distribution is a nontrivial task due to the ill-posed nature of the underlying
mathematical inversion problem. This work introduces a Bayesian
probabilistic inference approach to analyze DEER data, assuming a
nonparametric distance distribution with a Tikhonov smoothness prior. The method uses Markov Chain Monte Carlo sampling
with a compositional Gibbs sampler to determine a posterior probability distribution over the entire parameter space, including the
distance distribution, given an experimental data set. This posterior contains all of the information available from the data, including
a full quantification of the uncertainty about the model parameters. The corresponding uncertainty about the distance distribution is
visually captured via an ensemble of posterior predictive distributions. Several examples are presented to illustrate the method.
Compared with bootstrapping, it performs faster and provides slightly larger uncertainty intervals.

1. INTRODUCTION
Double electron−electron resonance (DEER) spectroscopy is
a pulse electron paramagnetic resonance (EPR) technique
utilized for determining distances between electron spin
centers on a nanometer scale,1,2 predominantly on proteins.
DEER resolves the full distribution of distances in an ensemble
of proteins, making it possible to directly quantify conforma-
tional ensembles and the underlying conformational land-
scapes.3−5 DEER measures an oscillatory time-domain signal
that depends on the magnitude of the magnetic dipole−dipole
interaction between the spin centers, which in turn depends on
the inverse cube of the distance r. In the analysis, this signal is
fitted with a model that includes a distance distribution P(r).
Mathematically, this constitutes an ill-posed inversion problem.
Assessment of uncertainty in the fitted distance distribution is
therefore challenging but is crucial for making sound
conclusions about the conformational landscape of the protein.

Analysis approaches for obtaining a distance distribution
from a measured DEER signal range from analytical solutions6

to neural networks.7,8 The least-squares fitting methods that
have seen the widest practical application utilize one of two
models for P(r): either a Gaussian mixture model or a
nonparametric representation combined with Tikhonov
regularization.9−16 Gaussian mixture models are parametric
and represent the distribution as a linear combination of
several Gaussian functions. Nonparametric models represent
P(r) as a histogram over a discretized distance range,
combined with Tikhonov regularization that includes a
roughness penalty for the distribution into the fitting objective
function. Both Gaussian mixture models and nonparametric

models with Tikhonov regularization can be fit directly to the
raw data in a single step.17 In both approaches, however,
correctly quantifying and visualizing uncertainty is challenging.

For Gaussian mixture models, uncertainty analysis relies
primarily on parameter confidence intervals, which are
obtained from the covariance matrix or by explicitly exploring
the sensitivity of the objective function on the parameter
values.12−14,18 The parameter confidence intervals are then
propagated to the distance domain to yield error bands for the
distribution. This method assumes that the error surface is
quadratic and that the parameters are unbounded, neither of
which is generally true. Our previous work extended the
available uncertainty analysis methods for Gaussian mixture
models by implementing a Bayesian inference approach.16 The
method directly models the raw DEER data and yields a full
joint probability distribution over all model parameters,
thereby fully quantifying their uncertainties. Similar Bayesian
data analysis methods have been implemented previously for
NMR and EPR.16,19−23

For nonparametric distribution models with Tikhonov
regularization, partial uncertainty analysis is commonly
conducted by manually varying some parameters in the
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analysis (intermolecular background parameters, modulation
depth, and noise) and summarizing the sensitivity of the
extracted distance distribution to these parameters into error
bands around the fitted distribution.11,24 Another method to
obtain confidence intervals for both approaches is boot-
strapping. As implemented in DeerLab,17 it generates an
ensemble of distributions by analyzing a large number of
synthetically generated hypothetical signals based on the fitted
model. In previous work, we introduced a partial approach
based on Bayesian inference to quantify the uncertainty in the
distribution due to the noise in the signal.22 Unfortunately, this
work required prior processing to remove the intermolecular
background contribution and could not incorporate parame-
ters beyond noise.

In this paper, we present a Bayesian inference approach for
analyzing a DEER trace using a nonparametric distance
distribution with Tikhonov smoothing. It extends our previous
work22 and models the raw DEER data directly without prior
background correction. It yields a full probability distribution
for all model parameters, providing complete quantitative
information about uncertainty and correlations for all
parameters without any implicit limiting assumptions. We
also introduce distribution ensembles as a visual tool to
effectively represent uncertainty about the distance distribu-
tion, including correlations that are neglected when using
visualizations based on error bands.

The paper is structured as follows. Section 2 presents the
model, and Section 3 outlines the inference methodology.
Section 4 shows examples using synthetic and experimental
data, including a comparison between parametric and non-
parametric P(r) models, an analysis of the dependence on the
distance range, and a comparison of the quantified uncertainty
with that obtained from bootstrapping. Finally, Section 5
discusses the merits of this method in comparison to others.

