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CHAPTER I
INTROBDUCTION
INITIAL SEA PAVING IN WASHINGTON

The first field experimental work performed in the State of Washing-
ton related to replacing part of the asphalt in hot-mix paving with sul-
fur was accomplished in a WSDOT sponsored project entitled "Sulfur Ex-
tended Asphalt Binder Evaluation". This project was a cooperative ef-
fort involving WSDOT, the University of Washington (UW), Washington State
University (WSU), the Federal Highway Administration (FHWA), the Sulphur
Development Institute of Canada (SUDIC} and the Asphalt Paving Associa-
tion of Washington. The study involved an initial laboratory mixture
design phase followed by construction and evaluation of test pavements
at two sites near Pullman, Washington. The work was initiated during
May 1979 and will continue through the evaluation phase until summer 1982.

That study is significant for a number of reasons but at least two
are particularly notable. First, it was the first SEA paving project
constructed in the state thus providing experience with the unique fea-
tures of this material. Second, pavement test sections were constructed
at the WSU Test Track and on a nearby state highway (SR 270) at Pullman.
The operation of the WSU Test Track allowed for accelerated loading of
the pavement sections. This resulted in a field determination of how
the SEA paving mixtures performed relative to conventional asphalt con-
crete (Class B graded aggregate was used for all mixtures).

The result of the analysis performed on the test track data indicates
that a 30/70 SEA (30 percent added sulfur and 70 percent asphalt by
weight) paving mixture is approximately equivalent to conventional as-
phalt concrete with regard to fatigue.

To address the issue of long-term durability for the Pullman test
mixtures, full-scale pavement sections were constructed on SR 270.
These sections were constructed as overlays 1.8 in. (4.6 cm.) thick.
The exposure to Eastern Washington climatic cycles and highway traffic
are providing insight into how the test mixtures deteriorate with time.
The winter traffic in the Pullman area has a high percentage of vehicles
with studded tires. After three winters of exposure, the SEA sections
are experiencing higher amounts of surface aggregate loss in the wheel
paths than the conventional asphalt concrete. The cause of this occurrence
is due in part to the mechanical abrasion of studded tires.



Thus, from a structural viewpoint, the initial examination of SEA
paving mixtures appeared promising or at least these mixtures were com-
parable to conventional asphalt concrete. From a durability viewpoint,
this initial examination revealed that the SEA mixtures used at Pulliman
may be slightly inferior to the conventional asphalt paved at the same
time.

Given the preceding background information, the primary objectives
of this research study are:

1. Further evaluate the applicability and desirability of using
SEA paving mixtures in the State of Washington.

2. Develop design criteria which will improve the utilization of
SEA mixtures. '

3. Assess the availability of sulfur in the State of Washington.

The last of the above objectives (availability of sulfur) is addressed
in another project report.

In order to achieve the above objectives, the study contained the
following basic steps (stated in approximate order of accomplishment):

Literature search

Design laboratory experimentation
Evaluate mixture design methods
Determine optimum mixture designs
Evaluate mixture durability

Develop conclusions and recommendations

O U B WD -

Each of Steps 2-5 required various test methods and/or analyses which
are reported primarily in Chapter II.

SEA MIXTURE DESIGN CRITERIA

The design of conventional asphalt concrete mixtures is a function
of two primary variables - strength and durability. Strength is di-
rectly a function of such items as mixture density, aggregate and type
and amount of binder. Durability is more difficult to simulate in the
laboratory but is at least in part a function of the binder and aggregate
quality, amount of air voids, etc.

Several methods are available to adequately evaluate the strangth of
conventional asphalt concrete. The most widely used are the Hveem and
Marshall methods. Since SEA mixtures have somewhat differing character-
jstics during the mixing and compaction process (generally a lower vis-
cosity), the question becomes "Are conventional mixture design methods
adequate for designing SEA mixtures?" There have been various attempts
to formulate an answer. The study has been used to examine this question.



For the Marshall mixture design procedure the following items are
normally considered in selecting a final binder content:

Marshall stability

Flow

Percent voids in the total mixture
Percent voids filled with binder
Unit weight or density

O 5 WO PN =

For conventional mixtures, evaluation of these separate criteria are
adequate but for SEA mixtures this may not always be the case. An ex-
ample is Marshall stability. As shown in Table 1 for "heavy traffic"

a minimum Marshall stability of 750 1bs (340 kg.) is reguired. This is

a meaningful criterion for conventional mixtures but SEA mixtures tend

to have significantly higher values, thus effectively reducing or elimin-
ating the benefit of this criterion. This problem increases as the sul-
fur-asphalt ratio increases. Thus, one goal in the study has been to
develop more realistic criteria for the two commonly used mixture de-
sign procedures.

Another question which has been examined is the concept of designing

SEA mixtures to maximize {or minimize) physical material properties
(current practice) or to design these mixtures on the basis of "equal
strength". Since an SEA binder is normally more viscous at ambient
temperature than asphalt cement, an SEA mixture which is designed to
have strength equal to that of an "acceptable" conventional asphalt
concrete is expected to require a lesser volume of binder. This con-
cept has not been adequately examined in previous SEA studies. If re-
duced volumes of binders are appropriate for SEA mixtures, the potential
‘asphalt savings will be increased. A possible problem with the equal
strength concept is that a reduced binder volume content which demon-
strates adequate strength may alsc produce a mixture which has poor
durability.

Another issue which is not thoroughly understood is how well the
sulfur blends with the asphalt and what process achieves the best blend-
ing. For example, SUDIC recommends the use of the Pronk in-line blender
to achieve an intimate mixture of the liquid sulfur and asphalt. This
is based on their belief that the Pronk blender produces the best SEA
binder for the smallest cost. The U.S. Bureau of Mines has shown that
direct addition of the sulfur and asphalt into the pugmill followed by
thorough mixing with the aggregate is adequate. This approach appears
to be the least expensive to use if it can be shown that it produces
SEA binders comparable to the other processes.

SOLUBILITY OF SULFUR IN ASPHALT

While a considerable amount of research has been performed on methods
of preparing the sulfur-asphalt binder used in SEA pavements, very little
research has been undertaken to define the role sulfur plays in SEA mix-
tures and how sulfur is related to the physical and mechanical properties
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of the pavements [1]. The purpose of this section is to examine the in-
formation currently available on the solubility of sulfur in SEA binders.
This information will provide insight into the experimental data collected
during this study and hence the effect of sulfur on the behavior of an

SEA mixture.

Sulfur exists in many allotropic forms which differ in their physical
and chemical properties [2]. The principal allotropics are orthorhombic
(Sg)» monoclinic (Sg), and polymeric sulfur {Sx). S, and Sg are cry-
stalline materials consisting of sulfur rings.” S, consists of chains
of up to 10° sulfur atoms. X

Sulfur crystallizes as a monoclinic polymorph which on coeling to
room temperature reverts to an orthorhombic form [3]. The reversion
rate has been measured and is shown in Figure 1. 5, is the only allo-
tropic form of sulfur that is stable under ordinary conditions of temp-
erature and pressure.

A valid and important question is, "How much sulfur can be “dissolved”
in asphalt"? In other words, how much sulfur can be used as an asphalt
extender.

The chemical reaction between the sulfur component and the hydro-
carbon of the asphalt is known to occur with the basic chemistry akin
to vulcanization [4]. When sulfur and asphalt are heated and combined in
an emulsion, three distinct types of reactions can occur:

1. The sulfur can react chemically with the asphalt and result in
dehydrogenation.

2. The sulfur can be dissolved in the asphalt.

3. Sulfur in the crystalline form can remain in suspension in the
asphalt [5].

The mode of reaction which results in the dissolved sulfur is considered
to be sulfurization through attack of the double bonds in the asphalt
cement [6].

Sulfur can be dissolved in asphalt at temperatures below 300°F (149°C)
The dissolving mechanism is believed to be separate from the chemical
dehydrogenation reactions [5]. At temperatures above about 305°F (152°C),
dehydrogenation occurs and hydrogen sulfide gas is formed, which results
in significant changes in the rheological properties of the asphalt. The
sulfur that does not chemically combine with the asphalt may be dissolved
in true selution, dispersed as a colloid, or appear in the asphaltic mix-
ture as crystalline sulfur. In this form, it can undergo allotropic
interconversion, both at the molecular and macroscopic levels [4].
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Figure 1. Reversion Rate of Monoclinic Sulfur to
Orthorhombic Sulfur at Ambient Temperature [3].



The relative amounts of dissolved sulfur in the sulfur-asphalt emul-
sions have been determined by use of differential thermal analysis
(DTA) equipment. DTA equipment operates on the principle that thermal
energy is absorbed (endothermal reaction) or evolved {exothermal reaction)
during a physical or chemical change as a sample of material is heated
[5]. A composite typical data trace is shown in Figure 2. The area un-
der the portion of the thermogram at the melting point was used in cal-
culating the amount of crystalline sulfur. The monoclinc sulfur (S )
will revert to orthorhombic sulfur (S,), but at Teast 20 hours is re-
quired for this reaction to occur completely. The relative amount of
dissolved and crystalline sulfur for typical SEA blends is presented
graphically in Figure 3. Similar results have been obtained by use
of the differential scanning calorimetry (DSC) [6].

