FILE GULY

Research Report

Allocation of
Transportation Resources:
Development of an
Evaluation Method

Final Report WA-RD 43.1 May 1982

Public Transportation and Planning Division

In cooperation with U.S. Department of Transportation Federal Highway Administration

TECHNICAL REPORT STANDARD TITLE PAGE 3. Recipient's Catalog No. 2. Government Accession No. 1. Report No. WA-RD 43.1 5. Report Date 4. Title and Subtitle May 1982 A Study of the Allocation of Transportation Resources 6. Performing Organization Code Through The Evaluation Of The Effectiveness Of Transportation Services 8. Performing Organization Report No. 7. Author(s) Robert S. Nielsen, Daniel J. Shea & Keith E. Yandon 9. Performing Organization Name and Address
Washington State Department of Transportation 10. Work Unit No. Public Transportation and Planning Division 11. Contract or Grant No. Highway Administration Building Olympia, Washington 98504 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address
Washington State Transportation Commission Fina1 Department of Transportation Highway Administration Building 14. Sponsoring Agency Code Olympia, Washington 98504 15. Supplementary Notes This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 16. Abstract The objective of this report is to develop an effective transportation resource allocation technique that is flexible and can be applied to various areas. Allocation procedures were developed and tested for apportioning resources to transportation services in relation to community transportation objectives. Procedures were developed and applied that measured the effectiveness of candidate transportation service proposals in terms of a transportation resource allocation index (TRAI). The extent to which a transportation proposal achieves the community objectives is defined as its effectiveness. The transportation index was computed on the basis of the projects scorings for eight selected determinants, multiplied by the weighting assigned to each determinant in accordance with their relative effectiveness. The TRAI for eight transportation service proposals including transit, were computed as a pilot study and as a working test of the techniques in the Tri-Cities area of Richland, Kennewick and Pasco, WA. There appears to be no complication in implementing this technique for allocations in any local urban area providing the concepts are correctly evaluated and applied. 17. Key Words
Allocation of resources 18. Distribution Statement Effectiveness Objectives and goals Transportation Resource/Allocation 20. Security Classif. (of this page) 21. No. of Pages 22. Price 19. Security Classif. (of this report) Unclassified Unclassified

A Study of the Allocation of Transportation Resources Through The Evaluation of the Effectiveness of Transportation Services

Prepared by

Economic Section
Public Transportation and Planning Division
Washington State Department of Transportation

In Cooperation with U.S. Department of Transportation Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of Washington, Department of Transportation. This report does not constitute a standard, specification, or regulation.

The population and employment forecasts for this study were estimated prior to the WPPSS 1 and 4 shut downs in 1982. However, the techniques suggested for the allocation process are still valid and applicable.

TABLE OF CONTENTS

Chap.	<u>ter</u>	Pag	ţе
I.	Intro	duction	1
II.	Sumn	nary	2
III.	Fram Effec	nework and Techniques for Evaluating the ctiveness of Transportation Service Proposals	5
	1.	General Approach	5
	2.	Selection of Transportation Determinants and Establishing Weights	6
		Selection of Determinants Establishing Weights	6 7
	3.	Proposal Scoring	11
	4.	Suggested Procedure for Scoring	1,6
		Employee Home/Work Trip Needs Reduction in Congestion Household to Shopping Center Trips Land Opened for Development Per Land Use Plan Cargo Flow Needs Development of Intermodal Transit Impact on Area's Economy Reduction in User Travel Costs	18 18 21 21 24 24
	5.	Computation of Transportation Service Effectiveness Score	25
Appe	ndices	· }	
	Α.	Analysis of Major Indicators of Transportation Demand by Area	
	в.	Procedures for Scoring Proposals	
Biblio	graph	y	

LIST OF TABLES

	Page	=
1	Transportation Resource Allocation Index	3
F3	Percent of Worker Trips, Year 2000	7
F2	Number of Worker Trips, Year 2000	
S1	Percent of Shopping Trips, Year 2000 20	
CF1	Percent of Truck Trips, Year 2000 22	
R2	TRA1 - Interstate 182 26	
R:3	TRAI - North Richland Bridge Without Toll	
R4	TRA1 - North Richland Bridge With Toll	
R5	TRA1 - Horn Rapid By-Pass to SR12	
R6	TRA1 - Taylor Flats Road Improvement Without Toll on North Richland Bridge	
R7	TRA1 - Taylor Flats Road Improvement With Toll on North Richland Bridge	
R8	TRA1 - Public Transit	
R9	TRA1 - Kennewick By-Pass	

LIST OF FIGURES

	<u>Pa</u>	age
•	Study Area Map	4
•	Exhibit A, Importance of Determinants in Relation to Community Goals	8
•	Exhibit B, Computation of Determinants Weights Using Delphi Technique Results	9
•	Exhibit C, Form for Computation of Transportation Service Effectiveness Score	12
•	Map of Proposal Corridors	14
	Map of External Points for Truck Trips	. 23

				 l	
		•			
	•				
			•		
			•		
		•			

A STUDY OF THE ALLOCATION OF TRANSPORTATION RESOURCES

I. Introduction

The objective of this study is to develop an effective transportation resource allocation technique that is flexible and can be applied to various areas. Basic to this objective is the need to develop and test procedures for determining the relative effectiveness of transportation service proposals as input to an area's transportation resource allocation decision process in the advance planning stages.

The study describes procedures developed for this purpose and applies these techniques to an identified test area. In addition to developing procedures it describes the results of an application of these techniques to the Tri-Cities Area of Richland, Kennewick and Pasco, Washington. Eight transportation proposals including public transit were considered and evaluated for relative benefits in terms of their effective contribution to community transportation goals. The Tri-Cities area was selected for the pilot study because most of the technical data needed were available from secondary sources.

This study does not distinguish between the allocation of funds for maintenance or capital outlays in the evaluation process, but is concerned only with competing transportation services within a region. Nor does it attempt to formulate procedures for adjusting funding to achieve maximum federal matching dollars.

In undertaking the study two reports were developed. The first report contains the development of the resource allocation technique and its application in the Tri-Cities area. Procedures were developed and applied that measured the effectiveness of candidate transportation service proposals. The extent to which a transportation proposal achieves the community objectives is defined as its effectiveness.

The second report contains background data covering the economic characteristics of the area, with forecasts to the year 2000 for population and employment. These were developed for the study before the 1982 changes occurred in the area's level of employment. However, these data served the purpose of the study for the development of the evaluation technique. A fiscal review was made of the funds available and expenditures on roads, streets and bridges for the period 1972 through 1979 for background information.

II. Summary

The evaluation process in this report is flexible, thereby allowing it to be responsive to changing community goals. The process considered the constantly changing physical, environmental and socio-economic conditions of a community. A list of 19 determinants that affect transportation proposals were used and screened for appropriate application to the particular area. Only those determinants that contribute to meeting the goals were used in the evaluation process. It seems clear that these would vary by community. The extent to which the determinants meet the transportation goals determines their weight in the scoring process. Each transportation proposal

was rated using criteria established for the evaluation process and a Transportation Resource Allocation Index (TRAI) was computed for each proposal. The TRAI is a value that can be used with other considerations for the allocation of transportation resources.

The results of applying the technique to eight selected transportation proposals (Map D-1) within the study area resulted in the following allocation indices:

Transportation Resource Allocation Index

Proposal	Inde	<u>x</u>
Kennewick Bypass	21	(low end of scale)
I-182	83	(high end of scale)
North Richland Bridge	72	(without toll)
North Richland Bridge	63	(with toll)
Horn Rapids Road	60	(to SR 12)
Taylor Flats Road	55	(without bridge toll)
Taylor Flats Road	48	(with bridge toll)
Public Transit	46	(area system)

ANALYSIS ZONES ASSEMBLED INTO SIXTEEN DISTRICTS AND IDENTIFIED BY NUMBER TRI-CITIES METROPOLITAN AREA TRAFFIC AND NEIGHBORHOOD NAMES BURBANK-WALLULA 101 Map D-1 NORTH PASCO 103 FINLEY Ŋ CENTRAL PASCO PROPOSAL CORRIDORS BYPAS KENNEWICK KENNEWICK FRANKLIN #1 RURAL FRANKLIN #2 CENTRAL HORSE HEAVEN HILLS WEST PASCO 109 O≈or<⊁⊣ J 182 6 NORTH RICHALAND BRIDGE RURAL <u>+</u> HIGHLANDS WEST CENTRAL RICHLAND MEADOW SPRINGS NORTH RICHLAND HANFORD RESERVATION 2 ∞ RURAL BENTON TOC2 WEST RICHIEND BY PACO 121 133

III. Framework and Techniques for Evaluating the Effectiveness of Transportation Service Proposals

1. General Approach

This process of evaluating transportation proposals for the allocation of resources should occur in the advance planning stages. To be effective it should have certain quantifiable and non-quantifiable criteria. The process should consider social and economic determinants in relation to community goals.

It has been common in the past to evaluate the efficiency of transportation proposals with such things as sufficiency ratings and cost-benefit analysis. The consideration of the effectiveness, i.e., the degree to which goals and objectives are obtained, has been less common for evaluating the allocating of resources to transportation proposals. This study uses an effectiveness analysis approach. It is capable of being applied to virtually any set of transportation proposals.

Analyses of major indicators of transportation demand to the year 2000 in the study area were made using worker home to work trips, trip time, household to shopping center trips and the percent of truck trips. Matrix tables were then developed by area districts. The base road system for year 2000 included the 1980 network of roads plus Interstate 82, Interstate 182 and the North Richland Bridge. Various proposals were evaluated with and without these facilities in place.

Most of the technical data needed for this study were available in DOT files (North Richland Bridge Feasibility Study including population and employment forecasts, the gravity flow model, corridor vehicle counts, etc.). This information base and the inplace models were used to compute such needed measurements as worker home to work site travel need, trip time between and levels of congestion over sectors of the area's transportation system.

Although these data are for the study area, it is believed that similar data could be developed for other urban areas where the technique could be applied.

2. Selection of Transportation Determinants and Establishing Weights

Selection of Determinants

A preliminary list of determinants was drawn up by the study team that could be used in evaluating transportation proposals. A basic assumption was made at this point that an environmental assessment and possibly a benefit/cost study would be completed later in the project development process for any transportation proposal. For this reason some of the determinants were not considered significant for this initial or advance planning stage of the process and were not used in the study. It was decided, however, to include most of them on the list of determinants so they could be used if it was felt necessary. This preliminary listing and screening resulted in 19 determinants.

Establishing Weights

A matrix form was devised where each of the 19 determinants could be considered in relation to each transportation goal of the study area (Exhibit A). The goals used on the matrix are from the "Tri-Cities Metropolitan Area Transportation Study". Matching up the 19 determinants with the 11 transportation goals required a subjective rating process. It was decided therefore to use a version of the "delphi" technique among the study team members. Five people familiar with the study process independently rated the determinants in relation to the goals on a scale of 1 - 10.

The five ratings were totaled and averaged for each determinant. The deviation from the average for each determinant was first used to select which ones to use in the proposal evaluation. Any determinant with a score that exceeded the average was selected for use in the transportation evaluation process. This process reduced the 19 determinants to 8 for this study (Exhibit B).

The sum of the plus deviations were then converted to a base of 100 for the determinants weights (Exhibit B, column 2). These weights indicate the importance of the 8 selected determinants in relation to the 11 goals and were used as a constant for each transportation proposal.

