Guidelines for Spring Highway Use Restrictions

WA-RD 80.1

Final Report August 1985

Washington State Transportation Commission Research Office: U.S. DOT - Federal Highway Administration

Washington State Department of Transportation

Ouane Berentson, Secretary

I.D. Andreas, Deputy Secretary

Iames P. Toohey, Assistant Secretary for Planning, Research and
Public Transportation

shington State Transportation Commission Research mmittee

hard Odabashian, Commissioner y Overton, Commissioner B. Sweeney, Commissioner

DOT Research Executive Committee
. Andreas, Chair, Deputy Secretary for Transportation

/. Ferguson, Administrator, District 4 xert C. Schuster, Assistant Secretary for Highways nes Sainsbury, Acting Assistant Secretary for Marine Transportation nes P. Toohey, Assist. Sec. for Plan'g, Research & Public Transp.

DOT Research Technical Committees

hway Operations and Development and Cook, Chairman, District 2 Administrator

n Aaspas, District 4 Project Engineer iam P. Carr, Associate Research Director Darnell, District 3 Maint. & Operations Engineer Stewart Gloyd, Bridge/Structures Engineer Stewart Gloyd, Bridge/Structures Engineer
yne Gruen, State Traffic Engineer
n Jacobson, District 1 Public Transportation and Planning Engineer
n Moon, Location/Design Engineer
Schlect, Construction Engineer - Paving
1 Senn, District 2 Location/Construction Engineer
< Shroll, District 6 Maintenance Superintendent
n Stanton, Assistant Professor, University of Washington
1 Thomas, Operations Engineer, Bellingham Public Works Dept.

erials and Product Development Vandehey, Chairman, State Construction Engineer

th W. Anderson, Research Specialist
Beeman, District 5 Administrator
y Higgins, Assistant Professor, Washington State University
vton Jackson, Pavement/Soils Engineer
n King, Public Works Director, Okanogan County
) Krier, Bridge Operations Engineer
Peter, Materials Engineer
) Spratt, District 2 Maintenance Engineer
n Strada, Construction Engineer - Grading

nning and Multimodal orge Smith, Chairman, Manager, Public Transportation Office

n Anderson, Manager, District 6 Management Services
n Casavant, Professor, Washington State University
g Cushman, Director, Pierce County Transit Development
n Doyle. Manager, Economy Branch
is Gupta, Manager, Transportation Data
ny Lenzi, Multimodal Transportation
ny Lenzi, Multimodal Transportation
ny Lenzi, Multimodal Transportation 1 Tranum, District 6 Administrator

DOT Research Implementation Committee

n Moon, Chairman, Location/Design Engineer

n Jacobson, District 1 Public Transportation and Planning Engineer
Nrier, Bridge Operations Engineer
Inis Ingham, Highway Maintenance Engineer
In Moon, Location/Design Engineer
Peters, Materials Engineer
Peters, Materials Engineer
Peters, Marine Transportation
Schlect, Construction Engineer
ald Smith, District 1 Project Engineer
Spratt, District 2 Maintenance Engineer

DOT Research Office Scott Rutherford, Director iam P. Carr, Associate Director

th W. Anderson, Federal Program Manager orge D. Crommes, Technology Transfer Manager Jennen, Clerk e Leverson, Planning Technician n Loyer, Clerk Typist I Toney, Research Administrator

<u>Transportation Research Council</u> Jerry Overton, Chair

Federal Highway Administration Paul C. Gregson, Division Administrator

Private Sector
Neal Degerstrom, President, N.A. Degerstrom, Inc.
Milton "Bud" Egbers, President, Skagit Valley Trucking
Richard Ford, Preston, Thorgrimson, Ellis, Holman
William Francis, Vice President, Burlington Northem R.R.
Sam Guess, Senator, The State Senate
Lawrence Houk, Vice President, Lockheed Shipbuilding
Charles H. Knight, President, Concrete Technology
Michael Murphy, President, Central Pre-Mix Concrete
Richard S. Page, President, Washington Roundtable
James D. Ray, Senior Manager, IBM Company

Universities
C.J. Nyman, Associate Provost for Research, Wash. State Univ.
Gene L. Woodruff, Vice Provost for Research, Univ. of Washington

Washington State Department of Transportation Duane Berentson, Secretary

A.D. Andreas, Deputy Secretary
R.E. Bockstruck, District 1 Administrator
C.W. Beeman, District 5 Administrator
J.L. Clemen, Assistant Secretary for Mngt Services
R.C. Cook, District 2 Administrator
E.W. Ferguson, District 4 Administrator
W. H. Hamiliton, Assistant Secretary for Aeronautics
J. Sainsbury, Acting Assistant Secretary, Marine Transportation
R.C. Schuster, Assistant Secretary for Highways
G.L. Smith, Manager, Public Transportation Office
D. Tranum, District 6 Administrator
D.J. Vandehey, State Consruction Engineer
J.D. Zirkle, District 3 Administrator

Washington State Transportation Commission Bernice Stern, Chair

Vaughn Hubbard, Vice Chair Richard Odabashian, Commissioner Jerry Overton, Commissioner Albert Rosellini, Commissioner Leo B. Sweeney, Commissioner Pat Wanamaker, Commissioner

WSDOT Research District Liaisons

District 1 - Kem Jacobson, Public Transp. and Plan'g Engr District 2 - Don Senn, Location/Construction Engineer District 3 - Bob George, Assistant Location Engineer District 4 - R.N. Coffman, Maintenance Engineer District 5 - Bobert MacNell, Design Engineer District 6 - Richard Larson, Design and Planning Engineer