Tests conducted by Garrigues [7] indicate that solubilities of sul-
fur in asphalt cement were 14 and 18 percent by weight at mixing temper-
atures of 302°F (150°C) and 356°F (180°C), respectively. Kennepohl re-
ports that up to 19 percent by weight can be dissolved [6]. Pickett, et

, [5] reported measured solubilities {using DTA equipment) ranging from
a low of 10 percent to a high of about 23 percent by weight of binder.

Matrecon, Inc., of Oakland, California was retained by the study
team to measure various characteristics of the SEA binders produced for
the Puliman test pavements. By use of gel permeation chromatography
(GPC) and differential scanning calorimetry {(DSC), the dissolved sulfur
was calculated based upon the difference between the free sulfur content
(obtained by GPC) and the crystalline sulfur content (obtained by DSC).
The results indicate that approximately 10 to 14 percent of the sulfur
was dissolved (original binder was a 30/70 SEA with AR-4000W Husky asphalt
cement).

McBee [1] used a different approach in determining the solubility of
sulfur in asphalt cement. Diffusion coupies were made by laying opposing
layers of elemental sulfur and asphalt in a glass vial. The diffusion
occurred at various temperatures and time periods. Count rates for sulfur
K, X-rays were measured as a function of distance from the sulfur-asphait
interface. The count rates from the diffusion couple can be converted
to sulfur concentrations which in turn can be used to calculate the sol-
ubility of elemental sulfur in asphalt. The solubitity trend so derived
as a function of temperature is shown in Figure 4.

This solubility data indicates a decrease in sulfur solubility with
decreasing temperature. A low solubility at ambient temperatures of ap-
proximately 4 percent is indicated. The result is large amounts of cry-
stalline sulfur existing in the paving mixture generally as "needle-like"
structures. The driving force for nucleation and growth of the sulfur
needles is believed to be provided by the sclubility differences at
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mixing and ambient temperatures [1]. The solubility data could be
underestimated because the amount of "dissolved" sulfur could be more
than that of diffused due to the constraints of surface energy and
other interface factors.

Available sulfur solubility data [14, 15] for coal-tar oil, olive
0il, and linseed 0il indicate that the solubility of sulfur in these
0ils decreases with decreasing temperatures. The following further
illustrates this trend:

Dissolved Sulfur (%)

b Gy Gie G
59 (15) - 6.0 2.3 0.4
122 (50) 7 10.0 9.0 1.2
194 (90) . 12 44.8 21.5 2.6
266 (130) 15-25 - 43.0 5.0
320 (160) 33 - - 10.0

(1) After Ref. 1

(2) After Ref. 14

(3) Specific gravity = 1.01 and boiling point = 410-572°F
(210-300°C) for base coal-tar oil

(4) Specific gravity = 0.885 for olive oil

If we examine the temperature range of 122 to 266°F (50 to 130°C)

{a range representing the temperature of a pavement on a warm, sunny
day up to normal SEA mixing temperatures), the solubility of sulfur
in three of the listed oils (including the asphalt cement) decreases
by about a factor of 4 to 5 for the 144°F (80°C) decrease in temper-
ature. The data further indicates that this factor increases to a
range of about 10 to 20 for a temperature drop from 266 to 59°F

(130 to 15°C} (olive and linseed 0ils only). Thus, if a similar
trend holds for asphait cements, the solubility of sulfur at modest
ambient temperatures {say 59°C {15°C)) might be as low as 2 to 6
percent. However, this solubility percentage is speculative at

this time.

Thus, it is not clear how much sulfur is actually "dissolved" in a
typical SEA binder at ambient temperatures. The lowest potential solu-
bility appears to be about 4 percent. However, at binder mixing
temperatures, the solubility of sulfur in asphalt appears to be about
18 percent. The end result is that the larger the amount of added sul-
fur to an asphalt the larger the amount of sulfur not in solution and
hence existing in a crystalline state. The mechanism of how sulfur
exists in a paving mixture will dictate in part how the paving mixture
will perform with regard to fatigue and durability.

11



CHAPTER TI
LABORATORY EVALUATION OF SEA MIXTURES

The following items were required to properly evaluate the SEA mix-
tures examined in this study:

1P W N~

Design laboratory experiment.

Evaluate mixture design methods.

Determine optimum mixture designs.

Evaluate mixture durability.

Develop appropriate mixture design criteria.

The approach and results relating to the above items will be addressed in
the sections contained in this chapter. :

EXPERIMENTAL DESIGN

The experimental design included the following major variables:

1.

2.

3.

SEA ratios:

(a) 0/100 (conventional asphalt concrete)

(b) 20/80 §20 percent added sulfur, 80 percent asphalt cement by
weight o

{c} 30/70 (30 percent added sulfur, 70 percent asphalt cement
by weight)

(d) 40/60 (40 percent added sulfur, 60 percent asphalt cement by
weight)

(e) 50/50 {50 percent added sulfur, 50 percent asphalt cement by
weight).

Aggregates:

{a) Eastern Washington crushed basalt

(b} Western Washington crushed gravel

Asphalt cements:

(a)
(b)

Chevron AR-4000W
Chevron AR-2000

12



4. Mixture compaction methods:

(a) Kneading compaction (Hveem)
(b} Marshall compaction

The above mixture variables represent a wide range of mixture conditions
for the types of paving materials commonly used throughout the State of
Washington.

The types of tests conducted on the laboratory prepared binders and
mixtures included:

1. Binder tests:

(a) Viscosity {Sliding Plate @ 77°F (25°C))
(b) Penetration @ 77°F (25°C) @ 100 g., 5 sec, ASTM D5
(c) Scanning electron microscope with photographic and X-ray
- scans
(d) Determination of "natural® sulfur content in asphalt cements

2. Mixture tests:
(a) Kneading compaction (WSDOT Test Method 701)

(i) Stabilometer value (WSDOT Test Method 703)
(11) Bulk specific gravity {WSDOT Test Method 704)
(111) Maximum specific gravity (WSDOT Test Method 705)
(iv) Marshall stability and flow (ASTM D1559)

(b) Marshall compaction {ASTM D1559)

(i) Marshall stability and flow (ASTM D1559)
(i1) Bulk specific gravity (WSDOT Test Method 704)
(ii1) Maximum specific gravity (WSDOT Test Method 705)

(c) Tests common to all compacted mixtures

(i) Resilient Modulus (ASTM "Indirect Tensile Test Method
for Resilient Modulus of Bituminous Mixtures")
(i1) Conditioning tests - details provided in section on
mixture durability and Appendix G
(ii1) Scanning electron microscope with photographic and
X-ray scans

13



INDIVIDUAL MATERIAL CHARACTERISTICS
AGGREGATES

The Eastern Washington crushed basalt was obtained from a quarry
operated by United Paving, Inc. (WSDOT Designation QS-P-95) located
near Pullman, Washington. The selection of this aggregate source was
primarily due to its use for the SEA experimental pavements constructed
in Puliman in 1979. Previously conducted tests on this aggregate re-
vealed the following bulk specific gravities and percent moisture ab-
sorption [9]:

1. Bulk specific gravity:

{a) Coarse (ASTM C127): 2.
(b} Fine (ASTM C128): 2.75

2. Percent absorption:

(a) Coarse (ASTM C127): 2.14
(b) Fine (ASTM C128): 2.09

The percent asphalt absorption as measured by WSDOT [9] was 1.3 percent.

The Western Washington crushed gravel was obtained from the gravel
pit operated by Lone Star Industries (WSDOT Designation PS-B-1) located
near Steilacoom, Washington (approximately.50mi. (80.5 km) south of
Seattle on the eastern shore of Puget Sound). This aggregate can be
broadly classified as a glacial gravel (crushed granite). Previously
conducted tests reveal the following bulk specific gravities and percent
moisture absorption [11]:

1. Bulk specific gravity:

(a) Coarse: 2.64
(b} Fine: 2.43

2. Percent absorption:

(a) Coarse: 1.12
(b} Fine: 5.49

The Los Angeles abrasion for this aggregate has been previously shown to
be relatively low - approximately 15 percent [11].

14



The aggregate gradation used for both aggregates was in accordance
with the WSDOT Class B specification (Table 2).

ASPHALT CEMENTS

Both asphalt cements used in the study were produced by Chevron U.S.A.
The AR-4000W was obtained from the Chevrom Richmond Beach facility (Seattle)
and the AR-2000 was shipped to UW from the Chevron, Portland, Oregon facility.
Initially, it was planned to use both Chevron and Husky asphalts of the
same viscosity grading. However, it became apparent that it would be of
greater value to use a range of asphalt cement viscosities; hence, the use
of the AR-4000 and 2000 grades. '

Characterization tests on the original asphalt cements are as follows:
1. Viscosity (sliding plate) @ 77°F (25°C)

(a) AR-4000: 1.3 x 10° poises
(b) AR-2000: 0.72 x 10% poises

2. Penetration @ 77°F (25°C) @ 100 g., 5 sec.

(a) AR-4000: 89
(b) AR-2000: 151

3. Total sulfur content in original asphalt cement (by weight)*

(a) AR-4000: 2.34%
(b) AR-2000: 4.34%

Measurements of viscosity (sliding piate) and penetration were made
with time for the SEA binder combinations studied. This data is summarized
in Appendix H. Initially, the binder viscosity was lower and the penetra-
tion was higher than the original asphalt cements for increasing amounts
of added sulfur. However, with time, the trend that evolived was that the
binders containing added sulfur exhibited higher viscosities and lower
penetration values than the original AR-4000 and 2000 asphalt cements.