2. PROBABILISTIC DEER MODEL
To model the DEER data, we start from the general noise-free
continuous-time physical model17,25

=V t V K t r P r r( ) ( , ) ( )dM 0
0 (1)

where VM(t) represents the DEER signal as a function of
dipolar evolution time t, V0 is an overall amplitude factor, P(r)
is the distribution of intramolecular interspin distances r
normalized such that ∫ 0

∞ P(r) dr = 1, and K(t, r) is the kernel
function that provides the DEER signal as a function of t and r.
In this work, we use

= [ + ]·K t r K t r B t( , ) (1 ) ( , ) ( )0 (2)

with the modulation depth λ, the elementary kernel function

= [ ]K t r Dr t( , ) cos (1 3cos ) dcos0
0

1
2 3

(3)

and the constant D = (μ0/4π) g2μB
2/ℏ, with the electron g

factor g, the spin concentration c, the Bohr magneton μB, the
reduced Planck constant ℏ, and the magnetic constant μ0. θ is
the angle between the applied magnetic field and the interspin
direction.

The first factor in eq 2 represents the intramolecular
contribution. The second factor, B(t), represents the
intermolecular contribution, also called the background and
sometimes denoted as Vinter(t). Here, we use an exponential

decay corresponding to a homogeneous three-dimensional
distribution of spins

= | |B t k t( ) exp( ) (4)

with =k Dc(8 /9 3 )2 . More extended background models
that incorporate fractal dimensions or volume exclusions are
occasionally needed and can be incorporated easily,26 although
they will increase the number of model parameters. We will use
the value of the background function at the end of the DEER
time trace

=B B t( )end end (5)

as an alternate way to specify the background decay rate, via k
= −log(Bend)/tend.

Experimentally, the DEER signal is measured at a set of
linearly spaced discrete time points t = ti and is therefore
represented as nt-element vector V with elements Vi. The
measured values typically include normally distributed noise ϵi
with mean zero and t-independent variance σ2.22 This is
represented as

= +V V t( ) with normal(0, )i i i iM
2

(6)

or, equivalently,

V V tnormal( ( ), )i iM
1

(7)

The tilde ∼ indicates that the quantity on the left is distributed
according to the probability distribution on the right. The
precision τ is the inverse of the variance, τ = 1/σ2.

While it is possible to use a closed-form expression for the
angular integral in eq 3, the integral over the distance
distribution in eq 1 can be evaluated only numerically. We do
this by discretizing P(r) at a set of equidistant distances r = rj,
giving the nr-element vector P. This gives

= + = +V V KPM (8)

with the kernel matrix K with elements Ki,j = V0 K(ti, rj)Δr,
where Δr = rj+1 − rj is the increment in the r domain. ϵ is the
noise vector with elements ϵi.

Extracting the distance distribution from eq 8 using
Tikhonov regularization is done by minimizing an objective
function that includes a misfit term and a Tikhonov
regularization term,

= || || + || ||P V KP LPmin( )
P 0

2 2 2

(9)

Here, α is the Tikhonov regularization parameter, and L is an
operator matrix, most commonly the (nr − 2) × nr second-
order difference matrix

=

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
L

1 2 1 0
1 2 1

0 1 2 1 (10)

With L as defined, the end points of the distance range are
neglected in this penalty term. They can be included by
extending L with an additional first row with −2 and 1 as the
first elements and with an additional last row with 1 and −2 as
the last two elements.

The model specified above depends on a set of parameters:
the distance distribution vector penalized for roughness Pα, the
modulation depth λ, the end point Bend of the intermolecular
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background decay, the noise precision τ, and the overall
amplitude V0. We indicate the parameter set as

= { }P B V, , , ,end 0 (11)

Although the model is formulated here in terms of Bend and τ
for more efficient numerical sampling, we will show the results
in terms of k and σ to remain consistent with the standard
practices in DEER data analysis.

The goal of analyzing V, given the chosen model, is to
determine the range of values for the model parameters that
are consistent with the data. Now, since V is an incomplete
representation of V(t) due to time truncation, time
discretization, amplitude discretization, and amplitude noise,
there will be uncertainty associated with these parameters. It is
important to quantify this uncertainty as well. Therefore, the
goal of the analysis is to determine the full joint probability
distribution of all parameters, given the data V, symbolically
written as

|Vp( ) (12)

This distribution is called the posterior distribution or simply
posterior. It is posterior in the sense that it represents the
probability distribution of the parameters af ter the data are
taken into account. Once calculated, the posterior can be
visualized or used to obtain statistics on the parameters such as
means and spreads.

Using Bayes’ theorem, the posterior can be calculated via

| | ·V Vp p p( ) ( ) ( ) (13)

The first term on the right provides the probability of the data
given specific values for the model parameters. When seen as a
function of the parameters, it is called the likelihood function.
Based on eqs 8 and 9, it is

| =V V KP

V KP

p( ) normal( ; , )

exp(
1
2

)n

1

/2
2

t

(14)

The second term on the right in eq 13 is the prior
distribution or simply prior. It represents the probability
distribution of the parameters prior to taking the data into

account, summarizing information about the parameters that is
available independently of the given data set. For example, we
know without any data that Pi is non-negative, that λ is
between 0 and 1, that V0 is around 1 (assuming the
experimental trace is normalized to maximum 1), and that
Bend is between 0 and 1. We take the prior as a product of
independent distributions over individual parameters:

= Pp p p p V p p B( ) ( , ) ( ) ( ) ( ) ( )0 end (15)

with the smoothness hyperparameter δ that is related to the
Tikhonov regularization parameter α by22

= 2 (16)

We include δ as an additional parameter in θ. Note that we
treat Bend (or k) as an independent parameter, even though it
depends on λ (see eq 4). Alternatively, the concentration c
could be used as a model parameter instead of k or Bend.