Federal Highway Administration

M. Eldon Green, Regional Administrator Ernest J. Valach, Director, Planning and Program Development Otls C. Haselton, Research and T2 Engineer

Paul C. Gregson, Division Administrator Charles W. Chappell, Division Transportation Planner Charles E. Howard, Assistant Transportation Planner

Washington State Transportation Center (UW and WSU)
G. Scott Rutherford, Director
Ken Casavant, Associate Director, WSU
Joe P. Mahoney, Associate Director, UW

Khossrow Babael, Research Engineer Rhonda Brooks, Research Alde Lisa Christopherson, Secretary Mark Hallenbeck, Research Engineer Michaelle Illy, Secretary Ed McCormack, Research Engineer Army O'Brien, Coordinator Bev Odegaard, Program Assistant Ron Porter, Word Processing Technician Sheryl Sannes, Research Aide Cy Ulberg, Research Engineer Duane Wright, Research Aide

		TECHNICAL DEPOST OF ANDARO THE FALL OF
1. Report No.	2. Government Accession No.	TECHNICAL REPORT STANDARD TITLE PAGE
WA-RD 80.1	2. Government Accession No.	3. Recipient's Catalog No.
FHWA-RD-86-501		WAR AND THE PROPERTY OF THE PR
4. Title and Subtitle	мовин дви дви на мовини в на при на	5. Report Date
Guidelines for Spring Highway	/ Use Restrictions	August 1985
da lactifies to top g g		6. Performing Organization Code
		o. Totalining organization occur
7. Author(s)		8. Performing Organization Report No.
Mary S. Rutherford,		
R.G. Hicks and Theo Rwebangi	^a	
9. Performing Organization Name and Address		10. Work Unit No.
Washington State Transportat	ion Center and	
the University of Washington		11. Contract or Grant No.
Department of Civil Engineer	ina	WSDOT Y-2811 Task 28
Seattle, Washington 98195	3	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address	Takingurianan mendalangung-wenthandurungan mendungkan kemengkan menengkan menungkan kemendan diperantahan di	13. Type of Nepolt and Veriod Covered
Washington State Department	Final Report	
Transportation Building	•	
Olympia, Washington 98504		
orympra, washington soot.		14. Sponsoring Agency Code
		RTAP Project #23
15. Supplementary Notes FHWA Contract Manager - Mr. (Charles Niessner	
I man concract hanager in .	onal res micsone.	
		•
16 Abstract		- Ped Plateris Mohan and right med a sign of medical m
10. Abstract		
This report desribes a surve	v of current practice as we	ll as analysis performed to
develop guidelines for agenc		
periods. The results show for		
		The analysis performed in the
study tends to confirm that		
		level (if any load reduction
is needed) is about 20 percer	nt. Load restrictions grea	ter than 60 percent are
generally not warranted for	the range of cases studied.	An air temperature based
criterion (Thawing Index) was	developed which can be use	ed to estimate when to apply
and remove load restrictions		

17. Key Words
Load Restrictions, Frost, Thaw,
Tire, Axle, Spring Thaw,
Thaw Weakening

18. Distribution Statement
No restrictions. This document
is available to the public through
the National Technical Information
Service, Springfield, Virginia 22161

19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of Pages
307

5				
		•		

GUIDELINES FOR SPRING HIGHMAY USE RESTRICTIONS

by

Mary S. Rutherford Joe P. Mahoney R. Gary Hicks Theo Rwebangira

Prepared by the

Washington State Transportation Center and the University of Washington

for the

Washington State Transportation Commission Department of Transportation

and in Cooperation with

U.S. Department of Transportation Federal Highway Adminstration

August 1985

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Transportation Commission, Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGMENTS

The authors express their appreciation for the information provided by numerous agencies throughout the U.S. and Canada which contributed significantly to the study. Special appreciation is extended to the Minnesota Department of Transportation and the U.S. Corps of Engineers Cold Regions Research and Engineering Laboratory. Further, a previous, related study funded by the Washington State Department of Transportation contributed to the analysis approach and resulting findings.

Mr. Charles Niessner of the Federal Highway Administration is gratefully acknowledged for his patience and guidance during the conduct of the study.

TABLE OF CONTENTS

	Page	e
ACKNOWLEDGM	ENTS	٧
LIST OF FIG	URES x	
LIST OF TAB	LES	٧
CHAPTER 1.0	INTRODUCTION	4
1.1 1.2 1.3 1.4	BACKGROUND	1 1 3
CHAPTER 2.0	LITERATURE REVIEW	5
2.1	LOAD RESTRICTION PRACTICES 2.2.1 CURRENT U.S. AND CANADIAN PRACTICES	5 5 5
2.3	STUDIES OF SPRING BEARING CAPACITY 2.3.1 EARLY U.S. STUDIES 2.3.2 EARLY BENKELMAN BEAM STUDIES 2.3.3 EARLY DYNAFLECT STUDIES 17	773
2.4	2.3.4 FATIGUE BASED ANALYSIS OF THAW WEAKENING	2
	GROUND FREEZING	573
	THAW WEAKENING	53133

TABLE OF CONTENTS (Continued)