SULFUR
The sulfur used was an 80-mesh ground sulfur from the Montana Suifur

and Chemical Company, Billings, Montana. The sulfur was not tested for
purity due to the attested purity stated by the producer.

*Tests conducted by Matrecon, Inc., Oakland, California during Jan.-Mar.,
1982.

15



Table 2. Aggregate Gradation Used in Laboratory
Mixtures (WSDOT Class B)

et | e
5/8" 100 100
/2" 95 (100)* $0-100
3/8" 82 75-90
174" 65 55-75
No. 10 40 32-48
No. 40 18 11-24
No. 80 10 6-15
No. 200 5 3-7

*Pullman Aggregate:

100% passed 1/2" sieve
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MIXTURE DESIGN
DETERMINATION OF OPTIMUM BINDER CONTENTS

For approximately the last ten years, numerous SEA mix designs have
been performed by various agencies and investigators. Much of this
knowledge is summarized by McBee, et al [12] which contains guidelines
for the design and construction of SEA paving mixtures. A brief summary
of those mix design guidelines is as follows: :

1. Determine the optimum binder content for a conventional mix,
using either the Hveem or Marshall method.

2. Select an SEA ratio (i.e., 20/80, 30/70, etc.) and calculate
the equivalent volume replacement of binder (in weight-percent)
by the following equation:

. - , 10000 AR
SEA (equal volgme equivalent) wt-pct = y5amm =T00P (R-1) ¥ R T)

where:

weight percent asphalt cement in conventional design
' G
sulfur substitution ratio = EE
a

i

weight percent sulfur in the SEA binder
= specific gravity of asphalt at ambient temperature

A
R
Ps
Ga
GS specific gravity of sulfur at ambient temperature
(Note: sulfur is about twice as dense as asphalt cement, therefore a
given weight of sulfur has about 1/2 the volume of the same weight of
asphalt cement).
3. Using the values obtained in Steps 1 and 2 as minimum and maxi-
mum values, respectively, choose intermediate points to evaluate.
4. Use either the Hveem or Marshall methods to prepare sampies for
testing to determine the optimum binder content.

In general, these guidelines were followed during the early mix de-
sign phase of this study. It soon became apparent that the optimum
binder contents obtained in Step 4 were essentially the same as those
calculated by use of the equivalent volume formula (Step 2) for a sul-
fur substitution ratio of slightly less than 2.0. Therefore, through-
out the remainder of the study, the optimum binder contents were those
which provided an equal volume of binder. The optimum binder contents
are summarized in Table 3 with specific mix design data contained in

17
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Appendix D. It should be noted that this finding is supported by the
results of the laboratory mix design phase of the Pullman SEA study
as reported in Reference 9. '

The initial mix designs were tested for stability (Marshall or
Hveem) two days after compaction. This was later changed to 14 days
to help account for the time dependent strength gain of SEA mixtures.
These differences can be observed in the detailed mix design data con-
tained in Appendix D. .

After analyzing the various mixtures prepared for this study in-
cluding the SEM data, the concept of reducing the volume of binder in an
SEA mixture to produce a mix with strength approximately equal to con-
ventional asphalt concrete does not appear desirable. While the strength
of the SEA paving mixture may be adequate, the durability probably will
be poor. The decreased durability can be attributed to one or more of
the following:

1. Excessive amount of air voids

2. Thinner coating of binder

3. Reduced effectiveness of binder in the presence of water due
to added sulfur.

These factors will be further illustrated in the section on moisture
conditioning.

The evaluation of the two mixture design methods (Hveem and Marshall)
with respect to the preparation of SEA mixtures is further described in
the sections which follow. Overall, as one might expect, the optimum
binder contents obtained for both methods are essentially the same for
a range of mixture combinations (Table 3).

MIXTURE DURABILITY
INTROBUCTION

One of the most important features of this study was the in-
vestigation of SEA mixture aging and other environmentally induced mix-
ture deterioration. The reason for this emphasis area is at least
twofold. First, the Pullman test pavements (SR 270 sections) have shown
that the SEA paved sections experienced greater amounts of surface aggre-
gate loss than did the conventional asphalt concrete sections. Even
though the differences were not great, the matter required further ex-
amination. Second, a review of various construction materials which
contained added sulfur generally revealed susceptibility to moisture
and/or freeze-thaw damage.

In general, pre-study data indicated that it is advisable to thor-

oughly investigate SEA mixture durability prior to construction of large-
scale SEA projects in Washington. The preferable approach would be to
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observe field mixture changes (or performance) with time for test sites
with various environmental conditions. However, the time and expense
associated with such research is probably not necessary at this time.
Thus, accelerated laboratory tests were required to achieve the full
evaluation of the SEA mixtures.

The conditioning tests selected for use in the study included the
following:

1. Accelerated aging conditioning @ 140°F (60°C),
2. Wet freeze-thaw conditioning ("Lottman" procedure)..

The "aging" conditioning was conducted in order to study the physio-
chemical aging phenomenon and its effect on mixture resilient modulus
properties. This in effect accelerated the sulfur recrystallization
process thus providing estimates of long-term mixture stiffness values.

The wet freeze-thaw conditioning was patterned after the procedures
developed by Lottman at the University of Idaho [3] and recently re-
vised {refer to Appendix G)}. The objective of this conditioning process
was to determine the mechanical properties of a given mixture due to the
combined effects of moisture and freeze-thaw cycling. This information
was then compared tc the same properties obtained from pre-conditioning
testing. The resulting ratios can be used as a relative index of en-
vironmental susceptibility.

Both the aging and moisture conditioning procedures were initiated
14 days after the sample mixtures were compacted; hence, the initial
mixture stiffnesses shown were obtained 14 days after sample preparation.

AGING CONDITIONING

The general trend for all samples subjected to the aging condition-
ing procedure was an increase in resilient modulus with time. These
relationships are shown in Figures 5 through 12. However, as shown in
Table 4, the 20/80 SEA mixtures had the highest percent of strength gain
(186%) followed by the 30/70, 0/100 and 40/60 SEA mixtures, respectively
(the 50/5? SEA mixtures were not considered as the number of samples tested
was small).

In reviewing the information available on the solubility of sulfur in
asphalt, an explanation for the greater increase in stiffness for the
20/80 mixtures can be found. As was stated earlier, the solubility of
sulfur in asphalt appears to be about 18 to 20 percent at mixing temper-
atures and 4 to 10 percent at ambient temperatures. Also, sulfur that
is not in solution crystallizes to form “"needle-like" structures and it
is these structures which are thought to be the cause of increased
stiffness in SEA mixtures. Therefore, it is reasonable to expect that

20



((2052) doif :dwd] 35931°uU0LIORdWOD | [RYSARY ©[3ARLD
PaYsNJd 000Y-dy) Buiyeos 1edH Jd1Jy SNLNpo JudL|Ltssy g Bunbiy

ot

{2:09) 4.0%1 3 ¥POS JPIH JO SJUNOH 3ALle{nung

08y 0ve oct el ¥ 0

-001

-00¢

-00¢

=001

00§

-009

00/

008

006

0001

F00LL

(1sd Em X) SR{NPOW JuUBLLLSAY

21



((2052) dolL
:dweg 1593 u0L3DRdWOD | leysS4Rjy ¢ |9ARLD PBYSNUD
‘000Z-YY) BulyeoS 3edH JD14Y SNINPOW JUSLLLS®Y g dunbL

{2,09) 4,0¢L 3€ %205 134 1O SUANOH 3Arlefnung

08t Ove 0et el ve 0

i & Il A 4 I

00L/0 . [ — .
o ammom—— : \
08/07 """
PE——
e ¢ T T I \
s P AN
\-\\I\n‘l..\\.\. u\\‘\-‘\l\.\n AY
..\‘n\.. 1\\..3\.\‘\\\:\-
0L/0g """ =T
09/0t—=="""
\\\\.\\\llll
\\\
—
\\\\\
—
—_
S
i
ol
\\\\ B
0§/06—""

-00t

002

-00€

—-00¥

-009

009

004

008

~006

0001

001t

(isd EOl X) SniNpOR Juai|isay

22



((2062) dolL
(dwel 31$93 ‘uoLjoedwod [|eYSAey lleseq paysndd
‘000p-dy) Dulye0o$ 1E8H JIY4Y SNLNPOK JudL|LSdY */ dunbi4

(3.09) 4.0%1 32 A2OS 3ESH 30 SUNO| BALIE{NWNY

08y 0v2 0zt 21

124

00t/0
o cammmmens
o aE—————
§08/02 o= " B .
-.\
.t \\
R \

jos/of . o .
fossoy - ——— = e e

0
00t
H002
-00€
ooy
3
e
F00s =
1]
3
(a4
009 F
(=%
=4
=~
booL @
=
boog 2,
=3
A
006 =
0001
001 L

23



((2:62) doll
:dwo) 3S91 ‘uotioedwod |[eysael 1peseq paysndd
000z-dy) BulyeoS 18y 433y SNLNPOW JUSLLLS3Y '@ ounbLy

(2,09) o071 32 %20S 383Y JO SUNOH 3ALle|nun)

08y 0ve 0zl 2 24
) 1 4 3 1 1 O
001
xxuun -002
08/02~y
00L/0 00§
S -00¥
s - \l\l\.’"‘l, L
0L/0g=—"" T -
e T T T -005
09/0p === =" "
-009
~00/
008
006
0001
0011

{1sd ¢l X) SRiNpOy Juai|isay

24



((2052) dolt
:dwey 3593 cuorjoedwod Butpesuy ©|3Aeab paysnuad
*000t-dy) BuLyeOS JB3H UBI4Y SNINPOW JUBLLLSSY 6 3unbLy

(2509) 4.0%1 1B YOS 3EdH JO SANOY 3ALje|nuN)

08y 0ve 0et 44 ¥ 0

08/02 . . . e
0L/0¢.. . b

00 L/ 0 st e e e e wan . am xns x wn s o o xS

09/0¢-*

001

002

-00€

r00Y

00§

009

004

008

-006

0001

001!