IMPORTANCE OF DETERMINANTS IN RELATION TO COMMUNITY GOALS

(SCORE ON A SCALE OF 1 - 10)

. LIDI 4									-			
Fit of Service Into	6											
Potential for Service to be Directly Suppor- tive of Any Other												<u> </u>
Substitutability Between Services	17											1
Benefit/Cost Ratio	9									 	 	
User Travel Costs	15											
Maintenance Cost per Mile	4-				<u> </u>		 	-		+-		
Construction Cost	<u>.</u>				 	†	 	 		+		
Fuel Consumed	2			<u> </u>	-	 	 	-		 	+-	
Impact on Area's Economy	=				 -	1	 	1.		+		
Development of Inter- model Transit	0		1		 	 	-	+	-	 	-	
Cargo Flow Needs	6	 			 	 	 	 	+-	 - -	 	
Impact on Environ- ment	00				† 	 	-			-	-	
Net Tax Revenues	-			-		-	1	 		-	-	
Land Opened for De- velopment Per Land Use Plan	6					-	 - -	 		 	-	-
Value of Land Lost	n l		<u> </u>		 	 				-	-	
mont bewones brisd. (zeros ni) est evitos.	-	 -	<u> </u>	 -	 	 -		 	 	 	 	
bjud Center Trips	7	 			 	 		-	1	 		
Reduction in Conges-	4	-			 					 	<u> </u>	
Emplayee Home/ Work Trip Need	1					 						
DETERMINANT		_			-	 		 				
onts nta- sed dic- tan	<u>iā</u>	for	fits	ģ	₽	 		<u>ة</u> ہ	4.5			
TRANSPORTATION GOALS FOR THE TRI-CITIES URBANIZED AREA Goals are broad long range "continuous" policy statements which are supported and obtained through the implementa- tion of short range objectives. The following goals are based on comprehensive plans published by the various jurisdic- tions which are involved in the Tri-Cities Metropolitan Area Transportation Study planning process:	Support the desired local, regional and state social, economic and land use policies	Provide maximized mobility on a regional scale for citizens within Tri-MATS	Distribute public transportation costs and benefits as equitably as possible	Maximize the efficiency of the existing public trans- portation system	Make the public transportation system responsive to the public	Maintain and protect the economic base of the exist- ing adjacent agricultural areas		Encourage industrial development through the economical and efficient movement of goods and people	Avoid urban sprawl by controlling land use development through the use of a regional transportation network	of people		
TRI4 TRI4 blicy s he im goals variou	ld sta	ional	and and	qnd 6	respo	e of t		ds and	ransp		Ì	
TRANSPORTATION GOALS FOR THE URBANIZED AREA Goals are broad long range "continuous" po which are supported and obtained through thin of short range objectives. The following on comprehensive plans published by the vitions which are involved in the Tri-Cities. Area Transportation Study planning process:	ist ar	a reg	costts	distin	stem	c bas		thro goo	land nal t	Provide safe, secure and efficient travel and goods throughout the area		
FOR ARE indough through the folloging by the following by	egior	5	tion	he ey	8	lom i	ity	ment int o	olling regio	cient		
ALS ZED Conti	sal, r	oility	orta	of t	rtati	eco	r que	de lo b	ontre of a	eff		
TION GOALS FOR T URBANIZED AREA AREA AREA and continuous's d and obtained through objectives. The follow plans published by the volved in the Tri-C volved in the Tri-C volved in Study planning proc	d lo	mol IATS	rans	ency	g	t the	of ai	t Tio	by c	and t the		
URB URB dand bec stans volve Stuc	esire and t	ized Tri-∿	lic t Jossil	ıffici. n	l ta	rotec cultu	level	stria. icien	awd he .t	cure	_	
ITA1 I lan ortec ive p ive p ition ition	ar and is	axim hin	dud /	the e	ublik	id br	ligh I	indu: i effi	spr ght	a, se	atior	
POR broad supp int ra thens thens	mic 8	le m: is wit	ute itabi	nize 1 on s	the r	in ar acent	in a h	age Ianc	urbar	safe ds th	nserv	
tANS are tare tare tare tare tare tare tare t	Support the desired local, rec economic and land use policies	Provide maximized mob citizens within Tri-MATS	Distribute public tran as equitably as possible	Maximize the eff portation system	Make the the public	Maintain and protect the ecoing adjacent agricultural areas	Maintain a high level of air quality	cour. mical	Avoid ur ment th network	Provide safe, secure and effi and goods throughout the area	Fuel conservation	TOTAL
TR soals which on or n cor ons rea T			j		ţ			En.	Av. me	Pro and	, Fu	D 1
Argas	∢	no no	ن	o.	wi	ъ.	<u>ن</u>	Ξ̈́	_	ا	х.	

EXHIBIT B COMPUTATION OF DETERMINANT WEIGHTS USING DELPHI TECHNIQUE RESULTS

-	DETERMINANT	Delphi Results	Average Deviation	Correlative <u>Weights</u>
1.	Employee Home/Work Trip Need	280	+101	17.5
2.	Reduction in Congestion	277	+98	17.0
3.	Household to Shopping Center Trips	269	+90	15.6
4.	Land Removed from Active Use (In acres)	88	-91	
5.	Value of Land Lost	102	-77	÷
6.	Land Opened for Development Per Land Use Plan	222	+43	7.5
7.	Net Tax Revenues	147	-32	
8.	Impact on Environment	152	-27	
9.	Cargo Flow Needs	234	+55	9.6
10.	Development of Intermodal Transit	221	+42	7.3
11.	Impact on Area's Economy	263	+84	14.6
12.	Fuel Consumed	163	-16	
13.	Construction Cost per Mile	80	-99	
14.	Maintenance Cost per Mile	87	-92	
15.	Reduction in User Travel Costs	242	+63	10.9
16.	Benefit/Cost Ratio	129	-50	
17.	Substitutability Between Services	133	-46	
18.	Potential for Service to be Directly Supportive of Any Other	133	-46	
19.	Fit of Service into Area Transportation Plan	<u>.</u>	- .	-
	TOTAL	$\overline{X} = \frac{3222}{18} = 179$	+=576	100.0

The eight determinants selected are underlined and their weights indicated in Column 3, Exhibit B. These eight weighted determinants proved to be adequate in the Study Area for evaluating the effectiveness of transportation proposals in relation to the allocation of resources. It should be noted that this process could arrive at different determinants and weights in other communities where the goals are different.

Proposal Scoring

For the purpose of transportation resource allocation decisions the relative effectiveness of each proposed transportation service can be expressed by an index which is obtained by scoring each of the determinants, multiplying that score by each applicable weight, totaling the resultants and dividing by the hypothetical total had each determinant been scored as 100 (Exhibit C).

Using Exhibit C as a score sheet, each determinant was scored on a range of 1-100 as described in Section 4. The determinant scores were entered in the second column of the Scoring Form, multiplied by the indicated weight and the result entered in column 3 after which the weighted resultants were totaled. Moving the decimal place two places left produced a Transportation Resource Allocation Index for each transportation service under consideration. For example, had a transportation proposal scoring totaled 8,400 (Column 3 of Exhibit C), its TRAI (Transportation Resource Allocation Index) would have been 84.

The TRAI measures the relative effectiveness of each candidate transportation proposal. However, there can be modifying influences or constraints that should be considered in the planning process that could change the results. Although the process provides a measure of relative effectiveness, it does not necessarily indicate what should be done, but rather, provides support to the decision-making process in the advance planning stages.

In essence, these TRAI comparisons reflect the effective response of each proposal to the area's transportation needs and its likely contribution to the area's economic well being. While the indices are not the only items to be considered in resource allocation, their measures of relative effectiveness can assist in the selection process between proposals containing similar political and financial concerns.

A summary of the scoring for each proposal is on Table 1. The detailed scoring procedure is described in Section 4.

Transportation Service Proposal

EXHIBIT C

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	DETERMINANT	DETERMINAN IMPORTANCE WEIGHT		PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	x	·	
2.	Reduction in Congestion	17.0	x		
3.	Household to Shopping Center Trips	15.6	x		
4.	Land Removed from Active Use (In Acres)	x		 -
5.	Value of Land Lost		x		
6.	Land Opened for Development Per Land Use Plan	7.5	x		
7.	Net Tax Revenues		x	 -	
8.	Impact on Environment		x		
9.	Cargo Flow Needs	9.6	x		 -
10.	Development of Intermodal Transit	7.3	x		
11.	Impact on Area's Economy	14.6	x		
12.	Fuel Consumed		x		
13.	Construction Cost per Mile		x		
14.	Maintenance Cost per Mile		x	 	
15.	Reduction in User Travel Costs	10.9	x		
16.	Benefit/Cost Ratio		x		
17.	Substitutability Between Services	-	x		
18.	Potential for Service to be Directly Supportive of Any Other		x		
19.	Fit of Service into Area Transportation Plan		x		
	TOTAL	100.0			

^{*}Compared to Benchmark Score of 100

TRANSPORTATION RESOURCE ALLOCATION INDEX

			PROPOSAL	PROPOSAL AND WEIGHTED SCORE	TED SCORE			
		N.R.Bridge	N.R. Bridge	Horn Rapid	Taylo	Taylor Flats Road		
Determinant	1-82	Without	With Toll	By-Pass	Without Toll on N.R. Bridge	With Toll On N.R. Bridge	Public Transit	Kennewick By-Pass
Employee Home/Work Trip Need	1,698	1,855	1,575	1,295	2,153	1,820	595	228
Reduction in Congestion	1,904	1,989	1,700	1,462	2,108	1,785	646	238
Household to Shopping Center Trips	1,123	94	78	1,248	16	16	1,560	16
Land Opened for Development	009	009	510	009	263	225	75	375
Cargo Flow Needs	720	192	163	19	0	. 0	0	144
Development of Intermodal Transit	694	584	621	402	438	475	730	365
Impacts on Area's Economy	1,241	1,095	920	1,022	511	438	730	730
Reduction in User Travel Costs	283	828	709	0	1	-	218	22
Total Score	8,263	7,237	6,276	6,048	5,500	4,770	4,554	2,118
Transportation Resource Allocation Index	83	72	63	09	52	48	46	21

4. Suggested Procedure for Scoring

The scoring procedures decribed in this section apply to the eight weighted determinants underlined on Exhibit C. The suggested scoring for the other determinants is explained in Appendix A. Exhibit C is used as the proposal scoring form.

Description and Weight of Determinant

Employee Home/Work Trip Needs

Weight = 17.5

Using the study area district map with the Transportation Service routing super-imposed identify the districts which would be served by the proposed Transportation Service, i.e.: 101 to 5; 101 to 7; 101 to 112; 101 to 2, etc. Do the same for worker flows in the opposite direction; 5 to 101; 7 to 101; 112 to 101, etc.

Using Table F3 accumulate the percentage total of all home to work trips between each set of identified districts.

For a transit proposal it is estimated that work trips inside an SMSA are 3.5 percent of total work trips within the districts served by transit.

Preliminary tests indicated that an accumulated percentage score of 10 percent would probably be in the high range. Therefore the value of 10 has been entered as the benchmark for Determinant #1 representing a score of 100. All candidate transportation service proposals will be scored on that basis. It does not matter if a higher accumulated total shows up as more proposals are scored. It only means that the highest scoring candidate could have a score of say 110 rather than 100.

Enter the result on the scoring form (Exhibit C, page 14) in the proposal score column and multiply by the 17.5 weight for the weighted score. For Interstate 182 the weighted score was: $17.5 \times 97 = 1698$.