			Page
	2.5	LOADING CONFIGURATIONS ON FLEXIBLE PAVEMENTS	50
	2.6	2.5.2 SINGLE AND DUAL TIRES. 2.5.3 SINGLE AND MULTIPLE AXLES. LITERATURE REVIEW SUMMARY.	. 59
CHAPTER	3.0	SURVEY OF CURRENT PRACTICE	
	3.1 3.2	INTRODUCTION	. 63 . 63
		3.2.1 INITIAL INFORMATION REQUEST	. 63
	3.3 3.4	3.2.3 FOLLOW-UP REQUESTS	. 65
		3.4.1 DEVELOPMENT OF GUIDELINES	. 67
		RESTRICTIONS	. 86
	3.5	3.4.5 ENFORCEMENT METHODS	. 88
		3.5.1 TYPES OF LOAD RESTRICTIONS	. 91
		3.5.3 CRITERIA USED TO INITIATE AND REMOVE LOAD LIMITS	. 91
		DEFLECTIONS	. 91 . 92
CHAPTER	4.0	ANALYSIS	. 93
	4.1 4.2	INTRODUCTION	. 93 . 93
		4.2.1 APPROACH	. 93
		4.2.1.3 LOADING CASES	. 94 . 95
		4.2.1.4 (a) MATERIAL PROPERTIES 4.2.1.5 PARAMETERS CALCULATED	. 102

TABLE OF CONTENTS (Continued)

		Page
	4.2.2 STRUCTURAL ANALYSIS RESULTS	. 113
	REDUCTION	. 113
4.3	4.3.1 APPROACH 4.3.2 THERMAL DATA REQUIRED FOR INPUT. 4.3.3 PAVEMENT STRUCTURE SECTIONS. 4.3.4 MATERIAL THERMAL PROPERTIES. 4.3.5 ANALYTICAL METHOD.	. 123 . 123 . 124 . 133 . 138
CHADTED E A	4.3.6 RESULTS	. 138
5.1 5.2 5.3 5.4	INTRODUCTION. GUIDELINES FOR WHERE TO APPLY LOAD RESTRICTIONS GUIDELINES FOR LOAD RESTRICTION MAGNITUDE GUIDELINES FOR WHEN TO APPLY AND REMOVE LOAD RESTRICTIONS. 5.4.1 WHEN TO APPLY LOAD RESTRICTIONS. 5.4.1.1 SHOULD LEVEL. 5.4.1.2 MUST LEVEL. 5.4.1.3 SHOULD AND MUST LEVELS FOR THIN PAVEMENT SECTIONS 5.4.1.4 DISCUSSION. 5.4.2 WHEN TO REMOVE LOAD RESTRICTIONS	. 169 . 169 . 173 . 177 . 177 . 177
CHAPTER 6.0	CO. CLUSIONS AND RECOMMENDATIONS	. 183
6.1 6.2	CONCLUSIONS	. 183 . 184
REFERENCES .		. 187
APPENDIX A	DATA SUMMARY FOR SUMMER CONDITIONS	. 193
APPENDIX B	DATA SUMMARY FOR SPRING THAW CONDITIONS	. 199
APPENDIX C	TEMPERATURE INPUT DATA FOR TDHC ANALYSIS.	. 249

TABLE OF CONTENTS (Continued)

		Page
ADDENDIVO	BLOTE OF MODELS FOR REPRITING TURNING THE	
APPENDIX D	PLOTS OF MODELS FOR PREDITING THAWING INDEX OR THAWING DURATION FROM FREEZING INDEX	. 261
APPENDIX E	INTERVIEW FORM	. 281
APPENDIX F	CALCULATION OF THE THAWING INDEX BASED ON A 29°F DATUM .	. 289
APPENDIX G	EXAMPLE OF DATA COLLECTION AND ESTIMATION OF START AND DURATION FOR IMPOSING LOAD RESTRICTIONS	. 295

LIST OF FIGURES

Figure		Page
2.1	Typical Load Restriction Practices in Norway Based on Geographic Location	, 9
2.2	Percent Loss of Strength versus Time for Minnesota Plate Load Tests	
2.3	Load Versus Deflection for Surface and Subgrade of Minnesota Pavement	12
2.4	Percent Fall Bearing Value versus Time for Nebraska Soils	. 14
2.5	Percent Fall Bearing Value versus Time for Minnesota Soils	. 15
2.6	Measurements Obtained from Deflection Profiles	. 16
2.7	Typical Deflection Basin Constructed from Dynaflect Readings	. 18
2.8	Typical Deflection, Surface Curvature, Frost Penetra- tion and Axle Load Restriction Data versus Time	. 19
2.9	Benkelman Beam versus Dynaflect Deflections	. 23
2.10	Plate Bearing versus the Reciprocal of Dynaflect Deflection	24
2.11	Fatigue Curves for Asphalt Mixes	. 25
2.12	Load Limit Percentages from Measured Maximum Spring Deflections and Known or Assumed Acceptable Summer Deflection Levels	. 28
2.13	Falling Weight Deflectometer Load and Deflection Measurement Configuration	. 29
2.14	Freezing Index Surface/Air Correction Factor versus Air Freezing Index	. 39
2.15	Depth of Frost Penetration versus Air Freezing Index, Canadian Pavements	. 42

LIST OF FIGURES (Continued)