(1sd g0l X) snLnpow JuaLiisay

25



o8y

((2052) dolL
:dway 1591 “uotjoedwod Burpeauy ©|sAeub paysnuao

‘0002-dY) buldeoS 3eSH 433}y SNLNpO} JudL|LSIY
(2009) 4,0PL 3 NBOS 3EBH 4O SANOH dALIe|{NWN)

(1) 74 021

] 1

‘0l @4nbi4

44

124

0otL/o

08/02

09/0%~—

-

0L/0€"- .

o -~
-
e

001
r002
F00€
-00y
~005
~009
-00£
008
-006
-0001

0011

(1sd sol X} Sn{npoy 1u3L|Lsay

26



((3062) dolL
:dwey 31593 ‘uorioedwod Buipesausy ‘3peseq paysnud
‘000%-¥V) bulyeOS JBSH JUBY4Y SN|NPOW JUBL{LS3Y “[| unbLy

(2.09) 1,001 3@ #e0S 18AH 4O SUNOH SALIR{NUNY

Oy 021 A 124
08Y A .

. .n\.\'..'ﬂlﬂl..i..
8/02 *

PL/0E mmmm—=

-

N9/0p — <~

no:o — T \

001

-00¢

~00¢

-00Y

009

-009

004

008

006

r000 1

00t

{tsd sm X} SN{Npoy JuIL[153Y

27



((2082) dolL
:dwd 3597 *uoLrloedwod Buirpesauy €lieseq paysndd

“000Z-YYy) BuldeoS 3e8H 4934y SN|Npol JusL|lsay g d4nbi4

(3.09) 4,071 1 ABOS 3BBH JO SJNOK IALIR|NUINY

08y 0v2 0zl 2L

st
o4
- O

foor/o

..l!l-li!l. ..‘\\
focroe . e © e

£08/07 —— - :

-

Jog/op— "~

-001

-002

00€

00y

009

~009

-00(

-008

-006

000 1L

-00t 1L

(1sd 0L %) sninpol JuaLiLsay

28



Table 4.

Percent Stiffness Gained During
Aging for SEA Mixtures

SEA Ratio
Sample Type

Percent Strength Gained

6/100

20/80

30/70

40/60

50/50

Marshall Compaction,
Crushed Gravel,
AR-4000

Marshall Compaction,
Crushed Gravel,
AR-2000

Marshall Compaction,
Crushed Basalt,
AR-4000

Marshall Compaction,
Crushed Basalt,
AR-2000

Kneading Compaction,
Crushed Gravel,
AR-4000

Kneading Compaction,
Crushed Gravel,
AR-2000

Kneading Compaction,
Crushed Basalt,
AR-4000

Kneading Compaction,
Crushed Basalt,
AR--2000

165

167

162

130

162

134

126

146

157

210

274

144

148

165

200

190

219

226

158

166

124

112

171

105

143

144

124

132

114

116

144

116

124

150

Average

149

186

160

129

137
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since approximately all of the sulfur in the 20/80 mixtures is in solu-
tion at the time of mixing, the initial stiffnesses will be approximately
the same as the 0/100 {conventional) mixtures. And, it is reasonable

to assume that the increase in stiffness with age as the sulfur comes

out of solution and forms crystalswill be greater than that expected

due to normal asphalt cement stiffening.

This was indeed the case as shown by the fact that the 20/80 mix-
tures gained more stiffness than the 0/100 mixtures. It would also
be expected that the initial stiffnesses (measured 14 days after com-
paction) for the 30/70 and 40/60 mixtures would be higher than those
for the 0/100 and 20/80 mixtures since a greater amount of sulfur was
initially out of solution in the mixtures. This was found to be the
case and the average initial stiffnesses were as follows:

0/100 190 ksi
20/80 184 ksi
30/70 277 ksi
40/6G 388 ksi

Further analysis of the data shows that in general, for all SEA
ratios, the Marshall compacted samples experienced greater gains in
stiffness than did the samples prepared using kneading compaction (refer
to Table 4 and Appendix E). This can in part be attributed to the fact
that the Marshall compacted samples had slightly higher air voids than
the kneading compacted samples for equal amounts of binder. From the
SEM work, it was apparent that sulfur crystals were more abundent in
the voids than in the binder itself, thus the more voids, the more
crystals and the greater the potential mixture stiffness. Further,
air void distribution and size probably influenced the results; however,
such measurements were not made during the study.

The mixes produced with AR-4000 asphalt cement resulted in higher
resilient moduli than those produced using AR-2000 asphalt, as
would be expected. The type of aggregate had & modest effect on the
results.

Overall, it is apparent that significant gains in mixture stiffness
will occur with time. Heat soaking for time periods as short as 24
hours will assist in obtaining an improved estimate of the near-term
mixture stiffness.

MOISTURE CONDITIONING

In general, it was found that mixture moisture susceptibility in-
creases when increasing amounts of sulfur are added to the binder (i.e.,
increasing SEA ratic). The test results are presented numerically in
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Table 5 and graphically in Figures 13 to 17. Moisture susceptibility
was determined by use of the conditioning procedure described in

Appendix G.

The primary anomoly in the data was the 20/80 SEA mixtures, which
had, on the average, the same percent strength retained (as measured by
resilient modulus) as the 0/100 SEA mixtures. This phenomenon can be
explained based on the concept of solubility of sulfur in asphalt cement.
As stated in the section on aging conditioning, the amount of sulfur in
the 20/80 mixtures is near the solubility saturation point. Since there
is no initial "free" sulfur available to crystallize, and thus increase
mixture stiffness, it appears that the 20/80 SEA mixtures perform in a
similar way to the 0/100 SEA mixtures. If,however, the 20/80 SEA mix-
tures are aged so that part of the sulfur in solution has time to
crystallize, it would be expected this mix would show greater moisture
susceptibility. To illustrate this, for all SEA ratios, the resiiient
modulus values from the aging samples, after 120 hours of conditioning,
were used as the "before" resilient moduli, and along with the actual
"after"mixture conditioning resilient moduli values, the percent strength
retained was calculated. These results are summarized in Figure 17.

It can be seen that the 20/80 mixtures showed slightly greater moisture
susceptibility than the 0/100 mixtures using this method (however,

‘the same samples were not used for before and after testing).

The apparent relationship for themixtures examined between percent strength

retained and SEA ratio appears to be approximately linear up to a 40/60 SEA
ratio with increasing moisture susceptibility for increasing SEA ratio.

After scanning numerous sample mixtures with the SEM, it became ap-
parent that the sulfur crystals formed in the samples prior to moisture
conditioning were often destroyed or broken during the conditioning pro-
cess (refer to Figures C9, C10, C11 and C12 in Appendix C). Since strength
(more specifically stiffness) seems to be imparted to the SEA samples
through establishment of a network of sulfur crystals in the voids and
binder (refer to Figures €35, C36 and C37 in Appendix C), it is Tikely
that this strength will decrease when that network is damaged by the
combination of moisture and freeze-thawing. It was also observed that
once the sulfur crystals had been damaged or destroyed new crystals
could form if crystal growth conditions were favorable (i.e., if sul-
fur is available and/or voids exist). The phenomenon of crystal growth
is exemplified in Figure C38 (Appendix C), and the gain in strength
is shown in Figure 18. The results shown in Figure 18 were obtained
by taking a set of samples that had been previously subjected to the
full moisture conditioning procedure and then about six months later
were vacuum saturated and soaked (thus only part of the full conditioning
procedure was accomplished, i.e., no freeze-thaw cycling). These results
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Table 5. Percent Strength Retained After Mois-
ture Conditioning for SEA Mixtures

SEA Ratio

Sample Type

Percent Strength Retained

0/100

20/80

30/70

40/60

50/50

Marshall Compaction,
Crushed Gravel,
AR-4000

Marshall Compaction,
Crushed Gravel,
AR-2000

Marshall Compaction,
Crushed Basalt,
AR-4000 ‘

Marshali .Compaction,
Crushed Basalt,
AR-2000

Kneading Compaction,
Crushed Gravel,
AR-4000

Kneading Compaction,
Crushed Gravel,
AR-2000

Kneading Compaction,
Crushed Basalt,
AR-4000

Kneading Compaction,
Crushed Basalt,
AR-2000

0.61
0.93
0.62
0.92
1.23t1)

0.72

0.79

0.66

0.82

1.97

0.66

0.92

0.89

0.5

0.841)

0.54

0.84

0.67

0.68

0.62

0.51
0.37
0.68")
0.41
0.91

0.52

0.24

0.23

Average

0.83

.96(.82) (2

WAY

.49

0.24

(1) Values based on results of second Lottman

(2) Excluding the 1.97 value.
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show that a substantial gain in stiffness is possible by reducing the
moisture content for all test mixtures. This illustrates the fact that
moisture and freeze-thaw cycling can significantly change mixture stiff-
ness but some "recovery" can occur. Further, the relatively small re-
ductions in stiffness of the SEA mixtures due only to vacuum saturation
and soaking shows that moisture alone did not necessarily reduce stiff-
ness significantly for the evaluated mixtures but that the combination
of moisture and freeze-thaw cycling did.