Table F3

	ı — —	1			·		<u></u>				,	· 	,		- _}	; (1 L	11e F.) 	
										·		-			-			<u>\S_{\circ}</u>	
	101	0.017	0.053	950.	0.048	1700.	0.013	0.005	0.047	100.0	0	0.003	a		0.054	110	oec	312 100 ± 0	
	118	0.006	0.018	4.606 0.043 0.036	0.170	0.166 0.005 0.004	1	0.013	0,010.0	0.002	0	0.00 0.00	0.001	1		110.01060.0 gis.0 dH&.0	0.195 0.003 0.090	6.357 0.846 0 268 10,440 13.977 0.445 0.312	
	113	7,190 1,867	3.491 2.168		0,989	0.106	0.40] 0.004	0.398	D.595	0.035	0.005	0,080,0		1	6.4130	0.313	0.195	3.977 0	
	113	90,۴۲		0.016 0.038 0.013 0.688	161.1	0.006 0.125	3.474 0.018 0.107 0.072 0.23 0.065 0.459	0.174 0030 0.355 0.399 0.013	0100 285 0.454 0.008 0.00 200 0.000	0.005.0.040 0.035	0.007	0,009 0.019 0.010 0.035 0.091 0.080	0.001 0.001 0.006 0.030 0.009 0.008	ı	700.0 614.2 SEO.1 010.0 060.0 010.0	ማተኛ 0		10.4401	
	109	3 0.010	8008	8 0.013	850.0 211.0	700.01	30.065	0500	10008	0.005		Seo O	0,030		0.010	0.007	0.003	6.26g	
OT MOrk	3 105	0.009 0.018	3 0,05	6 0.03	9 0.113	0,008 0.015	26.08		2 0.01	10.01	30.003	FETO	900'0		0.020	0.013	600	0.846	
UISTRICT O	2	5 0.00	820,0 330,0 520,0 140.0	4 0.01	\$ 6.059	7 0,00	70.07	0 0.113	800	F10.01	0.004 0.003	300E	100.00			10.00	30,00		
20	101	34 0.015	0.0	150.004	5008	000	8 0.10	9 0 18	4 001	1 0.15	0.00	50.01	0	1	2100 HOI'O	10.00 10.00	9.00	90.69	
-	8	53 0.034	2 c 1 1 2 0 01	¥ 6.075	3.753 0.075 0.088	50.00	74 O.01	S11.0 081 0 10.0 0 173 606.0		0,011 0.560 0,001 0,154 0.019	٥ و	40.00	اه	-	3 2,10	0.014 0.009 0.007 0.013 0.007	20.0700,027 0.0030,002,009 0.003 0.139	4 0.50	
-	7	0 0.253	0.0360.990	3 0.904	48 3.75	6 0.54	- C7 - T7	77.84	15 0,289	10.56	3 0.086	34 0.474	30.026]	म ० ३७३	2 0.26	70.07	3 20.83	
-	9	000 8200	0.0	40.0 15.	0.1	14 0.01	830.40		0	1001	3 0.00	9	4 0.003		0.078 0.01	0.0		3.9020 953 20834 0.509 0.699	
-	5		210 0.3	3.038/1.8000,231 0.043	72,13	2005.	- 20-3 - 20-3	37 0.40	20,002	3 0.00	0000	80000	07 0.00	 	3 0.07	10.14	18 002		_
-	म १	<u> </u>	760	038/1.8	587.9	273 6.3	५० इन	17111	<u> </u>	1000	03 0.0	0.0050	<u> </u>		23.0.ts	35056	3.00	31 14.3	
-	76	0.975 0.2000.155	<u>구</u>		1.6 5Zc	30 770	0.3360,3630,8650,8830.404	3050	<u> </u>	<u>موا ده</u> ر	5.005 0.003 0.010 0.003 0.003	2560,0	<u>० ० ट</u> व्ट	- '	इ.०.६	3503	03.0.10	5,08.431 [4.33]	
-	-	3.341 0.0	4.370 4.404 1.176 0,710 0.304	0.830 1.145	267 1.075 2.158 7.972 1.390	0.135 0.077 0.073 0.3700.944 0.016 0.545 0.006 0.017	0.518 0.	99391 0.3CS 0.371 1.137 0.409	0567 0.630 0.830 0.370 0.088	Tego 5100 2100 LEGO 5400	0.007 6.0	6.104 0.056 0.030 0.080 0.055	9.01 a 6.00 a 50.00 a 6.00 a	-	1.60 0.183 0.183	0.276 0.2350.235 0.551 0.142	0.140 0.103 0.103 0.078 0029 0.00		
77	0rg (<u>~</u>	न	<u>ઇ</u>	1	0	9	7 0.	8	101	103 5.0	105 6.1	109 0.0	= 2	13	118 0		Notal Percent 13.615 1C	
L	<u> </u>						1_									<u></u>		_الم	

YEAR 2000 PERCENT OF WORKER TRIPS BETWEEN DISTRICT OF RESIDENCE AND DISTRICT OF WORK

Description and Weight of Determinant

Suggested Procedure for Scoring

Using the same district identifications developed in Determinant #1 but substituting Table F2, accumulate the number

of employee home to work trips likely to be using a candidate transportation service

Reduction in Congestion

Weight = 17.0

The number of transit trips are estimated to be 3.5 percent of total work-trips for each district served by transit

or routing.

Preliminary tests indicated that 10,000 trips would probably be in the high range and this has been selected as the benchmark representing a score of 100. All candidate proposals will be scored on that basis. Any total over 10,000 trips would be represented by a score of more than 100.

Enter the result on the proposal scoring form for determinant #2.

Using Table S1 and the district boundary map with the candidate transportation service superimposed, identify the sets of districts likely to be served by the routing, i.e.; 2 to 113; 2 to 3; 2 to 4; 2 to 7, etc. (16 districts but only six shopping center districts.)

Using Table S1 which contains the percent shares of total home to shopping center trips as computed by the specially developed gravity flow model for shopping centers, accumulate the percent share of trips between each of the 16 household districts and each of the six likely to be served by that routing or transportation service.

It is estimated that transit would serve 10 percent of these shopping trips for each district served by transit.

Ten percent could be a high range and will be used as a benchmark for a score of 100.

Household to Shopping Center Trips

Weight = 15.6

.										,								r Z	
ļ	-	6-	- 3-	- 0														115,093	
	Total	bhs'01	tsh'ot	10,966	23560	2822	8473			1176	162	1359	611		896,61	3583	6601	·	
	121	30	9	17	55	3	15	9	54		0	3	. 0		وع	/3	33	359	
	118	7	2			e	0/	15	4/		0	. —			k	104	3	435	
	113	41C	3495	167			461	343	685		9	93	6	1	7380	नमष्ट	325	4086	•
	_ _ K	253	4028	793	1300	hhl	528	409	523	46	~	201	/0	1	0811	283		12037 14,086	
	Ē	11	32	15	нн	7	75	35	6	9	0	\$	23]	=	Ø	ബ	308	
Mork	105	า	107	Ŧ	139	17	257	300	8	30	4	143	7		23	15	9	975	
9	103	0/	37	20	89	6	83	/30	ه.	لمكم	4	13	-	-	=	00	78	#11	
District	0	17	47	28	10	61	/23	207	14	177	พ	33			17	0	2	191	
ė,	8	B	140	98	86	7	ر ة	33	47	-	0	9	0		120	9	3	672	
	7	₹.	₩°01	0401	4319	627	4229	10.097	333	645	99	546	30		314	304	80	23978	
	و	ū	41	50	170	18	465	233	17	13	3	39-	7	1	9	14	4	1096	
	Ŋ	84	235	366	1600	1087	326	1121	101	3	4	53	5		90	19/	33	18hSh	
	7	178	813	3071	2484 9175	425	995	1309	425	73	4	16	00	I	188	म्ह%	90	16.487	
	3	930	1354	3496		48	30 A	312	783	18	3	34	3	i	116	271	119	9693	
	ส	1153	5030 5069	1319	1458 1237	89	387	351	725	31	و	64	3	1	827	185	133		
37.e		3846	5030	955	1458	156	596	450	(53	50	8	150	11		1840	310	183	Total 15,669 11,547	
Residence	0rg.	-	ď	3	4	Ŋ	૭	7	8	101	103	105	109	411	113	-18	121	Total	

YEAR 2000 WORKER TRIPS BETWEEN DISTRICT OF RESIDENCE AND DISTRICT OF WORK

PERCENT OF SHOPPING TRIPS BETWEEN DISTRICT OF RESIDENCE AND DESIGNATED SHOPPING CENTER DISTRICT

Shopping Center District

District of Residence	(2) Downtown Richland	(3) Columbia Center	(4) Bowntown Kennewick	(6) Rural Franklin	(7) Downtown Pasco	(113) West Richland
1	2.50	1.54	.26	. 48	.20	1.88
2	5.65	4.21	.64	1.22	.46	8.35
3	1.10	.91	. 18	.31	. 14	1.15
4	1.75	6.59	15.52	1.92	2.42	. 66
5	.12	.28	. 14	.11	. 24	. 05
6	1.04	1.19	.26	1.39	.26	. 34
7	1.63	3.51	2.44	2.73	9.00	.54
8	.68	5.48	.33	.23	.16	.22
101	.13	.25	.13	16	.29	.05
103	.06	. 02	.06	.01	.02	. 01
105	. 05	. 07	.03	.06	.03	.03
109	.01	.01	.01	-,01	.01	.01
112	0	0	0	0	0	0 -
113	2.07	1.80	.30	. 56	. 24	0
118	.10	.28	.23	.09	.74	.05
121	.07	. 23	.05	.03	. 02	0
TOTAL	16.89	26.38	20.52	9.32	13.56	13.33

Description and Weight of Determinant

Suggested Procedure for Scoring

(Continued)

Enter the result on the proposal scoring form for determinant #3.

Land Opened for Development Per Land Use Plan

Weight = 7.5

- a) If believed "some" land will be opened for development, the percentage score can range between 1-49%.
- b) If believed "considerable" land will be opened for development, the percentage score can range between 50-74%.
- c) If believed "extensive" land will be opened for development, the percentage score can range between 75-100%.

Cargo Flow Needs

Weight = 9.6

Using the District boundary map showing the project route superimposed, identify the districts affected by the proposed service.

From Table CF1, accumulate the percentage of truck flows (trips) likely to be attracted by each candidate transportation service and divide by total trips.

These are truck trips from selected "external points" to districts inside the Metropolitan Area. The external points are indicated on the map on page 25. Preliminary tests indicate accumulated percentage of 20 percent would be in the high range and the benchmark for a score of 100. As in the determinants. any higher accumulated score would mean that that candidate project would carry a scoring higher than 100.

				·		· · ·				•	<u> </u>				Ta	ble Ç	F1	
							ĺ											
													ļ	<u> </u>				
														.			-	
-																		
								:									=	
																	= 2216 91	
181	345*	34.57	68.7	82,23	# F.C. 2	(۲۰۵۲)	141.101	14.69		(7.74)		P.1. DC		3/65			324.61	
180	8.9	34.64		9.46			15.58							327*			58.59	
13						(3.10)	-S970/	-			47.5		* 40 %			·		
178		¥,55,5				(4.98)	27.28				\$ 6.63	77.01	(13.63)			5.04*	38.05	
177	30.58	35.4I	3.13*	(3.12)		(4.34)	98.80		3.13*		14.46*			State	(30.6)		207.09	
176	12.73	33.50		90.53		15.79		15.66	he.101	2.68*		بر ام	13.39	(10.01)	5.79	9.35*	EOTH7	
175		3.61 1			-	15,82			15.53*	16.16		(13.63)						
174	5.64 72.30		¥6,1.4	23.93					53.54						382		4K.7K	
73	5.64*	18.43.		12.52 18.96			70.34 80.77		h768				\$ Db 7	1, 3¢ #	*877		ceocc	71
173	<u> </u> i			/2.52*			05.57 78.771		HE: 101 MES: 51 45 ES 411 88 07 1211 64 01						265*		13.50	Outside
12	3.8.5	30.71	(32.24)	90.92		14.46	121.86		10.49						31.28		ECBEE	
170	8.58	32,18	1.79	12.79	32.5	(4.40)	EOHH											*Inside to
1 L		ત	3	Н	1/2		7	જ	101	103	105	8	51	- 2	118	191	Total 89.00	,

TRUCK TRIPS SUMMARY (From Outside to Inside and Inside to Outside)

Description and Weight of Determinant

Suggested Procedure for Scoring

Development of Intermodal Transit

Weight = 7.3

Score 51-100 if there seems to be some potential for which the proposal contributes.

Score 50 if little prospects even with projects in place.

Score 1-49 if proposal detracts from area prospects for this.

Impact on Area's Economy

Weight = 14.6

The analyst will judge how relevant the proposed transportation service is to the economy of the area; i.e.:

- a) If judged "some" the percentage score can range from 1-49 percent.
- b) If believed "considerable", the percentage score can range between 50-74 percent.
- If judged "critical", the percentage score can range between 75-100 percent.

The time savings will be used for this determinent. The URS Company who conducted the North Richland Bridge Feasibility study used an average value per trip cost of 28.7 cents per minute. These figures will be used for this determinent as an indication of user travel costs. A savings of \$50,000 will be considered as

For the transit proposal the difference between the 1980 economic cost per person for a 5 mile trip will be used*. The number of transit trips determined in No. 2 can be used.

Automobile \$3.87
Bus -1.35
\$2.52 x no. of trips

* Highway users Federation, Technical Study Memorandum No. 13, July 1975.

Reduction in User Travel Costs

Weight = 10.9

5. Computation of Transportation Service Effectiveness Score

The eight tables in this section illustrate the scoring procedure and results for each transportation service proposal used for the pilot study within the study area.