Figure		Page
2.16	Comparison of Pennsylvania Data to Corps of Engineers Method of Frost Depth Prediction	. 44
2.17	Maximum Thaw Penetration in Gravel-Surfaced Runways on Permafrost in Northern Canada	. 49
2.18	Maximum Thaw Penetration in Undisturbed Permafrost Areas in Northern Canada	. 50
2.19	Observed and Predicted Frost Lines, Ottawa, Canada	. 52
2.20	Heat Transfer Between Pavement Surface and Air	. 54
3.1	Initial Information Request Form	. 64
4.1	Pavement Response Locations Used in Evaluating Load Restrictions	. 103
4.2	Graphical Illustration of the Determination of Allowable Load During Spring Thaw Period	. 104
4.3	Area Under Discontinuous Temperature Function Equated to Area Sinusoidal Temperature Function for Burlington Vermont	. 125
4.4	Pavement Structures for Thermal Analysis	. 134
4.5	Generalized Finite Element Grid	. 139
4.6	Finite Element Mesh for Section 1	. 140
4.7	Finite Element Mesh for Section 2	. 141
4.8	Finite Element Mesh for Section 3	. 142
4.9	Finite Element Mesh for Section 4	. 143
4.10	Thawing Cases Evaluated From Results of TDHC	. 144
4.11	Thawing Index (Based on 29°F) versus Freezing Index for all Fine Grain Subgrade Cases	. 158
4.12	Thawing Index (Based on 30°F) versus Freezing Index for all Fine Grain Subgrade Cases	. 159

LIST OF FIGURES (Continued)

Figure		Page
4.13	Thawing Index (Based on 32°F) versus Freezing Index for all Fine Grain Subgrade Cases	160
4.14	Duration of Thaw (Based on 29°F) versus log Freezing Index for all Fine Grain Subgrade Cases	163
4.15	Duration of Thaw (Based on 30°F) versus log Freezing Index for all Fine Grain Subgrade Cases	164
4.16	Duration of Thaw (Based on 32°F) versus log Freezing Index for all Fine Grain Subgrade Cases	165
4.17	TDHC Depth of Freeze versus Modified Berggren Depth of Freeze for all Cases	166
5.1	Development of Surface Deflection for Locating Pavements Requiring Load Restrictions	171
5.2	Increase in Pavement Life Due to Application of Load Reductions	174
5.3	Reduction in Remaining Life Due to Difference Between the Load Reduction Applied and the Load Reduction Required .	175
F.1	Form for Calculating Thawing Index	292
6. 1	Form for Calculating Freezing Index	298
6.2	Form for Calculating Thawing Index	304

LIST OF TABLES

Table		Page
2.1	States and Provinces Applying Load Restrictions as of 1974.	6
2.2	Time for Applying Load Restrictions Based on Thaw Depth, Norway	8
2.3	Summary of Critical and Restricted Periods - 1967	20
2.4	Normal Deflections and Surface Curvature Index by Section	21
2.5	Fatigue Life and Load Limit Comparisons	27
2.6	Range of Pavement Structure Conditions Assumed to Represent Alaskan Roadway Conditions	30
2.7	Freezing Indices and "n" Factors for Three New Jersey Locations	41
2.8	Measured and Predicted Frost Depths in Pennsylvania Using Air Freezing Index	46
2.9	Measured and Predicted Frost Depths in Pennsylvania Using Pavement Free	47
2.10	Traffic Equivalence Factors for Asphalt Concrete Pavement	60
3.1	Summary of Information Request to State and Province DOT's Regarding Current Load Restriction Practices	66
3.2	Agencies Interviewed	68
3.3	Follow-up Requests	69
3.4	Development of Guidelines for Spring Load Restrictions	70
3.5	Description of Highways to Which Load Restrictions Apply	73
3.6	Design Information for Roads Restricted During Spring Thawing	77
3.7	Load Restriction Criteria	79
3.8	Enforcement Methods for Spring Load Restrictions	82

Table		Page
3.9	Legal Aspects of Load Restrictions	89
4.1	Loading Cases	96
4.2	Summer Pavement Structure	97
4.3	Spring Thaw Pavement Structure (Complete Thaw)	99
4.4	Spring Thaw Pavement Structure (Thaw to Bottom of Base)	100
4.5	Spring Thaw Pavement Structure (Thaw to 4 in. Below Base)	101
4.6	Percent Load Reduction for Complete Thaw - Fine-grained Soils - Single Axle - 75 Percent Reduction in Subgrade Resilient Modulus	106
4.7	Percent Load Reduction for Complete Thaw - Coarse- grained Soils - Single Axle - 50 Percent Reduction in Subgrade Resilient Modulus	107
4.8	Percent Load Reduction for Complete Thaw - Dual Tire- Tandem Axle	108
4.9	Percent Load Reduction for Thaw to Bottom of Base Course - Fine-grained Soil - Single Axles - 75 Percent Reduction in Base Course Resilient Modulus	109
4.10	Percent Load Reduction for Thaw to Bottom of Base Course Coarse-grained Soil - 50 Percent Reduction in Base Course Resilient Modulus	110
4.11	Percent Load Reduction for Partial Thaw - Single Tire - Single Axle	111
4.12	Percent Load Reduction for Partial Thaw - Dual Tire - Single Axle	112
4.13	Change in Pavement Life - Single Tire - Single Axle - Tensile Strain Bottom of Bituminous Bound Layer - Complete Thaw	115
4.14	Change in Pavement Life - Single Tire - Single Axle - Subgrade Vertical Strain Criterion - Complete Thaw	116