As prior for P, we encode our knowledge that P is element-
wise non-negative, normalized, and expected to be smooth, i.e.,
Pi and Pj should be similar if the distances ri and rj are similar.
For this, we write

= |P P Pp p p f( , ) ( ) ( ) ( ) (17)

The function f(P) in eq 17 is an indicator function that equals
one if all elements of P are non-negative and P integrates to 1,
and zero otherwise.

For the smoothness prior, we assume a normal distribution

| =P P L L

LP

p 0( ) normal( ; , ( ) )

exp(
1
2

)n

T 1

/2
2

(18)

where n is the number of nonzero elements in P (to ensure
proper normalization27,28). This distribution assigns high prior
probabilities to smooth distributions (where ∥LP∥2 is small)
and low prior probabilities to rough distributions (where
∥LP∥2 is large). This is motivated physically by the flexibility
of the spin labels and the biomacromolecule to which the pair
of spin labels is attached. This corresponds to the penalty term
in eq 9.

For the hyperprior for the regularization parameter δ, we
select a gamma distribution22

Figure 1. Visualization of Bayesian inference. Prior distributions for model parameters (modulation depth (λ), echo amplitude (V0), background
decay constant (k = −log(Bend)/tend), noise ( = 1/ ), Tikhonov smoothness parameter ( = / ), and the distance distribution (P) are
combined with the data V to yield a posterior probability distribution, with the marginalized posterior distributions for individual parameters
shown. An ensemble of five distance distributions is shown for the prior and posterior of P.
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=p a b( ) gamma( ; , ) (19)

with aδ = 1 and bδ = 10−6. This gives a very broad distribution
function that decays exponentially with increasing δ.

For the priors for the other parameters, we use the same
broad distributions as used in our earlier work on parametric P
models16

=p( ) beta( ; 1.3, 2) (20)

=p B B( ) beta( ; 1.0, 1.5 s)end end (21)

=p V V( ) bnd(normal( ; 1, 0. 2 ), 0)0 0
2 (22)

=p a b( ) gamma( ; , ) (23)

with aτ = 1 and bτ = 10−4. However, the priors do not
necessarily need to follow these distributions. Instead, they
should be chosen based on the known information about the
system and setup. The same applies for the hyperparameter δ
which will be reported as lg(α) throughout by using eq 16. The
estimation of posterior probabilities from prior probabilities
and observed data through Bayesian inference is visualized in
Figure 1.

With the above expressions, the posterior p(θ|V) is fully
defined. It has some structure that is important to recognize.
(a) It is a gamma distribution in τ

| =Vp a b( , ) gamma( ; , ) (24)

where θ−τ indicates the set of all parameters except τ. The
distribution parameters are ãτ = aτ + nt/2 and b̃τ = bτ + ∥V −
KP∥2/2, where nt is the number of elements in V. (b) It is a
gamma distribution in δ

| =Vp a b( , ) gamma( ; , ) (25)

with ãδ = aδ + n/2 and b̃δ = bδ + ∥LP∥2/2. (c) It is a truncated
multivariate normal distribution in P

| =P V P P Pp f( , ) normal( ; , ) ( )P (26)

with center P̅ = τΣKTV and covariance matrix Σ = (τKTK +
δLTL)−1. We will make use of these structures for the sampling
methodology in the next section.

3. INFERENCE
The analytical form of the posterior distribution p(θ|V) is
intractable. In particular, it is not possible to evaluate integrals
required to determine the mean, the variance, or marginalized

distributions of individual parameters. Therefore, we resort to
representing the distribution by a finite set of samples
generated numerically such that the density of samples in
various regions in parameter space is proportional to the local
probability density (see Figure 2). These samples are then used
to evaluate (approximately) the aforementioned integrals and
to construct visualizations.

We use Markov Chain Monte Carlo (MCMC) sampling to
generate a Markov chain of samples from the posterior,29

where each sample i, containing (Pi, τi, δi, V0,i, Bend,i, and λi), is
generated from the previous sample i − 1, containing (Pi−1,
τi−1, δi−1, V0,i−1, Bend,i−1, and λi−1). A simplified example of the
MCMC sampling process is shown in Figure 2.

We investigated two separate MCMC sampling strategies.
The first strategy involves a compositional Gibbs sampling
approach that utilizes independent draws for the three
parameters that have simple analytical conditional posterior
distributions (τ, δ, and P) and Hamiltonian Monte Carlo
(HMC) draws for the remaining three (V0, Bend, and λ). The
second one utilizes HMC sampling for all model parameters.

The compositional Gibbs sampling approach is based on our
previous work.22 After a starting point is chosen, it proceeds
iteratively as follows:

(1) Generate the ith random sample of the precision τ from
its full conditional posterior distribution eq 24 using the values
of all other parameters from sample i − 1.

(2) Generate the ith random sample of the regularization
parameter δ from its posterior distribution eq 25 using the new
value for τ and the previous values of all other parameters.