Interstate 182

TABLE R2

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

•	DETERMINANT	DETERMINANT IMPORTANCE WEIGHT	*PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1. 2.	Employee Home/Work Trip Need Reduction in Congestion		x 97 x 112	1698 1904
3.	Household to Shopping Center Trips	15.6	x 72	1123
4.	Land Removed from Active Use (In Acres	s) :	x	,
5.	Value of Land Lost	;	x	
6.	Land Opened for Development Per Land Use Plan	7.5	× 80	600
7.	Net Tax Revenues		x	
8.	Impact on Environment		x	
9.	Cargo Flow Needs	9.6	x 75	720
10.	Development of Intermodal Transit	7.3	x 95	694
11.	Impact on Area's Economy	14.6	x 85	1241
12.	Fuel Consumed	:	x	•
13.	Construction Cost per Mile		x	
14.	Maintenance Cost per Mile	••	x	
15.	Reduction in User Travel Costs	10.9	x 26	283
16.	Benefit/Cost Ratio	;	x	,
i7.	Substitutability Between Services	:	x	
18.	Potential for Service to be Directly Supportive of Any Other	,	K	
19.	Fil of Service into Area Transportation Plan		·	
	TOTAL	100.0		8263

^{*}Compared to Benchmark Score of 100

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

• :	DETERMINANT	DÉTERMINAI EMPORTANO WEIGHT	NT .	PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	×	106	1855
2.	Reduction in Congestion	17.0	X	117	1989
3.	Household to Shopping Center Trips	15.6	x	6	94
4.	Land Removed from Active Use (In Acres		x	·	74
5.	Value of Land Lost	· · · · · · · · · · · · · · · · · · ·	. x		
6.	Land Opened for Development Per Land Use Plan	7.5	x	80	600
7.	Net Tax Revenues		X		000
8.	Impact on Environment		x	·	
9.	Cargo Flow Needs	9.6	x	20	192
10.	Development of Intermodal Transit	7.3	×	80	
. 11.	Impact on Area's Economy	14,6	x	75	584
12.	Fuel Consumed	1,10		,	1095
13.	Construction Cost per Mile	•	×		
Ì4.	Maintenance Cost per Mile		. x	****	
15.	Reduction in User Travel Costs	10.9	X		
16.	Benefit/Cost Ratio	10.7	X	76	828
17.	Substitutability Between Services		X	<u></u>	
18.	Potential for Service to be Directly Supportive of Any Other		x x	· ·	
19.	Fit of Service into Area Transportation Plan		x	- ,	
	TOTAL	100.0	•		7237
	· · · · · · · · · · · · · · · · · · ·				127

^{*}Compared to Benchmark Score of 100

TABLE R4

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	DETERMINANT	DETERMINANT IMPORTANCE WEIGHT	•	PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	X :	90	1575
2.	Reduction in Congestion	17.0	x	100	1700
3.	Household to Shopping Center Trips	15.6	×	. 5	78
4.	Land Removed from Active Use (In Acres	s)	x		
5.	Value of Land Lost		x		
6.	Land Opened for Development Per Land Use Plan	7.5	x	68	510
7.	Net Tax Revenues		x	· ·	
8.	Impact on Environment		x	·	<u></u>
9.	Cargo Flow Needs	9.6	x	17	163
10.	Development of Intermodal Transit	7.3	x	85	621
11.	Impact on Area's Economy	14.6	x	63	920
12.	Fuel Consumed		x		
13.	Construction Cost per Mile		x		
14.	Maintenance Cost per Mile		x		
15.	Reduction in User Travel Costs	10.9	x	65	709
16.	Benefit/Cost Ratio		x		
17.	Substitutability Between Services		x		
18.	tential for Service to be Directly Supportive of Any Other		x		
19.	Fit of Service into Area Transportation Plan		x	·	
	TOTAL	100.0			6276
				*	

^{*}Compared to Benchmark Score of 100

Horn Rapid By-pass to SR 12

TABLER5

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	•			- TOTAL SCORE			
	DETERMINANT	DETERMINA IMPORTANG WEIGHT	CE	*PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE		
į i.	Employee Home/Work Trip Need	17.5	x	74	1295		
2.	Reduction in Congestion	17.0	x	8 6	•		
3.	Household to Shopping Center Trips	15.6		80	1462		
4.	Land Removed from Active Use (In Acres			6 V .	1248		
5.	Value of Land Lost	•	X				
6.	Land Opened for Development Per Land Use Plan	•	x				
7.	Net Tax Revenues	7.5	X	80	600		
8.	Impact on Environment		x				
9.			x				
	Cargo Flow Needs	9.6	, x	2	. 19		
10.	Development of Intermodal Transit	7.3	x	5 5	402		
11.	Impact on Area's Economy	14.6	x	70	1022		
12.	Fuel Consumed		x		1022		
13.	Construction Cost per Mile		x				
14.	Maintenance Cost per Mile	₹ .	×				
15.	Reduction in User Travel Costs	10.9	x	0			
16.	Benefit/Cost Ratio			· ·	0		
17.	Substitutability Between Services		×		 .		
18.	Potential for Service to be Directly Supportive of Any Other		X				
19.	Fit of Service into Area Transportation Plan		x	•			
	TOTAL	100.0	×		6048		

^{*}Compared to Benchmark Score of 100

TABLER6

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	DETERMINANT	DETERMINAN IMPORTANCI WEIGHT		*PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	X	123	2153
2.	Reduction in Congestion	17.0	x	124	2108
3.	Household to Shopping Center Trips	15.6	x	1	16
4.	Land Removed from Active Use (In Acres)	. x	<u>:</u>	
5.	Value of Land Lost		x	•	
6.	Land Opened for Development Per Land Use Plan	7.5	x	35	263
7.	Net Tax Revenues	•	x		
8.	Impact on Environment		x		
9.	Cargo Flow Needs	9.6	×	0	
10.	Development of Intermodal Transit	7.3	x	60	0 438
11.	Impact on Area's Economy	14.6	x	35	511
12.	Fuel Consumed		x	33	711
13.	Construction Cost per Mile	•	x		
14.	Maintenance Cost per Mile		x		
15.	Reduction in User Travel Costs	10.9	x	1	
16.	Benefit/Cost Ratio		x		11
17.	Substitutability Between Services		x		·
18.	Potential for Service to be Directly Supportive of Any Other		×		
19.	Fit of Service into Area Transportation Plan		x .		
	TOTAL : Weighted Score = Transportation Passage	100.0			5500

Note: Weighted Score = Transportation Resource Allocation Index = 55

^{*}Compared to Benchmark Score of 100

TABLE R.7

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	DETERMINANT	DETERMINANT IMPORTANCE WEIGHT	Γ	*PROPOSAL \$CORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	x	104	1820
2.	Reduction in Congestion	17.0	X	105	1785
3.	Household to Shopping Center Trips	15.6	x	1	•
4.	Land Removed from Active Use (In Acres)	×		16
5.	Value of Land Lost		x	<u> </u>	
6.	Land Opened for Development Per Land Use Plan	7.5	x	30	225
7.	Net Tax Revenues		x		. 22)
8.	Impact on Environment		X		**
9.	Cargo Flow Needs	9.6	x	0	0
10.	Development of Intermodal Transit	7.3	x	65	475
11.	Impact on Area's Economy	14.6	x	30	-
12.	Fuel Consumed		x		438
13.	Construction Cost per Mile	_•	x	=	
14.	Maintenance Cost per Mile		x		
15.	Reduction in User Travel Costs	10.0		<u></u> -	
16.	Benefit/Cost Ratio		X 		,11
17.	Substitutability Between Services		X	• ·· · ·· ·	
18.	Potential for Service to be Directly Supportive of Any Other		x x		
19.	Fit of Service into Area Transportation Plan		x		
	TOTAL	100.0	^	**************************************	
		14410		•	4770

Note: Weighted Score = Transportation Resource Allocation Index = 48

^{*}Compared to Benchmark Score of 100

Transportation
Service Proposal:
Public Transit

TABLE R8

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

	DETERMINANT	DETERMINAN' IMPORTANCE WEIGHT		*PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	x	34	<u>500KL</u>
2.	Reduction in Congestion	17.0	x	38	646
3.	Household to Shopping Center Trips	15.6	x	100	1560
4.	Land Removed from Active Use (In Acres	s)	x		
5.	Value of Land Lost		x		
6.	Land Opened for Development Per Land Use Plan	7.5	x	10	75
7.	Net Tax Revenues		x		
8.	Impact on Environment	,	x		·
9.	Cargo Flow Needs	9.6	x	0	0
10.	Development of Intermodal Transit	7.3	x	100	730
11.	Impact on Area's Economy	14.6	x	50	730
12.	Fuel Consumed		×	J	730
13.	Construction Cost per Mile		x		************
14.	Maintenance Cost per Mile		x		
15.	Reduction in User Travel Costs	10.9	x	20	210
16.	Benefit/Cost Ratio		x		218
17.	Substitutability Between Services		x		 _
i 8.	Potential for Service to be Directly Supportive of Any Other	. • •	x		
19.	Fit of Service into Area Transportation Plan		x	· ·	 ,
·	TOTAL	100.0	•	· .	4554
Note	Noishard C.				· 4J24

Note: Weighted Score = Transportation Resource Allocation Index = 46

^{*}Compared to Benchmark Score of 100

Transportation
Service Proposal:
Kennewick Bypass

TABLE R9

COMPUTATION OF TRANSPORTATION SERVICE EFFECTIVENESS SCORE

-	DETERMINANT	DETERMINANT IMPORTANCE WEIGHT	*PROPOSAL SCORE 1-100	PROPOSAL WEIGHTED SCORE
1.	Employee Home/Work Trip Need	17.5	13	228
2.	Reduction in Congestion	17.0	c 14	238
3.	Household to Shopping Center Trips	15.6	c <u>1</u>	16
4.	Land Removed from Active Use (In Acr	es)	·	
5.	Value of Land Lost		· · ·	
6.	Land Opened for Development Per Land Use Plan	7.5	c 50	375
7.	Net Tax Revenues	3	·	
8.	Impact on Environment	3	x	
9.	Cargo Flow Needs	9.6	x 15	144
10.	Development of Intermodal Transit	7.3	x 50	365
11.	Impact on Area's Economy	14.6	x 50	730
12.	Fuel Consumed		x	
13.	Construction Cost per Mile		x	
14.	Maintenance Cost per Mile		x	
15.	Reduction in User Travel Costs	10.9	x 2	22
16.	Benefit/Cost Ratio		x	
17.	Substitutability Between Services	•	x	
18.	Potential for Service to be Directly Supportive of Any Other		x	***************************************
19.	Fit of Service into Area Transportation Plan		x	
	TOTAL	100.0		2118

Note: Weighted Score = Transportation Resource Allocation Index = 21 i00

^{*}Compared to Benchmark Score of 100

•			1		
			APPEN	DICES	
		•	•		
	ı				
	÷	1			

		**	
•			
•			

APPENDIX A

Analysis of Major Indicators of Transportation Demand By Area

APPENDIX A

Major Indicators of Transportation Demand By Area

Table of Contents

	<u>Pa</u>	ge
Α.	Introduction	A.1
В.	Analysis of Major Indicators of Transportation	A.2
	Demand in Area	A.2
	1. Worker Home to Work Site Trips	A. 2
	2. Corridor Flow and Congestion A	.10
	3. Household to Shopping Center Trips A	.12
	4. Worker Trip Time A	.15
	5. Cargo Flows and Truck Movements A.	.18
	List of Tables and Maps	
Numl	<u>Pa</u>	<u>ge</u>
A1	Map of Proposal Corridors and Districts	A.3
F1	Worker Trips Between District of Residence and District of Work, 1980	A.4
F2	Worker Trips Between District of Residence and District of Work, 2000	4. 8
F3	Worker Trips Between District of Residence and District of Work, 2000	A . 9
A2	Map of Typical Vehicle Flows	.1 l
S1	Percent of Shopping Trips Between District of Residence and Designated Shopping Center District	.14
TT80	Worker Trip Time Between District of Residence and District of Work, 1980	.16

List of Tables and Maps (cont.)