Table	•	Page
4.15	Change in Pavement Life - Single Tire - Single Axle - Tensile Strain Bottom of Bituminous Bound Layer - Thaw to Bottom of Base Course	117
4.16	Change in Pavement Life - Single Tire - Single Axle - Subgrade Vertical Strain Criterion - Thaw 4 in. Below Bottom of Base	118
4.17	Change in Pavement Life - Single Tire - Single Axle Tensile Strain Bottom of Bituminous Bound Layer - Thaw 4 in. Layer - Thaw 4 in. Below Bottom of Base	119
4.18	Change in Pavement Life - Dual Tire - Single Axle - Subgrade Vertical Strain Criterion - Complete Thaw	120
4.19	Change in Pavement Life - Dual Tire - Single Axle - Subgrade Vertical Strain Criterion - Thaw 4 in. Below Bottom of Base	121
4.20	Change in Pavement Life - Dual Tire - Tandem Axle - Subgrade Vertical Strain Criterion - Complete Thaw	122
4.21	Temperature Function Data	126
4.22	Freezing Index Cases for Thermal Analysis	128
4.23	Solar Radiation Data for March April and May	129
4.24	Radiation and Weather Data for TDHC Analysis	132
4.25	Percent Monthly Sunshine for March, April and May	135
4.26	Pavement Structures and Freezing Index Cases for TDHC Analysis	136
4.27	Material Thermal Properties	137
4.28	Advancement of the Thawing Plane Referenced to an Air Temperature = 32°F	145
4.29	Thawing Indices for Three Thawing Cases Based on 32°F	148
4.30	Surface and Air Temperatures	149

Table		Pag
4.31	Advancement of the Thawing Plane Referenced to an Air Temperature = 29°F	. 150
4.32	Advancement of the Thawing Plane Referenced to an Air Temperature = 30°F	. 152
4.33	Thawing Indices for Three Thawing Cases Based on 29°F	. 154
4.34	Thawing Indices for Three Thawing Cases Based on 30°F	. 155
4.35	Regression Analysis for Thawing Index as a Function of Freezing Index	. 156
4.36	Regression Analysis for TDHC Depth of Freezing as a Function of Modified Berggren Depth of Freezing	. 162
4.37	Freezing Depths Estimated from TDHC and Multilayered Modified Berggren	. 167
5.1	Surface Deflection Increases and Associated Load Reductions	. 171
5.2	Comparison of Equations Used to Predict Duration for Complete Thaw	. 180
5.3	Comparison of Predictions Used for Determining the Duration of the Load Restriction Period Based on Thawing Index	. 181
A.1	Summer Conditions - Single Tire - Single Axle	. 195
A.2	Summer Conditions - Dual Tires - Single Axle - Pavement Response Between Tires	. 196
A.3	Summer Condition - Dual Tires - Tandem Axle	. 197
B.1	Spring Thaw Condition - Single Tire - Single Axle Complete Thaw - Pavement Structure 2/6/212	. 201
B.2	Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw - Pavement Structure 2/12/34/212	. 202
B.3	Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw - Pavement Structure 4/6/38/212	. 203

Table		Page
B.4	Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw - Pavement Structure 4/12/32/212	204
B.5	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 2/6/40/212 - Between Wheels	205
B.6	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 2/12/34/212 - Between Wheels	206
B.7	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 4/6/38/212 - Between Wheels	207
8.8	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 4/12/32/212 - Between Wheels	208
B.9	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 2/6/40/212 - Beneath Tire	209
B.10	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 2/12/34/212 - Beneath Tire	210
B.11	Spring Thaw Condition - Dual Tires - Single Axle - Complete Thaw - Pavement Structure 4/6/38/212 - Beneath Tire	211
B.12	Spring Thaw Condition - Dual Tires Single Axle - Complete Thaw - Pavement Structure 4/12/32/212 - Beneath Tire	212
B.13	Spring Thaw Condition - Dual Tires - Tandem Axle - Complete Thaw - Pavement STructure 2/6/40/212	213
B.14	Spring Thaw Condition - Dual Tires - Tandem Axle - Complete Thaw - Pavement Structure 2/12/34/212	214
B.15	Spring Thaw Condition - Dual Tires - Tandem Axle - Complete Thaw - Pavement Structure 4/6/38/212	215

Table		Page
B.16	Spring Thaw Condition - Dual Tires - Tandem Axle - Complete Thaw - Pavement Structure 4/12/32/212	216
B. 17	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 25%	217
B.18	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/32/212 - Base M _R @ 25%	,
B.19	Spring Thaw Condition Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 25%	219
B.20	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/30/212 - Base M _R @ 25%	220
B.21	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 50%	221
B.22	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base Pavement Structure 2/12/32/212 - Base M _R @ 50%	222
B.23	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 50%	223
B.24	Spring Thaw Condition - Single Tire -Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212 - Base M _R @ 50%	224
B. 25	Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 50% - Between Wheels	225
B.26	Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/32/212 - Base M _R @ 50% - Between Wheels	226

Table		Page
B.27	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 50% - Between Wheels	227
B.28	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212 - Base M _R @ 50% - Between Wheels	228
B. 29	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 50% - Beneath Tire	229
B.30	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212 - Base M _R @ 50% - Beneath Tire	230
B.31	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 50% - Beneath Tire	231
B.32	Spring Thaw Condition - Dual Tires- Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212 - Base M _R @ 50% - Beneath Tire	232
B.33	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 50% - Beneath Tire	233
B.34	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212 - Base MR @ 50% - Beneath Tire	234
B.35	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 50% - Beneath Tire	235
B.36	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212 - Base M _R @ 50% - Beneath Tire	236
B.37	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212 - Base M _R @ 50% - Beneath Tire	237