In most cases, the Marshall compacted samples exhibited a greater
stiffness loss than the kneading compacted samples. This is probably
due to the higher air voids in the Marshall samples. Sulfur crystals
form most readily in void spaces and because moisture susceptibility is
at least in part a function of crystal destruction, it is likely that the
Marshall compacted samples would be the most susceptible in this study.

It appears that samples made with AR-4000 asphalt cement resulted
in a Tower strength loss than those made with AR-2000 asphalt cement.
Type of aggregate had 1ittle effect on the results.

ANTI-STRIP EVALUATION

To determine the effects of adding an anti-strip binder additive on
the strength characteristics of samp]es before and after moisture con-
ditioning, mixtures were prepared using two percentages (by total weight
of binder) of Pave Bond Special anti-strip additive.

The two percentages used were one-half and one. SEA ratios of /100,
30/70 and 40/60 were used, as were the crushed basalt aggregate and both
the Chevron AR-2000 and AR-4000 asphalt cements. The binder contents
of each mixture were the optimum contents determined previously in the
study. A1l samples were prepared using the kneading compaction method.

The sampies were conditioned using the full moisture conditioning
procedure followed throughout the testing program with the results pre-
sented in Table 6. Also presented in the same table are the results
of tests for samples containing no anti-strip. The results are pre-
sented graphically in Figures 19 and 20.

The general trend observed for samples containing the anti-strip
additive agreed with those without anti-strip, namely that moisture sus-
ceptibility appears to increase with increasing sulfur content in the
binder. For both asphalts at the 0/100 SEA ratio the addition of anti-
strip had no appreciable effect on the percent of strength (stiffness)
retained. The 30/70 SEA ratic results showed that the AR-4000 asphalt
cement with the two percentages of anti-strip increased retained strength
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Table 6.

Percent Retained Strength for SEA Mixtures

with and without Anti-strip Additive

Binder Type
and
Amount of

0/100 SEA

~ 30/70 SEA

40/60 SEA

% Strength

% Strength

% Strength

Anti-strip* Retained Retained Retained
AR 4000-1/2% 61.3 **g4.,5 58.9
AR 2000-1/2% 62.9 54.6 45.1
AR 4000-1% 75.0 84.5 52.7
AR 2000-1% 77.6 58.2 49.4
AR 4000-0% 72.0 68.0 51.0
AR 2000-0% 79.0 62.0 44.0

*Anti-strip:

Pave Bond Special

**Two vaiues > 100%
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over similar samples with no anti-strip; however, the AR-2000 asphalt
cement with anti-strip showed no clear improvement. Both the AR-4000
and AR-2000 samples with anti-strip retained more strength than the
samples with ne anti-strip for the 40/60 SEA ratio. It should be
noted that in none of the cases studied was the difference in strength
retained between samples with or without anti-strip considered sub-
stantial. ‘
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; CHAPTER III
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The following conclusions are appropriate:

1.
2.

10.

11.

The lower limit solubility of sulfur in asphait cement at ambient

conditions appears to range between 4 to 10 percent (p. 9).

A significant amount of the added sulfur in SEA mixtures appears
to exist as orthorhombic crystals {p. 31 and Appendix C).

A minimum SEA binder content equivalent to the volume of an
"optimum" amount of asphait cement appears appropriate (p. 19,
Figure 17 (p. 37)).

Both the Marshall and Hveem mixture design methods provide
essentially the same optimum binder contents (by weight) for

the mixture conditions evaluated {Table 3 (p. 18)).

The "equal strength" mixture design approach for SEA mixtures

does not appear to be viable (p. 19).

A minimum time of 14 to 21 days at ambient conditions between

mixture compaction and subsequent testing provides for more
realistic strength and stiffness test data. Further, subsequent
heat soaking (aging conditicning) of these laboratory prepared

mixtures at a temperature of 140°F (60°C) for 120 hours provides

more consistent estimates of the near-term mixture stiffness
(Figure 5-11 (p. 21-28)).

Increasing amounts of added sulfur results in increased mixture
stiffness {(p. 30).

Increased amounts of air voids in mixtures appear to increase
the observable sulfur crystals (p. 30).

The ultimate mixture stiffnesses obtained for the Marshall com-
pacted samples were generally higher and more variable than
?imilar mixture combinations prepared using kneading compaction
p. 30).

Increasing amounts of added sulfur generally result in increased

mixture stiffness loss following the moisture and freeze-thaw

conditioning process developed by Lottman. Significant sulfur

crystal damage is possible due to the combined effects of mois-

ture and freeze-thaw conditions. However, the stiffness loss

is not necessarily permanent. Some stiffness recovery can

occur after drying of the mixture {p. 30, Figure 17 (p. 37)).

The anti-strip additive evaluated in the study did not alter
the preceding conclusion (p. 39).

RECOMMENDATIONS

1.

A minimum SEA binder content equivalent to the volume of an
optimum amount of asphalt cement should be used in SEA mixtures.
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SEA mixtures should have lower than normal air void contents

in order to minimize full crystalline sulfur growth.

The time dependency of SEA mixtures must be recognized in the
mix design process in order to use design criteria properly.
Future SEA mixture designs should be evaluated in the laboratory
by use of the moisture conditioning procedure as developed

by Lottman. '
Based on the results of this and the Pullman studies, SEA sur-
face course mixtures are not recommended in areas which experi-
ence the combined effects of wet freeze-thaw cycles and signifi-
cant amounts of studded or chained tire wear. However, SEA
mixtures should be effective in all climate and traffic areas

as a structural base.
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DEFINITIONS
(After Ref. Al)

ALLOTROY: The assumption by an element or other substance of two or
more different forms or structures which are most frequently stable in
different temperature ranges.

AMORPHOUS: Pertaining to a solid which is noncrystalline, having neither
definite form norstructure.

CRYSTAL: A homogeneous solid made up of an element, chemical compound
or ijsomorphous mixture throughout which the atoms or molecules are
arranged in a regularly repeating pattern.

CRYSTALLINE: Of, pertaining to, resembling, or composed of crystais.

DEHYDROGENATION: Removal of hydrogen from a compound.

MONOCLINIC SYSTEM: One of the six crystal systems characterized by a
single, two-fold symmetry axis or a single symmetry plane.

ORTHORHOMBIC LATTICE: A crystal lattice in which the three axes of a
unit cell are mutually perpendicular and no two have the same length.

POLYMER: Substance made of large molecules formed by the union of simple
molecules {monomers).

POLYMORPH: A crystal form of a polymorphic material.

POLYMURPHISM: The property of a chemical substance crystallizing into
two or more forms having different structures, such as diamond and graphite.

SULFUR (Chem): A nonmetaliic element, symbol S, atomic number 16, atomic
weight 32.064, existing in crystailine or amorphous form.

SULFUR {Mineral}: A yellow orthorhombic mineral occurring in crystals,
masses, or layers, and existing in several allotropic forms.

VULCANIZATION: A chemical reaction of sulfur with rubber or plastic to
cause cross-1inking of the polymer chains; it increases strength and
resiliency of the polymer.

REFERENCE

Al. McGraw-Hill Dictionary of Scientific and Technical Terms, McGraw-
Hi11l Book Co., New York, 1974.
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BRIEF DESCRIPTION OF CRYSTAL SYSTEMS
INTRODUCTION

To enable a better understanding of how sulfur exists in paving mix-
tures, a brief description of crystal systems is warranted. This is due
to the fact that a large amount of the added sulfur in such mixes exists
as orthorhombic sulfur. :

The three basic states for all matter are as a gas, liquid or solid
(B1). In the gaseous state, molecules or atoms are in constant and random
motion. A gas, of course, assumes the shape of its container. In the
liquid state, the random molecular motion is much more restricted and a
liquid has a higher viscosity than a gas. In the solid state, molecular
motion is confined and solids may be crystalline or amorphous.

A crystalline solid has a regular or repeated arrangement of mole-
cules or atoms -in a fixed or rigid pattern (lattice). A crystalline sub-
stance usually exhibits an anisotropic state whereby mechanical, electri-
cal, magnetic and optical properties can vary according to the direction
in which they are measured. An amorphous solid has a random arrangement
of molecules or atoms and normally exhibits isotropic properties (properties
the same in all directions of measurement).

CRYSTAL SYMMETRY

Geometric shapes can be used to help classify crystals. The three
elements of symmetry are:

1. Symmetry about a point
2. Symmetry about a line (or axis)
3. Symmetry about a plane

If a crystal is rotated through 360° about an axis, it is returned to
jts original position. If the crystal appears to have returned to its
original position more than once during a complete rotation, the chosen
axis is an "axis of symmetry". If the crystal is rotated 180° before
coming into coincidence with its originalposition, the axis is one of
"two-fold symmetry". Three-fold, four-fold, etc.,symmetries are possibie
for some types of crystals.

CRYSTAL SYSTEMS

There are 32 possible combinations of the three previously described
elements of symmetry. These 32 combinations have been grouped into
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seven systems as follows (B1).