Numb	<u>Der</u>	Page
TT20	Work Trip Time Between District of Residence and District of Work, 2000	A.17
CF1	Percent of Truck Trips From and To External Points To Study Area Districts	A.19
	Map of External Points and Districts	

MAJOR INDICATORS OF TRANSPORTATION DEMAND BY AREA

A. Introduction

There is no clear-cut, totally equitable or simple method for allocating resources to individual transportation proposals. In this era of limited funds it is important that the most effective proposals be implemented in a way that will benefit as many people as possible.

A major part in the implementation of the evaluation process is the development, measurement and assessment of various criteria used to establish a scoring of proposals in the allocation process. These selection criteria reflect how the proposal satisfies certain determinants related to the transportation proposal and how it meets the overall community goals. The availability of this process will assist in making more orderly decisions that can be justified on the basis of specific decision criteria.

The implementation of this method for comparison of transportation proposal effectiveness therefore, could be one consideration in an area's transportation resource allocation decision process. Effectiveness could be expected to be a major contributor to any allocation plan. The process of transportation service effectiveness determination described in the study should be carried out by a professional analyst with continuing input from local contributors and authorities.

B. Analysis of Major Indicators of Transportation Demand in Area

1. Worker Home to Work Site Trips

For this study the assumption is made that worker home/work district trip estimates are acceptable indicators of the need for transportation systems capability between the 16 identified districts. That they are not the only measure of need does not lessen their usefulness. They represent peak transportation flows which if accommodated produces a transportation system which can effectively meet most of the area's transportation demands. Off peak trips such as shopping, visiting, school attendance, and recreation trips contribute to overall vehicle traffic, but their timing may be such that they will not add to corridor congestion and consequent trip time. Trip time and traffic congestion are further indicators of transportation facility demand and are inputs to the Transportation Resource Allocation Index determination process. Map A1 on the following pages identify study area districts by number and neighborhood name and the proposal corridors.

Worker 1980 travel patterns (trips) between home and work districts are shown in Table F1. This matrix of 256 separate cells was produced by the application of a DOT "gravity flow model" to the population and the employment data along with the distances and road system between each district. From these data the model calculated how many work trips there would be between each set of district residents traveling from home to job site. While these data are yearly averages the table expresses them as daily flows between home to work and back.

ANALYSIS ZONES ASSEMBLED INTO SIXTELY DISTRICTS AND IDENTIFIED BY NUMBER TRI-CITIES METROPOLITAN AREA TRAFF BURBANK-WALLULA AND NEIGHBORHOOD NAMES 101 MapA -1 NORTH PASCO 103 FINLEY Ŋ CENTRAL PASCO BYPASS KENNEWICK KENNEWICK CENTRAL FRANKLIN #1 RURAL FRANKLIN #2 4 HORSE HEAVEN HILLS WEST PASCO 109 ග RURAL NORTH RICHELAND BRIDGE 138 HIGHLANDS WEST 182 ന MEADOW SPRINGS CENTRAL RICHLAND NORTH RICHLAND HANFORD RESERVATION Ω N ∞ RURAL BENTON ZOCZ WEST RICHIEND my parison 121 113

PROPOSAL CORRIDORS

Table F1

	7 0			T					,							ιαυ	ie ri	
	2.83	4			10 6		14.05	•	-:	6	96.	60.		3.76	2.30	p4.	00.00	
Round Bound	2861	17 143	7.338	19563	2 140	L8H'H	4684	2,204	414	/34	554	9		1.942	1615	351	70,309 100.00	
	7	16	48	72	m	=	ú	(A)	1				1	35	0	五	30म	
119		35	L	190	7	7	8	0/	_		76	1	1	3	82		380	
13	∔	452	}	89	o	15	14	39	প	-	m		1	157	10	15	649	
4	890	5797	92H	1971	169	374	398	8hh	53	6	63	8	1	199	293	99	21,915	
109	ત	46	ल	59	12	53	48	5	9	Q	30	17		7	7	·	311	
105	و	98	43	170	43	177	184	6	43	3	87	Ľ		=	5	ъ	863	
103	_	61	17	3	9	39	83	က	18	H	T			প	3		368	
701 S	က	52	37	106	15	73	155	8	/53	5	6	ব		7	=	ส	627	
8	5	163	88	8//	7	4	H	8	_		46	ı		69	15	Q	23.7	
7	53	958	853	4078	5/3	2310	7146	30%	509	48	794	15	1	9	228	8	17.322	
9	3	51	46	166	14	283	155	0	13		5	ユ		6	13	1	786	
٢٥	15	215	40%	1443	457	155	311	33	23	7	2	-		30	122	0		
エ	3	849	1484	7693	88	503	792	235	53	0	32			9	436	250	5303	
3	43	974	760 2524 1484	1742	56	133	170	418	/3	76	0	-		18	138	3	(900')	
a	193	4358	760	HOP	9	<u> </u>	161	366	61	7	35	य		319	90/	7.7	7,515	
-	706	3429	509	891	83	185	193	Stole	27	3	30	च	ı	392	Ŧ	52	6913	
0.00 0.00	_	જ	3	T	₅	و	-	8	101	103	105	8	113	113	78	181	Tota 16,9137,515 6,026 12,303 3,470	

WORKER TRIPS BETWEEN DISTRICT OF RESIDENCE
AND DISTRICT OF WORK
1980

Districts of origin (residence) are identified in the stub column on the left of the table while districts of work site (destination) are identified in the top row across the table. Some worker trips stay within their district of residence. The "gravity flow model" assumes that resident home to work travel is a function of the number of persons residing within a district and the employment counts within each work district along with the distance between each of the 16 districts and the road system between them.

Since the Hanford Reservation (District #112) has the highest count of workers, it would be expected to generate the largest number of home to work site trips but it does not. That the Hanford Reservation 1980 trip count of 11,975 ranks third behind Central Pasco with 17,322 and Central Kennewick with 12,303 is understandably due to constraints in the model. It is explainable on the basis that the Departments gravity flow model is only able to consider and calculate home/work trips for persons residing in one of the 16 districts. This may not be a serious shortcoming in the worker home to work site trip analysis since most of this outside travel is to the Hanford Reservation and does not generally impact the Study Area's congested road corridors. Workers traveling from the Yakima, Prosser, Benton City areas, for example, reach the Hanford Site without adding to the usual travel congestion through Richland. A few of these non-area-resident workers probably travel to such work centers as Central Pasco, Central Kennewick and others but their impact on total traffic flow is probably minimal.

Other substantial home to work trip generators are: Central Richland with 7,515, North Richland with 6,913, West Highlands with 6,026, and Finley with 3,170. The remaining nine districts are generating home/work trips considerably below these levels ranging from 304 for District Rural Benton to 863 for District Rural Franklin.

Whereas Table F1 presented a preliminary measure of worker transportation needs in 1980. Table F2 presents comparable information for the year 2000. This later count includes new residents moving in and choosing to locate in a particular district and the increased work force traveling to their District of work over the highway routing expected to be operative by that date (I-82, and I-182) with its Columbia River Bridges at the Y area.

While the 1980 and 2000 series are not directly comparable, each represents potential worker trip patterns for that period as based on the population/employment data and road systems put into the model and the assumptions by which the model operates.

The purpose of these counts of worker 1980 "home to work trips" in Table F1 was to provide familiarity with trip flow patterns and generally explore the capability of the gravity flow model in representing area's current transportation patterns. The ultimate purpose of the year 2000 forecasts of home to work trips (Table F2) is to serve as a mechanism for determining the percent of all home to work travel likely to be susceptable to potential use of a proposed transportation resource allocation project. In effect the more worker

trips likely to be served by a proposal, the higher that determinant's scoring will be. Table F3 presents Table F2 matrix cell counts in terms of percent share of total worker home/work site travel.

Year 2000 was chosen for this scoring determination since it represents work trip patterns based on foreseeable employment and population with most transportation systems in place and operating. Worker trips counts between districts remain the same no matter what candidate project is being scored, but trip time will probably change with each alternative project.

Table F2

		_			т			 -	·	,							Table	F2	
		2	- - -	ق -	-6													115093	
	Total	HS01		10,166			8473			1176	79	1359	61	1	12,298	283	6601		
	181	80	3	7			15	9	54		0	М	0	1	62			359	
	18	7	2		_			15			0				B	H0/	3	435	
	113	3149				/33		343			9	93	6	-	7390	344	325	4086	
i	112	25.3	४०म	792	/300	144	528	404	523	46	∞	105	0/	1	0811	283	3	12037/16086	
	<u>8</u>	1	32	15	нн	7	75	35	6	૭	0	£	23	}	=	8	๓	308	
Work	105	31	107	#	139	17	257	300	8	d G	4	143	7		23	15	9	975	
9	103	07	37	8	89	6	83	/30	છ	द्भ	7	B	_	1	=	00	79	111	-
District	9	17	47	38	101	6	/23	207	14	177	Ŋ	23		-	17	10	3	141	
	8	13	140	96	86	7	ন্ত	33	47	-	0	٩	0		120	و	5	672	
	7	8	1034	1040	4319	627	4229	10 0971	333	645	99	546	30	1	314	38	80	23978	
	و	7	H	50	170	8	465	स्र	17	13	က	39	T		91	H	4	1096	
<u></u>	Ŋ	84	235	366	1600	1087	326	471	101	3	4	52	5	1	9	164	33	HS49	
	J	178	813	407	3484 9175	425	995	/309	425	73	13	9	8	1	188	म्ह%	90	16.487	
	8	930	1354	1319 3496 2071	1346	48	302	312	782	18	3	क्	3	1	गाध	271	611	9693	
	ส	1133	5030 5069		1237	89	387	351	7,35	31	و	E	3	1	827	185	133	T	
t of		3846	5030	955	1458	156	596	450	(53	50	60	120	Ŧ		1840	310	183	15,69 11,547	
District o Residence	8° 50	-	n	M	ਰ	3	و	7	8	101	103	105	109	113	113	-18	121	Total	
۵																			لـــــ

YEAR 2000 WORKER TRIPS BETWEEN DISTRICT OF RESIDENCE AND DISTRICT OF WORK

									_						-				
																		22.001	
	191	710.0	0.053	9.036	C.049	400.0	0.013	0.005	0.047	1000	0	0.003	O		0.054	0.011	0000	0.357 0.846 0.268 10.440 13.977 0.445 0.312	
	118	0.00%	810.0	0.006 0.043 0.036	0.170	0.166 0.005 0.004	0.4010.009	0.013	0.010	0.00 2	0	0.8 10	0.001	1	0.00	110.0 000.0 GIE.0 046.0	0.195/0.003	0.445	
	113	1.807	3.4912.168	9.00%	0.989	0.106		0.355 0.399	2.595	0.035	0.005	0,000	0.00%	1	1.035 1.412 0.007	0.213	0.195	13.977	
	113	مها.د		0.688	161.1 850.0 E11.0 920.0 880.0 STO.0 557.5	261.0 400.0 210.0 800.0 710.0 400.0 245.0 410.	0.223 0.065 0.459	0.355	0.005 0.016 0.008 0.454 0.595 0.010 0.047	0.005 0.040 0.035	0.007	0,010 0,124 0,035 0.091 0.080	800.0 900.0 060.0 400.0 100.0		1,025		0.139	10.440	
	109	0.010	8000	0.013	0.038	9000	0.065	0500	8000	0.005	Ó	5600	0,000		0.010	0.013 0.007	0.003	0.268	
:lork	105	0.018	820,0380,0580,0	0,016 0.038	۵.11	0.015	10.23	1210	9.00	0.017	0.003 0.003	Hero	0,006	-	0.015 0.010 0.030 0.010	0.013	.002 0.070 0.021 0.003 0.003 0.009	0.846	
ict of	103	0.004	0.032	0.016	6.059	0,008	2.074 0.018 0.107 0.072	0.180 0.113	2000	910.0	0,003		0.00		0.00	10.007	30.00g	0.35	
District	101	510.0	0.041	0.04	8800	710.0	0.10	0.180	6.289 DEST 0012	0,15H	0.004	0.005/0.019	0.00	1	0.015	0.014 0.009	0.00	P23 0 803.0 453.06 529.	
	v	0.034	0.123	0.075	50.075	700.0	0.018	60.01	10.08 H	0.560 0.001	0		٥	1	H01/0	0.014	20.03	4 o. So	
	7	0.253	0360.590	9.90H		0.545	3.67	3028.773	0,289		0.086	034 0.474	0.92C	1	0.473	10.2 O.264	0.07	20.23	
	9	0.010 0.	d	0.043	0.148	0.016	30.404	6.50	5.0.5	0.011	0,003		0,003	1	0.014	- 0			
	Ŋ	5 0.073	0.30H	30381.8000.3310	1,390	9.944	0.33-0.0248-0.683-0.0455-0	0.409	\$80'0	<u> </u>	0.003	2000	· 0.00.4	1	0.074	0. <i>H</i> ३	56003	13.902.0	
	エ	00.155	0,710	37.800	7.975	30.37	30.86	1.137	20.370	0063	0.010	080.00		1	<u> المارم</u>	50551	0.07	114.33	
	M	0.20	11.17		13.159	0.07	30.36.	16.03)১৭৭	710'01	0.003	<u>60.03</u>	00.0	-	28.03	20.33	- 0.10 c	68,43	
	ત	3.341 0.475 0.2000.15S	4.370 4.404 1.176 0.710 0.304	0830 1.145	1.267 1.075 2.158 7.972 1.390 0.148	0.135 0.677 0.03 0.370 0.944	0.33	0.391 0.305 0.371 1.137 0.409 0	0567 0.630 0630 0.370 6.088 0	0 Lego 5400 410,0 Lego 5400	5.00.0 5.00.0 0.00.0 0.00.0 2.00.0 0.00.0	0.104 0.056 0.050 0.080 0.00	700.0120.0520.01210.00		1,600,1830,1830,1630,0018	6410 1350 SEE.0 SEE.0 OFE.0	0.160 0.103 0.103 0.078 0039 0	Total Percent 13,615 11 540 8,431 14.331	
apu			4.370	० ६३(1.267	0.135	0.518	0.341	0.567	ट्रा ठ				_ .				3.615	
Residence	9.00 0ra0		G	ϵ	य	Ŋ	૭	_	æ	0	103	105	109	= 2	113	118	4	Total	