Table		Page
B.38	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212 - Base M _R @ 50% - Beneath Tire	238
B.39	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212 - Base M _R @ 50% - Beneath Tire	
B. 40	Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212 - Base M _R @ 50% - Beneath Tire	
8.41	Spring Thaw Condition - Single Tire -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 2/6/4/36	
B.42	Spring Thaw Condition - Single Tire -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 2/12/4/30	242
B.43	Spring Thaw Condition - Single Tire -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 4/6/4/34	243
B.44	Spring Thaw Condition - Single Tire -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 4/12/4/28	244
B.45	Spring Thaw Condition - Dual Tires -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 2/6/4/36 - Beneath Tire	245
B.46	Spring Thaw Condition - Dual Tires -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 2/12/4/30 - Beneath Tire	246
B.47	Spring Thaw Condition - Dual Tires -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 4/6/4/34 - Beneath Tire	
B. 48	Spring Thaw Condition - Dual Tires -Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 4/12/4/28 - Beneath Tire	
C.1	Temperature Input Data of TDHC Analysis	

Table		Page
D.1	Thawing Index (Based on 29°F) versus Freezing Index for Section 1	263
D.2	Thawing Index (Based on 29°F) versus Freezing Index for Section 2	264
D.3	Thawing Index (Based on 29°F) versus Freezing Index for Section 3	265
D.4	Thawing Index (Based on 30°F versus Freezing Index for Section 1	266
D.5	Thawing Index (Based on 30°F versus Freezing Index for Section 2	267
D.6	Thawing Index (Based on 30°F versus Freezing Index for Section 3	268
D.7	Thawing Index (Based on 32°F) versus Freezing Index for Section 1	269
D.8	Thawing Index (Based on 32°F) versus Freezing Index for Section 2	270
D.9	Thawing Index (Based on 32°F) versus Freezing Index for Section 3	271
D.10	Duration of Thaw (Based on 29°F versus log Freezing Index for Section 1	272
D.11	Duration of Thaw (Based on 29°F versus log Freezing Index for Section 2	273
D.12	Duration of Thaw (Based on 29°F versus log Freezing Index for Section 3	274
D.13	Duration of Thaw (Based on 30°F) versus log Freezing Index for Section 1	275
D.14	Duration of Thaw (Based on 30°F) versus log Freezing Index for Section 2	276

Table		Page
D.15	Duration of Thaw (Based on 30°F) versus log Freezing Index for Section 3	277
D.16	Duration of Thaw (Based on 32°F) versus log Freezing Index for Section 1	278
D.17	Duration of Thaw (Based on 32°F) versus log Freezing Index for Section 2	279
D.18	Duration of Thaw (Based on 32°F) versus log Freezing Index for Section 3	280
E.1	Interview Form	. 283

CHAPTER 1.0

INTRODUCTION

1.1 THE PROBLEM

In areas of the United States which are subject to moderate or severe seasonal freezing, pavement structures can be susceptible to weakening during the thawing period (normally during the spring but this can occur several times during the winter months). To preclude accelerated pavement deterioration two possibilities exist:

- (a) Apply load restrictions during the thawing (or critical) period.
- (b) Design, construct, or otherwise modify the pavement structure to prevent or reduce the thaw weakening phenomenon.

Due to budget constraints for many agencies faced with this problem, the only choice is Item (a) above.

A review of the literature quickly reveals that few rational procedures have been used to determine the magnitude of the load restrictions, when to apply them and when to remove them. Therefore a need exists to develop guidelines oriented toward local agencies to assist them in handling this serious problem.

1.2 BACKGROUND

Frost action in soils can cause several detrimental effects. The effect commonly addressed is that of frost heave. Less information is available on an equally serious problem, that of loss in structural capacity. This loss in strength occurs during the thaw period (usually late winter or early spring) when the moisture content increases in the pavement layers. This action is similar to the one due to the rise of the ground water table or infiltration of moisture through a porous pavement surfacing or shoulder. Whatever the cause, the presence of moisture levels in the subgrade above the amount assumed for pavement design will reduce the strength (or stiffness) of the various pavement layers. The same is true for most base and subbase materials.

The majority of currently used design methods is based on empirical studies of pavement behavior. The strength of the subgrade is usually estimated at the equilibrium conditions of moisture and density after soaking for several days (e.g., the CBR test). Empirical design methods based on the above classification procedures cannot account for adverse subgrade conditions caused by the thaw period or unusually high water tables, unless such conditions were generally prevalent when the original empirical studies, on which the methods are based, were conducted. This is because the methods are based on the average subgrade conditions exhibited by the subgrade throughout most of the pavement's life.

The damage to a pavement structure is directly related to the magnitude and frequency of the load applied. This was clearly demonstrated by the AASHO Road Test [1.1]. Subsequent studies of material behavior have demonstrated that the fatigue and permanent deformation characteristics of many materials depend on the magnitude and frequency of stress and strain levels induced [1.2]. A majority of the state DOT's use the AASHTO Interim Guide for Design of Pavement Structures [1.3] for designing their pavement thicknesses (or at least a portion of the AASHTO Guide). In designing a specific pavement using this method the traffic is converted to equivalent 18,000 lb. loads for a given design period and for known or assumed material properties. Any lowering of material strength or increase in the number of equivalent 18,000 lb. loads reduces the life of the pavement. Thus, the method of reducing loads when the strength of the pavement materials is reduced is a reasonable way to maintain the design life and general serviceability of the pavement. Hence, the need for load restrictions during critical pavement periods.