(3) Generate the ith random sample of P from its full
conditional posterior distribution eq 26 with the new values for
τ and δ and the previous values for all other parameters from
sample i − 1. To generate a random sample from this
distribution, we use the fast non-negative least-squares
(FNNLS) algorithm by Bro and De Jong30 to enforce the
non-negativity and normalization constraints imposed by f(P).
Other algorithms for generating samples from a truncated
multivariate normal distribution are available in the liter-
ature.31,32

For the remaining three parameters, since their posteriors
are not of a form for which independent sampling is possible,
we use an HMC algorithm known as the no-U-turn sampler
(NUTS)33 to simultaneously generate the next samples of
these parameters:

(4) Generate the ith random sample of the remaining
parameters (V0, Bend, and λ) with the NUTS sampler, using the

Figure 2. Principle of MCMC sampling of the posterior distribution. (A) A random starting value is chosen from the joint posterior of k and λ
(blue). The next random sample is chosen from the probability distribution of k and λ given the starting value (black), and thus, every step is
dependent upon the previous step. (B) This process continues, where each new step is a random draw from a probability distribution for k and λ
given the position of the last step. (C) Regions of higher probability are sampled more frequently until the chain converges. Multiple chains are run,
indicated by color, to obtain inter- and intrachain convergence. (D) The result of the sampling is a representation of the full posterior distribution
of the parameters. Shown here are the 1D and 2D marginal posteriors for k and λ.
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new values of P, τ, and δ and the previous values of V0, Bend,
and λ.

HMC methods take the negative logarithm of the posterior
distribution to draw from as a potential-energy landscape and
the parameters as position variables of fictitious particles.
Samples are then generated by simulating particle trajectories
on this landscape with classical Hamiltonian dynamics using
momenta that are drawn from a multivariate normal
distribution.34,35 NUTS autotunes the step size and the
number of steps used in the integration of the Hamiltonian
dynamics.

The second sampling approach we investigated samples all
six parameters simultaneously with the NUTS sampler.
However, since eq 18 would yield negative values for P
when sampled with NUTS, we represent P as a uniform
Dirichlet distribution Dir(P; 1) to encode the non-negativity
and normalization constraints from f(P) in eq 17. To
accommodate the smoothness prior in this implementation,
we add the p(P|δ) term from eq 18 directly as an additional
term to the potential-energy function of the NUTS sampler.
Thus, eq 17 becomes

|P P Pp p p 1( , ) ( ) ( )Dir( ; ) (27)

We continue to use eqs 19−23 as our priors for the other
parameters.

We implemented both sampling algorithms in the Python
package PyMC 5.10.4,36 which uses autodifferentiation for the
calculation of the gradients necessary for calculating the
Hamiltonian trajectories in NUTS sampling. For each analysis,
four chains containing several thousand to several tens of
thousands of samples are run. These chains are then assessed
for convergence using the rank-normalized split R̂ statistic,
which compares intra- and interchain variances.37−39 Values of
R̂ very close to 1 indicate that the chains are stationary and
similar, such as in the example in Figure 2C. Chains in this
work are considered converged when R̂ < 1.05. Although
convergence is essential to proper analysis, some runs take
impracticably long to converge. When this occurs, we exclude
chains one by one and observe the effect on R̂, and then
remove the chain that leads to the largest reduction in R̂ when
excluded. In practice, we did not need to remove more than
one chain to attain convergence, but this process can be
repeated. All code used for modeling and sampling in this
paper was run within our Python package dive, which can be
accessed at https://github.com/StollLab/dive.

After convergence, the pooled samples from all chains
represent the full multidimensional posterior p(θ|V). Due to its
large dimensionality, it is not possible to visualize it directly.
Instead, we examine each parameter individually using its
marginalized posterior, which is obtained by integrating the full
posterior over all other parameters. This integral is
approximated by generating a histogram of the parameter
values from all samples, smoothed with a Gaussian with a line
width of 1/5 of the standard deviation of the parameter values.
This results in a one-dimensional distribution that can be easily
plotted. On the right of Figure 1, the marginalized posteriors
are shown in color, together with the priors in less saturated
color. In this case, the posteriors are much narrower than the
corresponding priors. The spread of the posterior distribution
is a quantitative measure of inferential uncertainty, and its
narrowing compared to the prior distribution is a direct
measure of information content of the data.

However, marginalization discards all information about
correlations between parameters. It is also possible to display
and examine 2D marginalized posteriors between pairs of
parameters, which is particularly helpful for assessing issues of
convergence often caused by highly correlated parameters.
Examples of 1D and 2D marginalized posteriors are shown in
Figure 2D.

We additionally visualize the results of Bayesian inference
using posterior predictive samples for V(t) and P(r). For this,
we randomly pick a small set of samples (about 50−100) of
the parameters, including the distance distribution, from the
pooled MCMC samples. An ensemble of noise-free time-
domain signals and background decays is then generated from
the sampled parameters. Plotting these posterior predictive
samples of the time-domain trace and the distance distribution
allows for a visual assessment of fit quality and of uncertainty in
the inferred distance distribution.