Regular
Tetragonal
Orthorhombic
Monclinic
Triclinic
Trigonal
Hexagonal

O O B D PO e

The first six of the above systems can be described with reference to
three axes denoted x, y and z. The z-axis is vertical, x-axis from front
to back and the y-axis from right to left (Figure B1). The angle between
the y and z-axes is denoted as "o", between the x and z-axes by "B" and
between the x and y-axes by "y". Descriptions of the seven crystal sys-
tems are contained in Table B1.

REFERENCE B
B1. Mullin, J.W., Crystallization, Butterworths, London, 1961.
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SCANNING ELECTRON MICROSCOPE (SEM) PHOTOGRAPHS
OF SEA MIXTURES

The photographs contained in this appendix were obtained with a
Cambridge scanning electron microscope (model MKIIA)}. Associated with
this instrument is an EDAX X-ray analysis system. This attachment pro-
vided for sample scans which were used to determine qualitatively the
tocation of sulfur.

Most of the mixture combinations examined in this study were sampled
for SEM study. The following index is provided for the figures contained
in this appendix:

SEA Asphalt Aggregate Compaction
Figures  Ratio Cement Type - ___Type __Method
C1-C8 30/70 AR-2000 Crushed Gravel Kneading
€9-C19 30/70 AR-4000 Crushed Gravel Kneading
€20-C27 20/80 AR-4000 Crushed Basalt Marshall
€28-C34 30/70 AR-2000 Crushed Basalt Marshall
€35-C40 30/76 AR-4000 Crushed Basalt Marshall
C41-C46 40/60 AR-4000 Crushed Basalt Marshall
C47-C54 30/70 AR-2000 Crushed Basalt Kneading
€55-C53 30/70 AR-4000 Crushed Basalt Kneading

The primary emphasis was placed on an examination of the 30/70 SEA
mixtures. This was done because this mixture was felt to represent a
“"near optimum" SEA mixture condition.
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Figure C11.

Same Sample and Location as Shown in Figure C9
After Five Wet Freeze-Thaw Cycles (Temperature
range: -5°C to 25°C){400x}. Note: void distorted
due to cycling and angle of view which is different
than that shown in Figures C9 and C10
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Figure C12. Close-up of Void Originally Shown in Figure C11 (1170x)
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Figure C19. SEA 30/70 Mixture (AR-4000, crushed gravel,
kneading compaction) After Lottman Conditioning

(217x)
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Figure C22. SEA 20/80 Mixture (AR-4000, crushed basalt,
Marshall compaction) After Heat Soaking (515x)
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Figure C25.

SEA 20/80 Mixture (AR-4000, crushed basalt,
Marshall compaction) After Lottman conditioning
(110x). Note: essentially no crystailine sulfur
was observed in the voids for most of this sample
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Figure C30. SEA 30/70 Mixture {AR-2000, crushed basalt,
Marshall compaction) After Heat Soaking
{192x). MNote: oval shaped rupture in binder
film contains sulfur as determined with EDAX.
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Figure C43. SEA 40/60 Mixture (AR-4000, crushed basalt,
Marshall compaction) After Heat Soaking (1010x)
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Figure C46.

SEA 40/60 Mixture (AR-4000, crushed basalt,
Marshall compaction) After Lottman Conditioning
(208x). Note: this mixture void is not typical
for the scanned sample in that few voids contained
sulfur crystals
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Figure C49. Close-up of Sulfur Originally Shown in
Figure C47 (595x)
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Figure C54. SEA 30/70 Mixture (AR-2000, crushed basalt,
kneadgng compaction) After Lottman Conditioning
(232x
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MIXTURE DESIGN DATA

Tables D1-D15 contained in this appendix are used to document the
initial mixture design data for the various mixture combinations studied.
Early in the study, the decision was made to use equivalent binder
volumes for all SEA mixtures. An index for the initial mixture design
data is as follows:

Asphalt
SEA Cement Aggregate Compaction
Table Ratio Type Type _Method
D1 0/100 AR-4000 Crushed Gravel Marshall
D2 20/80 AR-4000 Crushed Gravel Marshall
D3 30/70 AR-4000  Crushed Gravel  Marshall
D4 40/60 AR-4000 Crushed Gravel  Marshall
D5 50/50 AR-4000 Crushed Gravel Marshall
D6 0/100 AR-2000 Crushed Gravel Marshall
D7 0/100 AR-4000 Crushed Basalt Marshall
D8 0/100 AR-2000 Crushed Basalt Marshall
D9 0/100 AR-4000 Crushed Gravel Kneading
D10 20/80 AR-4000 Crushed Gravel Kneading
D11 30/70 AR-4000 Crushed Gravel Kneading
D12 40/60 AR-4000 Crushed Gravel Kneading
D13 0/100 AR-2000 Crushed Gravel Kneading
D14 0/100 AR-4000 Crushed Basalt Kneading
D15 0/100 AR-2000 Crushed Basalt Kneading

Tables D16-D23 are used tc provide summaries of

contents selected for each SEA ratio and mixture combination.
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Table D16. Summary of Optimum Binder Contents for Marshall
Mix Design (14 days after compaction)

Aggregate: Crushed Gravel
Asphalt: AR-4000

| Bulk ~ Marshall
SEA Ratio Binder Content (%)* Sp. Gr

P- BV ] stabitity (1b) | Flow
0/100 6.0 2.389 2173 9.2
20/80 6.4 2.390 2301 9.3
30/70 6.8 2.395 2754 . 9.1
40/60 7.2 2.415 13478 8.7
50/50 7.7 2.405 4447 8.6

*SEA binder contents based on equal volume of 0/100 mixture.
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Table D17. Summary of Optimum Binder Contents for Marshall
Mix Design (14 days after compaction)

Aggregate: Crushed Gravel
Asphalt: AR-2000

Bulk Marshall
SEA Ratio | Binder Content (%)* — -

P- ' I stability (1b) | Flow
6/100 5.8 2.373 2073 8.9
20/80 6.4 2.396 2394 8.3
30/70 6.6 2.400 2883 8.7
40/60 7.1 2.387 3666 8.9
50/50 7.4 - 2.383 4130 8.1

*SEA binder contents based on equal volume of 0/100 mixture.
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Table D18, Summary of Optimum Binder Contents for

Marshall Mix Design (14 days after compaction)

Aggregate: Crushed Basalt

Asphalt: AR-4000
Marshall
SEA Ratio Binder Content (%) | Bulk Sp. Gr.
Stability (1b) |Flow

0/100 5.5 2.576 3353 11.0
20/80 6.0 2.566 3221 8.5
30/70 6.4 2.545 3918 8.9
40/60 6.7 2.569 5736 8.5
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Table D19. Summary of Optimum Binder Contents for
Marshall Mix Design (14 days after compaction)

Aggregate: Crushed Basalt.

Asphalt: AR-2000
Marshall
SEA Ratio Binder Content (%) Bulk Sp. Gr. ‘
Stability (1b) | Flow

0/100 5.5 2.555 2831 9.4
20/80 6.1 2.558 3063 8.4
30/70 6.4 2.567 3252 11.4
40/60 6.8 2.578 3156 11.1
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Table D20, Summary of Optimum Binder Contents for Hveem

Mix Design (14 days after compaction)

Aggregate: Crushed Gravel

Asphalt: AR-4000
Marshall#*
SEA Ratio | Binder Content (%) | .BUlK Hveem

Sp. Gr. | Stability Stability Flow
0/100 6.0 2.370 33 2743 13.7
20/80 6.5 2.399 32 2787 13.4
30/70 6.9 2.464 34 3257 16.2
40/60 7.3 2.439 30 3376 16.2

*Marshall values obtained after Hveem stability measurement

112




Table D21.

Aggregate:

Asphalt: AR-2000

Crushed Gravel

Summary of Optimum Binder Contents for Hveem
Mix Design (14 days after compaction)

Marshall¥*
SEA Ratio | Binder Content (%) Bulk Hveem
Sp. Gr. | Stability Stability Flow
{1b)
0/100 5.8 2.380 36 2420 16.0
20/80 6.4 2.410 37 3163 15.6
30/70 6.7 2.446 39 2681 | 12.0
40/60 7.1 2.458 45 3287 10.4

*Marshall values obtained after Hveem stability measurement
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Table D22. Summary of Optimum Binder Contents for

Hveem Mix Design (14 days after compaction)

Aggregate: Crushed Basalt
Asphalt: AR-4000
Binder Marshall*
. Bulk Hveem
~ SER Ratio C?i)ge"t Sp. Gr.| Stability | Stability | Flow
’ (1b)

0/100 5.5 2.511 39 2649 14.5
20/80 6.0 2.497 38 2319 2.2
30/70 6.4 2.519 39 2743 12.0
40/60 6.7 2.524 43 3484 10.2

*Marshall values obtained after Hveem stability measurement
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Table D23. Summary of Optimum Binder Contents for Hveem
Mix Design (14 days after compaction)

Aggregate: Crushed Basalt
Asphalt: AR-2000
Binder Bulk Marshalil*
: u Hveem
SEA Ratio CO'(‘S‘)*”“ Sp. Gr.| Stability | Stability Flow
o (]b)
 0/100 5.5 2.525 34 2365 14.3
20/80 6.1 2.541 39 2653 14.5
30/70 6.4 2.530 40 2700 13.1
40/60 6.8 2.542 38 3473 11.3