2. Corridor Flow and Congestion

Map A2 on the following page shows the general pattern of year 2000 vehicle flows over major corridors between Pasco and the Hanford Area via the Blue Bridge, Highway #12, Columbia Center Junction, Causeway, 250 Junction, Richland Bypass, Van Giesen Intersection and Richland City Center. While the data shown on the map are not themselves input to Determinant #2 scoring, they provide the framework for estimating how much congestion might be alleviated by the implementation of a proposed transportation service. The extent to which potential congestion is likely to be lessened is a function of the number of work trips which could be attracted from these busy corridors flows to the new routing. This procedure is described in detail in Appendix B under Determinant #2 narrative. The greater the number of trips moving over a proposed service route and away from congested corridors the higher the relative determinant scoring for that proposed transportation service.

Household to Shopping Center Trips

In the early planning stages, it was assumed that home to work trips would be the major measure of travel flow between districts. Such a handy assumption proved to be only partially true and even that needs modification. This modicication is required in order to give more credit to transportation service proposals which respond effectively to <u>BOTH</u> worker and shopping trips even though they may not occur at the same time with resulting congestion.

In pilot tests of the scoring technique, the relatively high hypothetical score of the North Richland Bridge proposal resulted from largely worker travel only whereas that facility contributed little to household to shopping center travel. (Unless significantly large shopping areas are developed in West Richland and Rural Franklin County, a likely prospect.)

To offset this emphasis on work trips, some consideration of household/shopping center trips had to be put into the determination process. However, current DOT models do not generate such statistics. As an alternative, therefore, Table SI presents the results of a specially designed gravity flow model which estimates year 2000 household trips to shopping center in terms of relative percent share of each set of districts. The assumption is made that six major shopping centers are operative; Downtown Pasco, Downtown Kennewick, Columbia Center Mall Area, Downtown Richland, Rural Franklin County, and West Richland. The model further assumes that the relative attractiveness

of any retail complex including the Shan-Na Pum Site (and therefore trip generator) is a function of the relative weight we have assigned to each of those six districts. Computations are made for each of the 16 residence districts whose population is a relative indicator of number of households likely to be attracted to each of the six shopping centers. The table shows these trips between the six shopping centers and the 16 districts in terms of percent of total. As in the case of the worker trips, the greater the potential percent share of household to shopping center trips over the proposed transportation service the higher its determinant score (Determinant #3).

The format developed for this calculation of household trips to shopping center is a modified variation of a gravity flow model in which the six candidate shopping center districts were assigned the relative attraction ratios shown within the parentheses -(1.5), -(2), -(1.5), -(1), -(1), and -(3) (to a base of 10) and these multiplied by resident population of each district. This resultant was divided by the square of the travel time between each set of residence and shopping districts and equated with the total of all district populations.

It would have been preferable to have used total shopping trips but lacking this the assumption was made that populations were a representative of relative district households and that each household in every district would make one shopping trip a day.

PERCENT OF SHOPPING TRIPS BETWEEN DISTRICT OF RESIDENCE AND DESIGNATED SHOPPING CENTER DISTRICT

Shopping Center District

District of Residence	(2) Downtown Richland	(3) Columbia Center	(4) Downtown Kennewick	(6) Rural Franklin	(7) Downtown Pasco	(113) West Richland
1	2.50	1.54	. 26	. 48	.20	1.88
2	5.65	4.21	. 64	1.22	.46	8.35
3	1.10	.91	.18	.31	.14	1.15
4	1.75	6.59	15.52	1.92	2.42	.66
5	.12	. 28	.14	.11	.24	.05
6	1.04	1.19	.26	1.39	.26	.34
7	1.63	3.51	2.44	2.73	9.00	.54
8	.68	5.48	. 33	.23	. 16	.22
101	.13	.25	.13	16	.29	.05
103	.06	.02	.06	.01	.02	.01
105	. 05	. 07	.03	.06	.03	.03
109	.01	.01	.01	- 01	.01	.01
112	0	0	0	0	0	0
113	2.07	1.80	.30	. 56	. 24	0
118	. 10	.28	.23	.09	.74	.05
121	.07	. 23	.05	. 03	.02	0
TOTAL	16.89	26.38	20.52	9.32	13.56	13.33

4. Worker Trip Time

As workers home to work trip flows provided a general measure of worker's transportation need, trip time between home and work districts is a further reflection of transportation need. Table tt80 presents trip times between districts based on 1980 travel routes. Table tt20 presents trip time between these same districts with foreseeable facilities in place (I-82, and I-182, with the Columbia River Bridge). The two serve as a basis for comparing worker trip times for the years 1980 and 2000. More importantly, however, the 2000 trip time series provides a base for estimating how much time could be saved by each proposed transportation service. The stub of each table identifies the districts being traveled from while the column headings identify the district they are traveling to.

Trip time calculations were developed by means of a DOT model which considered the distance betwen districts, and corridor routes available for worker travel from home to work.