When visualized, we found that the two MCMC methods we
investigated had some differences. Specifically, when using the
NUTS sampler for all parameters, the sampled distance
distributions differ from those of the compositional Gibbs−
NUTS sampler; whereas the compositional sampler generates
P vectors with a significant number of points equal to exactly 0,
the NUTS sampler never generates P with points equaling 0.

This difference arises from the use of the FNNLS algorithm
to generate non-negative P draws in the compositional
sampling approach. The FNNLS algorithm initially sets all
points in P to zero in a non-negativity constrained “active set”
and improves the fit by iteratively moving points to an
unconstrained “passive set” until the fit can no longer be
improved.30 At this point, P consists of some positive points
and some zero points, meaning that the probability of points in
P being equal to 0 is significant. This is similar to a spike-and-
slab prior, a common distribution in Bayesian inference
involving a discontinuity at 0 in an otherwise smooth
distribution to increase the probability of 0.28 Spike-and-slab
priors are examples of priors that encourage sparse
distributions; the continuous Laplace, double Pareto, and
horseshoe priors are other examples of sparsity-inducing
priors.40 Thus, the FNNLS algorithm effectively adds an
implicit sparsity-inducing term to eq 17 that encourages points
in P to be 0, representing our knowledge (or assumption) that
there are many distances that the spin label pair does not
populate. Although a similar effect could be achieved in the
NUTS sampler by using an explicit sparsity-inducing prior for
P in eq 27, few multidimensional, non-negative, constant-sum,
sparsity-inducing priors are available in the literature.

Furthermore, in our implementation, the NUTS sampler
runs more slowly than the Gibbs−NUTS sampler due to the
larger number of parameters that are included in the
calculation of the potential-energy landscape. We also found
that the additional complexity of this landscape leads to a
greater frequency of undesirable divergences, which occur
when the NUTS sampler, which takes discrete steps,
encounters regions that are too steep to sample accurately.
For these reasons, we chose to use the compositional Gibbs−
NUTS sampling method for the rest of this discussion, taking
note of the implicit sparsity bias. However, the NUTS
sampling approach remains as an alternative.

4. RESULTS AND DISCUSSION
4.1. Basic Illustrations. We first illustrate the probabilistic

analysis method on synthetic data, using the large simulated T4
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lysozyme (T4L) test data set published by Edwards et al.15,41

The distributions in this test data set were generated
computationally from an in silico spin-labeled crystal structure
of T4L. Distribution 3992 from the test data set is taken as
ground truth, and two DEER traces of differing quality were
generated and then analyzed with the Bayesian inference
method using the aforementioned nonparametric model. The
traces and the analysis results are shown in Figure 3. The trace
in panel A has a large modulation depth, a slow background
decay rate, a long trace length, and a small noise level.
Comparatively, the trace in panel B has less ideal values for all
of these parameters, in particular, a shorter trace length and a

higher noise level. This provides a challenging case with a
higher inferential uncertainty.

For both cases, the marginalized posteriors for all scalar
parameters are shown (Figure 3A,B, bottom). The gray lines
indicate the ground-truth values used in generating the trace.
There is no line shown for α as this is a nonphysical parameter
introduced in the analysis. For the longer and less noisy trace,
V0 and σ are recovered accurately and with little uncertainty, as
indicated by the narrow posterior distributions with modes
close to the ground-truth values. For k and λ, the posterior
modes align less with the ground-truth values, and the spread
in the case of k is a bit larger. The cause for this is discussed in
more depth below.

The parameter posteriors most directly show the outcome of
the Bayesian analysis and are useful for identifying the impact
of individual parameters on the overall fit. However, the time-
domain fit and the distance distribution are the results of
primary interest. These quantities are shown via ensembles of
posterior predictive samples (Figure 3A,B, top), as described in
Section 3. As in our previous work, this visualization of
uncertainty is preferred, as it does not emphasize any particular
distribution and more completely encompasses the range of fits
compatible with the data. The time-domain plot shows that the
fit is excellent, and the distance-domain plots show that there is
little scatter in center, width, and shape among the P(r)
distributions. The ensemble also overlaps well with the ground
truth, indicating that Bayesian analysis recovers the distribution
from the data with little uncertainty. There is somewhat
elevated uncertainty at short distances and at the long-distance
edge.

Analysis of the posterior modes for the shorter, noisier data
set (Figure 3B) shows that for V0 and σ, the modes are
reasonably well-identified, but the spreads are wider than for
the first data set. For k and λ, the method is unable to recover
the ground-truth values accurately. The difficulty of recovering
these parameters is indicative of a problem inherent to the
underlying physical model�parameter nonidentifiability.42

The signals from the intermolecular background and from
intramolecular long distances are very similar. Given the short
and noisy data, there is insufficient information for identifying
and separating the two contributions, resulting in skewed and
broad posterior distributions for k and λ. In addition, the
inferred distance distribution is very broad and uncertain,
preventing specific structural conclusions. This broadness
indicates that it is dominated by the prior, and the data did
not provide significant additional information about P(r).

Both data sets in Figure 3 show posterior distributions of α.
In least-squares fitting approaches, a single value of α is
selected ad hoc or based on one of a series of criteria (L-curve,
Akaike information criterion, and so forth). In the inference
approach presented here, the prior together with the data
results in a distribution of likely α values, without the need to
pick a particular value or criterion.