Local and state highway agencies have a wide variety of practices for imposing weight restrictions in advance of the "spring thaw." Truck weight enforcement programs adopted by the various agencies vary widely in terms of the weight limits applied, the forms the restrictions take and their implementation. The decision of closing or opening a facility is largely determined by experience and sometimes political pressures. There is very little definitive data to help in decision making, especially for secondary and

lower category highways even though these types of highways form the bulk of county and city highway systems. The local governments generally have low to modest maintenance budgets and normally cannot afford to overlay the pavements after damage during the spring thaw. Therefore, a need exists to develop criteria for the restriction of truck weights during the spring thaw.

1.3 OBJECTIVES

The objective of the reported study was to develop guidelines for local governments to use in establishing weight restrictions on county and city pavements in advance of spring break-up. To achieve this objective the following was accomplished by the study team:

- (a) conducted a literature search and summarized the findings,
- (b) established contacts with various highway agencies and conducted in-person interviews.
- (c) used the available data from the literature and interviews and analyzed them in order to develop load restriction magnitudes and timing,
- (d) developed guidelines which can be used by local agencies to assess the need, magnitude, and time to apply and remove load restrictions, and
- (e) developed a summary report and videotape presentation to be used for implementation of the study findings.

1.4 REPORT ORGANIZATION

The report is organized into six chapters and seven appendices. The six chapters are the following:

- (a) Chapter 1.0 Introduction
- (b) Chapter 2.0 Literature Review
- (c) Chapter 3.0 Survey of Current Practice
- (d) Chapter 4.0 Analysis
- (e) Chapter 5.0 Development of Guidelines
- (f) Chapter 6.0 Conclusions and Recommendations

CHAPTER 2.0

LITERATURE REVIEW

2.1 INTRODUCTION

In areas where the ground is subject to freezing and thawing, flexible pavements often experience extreme variations in bearing capacity. During the spring, periods of "thaw weakening" occur, greatly reducing the bearing capacity. Where pavements have not been adequately designed to substantially reduce or eliminate the loss of strength occurring during thaw, considerable damage may occur resulting in high maintenance costs. Many areas in the United States, Canada and Europe have experienced these problems and have resorted to imposing some form of load restrictions on particular classes of roads in critical locations to minimize the damaging effects.

This literature review deals with several subject areas related to the use of load restrictions. Among these are current practices regarding load restrictions in the United States, Canada and Europe. In addition, studies related to pavement response during spring thawing are reviewed, including methods for evaluating and predicting the pavement response. Since the spring bearing capacity reductions which occur are due to climatological effects, a review of the literature pertaining to the relationship of spring thaw weakening and climate is also included.

2.2 LOAD RESTRICTION PRACTICES

2.2.1 CURRENT U.S. AND CANADIAN PRACTICES

The NCHRP Report No. 26 [2.1] contains a summary of the states and Canadian provinces which, at that time, applied load restrictions on some classes of roads during spring thawing. The eighteen states and provinces which reported using load restrictions are listed in Table 2.1. In addition, Quimont [2.2] reported that load restrictions are used extensively in Quebec due to the severity of the freezing season.

Table 2.1. States and Provinces Applying Load Restrictions as of 1974 (NCHRP Report No. 26).

State or Province	Comments Regarding Use of Restrictions
Alaska	Older underdesigned roads
Alberta	Selected roads
British Columbia	Limit spring deflection to <.05 mm
Idaho	Experience dictates
Illinois	Local agencies restrict some secondary roads
Maine	Inadequate roads >20 years old
Michigan	Older roads
Minnesota	
Montana	
Nebraska	Only on incompleted stage constructed roads
New Hampshire	Feeder roads
North Dakota	Limited to classes of roads other than interstates and primary highways
Nova Scotia	Secondary roads, 75%± normal loads
Ontario	Weaker roads
Quebec	
Utah	
Wisconsin	Older inadequate roads
Wyoming	Occasionally

2.2.2 EUROPEAN PRACTICES

Several countries in Western Europe are in climatic zones where cyclic freeze-thawing occurs. At the 1974 Symposium on Frost Action in Roads, Finland [2.3] and France [2.4] reported the results of studies showing variations in load carrying capacity with season. France reported imposing load restrictions and reduced speed limits on certain classes of roads. In 1978 France implemented a program outlining procedures for imposing spring use restrictions [2.5]. Temperature, weather trend data and frost depth measurements are taken during freezing and thawing periods. In addition, deflection measurements are taken during thawing and compared to reference values. This is done on representative road sections in various locations and restrictions are imposed based on the data obtained.

Norway reported imposing load restrictions when thawing depths reach 4 to 8 in. [2.6]. The amount of the reduction is based on deflection measurements collected over several years throughout the country. The typical reduction is 20 percent of the maximum allowable load. The duration of the restriction is based on the total and "critical" frost depth, as shown in Table 2.2. Typical load restriction durations by geographic location are shown in Figure 2.1.

Several other Western European countries experience frost related problems including Sweden, Switzerland and West Germany. Kubler [2.7] reported that load restrictions were used in West Germany starting in 1954. While all of these countries report using various frost susceptibility measures in designing their roads, information was not found related specifically to the use of load restrictions.