105 109 112 113 118 121	41.0 6.9 13.1 29.6 24.8	38.5 10.8 9.9 27.1 22.4	7.5 16.1 34.6 29.8	7.9 27.0 9.8 17.7	36.7 21.8 31.4	27.8 32.7	16.8 21.6	7 10.3	27.4	27.4	41.6	40.2	29.7	28.8	22.1	0.0		
109 112 113 118 1	1.0 6.9 13.1 29.6 24.	.5 10.8 9.9 27.1 22.	7.5 16.1 34.6 29.	7.9 27.0 9.8 17.	7 21.8 31.	27.8 32.	.8 21.	10.	•	7.	-:		29.7	• [
109 112 113 118 1	1.0 6.9 13.1 29.6 24.	.5 10.8 9.9 27.1 22.	7.5 16.1 34.6 29.	7.9 27.0 9.8 17.	7 21.8 31.	27.8 32.	.8 21.	10.	•	7.	-:		29.7	• [
109 112 113	1.0 6.9 13.1 29.	.5 10.8 9.9 27.	7.5 16.1 34.	7.9 27.0 9	.7 21.	27.	6.8	7						.,,	,,	l		l.
109 112 11	1.0 6.9 13	.5 10.8 9.	7.5 16.	7.9 27.				20.	22.6	22.6	36.8	35.4	34.5	33.6	0.0	22.1	-	
109	1.0 6.	5 10.	7.	. '		37.4	26.4	22.1	32.2	32.2	46.4	45.0	16.0	0.0	33.6	28.8		
		• 1	_ ;_; 1	5	37.6	38.3	27.3	23.0	33.1	33.1	47.3	45.9	0.0	16.0	34.5	29.7		
105		<u>س</u>	46.0	28.6	37.7	30.0	22.5	34.6	25.4	25.4	10.4	0.0	45.9	45.0	35.4	40.2		
1	42.3	39.9	47.4	30.0	39.7	23.7	24.8	35.9	27.7	27.7	0.0	10.4	47.3	46.4	36.8	41.6		
103	28.1	25.7	33.1	15.7	22.4	22.2	9.7	21.7	5.8	0.0	27.7	25.4	33.1	32.2	22.6	27.4		
101	28.1	25.7	33.1	15.7	22.4	22.2	9.7	21.7	0.0	5.8	27.7	25.4	33.1	32.2	22.6	27.4		
8	18.1	15.6	23.1	14.7	26.3	27.0	15.9	0.0	21.7	21.7	35.9	34.5	23.0	22.1	20.7	10.3		
7	22.3	19.9	27.3	9.6	18.1	16.4	0.0	15.9	9.7	9.7	24.8	22.5	27.3	26.4	16.8	21.6		
9	33.4	31.0	38.4	21.0	30.7	0.0	16.4	27.0	22.2	22.2	23.7	30.0	38.3	37.4	27.8	32.7		
5	32.7	30.2	37.7	15.7	0.0	30.7	18.1	26.3	22.4	22.4	39.7	37.7	37.6	36.7	21.8	31.4		
4	23.0	20.5	28.0	0.0	15.7	21.0	9.9	14.7	15.7	15.7	30.0	28.6	27.9	27.0	9.8	17.7		
	7.2	10.9	0.0	23.0	37.7	33.4	27.3	23.1	33.1	33.1	47.4	46.0	7.5	16.1	34.6	29.8		
2	7.9	0.0	10.9	20.5	30.2	31.0	19.9	15.6	25.7	25.7	39.9	38.5	10.8	6.6	27.1	22.4		
-	0.0	7.9	7.2	23.0	32.7	33.4	22.3	18.1	28.1	28.1	42.3	41.0	6.9	13.1	29.6	24.8		
5 5	-	- 2	3	4	5	9	7	8	101	103	105	109	112	113	118	121		
	1 2 3 4 5 6 7 8 101 103	3c 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.	3c 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39.	3c 1 2 3 4 5 6 7 8 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 33.1 47.	\$c 1 2 3 4 5 6 7 8 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 15.7 30.	\$\c^2\$ 1 2 3 4 5 6 7 8 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 36.2 37.7 15.7 0.0 30.7 18.1 26.3 22.4 22.4 39.	\$\c^{2}\$ 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 30.2 37.7 15.7 0.0 30.7 18.1 26.3 22.4 22.4 39. 33.4 31.0 38.4 21.0 30.7 0.0 16.4 27.0 22.2 22.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2	5c 1 2 3 4 5 6 7 8 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.2 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 23.0 20.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 30.2 37.7 15.7 0.0 30.7 18.1 26.3 22.4 22.4 39. 33.4 31.0 38.4 21.0 30.7 16.4 27.0 22.2 22.2 23. 22.3 19.9 27.3 9.9 18.1 16.4 0.0 15.9 9.7 9.7 24.	5c 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 33.1 47. 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 30.2 27.7 15.7 0.0 30.7 18.1 26.3 22.4 22.4 39. 33.4 31.0 38.4 21.0 30.7 0.0 16.4 27.0 22.2 22.2 23.2 33.4 31.0 38.4 21.0 30.7 0.0 16.4 27.0 22.2 22.2 22.2	5c 1 2 3 4 5 6 7 8 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 36.2 37.7 15.7 0.0 16.4 27.0 22.2 22.2 23.1 37. 33.4 31.0 38.4 21.0 30.7 16.4 27.0 22.2 22.2 23. 33.4 31.0 38.4 21.0 30.7 16.4 27.0 22.2 22.2 23.2 22.3 19.9 27	5c 1 2 3 4 5 6 7 3 101 103 106 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42. 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39. 23.0 0.0 10.9 20.5 30.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 37.7 38.4 27.3 23.1 33.1 47. 32.7 30.2 37.7 15.7 21.0 9.9 14.7 15.7 30. 32.7 30.2 37.7 15.7 0.0 16.4 27.0 22.2 22.2 23. 33.4 31.0 38.4 21.0 30.7 18.1 26.3 22.4 27.0 22.2 23.2 33.4 31.0 38.4 21.7	5c 1 2 3 4 5 6 7 3 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.9 0.0 7.9 7.2 23.0 30.2 31.0 19.9 15.6 25.7 25.7 39. 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 37.7 38.4 27.3 23.1 33.1 47. 32.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30. 32.7 32.0 15.7 21.0 9.9 14.7 15.7 30. 30. 33.4 31.0 38.4 21.0 30.7 16.4 0.0 15.9 9.7 22.2 22.2 23.2 23.2 23.2 23.2 23.	\$\c^2\$ 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.9 0.0 7.2 23.0 32.7 33.4 27.3 18.1 28.1 28.1 42.3 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47. 23.0 20.5 28.0 37.7 38.4 27.3 23.1 33.1 47. 32.0 20.5 28.0 37.7 38.4 27.3 23.1 47. 30.0 30.7 47. 30.0 30.7 30.0 30.0 30.7 30.0 30.0 30.7 47.0 30.0 30.7 30.0 30.0 30.7 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 <td>5c 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39.9 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47.4 23.0 20.5 28.0 0.0 15.7 20.0 16.4 27.3 22.4 22.7 39.9 32.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 20.0 16.4 27.0 22.4 22.4 39.7 32.7 33.4 21.0 30.7 18.1 26.3 27.0 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2</td> <td>56 1 8 101 103 105 9.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 9.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.2 10.9 7.2 23.0 30.2 31.0 38.4 27.3 23.1 33.1 47.4 23.0 20.0 10.9 20.0 15.7 21.0 9.9 14.7 15.7 30.0 33.1 33.0 20.2 23.0 30.7 18.1 26.3 27.2 22.2 30.0 33.4 31.0 38.4 21.0 30.7 18.1 26.3 27.0 15.9 9.7 47.4 33.1 33.4 31.0 30.7 16.4 27.0 22.2 22.2 23.2 22.2 23.2 33.1 25.1 32.1 32.1 32.2</td> <td>5c 1 2 3 4 5 6 7 3 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 28.1 28.1 28.1 42.3 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39.9 23.0 20.0 10.9 28.0 37.7 38.4 27.3 23.1 13.1 47.4 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30.0 32.7 30.2 37.7 30.7 18.1 16.4 0.0 15.7 15.7 30.0 32.7 30.2 37.7 15.7 0.0 16.4 0.0 15.9 9.7 27.8 39.7 32.1 15.7 22.4 22.2 22.2 22.2 22.2 22.2 22.2 22.2</td> <td>56 1 2 3 4 5 6 7 3 101 103 105 90 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 28.1 42.3 7.9 0.0 7.9 7.2 20.2 30.2 31.0 19.9 15.6 28.7 28.7 39.9 23.0 0.0 10.9 20.2 30.7 38.4 27.3 23.1 13.1 47.4 23.0 20.0 18.0 18.0 15.7 21.0 9.9 14.7 15.7 15.7 30.0 33.4 31.0 38.4 21.0 30.7 18.1 16.4 27.0 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2</td> <td>5c 1 2 3 4 5 6 7 8 101 103 105 9c 7.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2</td>	5c 1 2 3 4 5 6 7 8 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39.9 7.2 10.9 0.0 28.0 37.7 38.4 27.3 23.1 33.1 47.4 23.0 20.5 28.0 0.0 15.7 20.0 16.4 27.3 22.4 22.7 39.9 32.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 20.0 16.4 27.0 22.4 22.4 39.7 32.7 33.4 21.0 30.7 18.1 26.3 27.0 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2	56 1 8 101 103 105 9.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 9.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 42.3 7.2 10.9 7.2 23.0 30.2 31.0 38.4 27.3 23.1 33.1 47.4 23.0 20.0 10.9 20.0 15.7 21.0 9.9 14.7 15.7 30.0 33.1 33.0 20.2 23.0 30.7 18.1 26.3 27.2 22.2 30.0 33.4 31.0 38.4 21.0 30.7 18.1 26.3 27.0 15.9 9.7 47.4 33.1 33.4 31.0 30.7 16.4 27.0 22.2 22.2 23.2 22.2 23.2 33.1 25.1 32.1 32.1 32.2	5c 1 2 3 4 5 6 7 3 101 103 105 0.0 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 28.1 28.1 28.1 42.3 7.9 0.0 10.9 20.5 30.2 31.0 19.9 15.6 25.7 25.7 39.9 23.0 20.0 10.9 28.0 37.7 38.4 27.3 23.1 13.1 47.4 23.0 20.5 28.0 0.0 15.7 21.0 9.9 14.7 15.7 30.0 32.7 30.2 37.7 30.7 18.1 16.4 0.0 15.7 15.7 30.0 32.7 30.2 37.7 15.7 0.0 16.4 0.0 15.9 9.7 27.8 39.7 32.1 15.7 22.4 22.2 22.2 22.2 22.2 22.2 22.2 22.2	56 1 2 3 4 5 6 7 3 101 103 105 90 7.9 7.2 23.0 32.7 33.4 22.3 18.1 28.1 28.1 28.1 42.3 7.9 0.0 7.9 7.2 20.2 30.2 31.0 19.9 15.6 28.7 28.7 39.9 23.0 0.0 10.9 20.2 30.7 38.4 27.3 23.1 13.1 47.4 23.0 20.0 18.0 18.0 15.7 21.0 9.9 14.7 15.7 15.7 30.0 33.4 31.0 38.4 21.0 30.7 18.1 16.4 27.0 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2	5c 1 2 3 4 5 6 7 8 101 103 105 9c 7.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

WORKER TRIP TIME BETWEEN DISTRICT OF RESIDENCE AND DISTRICT OF WORK 1980

1 a v 1 t ++2(u	J
----------------	---	---

																		- ++2	,
										·									
	121	24.8	21.5	28.9	16.5	26.5	25.4	21.4	10.3	27.1	27.2	34.9	40.3	28.8	23.9	17.4	0.0		
	118	29.5	27.1	34.5	9.8	17.8	27.4	16.6	16.8	22.3	22.4	32.5	35.4	34.4	29.2	0.0	17.4		
	113	9.1	5.9	12.1	23.0	28.7	19.7	20.1	17.2	25.7	25.8	29.5	35.5	12.0	0.0	29.5	23.9		
	112	6.9	10.8	7.5	27.9	33.6	24.6	25.0	22.1	30.6	30.7	34.1	40.4	0.0	12.0	34.4	28.8		
	109	35.4	33.0	40.4	23.9	33.9	30.0	22.8	34.4	25.7	25.8	10.4	0.0	40.4	35.5	35.4	40.3		
Work	105	29.5	26.7	34.2	25,9	31.6	23.7	20.5	28.1	26.2	26.2	0.0	10.4	34.1	29.5	32.5	34.9		
of	103	25.8	23.3	30.8	15.8	18.5	21.1	9.8	21.8	7.4	0.0	26.2	25.8	30.7	25.8	22.4	27.2		
District	101	25.7	23.2	30.7	15.7	18.4	21.1	9.7	21.7	0.0	7.4	26.2	25.7	30,6	25.7	22.3	27.1		
a	∞	19.9	14.7	22.2	14.7	22.3	18.6	16.0	0.0	21.7	21.8	28.1	34.4	22.1	17.2	16.8	10.3		
	7	20.0	17.6	25.0	10.0	14.1	15.4	0.0	16.0	9.7	9.8	20.5	22.8	25.0	20.1	16.6	21.4		
	9	19,7	17.3	24.7	20.8	26.5	0.0	15.4	18.6	21.1	21.1	23.7	30.0	24.6	19.7	27.4	25.4		
	2	28.7	26.2	33.7	11.8	0.0	26.5	14.1	22.3	18.4	18.5	31.6	33.9	33.6	28.7	17.8	26.5		
	4	23.0	20.5	28.0	0.0	1.18	20.8	10.0	14.7	15.7	15.8	25.9	28.9	27.9	23.0	9.8	16.5		
] 	æ	7.2	10.9	0.0	28.0	33.7	24.7	25.0	22.2	30.7	30.8	34.2	40.4	7.5	12.1	34.5	28.9		
	2	7.9	0.0	10.9	20.5	29.5	17.3	17.6	14.7	23.2	23.3	26.7	33.0	10.8	5.9	27.1	21.5		
t of		0.0	7.9	7.2	23.0	28.7	19.7	20.0	18.1	25.7	25.8	29.5	35.4	6.9	9.1	29.5	24.8		
District of Residence	Org		~	3	4	5	9	7	8	101	103	105	109	112	113	118	121		
e.				VEAD															

YEAR 2000 WORK TRIP TIME BETWEEN DISTRICT OF RESIDENCE AND DISTRICT OF WORK

5. Cargo Flows and Truck Movements

Table cfl presents the results of a two year old truck survey for this area. It is the latest and most complete information available. The table column headings identify three external stations through which trucks pass on their way to or coming from a district. The table stub identifies the district to which the trucks are traveling to or coming from. To the extent possible these internal districts are the same as the TAZ accumulated districts. The bracketed entry in each table cell represents the count of trucks moving to an internal district that particular day. The unbracketed entries in each table cell represents the count of trucks coming from the district to the external station.

Unfortunately for this study's purpose, comparable data for truck movements between districts are not so available; i.e., truck movements from district #1 to district #112; from district #7 to district #113, etc. Arbitrarily, and on the basis of prudent judgment we assume that truck flows between external points and districts are in essence reasonable reflections of truck movements between districts. That is to imply that if transportation services are developed which best serve the cargo flows between external points and districts it follows that they are equally likely to best serve inter district flows.

These truck flow data are the basis for scoring determinant #9. Basically, the potential determinant score is a function of how much truck movement is likely to be attracted to the proposed service. While purposely hypothetical, such a measurement of potential truck flow is a

general and relative indication of the demand for transportation capability and how effectively the service responds to that demand.

TRUCK TRIPS SUMMARY (From Outside to Inside and Inside to Outside)

			•
-			
	•		
		-	

APPENDIX B

Procedures for Scoring Proposals

				₹
•				
		•		
		•		
		0		
•				

APPENDIX B

Procedures for Scoring Proposals

Table of Contents

		Page	<u>.</u>
1.	Proc	edures for Scoring ProposalsB.	1
2.	Desc	ription of DeterminantsB.	į
	#1	Employee Home/Work Trip NeedsB.	1
	#2	Reduction in CongestionB.	2
	#3	Household to Shopping Center Trips	2
	#4	Land Removed from Active Use	3
	# 5	Value of Land Lost	3
	#6	Land Opened for Development Per	
		Land Use PlanB.	3
	<i>#7</i>	Net Tax RevenueB.	3
	#8	Impact on Environment	4
	#9	Cargo Flow Needs	4
	#10	Development of Intermodal Transit	4
	#11	Impact on Area's Economy	5
	#12	Fuel Consumed	5
	#13	Construction Cost Per Mile	
		or Cost Per Vehicle Mile	5
	#14	Annual Maintenance Cost Per Mile or	
		Cost Per Vehicle MileB.	5
	#15	Reduction in User Travel Costs	6
	#16	Benefit/Cost Ratio	6
	#17	Substitutability Between Services	6
	#18	Potential for Service to be	
		Directly Supportative of Any Other	7
	#19	Fit of Proposal into Area Transportation Plan	7

			•	4
	4			
· ·				
		-		

APPENDIX B

1. Procedures for Scoring Proposals

For scoring each proposal it is necessary to use the study area district map to identify the districts that would be served by the proposed transportation service, the suggested procedure for scoring each determinant, the matrix tables referred to in the scoring procedure and the proposal scoring form, Exhibit C, page 14.