4.2. Model Comparison. The rest of the examples
presented utilize the DEER data recently published as part of
a benchmark test and guidelines paper for DEER.43 Four
constructs of the Yersinia outer protein O (YopO) from
Yersinia enterocolitica without its membrane anchor were
measured by seven different laboratories. We use the data
from lab B. YopO contains an α-helix that is 43 amino acids
long, allowing for three site pairs to be chosen that encompass
the short- (S585R1/Q603R1), mid- (V599R1/N624R1), and
long- (Y588R1/N624R1) range distances accessible by DEER.

Figure 3. Validation of the Bayesian inference method using synthetic
data generated from distribution 3992 from the Edwards test set.15,41

The time trace in panel A was generated using λ = 0.5, k = 0.05 μs−1,
tmax = 3.2 μs, and σ = 0.02, and the trace in panel B was generated
using λ = 0.2, k = 0.2 μs−1, tmax = 1.6 μs, and σ = 0.05. The MCMC
simulation of each was run with four chains and 20,000 samples per
chain. In each panel, the top left plot shows the time-domain data
(gray dots), ensembles of fitted signals V (blue/green) and
backgrounds (1 − λ)B (orange), and the residuals. The top right
plot shows an ensemble of distance distributions drawn from the
posterior distribution (blue/green) and the ground-truth distance
distribution (black). The bottom plots show the marginalized
parameter posteriors. The gray lines indicate true parameter values.
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A fourth site pair was chosen to include a spin label on a
flexible loop, giving rise to a very broad distribution (S353R1/
Q635R1).

The results of using the Bayesian inference approach with
both the nonparametric model for P(r) described in this paper
and the parametric multi-Gauss model from our previous
work16 are shown in Figure 4. For each panel, the darker
colored, top ensembles are the results of using the non-
parametric model, and the lighter colored, bottom ensembles
are the parametric model results with number of Gaussians
indicated. For all four samples, convergence is achieved for
both models, and the distance distributions show good
agreement to those previously published.43 The uncertainty
is relatively low, given the small scatter of the posterior
predictive distributions. Uncertainty increases at long distances
but does not affect interpretation of the primary features. The
parametric results for all site pairs show good agreement with
the nonparametric results. The presence of peaks with high
uncertainty in the parametric models in Figure 4A−C is
indicative of limitations of the parametric approach, namely,
imposing an underlying shape to the distance distribution. The
multi-Gauss parametric model has more difficulty recovering
distributions that have multiple overlapping peaks of similar
width or intensity. Distributions of this nature show larger
correlations between distribution parameters, making exploring
the parameter space significantly less efficient and convergence

more difficult to achieve. This was shown previously when
analyzing synthetic data.16

4.3. Dependence on Distance Axis. A nonparametric
P(r) is not entirely free of parameters�it depends on the fixed
parameters that define the distance axis. These are the
minimum distance rmin, the maximum distance, rmax, and, for
a linear axis, the resolution Δr. This forces the distribution to
be zero outside the distance range and imposes a fixed
resolution within the range. Figure 5 shows a series of results
for the midrange YopO data set with different rmax at a constant
resolution Δr. Two effects of rmax can be discerned. First, as
rmax is decreased, the uncertainty in the region near rmax
shrinks. Second, it becomes less arduous to obtain converged
chains (see Figure 5 caption), and the resulting posteriors
indicate more efficient sampling and certainty around the
parameters. When run for 20,000 samples per chain, the
MCMC sampler was only able to converge for the model with
an rmax of 6.5 nm. The model with an rmax of 8.5 nm (which is
past heuristic values often used for rmax, Dt n/2end min

3 , where
nmin is the number of required dipolar oscillation periods (nmin
> 1/2)),43 did not attain convergence, as evidenced by R̂
values much greater than 1.05 even when run for 100,000
samples per chain.

Both effects are a consequence of the fact that the models
with long rmax are overspecified�there is not enough

Figure 4. Bayesian inference using a nonparametric model with Tikhonov regularization and a multi-Gauss parametric model on DEER data
obtained for four constructs of YopO.43,44 Most MCMC data shown were run with four chains of 20,000 samples per chain from which 100
samples were randomly selected. The nonparametric models for panels B, C, and D were run with four chains of 100,000 samples to achieve
convergence according to R̂ < 1.05. For the nonparametric model for panel B and the parametric models for panels A, B, and D, one chain was
dropped due to nonconvergence. The raw experimental data are shown in gray overlaid with the time-domain full and intermolecular fits for the
nonparametric model (top, dark) and the parametric multi-Gauss model (bottom, light). Beneath the time-domain data are the residuals from the
posterior predictive ensemble. The distance distributions for each are shown according to the same color scheme.
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information in the data to clearly distinguish between mass in
this region of r and the intermolecular background. The
marginal distributions of the background parameter k and the
modulation depth λ broaden substantially as rmax is increased.
These effects are also noticeable in the accompanying
increased spread of background fits. Note that these effects
are not a peculiarity of the MCMC method but rather an
intrinsic parameter nonidentifiability issue of the model given
the data. Any analysis method that uses this model will
encounter similar difficulties in identifying unique parameter
values. Based on the posterior distributions, the Bayesian
approach provides a direct way of diagnosing these situations.