*Marshall values obtained after Hveem stability measurement
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APPENDIX E
AGING AND MOISTURE CONDITIONING DATA
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Table E3. Resilient Modulus After Heat Soaking
for Marshall Compacted Samples

Aggregate: Crushed Basalt
Asphalt: Chevron AR-4000

~ Resilient Modulus (x 103 psi) @ 25°C
Cumulative Heat
Soak Time (hrs)* 0/100 SEA  |20/80 SEA | 30/70 SEA | 40/60 SEA
0 *x 240.6 185.7 425.8 620.7
24 262.3 329.2 507.7 680.7
72 332.3 393.4 - -
120 386.2 401.4 522.2 726.6
240 345.7 421.5 625.7 756.1
480 389.2 508.9 675.1 770.3

*Heat soak temperature = 60°C

**Initial test: 14 days after compaction
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Table E4. Resilient Modulus After Heat Soaking
for Marshall Compacted Samples

Aggregate:
Asphalt:

Crushed Basalt

Chevron AR-2000

Cumulative Heat

Resilient Modulus {x 10° psi) @ 25°C

Soak Time (hrs)*

0/100 SEA 20/80 SEA 30/70 SEA 40/60 SEA
0 ** 213.3 190.3 261.0 422.0
24 224.9 293.9 345.3 444.8
72 237.9 274.3 337.1 423.8
120 246.3 289.6 332.9 443.2
240 293.1 280.8 363.8 481.8
480 277.3 274.1 433.9 555.6

*Heat soak temperature = 60°C

**Initial test:

120

14 days after compaction




Table E5.

Resilient Modulus After Heat Soaking

for Kneading Compacted Samples

Aggregate: Crushed Gravel

Asphalt: Chevron AR-4000
. 3 .
Cumulative Heat Resilient Modulus {x 10” psi) @ 25‘C
Live Heat
Soak Time (hrs) 0/100 SEA | 20/80 SEA | 30/70 SEA 40/60 SEA
g ** 201.7 173.9 236.5 287.6
24 200.0 193.1 224.9 237.8
72 215.9 194.8 250.3 300.5
120 249.1 212.3 245.5 275.1
240 262.4 249.5 251.6 293.7
480 327.4 257.5 293.0 326.9

*Heat soak temperature = 60°C

**Initial test:

14 days after compaction
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Table E6. Resilient Modulus After Heat Soaking
for Kneading Compacted Samples

Aggregate: Crushed Gravel
Asphalt: Chevron AR-2000

Cumulative Heat Resilient Moduius ( x 103 psi) @ 25°C
Soak Time (hrs)* 0/100 SEA  |20/80 SEA | 30/70 SEA | 40/60 SEA
0% 116.4 131.3 240.3 387.6
24 ; ; 279.2 340.7
72 131.0 194.2 202.6 383.2
120 148.4 183.2 216.8 332.6
240 186.1 193.2 284.5 319.3
480 156.4 216.6 268.6 448.9

*Heat soak temperature = 60°C

**Initial test: 14 days after compaction
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Table E7. Resilient Modulus After Heat Scaking
for Kneading Compacted Samples

Aggregate: Crushed Basait
Asphalt: Chevron AR-4000

‘ i 3 .. .
Cumulative Heat Resilient Modulus (x 10° psi) @ 25°C

Soak Time (hrs)*
0/100 SEA 20/80 SEA 30/70 SEA 40/60 SEA

O** 272.3 193.3 301.1 470.6

24 325.9 275.4 378.4 498.2

72 316.3 298.0 380.4 516.9

120 336.1 321.4 371.3 477.1

240 303.7 306.6 443.1 526.5

480 342.3 386.6 ~ 515.6 678.0

*Heat soak temperature = 60°C

**Initial test: 14 days after compaction
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Table E8. Resilient Modulus After Heat Socaking

for Kneading Compacted Samples

Aggregate: Crushed Basalt
Asphalt: Chevron AR-2000
Resilient Modulus (x 10° psi) @ 25°C
Cumulative Heat
Soak Time (hrs)* 0/100 SEA 20/80 SEA 30/70 SEA | 40/60 SEA
o** 148.7 158.6 273.9 440.5
24 163.7 216.0 247.9 359.9
72 202.2 233.1 230.5 351.3
120 169.6 215.1 222.5 340.3
240 209.5 271.0 231.8 374.1
480 216.9 302.1 286.9 510.6

*Heat soak temperature = 60°C

**Initial test: 14 days after compaction
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Table E11. Resilient Modulus Before and After Moisture
Conditioning for Marshall Compacted Samples

Aggregate: Crushed Basalt
Asphalt: Chevron AR-4000

Resilient Modulus {x 103 psi) @ 25°C
Conditioning

Status - 0/100 20/80 30/70 40/60

SEA Ratio SEA Ratic SEA Ratio SEA Ratio

- t ’

After Moisture

Conditioning 229.4 360.9 286.4% 323.6%

Mp Ratio

(After + Before) 0.93 1.97 0.87 0.68

*Samples retested
**"Before" resilient modulus testing: 14 days after compaction

127




Table E12.

Resilient Modulus Before and After Moisture
Conditioning for Marshall Compacted Samples

Aggregate: Crushed Basalt
Asphalt: Chevron AR-2000
Resilient Modulus (x 10° psi) @ 25°C
Con G aton ™ 0/100 20/80 30/70 40/60
SEA Ratio SEA Ratio SEA Ratio SEA Ratio
Before Moisture
Conditioning * 241.0 227.8 332.1 571.6
After Moisture
Conditioning 149.9 150.4 180.9 232.9
Ratio 0.62 0.66 0.54 0.41

(After + Before)

*"Bafore" resilient modulus testing:

14 days after compaction
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Table E13.

Resilient Modulus Before and After Moisture

Conditioning for Kneading Compacted Samples

Aggregate: Crushed Gravel
Asphalt: Chevron AR-4000
Resilient Modulus {x 10° psi) @ 25°C
Conditioning
Status 0/100 20/80 30/70 40/60
SEA Ratio SEA Ratio SEA Ratio SEA Ratio
Before Moisture ; ' .
Conditioning * 223.2 167.1 250.2 252.2
After Moisture :
Condi tioning 204.4 164.6 211.3 228.7
Mp Ratio
(%fter‘v + Before) 0.92 0.99 0.84 0.91

*"Before" resilient modulus testing:
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Table E14. Resilient Modulus Before and After Moisture
Conditioning for Kneading Compacted Samples

Aggregate: Crushed Gravel
Asphalt: Chevron AR-2000

Resilient Modulus (x 103 psi) @ 25°C

Conditioning

Status 0/100 20/80 30/70 40/60

SEA Ratio SEA Ratio SEA Ratio SEA Ratio

Before Moisture .
Eonditioning ** 143.8* 208, 3* 229.6 391.8
After Moisture
Condi tioning 176.4% 167.4% 153.7 203.8
( f‘ég?‘j Before) 1.23 0.80 0.67 0.52

*Samples retested
**"Before" resilient modulus testing: 14 days after compaction
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Table E15. Resilient Modulus Before and After
Moisture Conditioning for Kneading
Compacted Samples

fggregate: Crushed Basalt
Asphalt: Chevron AR-4000 -

Conditioning Resilient Modulus (x 103 psi) @ 25°C
Status 0/100 20/80 30/70 40/60
SEA Ratio SEA Ratio SEA Ratio SEA Ratio
ggig‘{giﬁgézgi‘”e 272.7 169.9 314.9 477.3
After Moisture A
Condi tioning 198.3 158.9 215.7 242.7
Mp Ratio
(Reter + Before) 0.72 0.94 0.68 0.51

*"Before"” resilient modulus testing: 14 days after compaction
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Table E16. Resilient Modulus Before and After
Moisture Conditioning for Kneading
Compacted Samples
Aggregate: Crushed Basalt

Asphalt: Chevron AR-2000

Conditioning Resitient Modulus (x 103 psi) @ 25°C
Status 0/100 20/80 30/70 40/60
SEA Ratio SEA Ratio SEA Ratio SEA Ratio
AN ,S,;‘ire 174.1 168.9 241.3 436.6
éﬁﬁgfti‘ggfﬁg“ 136.7 156.0 148.9 193.7
My Ratio
(%fter + Before) 0.79 0.92 0.62 0.44

*"Before" resilient modulus testing: 14 days after compaction
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APPENDIX F
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AGING CONDITIONING PROCEDURE

The following procedure was used in the study:

1.

11.
12.
13.

14.
15.

16.

17.

Place laboratory prepared samples in environmental cabinet at 77°F

(25°C) for 3 - 4 hours.
Determine resilient modulus.
Place samples in oven at 140°F (60°C) for 24 hours.

Remove samples from oven and place in environmental
(25°C) overnight.

Determine resilient modulus.
Place samples in oven at 140°F (60°C) for 48 hours.

Remove sampies from oven and place in environmental
(25°C) overnight.

Determine resilient modulus.
Place samples in oven at 140°F (60°C) for 48 hours.

Remove samples from oven and place in environmental
(60°C) overnight.

Determine resilient modulus.

Place samples in oven at 140°F (60°C) for 120 hours.

Remove samples from oven and place in environmental
(60°C) overnight.

Determine resilient modulus.

Place samples in oven at 140°F (60°C) for 240 hours
hours of heat soak is 480).

Remove samples from oven and place in environmental
(25°C) overnight.