2. Description and Weight of Determinant

Suggested Procedure for Scoring

#1 Employee Home/Work Trip Needs

Weight = 17.5

Using the study area district map with the Transportation Service routing superimposed identify the districts which would be served by the proposed Transportation Service, i.e.: 101 to 5; 101 to 7; 101 to 112; 101 to 2, etc. Do the same for worker flows in the opposite direction; 5 to 101; 7 to 101; 112 to 101, etc.

Using Table F3 accumulate the percentage total of all home to work trips between each set of identified districts.

For a transit proposal it is estimated that work trips inside an SMSA are 3.5 percent of total work trips within the districts served by transit.

Preliminary tests indicated that an accumulated percentage score of 10 percent would probably be in the high range. Therefore the value of 10 has been entered as the benchmark for Determinant #1 representing a score of 100. All candidate transportation service proposals will be scored on that basis. It does not matter if a higher accumulated total shows up as more proposals are scored. It only means that the highest scoring candidate could have a score of say 110 rather than 100.

Enter the result on the scoring form (Exhibit C, page 14) in the proposal score column and multiply by the 17.5 weight for the weighted score. For Interstate 182 the weighted score was: $17.5 \times 97 = 1698$.

Suggested Procedure for Scoring

Description and Weight of Determinant

#2 Reduction in Congestion Weight = 17.0

Using the same district identifications developed in Determinant #1 but substituting Table F2, accumulate the number of employee home to work trips likely to be using a candidate transportation service or routing.

The number of transit trips are estimated to be 3.5 percent of total work-trips for each district served by transit

Preliminary tests indicated that 10,000 trips would probably be in the high range and this has been selected as the benchmark representing a score of 100. All candidate proposals will be scored on that basis. Any total over 10,000 trips would be represented by a score of more than 100.

Enter the result on the proposal scoring form for determinant #2.

Using Table S1 and the district boundary map with the candidate transportation service superimposed, identify the sets of districts likely to be served by the routing, i.e.; 2 to 113; 2 to 3; 2 to 4; 2 to 7, etc. (16 districts but only six shopping center districts.)

Using Table S1 which contains the percent shares of total home to shopping center trips as computed by the specially developed gravity flow model for shopping centers, accumulate the percent share of trips between each of the 16 household districts and each of the six likely to be served by that routing or transportation service.

It is estimated that transit would serve 10 percent of these shopping trips for each district served by transit.

Ten percent could be a high range and will be used as a benchmark for a score of 100.

#3 Household to Shopping Center Trips

Weight = 15.6

Suggested Procedure for Scoring

Description and Weight of Determinant

#3 (Continued)

Enter the result on the proposal scoring form for determinant #3.

#4 Land Removed from Active Use (In acres)

Commercial Industrial Residential Agricultural Raw and Undeveloped Score 51-100 if project land not in active use or undeveloped.
50 if determinant is irrelevant.
Score 1-49 if some activity use other than raw land.

#5 Value of Land Lost

Score 51-100 if no lost production value (if residential use consider if alternate home sites are equally available). Score 50 if determinant irrelevant or Score 1-49 if loss of production revenue or use.

#6 Land Opened for Development Per Land Use Plan

Weight = 7.5

- a) If believed "some" land will be opened for development, the percentage score can range between 1-49%.
- b) If believed "considerable" land will be opened for development, the percentage score can range between 50-74%.
- c) If believed "extensive" land will be opened for development, the percentage score can range between 75-100%.

#7 Net Tax Revenue

Score 51-100 if net tax revenue is positive or irrelevant.
Score 1-49 if net tax revenue negative.

Suggested Procedure for Scoring

#8 Impact on Environment

Score 51-100 if likely to improve it, i.e., air quality with less driving.
Score 50 if no change or determinant irrelevant.
Score 1-49 if project will detract from present quality.

#9 Cargo Flow Needs

Weight = 9.6

Using the District boundary map showing the project route superimposed, identify the districts affected by the proposed service.

From Table CF1, accumulate the percentage of truck flows (trips) likely to be attracted by each candidate transportation service and divide by total trips.

These are truck trips from selected "external points" to districts inside the Metropolitan Area. Preliminary tests indicate that a accumulated percentage of 20 percent would be in the high range and the benchmark for a score of 100. As in the other determinants, any higher accumulated score would mean that that candidate project would carry a scoring higher than 100.

#10 Development of Intermodal Transit

Weight = 7.3

Score 51-100 if there seems to be some potential for which the proposal contributes.

Score 50 if little prospects even with projects in place.

Score 1-49 if proposal detracts from area prospects for this.

#11 Impact on Area's Economy

Weight = 14.6

The analyst will judge how relevant the proposed transportation service is to the economy of the area; i.e.:

- a) If judged "some" the percentage score can range from 1-49 percent.
- b) If believed "considerable", the percentage score can range between 50-74 percent.
- c) If judged "critical", the percentage score can range between 75-100 percent.

#12 Fuel Consumed

Recent investigations show that the gasoline consumed per unit distance in urban driving can be expressed as a linear function of the average trip time per unit distance. (Transportation Research Record 599, p. 25). Use Table with trip time and the estimated trip distance for each proposal.

#13 Construction Cost per Mile or Cost per Vehicle Mile

This item represents the total investment in capital funds needed to provide the final completed facility, as estimated by the Transportation Department. Divided by the project miles or vehicle miles.

#14 Annual Maintenance Cost Per Mile or Cost per Vehicle Mile

This item includes all costs of keeping the finished facility in good operating condition after it is built. It includes such items as physical repairs, snow removal, traffic control devices, street cleaning, mowing and landscape care. Total maintenance costs are divided by the project miles or vehicle miles.

Suggested Procedure for Scoring

#15 Reduction in User Travel Costs
Weight = 10.9

The time savings will be used for this determinent. The URS Company who conducted the North Richland Bridge Feasibility study used an average value per trip cost of 28.7 cents per minute. These figures will be used for this determinent as an indication of user travel costs. A savings of \$50,000 will be considered as 100.

For the transit proposal the difference between the 1980 economic cost per person for a 5 mile trip will be used*. The number of transit trips determined in No. 2 can be used.

Automobile \$3.87 Bus -1.35 \$2.52 x no. of trips

* Highway users Federation, Technical Study Memorandum No. 13, July 1975.

Score 51-100 if general comparison of costs with foreseeable benefits are favorable.

Score 50 if about even or determinant irrelevant.

Score 1-49 if cost appears to exceed benefits (Note that this is a general observation, prior to a full scale cost benefit study).

#17 Substitutability Between Services

#16 Benefit/Cost Ratio

Again no hard numbers to go by but only judgment.

51-100 if this project could replace any other with about same result.

Score 50 if substitutability irrelevant to project.

Score 1-49 if project can be replaced by another.

Suggested Procedure for Scoring

#18 Potential for Service to be Directly Supportive of Any Other Again no hard numbers, only judgments. Score 80-100 if appears to have excellent prospects for being supportive. Score 51-79 if only slightly supportive to other projects.

Score 50 if determinant irrelevant to this project.

#19 Fit of Proposal Into Area Transportation Plan Score 80-100 if already part of area plan. Score 51-79 if an indirect part of transportation plan. Score 50 if determined irrelevant to project. Score 1-49 if not a part of official area plan.

:			

	x	

Bibliography

Annual Planning Report July 1980
Richland-Kennewick-Pasco SMSA
Research and Statistics Branch
Washington State Employment Security Department

Socio-Economic Impact Study WNP 1 & 4 Volume 4: Final Report Community Development Services, Inc. Seattle, Washington May 1979

Socioeconomic Impact Study WPPSS 1 & 4 Volume 1: First Progress Report Community Develoment Services, Inc. Seattle, Washington October 1976

Socioeconomic Impact Study WNP 1 & 4 Volume 2: Second Progress Report Community Development Services, Inc. November 1977

An Economic Assessment of Area XII Benton County Franklin County Economic Policy Analysis Division January 1977

Washington State Information Report State of Washington Population Trends 1975 Population Studies Division Office of Program Planning and Fiscal Management

Washington State Information Report Economic Forecast for Washington State 1978-1981 Population, Enrollment, and Economic Studies Division Office of Financial Management February 1978 1

Socioeconomic Study: WPPSS Nuclear Projects 1 and 4 Woodward-Clyde Consultants Western Region ENVICON Division Environmental Consultants Tri-Cities Metropolitan Area Transportation Study Unified Work Program For Fiscal Year 1981 Benton-Franklin Governmental Conference and Washington State Department of Transportation May 1980

Tri-Cities Metropolitan Area Transportation Study Tri-mats Fiscal Year 1978 Prospectus and Unified Work Program Benton-Franklin Governmental Conference and the Washington State Department of Transportation June 1977

Allocation of Resources to Transportation Programs
In the Tri-Cities Area of Richland, Kennewick and Pasco, Washington Research Proposal
Revised October 15, 1980
Social and Economic Planning Section
Public Transportation and Planning
Washington State Department of Transportation

Tri-Cities Metropolitan Area Transportation Study (Tri-MATS) Regional Transportation Plan

The Tri-City Area Handbook on Economic and Human Resources Revised February 1968 Richland Operations Office U.S. Atomic Energy Commission

Horn Rapid Industrial Development Feasibility Study Master Development Plan EDA-TA Project No. 07-6-02115 City of Richland Coopers & Lybrand with Nelson/Walla/Dolle & company March 1980

Study and Forecast of Tri-City Economic Activity and Its Related Impact on Gasoline Needs and Housing Marvin Clement, Keith E. Yandon, Brian Laughlin, W. A. Reardon May 1974

Washington State Information Report
Washington State County Population Forecasts by Age and Sex: 1970-2005
Population, Enrollment, and Economic Studies Division
Office of Financial Management
Second Edition: June, 1978

Supplemental Report on Population Estimates for Hanford Defense Waste Draft Environmental Impact Statement K. E. Yandon

J. S. Burlison R. G. Rau October 1980

Study on Specialized Transit Benton and Franklin Counties The Task Force on Specialized Transit, Social Agencies Coordinating Committee, Community Services Council State Transportation Plan Volume 2 Future Directions and Actions Washington State Department of Transportation February 1980

Industrial Site Brochures Port of Kennewick

Industrial Brochures Port of Pasco

Manpower Projections Washington Public Power Supply System August 27, 1980

Tri-Cities Chamber of Commerce Miscellaneous Publications

Summary and Evaluation of Economic Consequences of Highway Improvements National Cooperative Highway Research Program Report 122 Robley Winfrey and Carl Zellner Highway Research Board National Academy of Sciences Washington, D.C. 1970

Strategies for the Evaluation of Alternative Transportation Plans National Cooperative Highway Research Program Report 96 E. N. Thomas and J. L. Shafter Highway Research Board National Academy of Sciences Washington, D.C. 1970

Economic Analysis for Transportation - a Guide for Decision Makers Robley Winfrey Highway Users Federation for Safety and Mobility Washington, D.C. 1971

A Study of the Social, Economic and Environmental Impact of Highway Transportation Facilities on Urban Communities G. A. Riedesel, Principal Investigator Highway Research Section Engineering Research Division Washington State University Pullman, Washington 1968

The Value of Time Saved by Trip Purpose Highway Research Record No. 369, pp. 104-117 Thomas, T.C. and Thomas, G.I. 1971

Feasibility Study Columbia River Toll Bridge at North Richland Washington State Department of Transportation URS Company December 1980

Public Transportation Benefit Area Feasibility Study Franklin County Final Report Munro Associates

Public Transportation Plan Update for Benton and Franklin Counties Technical Memoranda Munro Associates February 1981

Final Environmental/Section 4(f) Statement Interstate 82/182 Prosser, Washington to Interstate 80N in Oregon Oregon State Highway Division/Washington State Department of Highways June 1974

NCHRP Project 20-5
Topic 12-01
Program Evaluation Criteria and Priority Setting
Synthesis of Current Practice
First Draft
Thomas F. Humphrey
May 1, 1981

Proceedings of the Specialty Conference Urban Transportation Financing Bucknell University Lewisburg, PA Sponsored by: Urban Transportation Division of ASCE July 25-27, 1979

Consultant Report for the Study of Allocation of Transportation Resources in the Tri-Cities Area of Richland, Kennewick and Pasco, Washington Yandon and Associates July, 1981

6/S&E14