Several approaches can be considered to prevent model
overspecification: (a) restrict rmax to shorter values, (b) include
additional information that P(r) is close to zero at long
distances, (c) include additional information that P(r) is
compact,42 or (d) use a less flexible model with stronger
assumptions about the r distribution, such as a multi-Gauss
model or a model with significantly fewer distance points.45

4.4. Comparison with Bootstrapping. The Bayesian
analysis presented here provides full quantification of the
uncertainty for all model parameters, including correlations.
Another, although conceptually different, approach is boot-
strapping, a Monte Carlo resampling method. In the
bootstrapping variant implemented in DeerLab,17 synthetic
data traces are generated by adding different noise realizations
to a fitted signal obtained by least-squares fitting. These new
traces are then analyzed according to the same procedure used
for the original experimental data. This results in several fitted
parameter sets and distance distributions. The distribution of
fitted values compares in nature to the posterior output from
Bayesian inference and can be randomly sampled from to

produce ensemble plots representing the spread of uncertainty
around a particular set of data.

In Figure 6, we show the Bayesian analysis using a
nonparametric model of the YopO data from above and
compare it to the data analyzed with bootstrapping. Compared
to our previous figures, the distance axis resolution was
doubled to 0.05 nm, and rmax was set to 6.5 nm. For each panel,
the darker colored, top ensembles are the results of using
Bayesian inference and the lighter colored, bottom ensembles
are the bootstrapping results. For bootstrapping, an initial fit
was achieved using a regularization parameter selected by the
Bayesian information criterion.15 This value of α was then
frozen for the bootstrap analysis wherein 1000 bootstrapped
samples were taken, i.e., 1000 new signal traces were generated
and fit. A set of 100 parameter vectors and distributions were
randomly drawn from the 1000 samples and plotted alongside
the Bayesian inference ensembles.

For all of the site pairs, the ensembles of distance
distributions are very similar between Bayesian analysis and
bootstrapping (see Figure 6). However, the bootstrap
ensembles generally have less scatter, since all synthetic signals
are generated from the same initial fit, leading to less
exploration of the combined parameter space compared to
the Bayesian approach.

A crucial difference between Bayesian inference and
bootstrapping is that in the latter method, the Tikhonov
smoothing parameter α is fixed, whereas it is a floating
(hyper)parameter in the former. Therefore, bootstrapping does
not incorporate the uncertainty due to α. However, the value
and uncertainty of α are crucial components for assessing
whether over- or underfitting is occurring and provide insights
into the overall shape of the resulting distance distribution.

Figure 5. Effect of upper distance limit rmax on quality of fit and P(r) uncertainty. Data from the midrange site pair (YopO V599R1/N624R1) were
evaluated for three values of rmax and a constant resolution (Δr) of 0.1 nm, using MCMC with four chains and 20,000 samples (for rmax = 6.5 nm)
or 100,000 samples (rmax = 7.5 and 8.5 nm). One chain was then dropped from the 7.5 nm model to attain convergence. The 8.5 nm model did not
converge regardless of how many chains were dropped, so all four chains were kept. From these runs, 100 distance distributions are randomly
sampled and plotted. The raw experimental data are shown in gray overlaid with the associated time-domain fits. The saturation of the color
decreases with rmax. Left: time-domain fits and the resulting distance distributions. Right: the posterior distributions for the background decay rate
constant k and the modulation depth λ with decreasing rmax.
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With Bayesian inference, the uncertainty of α, along with all
other model parameters, is the direct output of the analysis.
This is illustrated in Figure 7, which plots the marginalized
posterior of lg(α) in the Bayesian analysis against the fixed
value of lg(α) used in the bootstrap analysis (vertical line).

In terms of computational cost, the time taken to run 1,000
bootstrapped samples for the bootstrap analysis was similar to
the time taken to run approximately 100,000 MCMC draws for
the Bayesian analysis (a couple hours on a typical laptop
computer). Thus, the Bayesian approach yields a more
complete uncertainty analysis at roughly the same computa-
tional cost. Note, however, that computational performance
depends on implementation, and there is a wide range of
possible bootstrapping approaches beyond the one imple-
mented in DeerLab.

5. CONCLUSIONS
The Bayesian method outlined in this work presents a rigorous,
complete, and conceptually simple inference approach for
analyzing DEER data. Given the experimental data and the
choice of a particular physical model, the joint probability
distribution of all model parameters is determined. This
provides, completely, any information that can be gleaned from
the data under the assumption of the chosen model and
provided prior information. If the information content of the
data is low (noisy and truncated trace), then this method
captures the resulting significant uncertainty about the model
parameters, particularly if a Tikhonov model is used.

Introducing additional constraints to the r distribution, such
as by using a multi-Gaussian model, could be advantageous, at
the expense of biasing the analysis.

Figure 6. (A−D) Comparison of experimental fits and visualization of uncertainty between Bayesian inference and bootstrapping. The MCMC
data shown were run with four chains of 100,000 samples per chain. For both the Bayesian MCMC data and the bootstrapping fits, 100 samples
were randomly selected to plot. The raw experimental data are shown in gray overlaid with the time-domain full and intermolecular fits for the
Bayesian analysis (top, dark) and bootstrapping (bottom, light). The distance distributions for each are shown according to the same color scheme.