Determine resilient moduius.
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MOISTURE CONDITIONING PROCEDURE

The following procedure was obtained from B. Lottman (University of Idaho)
during 1981:

1. Prepare Specimens

Prepare standard lab compacted specimens. Let specimens sit in lab
for 14 days prior to starting testing.

2. Stabilize specimens at 77°F {25°C) for 3 - 4 hours and determine re-
silient modulus.

3. Vacuum Saturation and Soak

Vacuum saturate the samplies at 25 in. Hg for 15 minutes. Soak in
distilled water for 30 minutes.

4. Prepare Specimen for Freezing

Tightly wrap specimen in plastic wrap. Seal with freezer tape (sample
is still wet from Step 2 at this point). Place wrapped specimen in
plastic bag containing 10 m1 of water. Seal bag.

5. Freeze Specimen

Place specimen (as prepared in Step 3) in freezer. Freeze specimen
for 15 hours at a temperature of 0 to 10°F (-18 to -12°C).

6. Heat Soak

Remove specimen from freezer and place into a water bath at 140°F
(60°C) for 2 to 3 minutes. This will thaw the plastic wrap and the
surface of the specimen, thus allowing removal of the plastic wrap.
Following removal of plastic wrap, place specimen back into the
140°F (60°C) water bath for 24 hours. For this 24 hour period, the
specimen has no coating or container on or around it. Each specimen
(while in water bath) should rest on a flat metal plate or disk for
support. This insures that no deformation or distortion of the
specimen occurs in the water bath.

7. Resilient Modulus Testing

To prepare the specimen for resilient modulus determination, place
into a water bath set at the appropriate testing temperature (say
41°F (5°C), 77°F (25°C), or 104°F {40°C). Let specimen remain in
the water bath for at least 3 hours. After this soaking period,
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remove the specimen and quickly test.

General Comments by B. Lottman

(a) This revised testing procedure should be approximately equiva-

(c)

(d)

lent to the original procedure for vac-sat + 12 freeze-thaw
cycles. Should approximate field mixtures after 3 to 7 years
of service.

Lottman emphasized the importance of visually examining the
specimens following completion of all physical tests. This is
best accomplished by failing specimen in splitting tension and
examining the interior of the failed sample. He stated that the
SEM can be of help at this point. His recommended splitting
tension test utilizes a test temperature of 55°F (13°C) and a
deformation rate of 0.65 in./minute (1.65 cm/minute).

The potential for stripping of the binder-aggregate system as
measured by this revised procedure approximates the earlier
developed procedure. Therefore, the ratios of My (after con-
ditioning) * Mp (before conditioning) still apply as previocusly
reported. For example, if a specimen exhibits a My,/Mz. = 0.30,
then this mixture exhibits a high potential for A TB
"stripping".

The motivation for the procedure change is to simplify the equip-

ment required to conduct the freeze - thaw cycling as originally
proposed.
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AIR VOIDS

Table G1 is a summary of the air voids of samples prepared during
the mix design phase of this study.

Tables G2 through G4 show summaries of the air voids of samples
prepared during the testing phase. Three samples of each mixture type
were subjected to aging conditioning, three to moisture conditioning,
and three to Hveem stabilometer and/or Marshall stability. Air voids
were determined for one sample from each of these groups.

Table G5 is a summary of the air voids of the anti-strip samples.
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Table G2. Air Voids for Marshall Compacted
Samples, Crushed Basalt Aggregate
SEA
Ratio
0/100 20/80 30/70 40/60
Asphalt
Type
2.0 (A) 3.6 (H) 4.0 (H) 4.0 (H)
AR-4000 3.0 (D) 4.6 (D) £.5 (D) 3.4’(0)
1.9 (H) 2.9 (A) 4.2 {A) 3.0 {A)
3.0 (A) 4.9 (D) 4.7 (D) 2.8 {H)
AR-2000 3.1 (H) 3.4 (H) 3.5 (A) 4.2 (D)
3.9 (D) 3.9 (A} 3.1 (H) 3.6 (A)

(A): aging conditioning samples

(D): moisture conditioning samples
(H): Hveem stabilometer and/or Marshall stability samples

140



Table G3. Air Voids for Kneading Compacted
Samples, Crushed Gravel Aggregate
SEA
Ratio
0/100 20/80 30/70 40/60
Asphalt
Type
4.1 (A) 3.8 (A) 3.4 (D) 0.7 (A)
AR-4000 3.3 (H) 2.9 (H) 3.3 (H) 1.8 (D)
2.7 (D) 2.1 (D) 1.9 (A) 1.6 (H)
5.1 (H) 2.6 (H) 3.0 (D) 1.0 (A)
_ 3.9 (A) 3.9 (D) 1.5 (A) 1.0 (H)
AR-2000 4.8 D) | 2.7 ()| 1.4am] 2.5 A
2.0 (A) 2.2 (D)

(A): aging conditioning sampies
(D): moisture conditioning samples
(H): Hveem stabilometer and/or Marshall stability samples
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Table G4. Air Voids for Kneading Compacted
Samples, Crushed Basalt Aggregate
SEA
Ratio '
0/100 20/80 30/70 40/60
Asphalt '
Type
5.1 (H) 5.5 (A) 4.4 (H) 7.3 (D)
AR-4000 5.7 (A) 5.8 (H) 4.1 (D) 5.8 {H) |
5.9 (D) 6.5 (D) 3.4 (A) 4.9 (A)
3.7 (H) 3.6 {A) 4.4 (D) 5.3 (H)
AR-2000 3.2 {A) 5.6 (D) 5.9 (H) 5.2 (A)
2.7 (D) 4.3 {H) 5.4 (A) 5.0 (D)

(A): aging conditioning samples

{(D}: moisture conditioning samples
(H): Hveem stabilometer and/or Marshall stability samples
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Table G5.

Air Voids for Anti-strip Samples, Kneading

Compaction, Crushed Basalt Aggregate
SEA Ratio 0/100 30/76 40/60
Percent
Anti-
Strip
Asphalt 1/2 1 - 1/2 1 1/2 1
Type
AR-4000 3.8 3.8 4.5 4.1 4.1 5.4-
AR-2000 6.0 2.2 3.8 3.3 4.6 4.3
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APPENDIX H

VISCOSITY AND PENETRATION
CHARACTERIZATION OF SEA BINDERS



VISCOSITY AND PENETRATION
CHARACTERIZATION OF SEA BINDERS
SAMPLE PREPARATION

Sulfur and the asphalt cement were maintained separately at a
temperature of 284°F (140°C). Then they were proportioned in one pint
cans to yield the desired SEA binder ratio with each batch weighing
400 grams. Following proportioning, the sulfur and asphalt cement
were mixed on a hot plate for 5 minutes using a standard mixer at
1,000 r.p.m. The mixing can was insulated to minimize the temperature
drop during the mixing period.

Following mixing, penetration and sliding plate samples were pre-
pared for subsequent testing. An infrared lamp heating unit was used
to heat the plates for viscosity testing. The day the specimens were
prepared was considered as day 0. The penetration and viscosity
samples were aged at room temperature.

Figures H1 and H2 show the change in penetration with time for
the two asphalt cement grades used and the different SEA binder ratios.
The penetration of the 50/50 SEA binder could not be measured due to
excessive stiffness and shrinkage cavities.

Addition of sulfur to asphalt cement initially increases the pene-
tration making the binder softer than the original asphalt. But with
time the penetration starts to drop for all SEA binder ratios. The
rate and value of this drop depends on the SEA ratio. The more sul-
fur there is in the binder, the higher the drop rate in penetration.
It is also observed that the penetration value levels off for each
SEA ratio and is decreased with the increase in sulfur percentage
in the binder. The data also indicates that there are not large "
differences in these leveling off penetration values for SEA binders
with the same base asphalt cement.

Figures H1 and H2 conclusively show the influence of age on the
SEA binders when in bulk {(i.e. penetration tins)}. In paving mixes,
the binder is a ‘thin film covering the aggregates. For this reason,
the sliding plate microviscometer was also used to evaluate the in-
fluence of age on the SEA binders. Figures H3 and H4 show the in-
fluence of age and SEA ratio on the viscosities of the different
binders for the two asphalt cement grades used. From the available
data, the following can be postulated:

I. Addition of sulfur to asphalt cement reduces the viscosity
initially but further addition of sulfur increases the
viscosity.
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The observed trend is that with time the viscosities of the
different SEA binders will exceed that of the original as-
phalt cement.

The data for SEA binders with an SEA ratio of 50/50 are

questionable due to large amounts of crystalline sulfur
on the sliding plates.
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Viscosity @ 25°C, Poises

. —— 0 days*

*Note: elapsed time after initial mixing  ----10 days*
of asphalt cement and sulfur —— 20 days*

107 4 e . : ;
e Asphalt: AR_4OOO,M7WﬁUMM§WQN.-7;Wi;f e e o i

5

10

0/100 10/90 20/80 30/70 40/60 50750

SEA Ratio

Figure H3. Relationship Between Viscosity and
SEA Ratio with Time (AR-4000)
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Viscosity @ 25°C, Poises

107

~ o i —— 0 days* __

. ----10 days*

*Note: elapsed time after initial mixing  _._ 20 days* “
of asphalt cement and sulfur ,

 Asphalt: AR-2000_ . .

10

0/

100 10/90 20/80 30/70 40/60 50/50
SEA Ratio

Figure H4. Relationship Between Viscosity and
SEA Ratio with Time (AR-2000)
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