Figure 7. (A−D) Uncertainty assessment for Tikhonov smoothness
parameter α. The posterior distributions for lg(α) from the Bayesian
analysis are shown, maintaining the same panel order and coloring as
those of previous figures for the site pairs. The single values for the
lg(α) parameter from the bootstrap fits are shown as vertical lines.
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The complete uncertainty quantification provided by
Bayesian inference has advantages over other forms of
uncertainty quantification. Compared with confidence intervals
based on maximum-likelihood estimation and the Laplace
approximation (which assumes the likelihood function is
Gaussian around its maximum), it is more complete and
accurate and can capture asymmetric uncertainty as well as
broad areas in the parameter space that leads to equally good
model fits. Therefore, it can help spot identifiability problems
with the model parameters. Compared to bootstrapping, which
can be used to determine more comprehensive confidence
intervals within the maximum-likelihood estimation approach,
Bayesian inference does not synthetically generate new data
sets. The only data set that is used in Bayesian inference is the
given experimental data set. From a principled standpoint, this
is indeed the only data set that should matter. Also, the
Bayesian approach saves significant computational time on a
per-sample basis. In general, the logically rigorous foundation
of the Bayesian inference approach makes it possible to use it
as a reference method for analyzing dipolar EPR data.

Although we presented the method using a Tikhonov model
for the intramolecular distance distribution combined with a
simple exponential decay for the intermolecular contribution,
this method is very general and can handle more complex
models. Extensions to use more sophisticated intermolecular
models, to include multiple dipolar pathways, and to handle
multiple data sets simultaneously are conceptually straightfor-
ward, although computationally more demanding. Therefore,
the Bayesian framework provides a robust and flexible tool for
DEER data analysis, providing complete quantitative informa-
tion about the uncertainty.
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(25) Fábregas-Ibáñez, L.; Tessmer, M. H.; Jeschke, G.; Stoll, S.

Dipolar Pathways in Dipolar EPR Spectroscopy. Phys. Chem. Chem.
Phys. 2022, 24, 2504−2520.
(26) Kattnig, D. R.; Reichenwallner, J.; Hinderberger, D. Modeling

Excluded Volume Effects for the Faithful Description of the
Background Signal in Double Electron−Electron Resonance. J. Phys.
Chem. B 2013, 117, 16542−16557.
(27) Bardsley, J. M.; Fox, C. An MCMC Method for Uncertainty

Quantification in Nonnegativity Constrained Inverse Problems.
Inverse Probl. Sci. Eng. 2012, 20, 477−498.
(28) Bardsley, J. M.; Hansen, P. C. MCMC Algorithms for

Computational UQ of Nonnegativity Constrained Linear Inverse
Problems. SIAM J. Sci. Comput. 2020, 42, A1269−A1288.
(29) Robert, C. P.; Casella, G. Monte Carlo Statistical Methods;

Springer: New York, 2010.
(30) Bro, R.; De Jong, S. A fast non-negativity-constrained least

squares algorithm. J. Chemom. 1997, 11, 393−401.
(31) Moré, J. J.; Toraldo, G. On the Solution of Large Quadratic

Programming Problems with Bound Constraints. Siam J. Control
Optim. 1991, 1, 93−113.
(32) Van Benthem, M. H.; Keenan, M. R. Fast algorithm for the

solution of large-scale non-negativity-constrained least squares
problems. J. Chemom. 2004, 18, 441−450.
(33) Hoffman, M. D.; Gelman, A. The No-U-Turn Sampler:

Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. J.
Mach. Learn. Res. 2014, 15, 1593−1623.
(34) Neal, R. M. MCMC Using Hamiltonian Dynamics; CRC Press:

Boca Raton, 2011.
(35) Betancourt, M. A Conceptual Introduction to Hamiltonian Monte
Carlo, 2018; https://arxiv.org/abs/1701.02434.
(36) Salvatier, J.; Wiecki, T. V.; Fonnesbeck, C. Probabilistic

Programming in Python Using PyMC3. Peer J. Comput. Sci. 2016, 2,
No. e55.
(37) Gelman, A.; Rubin, D. B. Inference from Iterative Simulation

Using Multiple Sequences. Stat. Sci. 1992, 7, 457−472.
(38) Brooks, S. P.; Gelman, A. General Methods for Monitoring

Convergence of Iterative Simulations. J. Comput. Graph. Stat. 1998, 7,
434−455.
(39) Vehtari, A.; Gelman, A.; Simpson, D.; Carpenter, B.; Bürkner,

P.-C. Rank-Normalization, Folding, and Localization: An Improved R̂
for Assessing Convergence of MCMC. Bayesian Anal. 2021, 1, 667−
718.
(40) Engelhardt, B. E.; Adams, R. P. Bayesian Structured Sparsity
from Gaussian Fields, 2014; https://arxiv.org/abs/1407.2235.
(41) Edwards, T. H.; Stoll, S. Synthetic Test Data Set for DEER
Spectroscopy Based on T4 Lysozyme, 2018
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