2.3 STUDIES OF SPRING BEARING CAPACITY

2.3.1 EARLY U.S. STUDIES

Most authors point to the pioneering work of Taber [2.8], which identified frost heaving phenomenon and related thaw weakening, as the first step of understanding the reduced bearing capacities of pavements in spring. The first formal investigation in the U.S. of thaw weakening was undertaken by a

Table 2.2 Time for Applying Load Restrictions Based on Thaw Depth, Norway (after Thomassen, 1982)

	Critical Tham	Time from critical thaw depth is reached Until load restriction can be lifted (weeks)	depth is reached an be lifted (weeks)
Total Frost Depth	Depth (ft.)	Spring Axle Loac	Spring Axle Load/Summer Axle Load
(11.)		8*0≈	5.0≈
× 4.9	4.1	1.0 - 2.0	2.0 - 3.0
3.6 - 4.9	3.2	0.5 - 1.5	1.5 - 2.5
2.6 - 3.6	2.4	0.5 - 1.5	1.0 - 2.0
1.6 - 2.6	1.6	0 - 1.0	0.5 - 1.5
0.8 - 1.6	0.8	0 - 1.0	0 - 1.0

Percentage of national roads with restrictions	with Normal period	Lifting Normal Period	Normal Duration (weeks)
Arctic Circle 77%	17% Apr 18 73% Apr 1 - Apr 6	June 28 May 18 - June 1	10
54%	54% Mar 31 - Apr 9 36% Mar 17 - Mar 28 11% Apr 1 - Apr 3	May 21 - June 9 Apr 21 - May 11 May 25	യ ഹ യ
Whole Country 51	51% Mar 17 - Apr 18	Apr 21 - Apr 28	7-8

Figure 2.1. Typical Load Restriction Practices in Norway based on Geographic Location (after Thomassen, 1982).

committee formed at the 1948 Meeting of the Highway Research Board [2.9]. Regional and national maintenance engineers practicing in areas subject to cyclic freeze-thaw had been aware for years of the detrimental effects of heavy loads on roads during the spring and, as a result, prior to that time, load restrictions had been in use. However, the degree of thaw weakening had not been estimated quantitatively.

In 1947, field investigators in Minnesota using plate bearing tests showed a loss of strength of up to 60 percent during thawing. Typically the losses occurred nearly simultaneously with the beginning of thawing (Figure 2.2). Base and subgrade materials alike exhibited a loss of strength during thawing based on plate test results (Figure 2.3). Based on this information, nine states agreed to participate in an extensive field study of thaw weakening. These states included Indiana, Iowa, Michigan, New Hampshire, New York, North Dakota, Ohio, Oregon and Minnesota. Nebraska subsequently submitted data over the study period. Test sites were typically located in areas where load restrictions were currently in use with satisfactory results, i.e., little pavement deterioration occurred during thawing. Material profiles were identified at the test locations and samples of materials were examined in the laboratory to identify the dry density and moisture content of the bases and subgrades. In addition, air temperature, precipitation and ground temperature were measured in the vicinity of the test locations. Plate tests, performed at various times during spring thawing and throughout the year, were used to measure deflections. In some states, other deflection testing techniques were used including the North Dakota Cone Bearing Test, the Housel Penetrometer Test, and the Subgrade Resistance Test.

Results from the participating states were published throughout the study period [2.10, 2.11, 2.12, 2.13, 2.14]. Indiana reported that plate tests showed spring bearing values that were 52 percent to 95 percent of the previous fall values, with moisture contents in spring generally higher than those in fall. In addition a tabulation of the results by soil type was also presented [2.12]. Data from Oregon showed a definite trend in reduction of bearing capacity in the spring, although results showed a wide variation

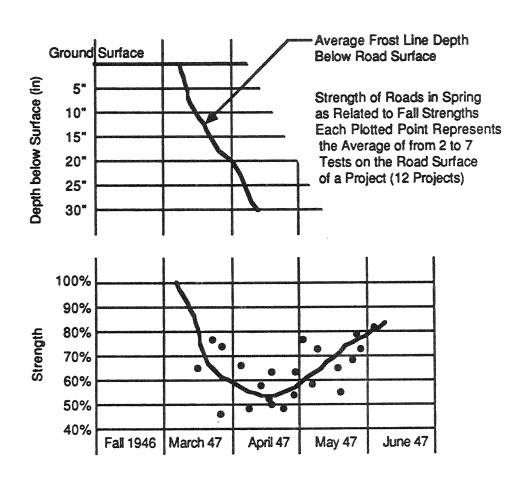


Figure 2.2. Percent Loss of Strength versus Time for Minnesota Plate Load Tests (after Motl, 1948).

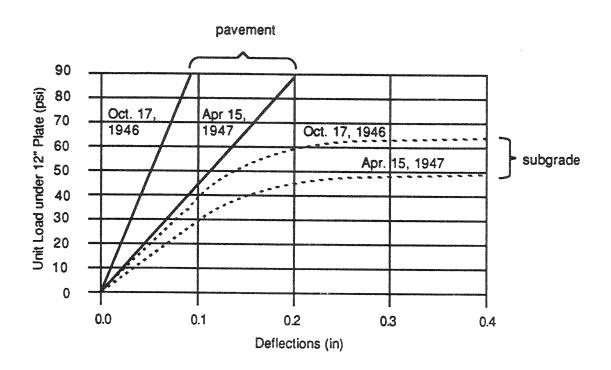


Figure 2.3. Load versus Deflection for Surface and Subgrade of Minnesota Pavement (after Motl, 1948)

[2.12, 2.13]. In general, the test period was quite mild with low frost penetrations, often less than one foot. The data therefore were inconclusive. Nebraska contributed data from approximately 160 sites using plate load tests performed in 1952-53 [2.12]. Strength losses in spring varied from 0 to 65 percent with an average value of 29 percent. A comparison of the loss and recovery of strength for major soil groups is shown in Figure 2.4. Tests were performed in North Dakota from 1948 to 1951 to estimate bearing values using the North Dakota Cone Device [2.11]. Average subgrade bearing values for all tests sites were also estimated for each year and were plotted against time. The results showed that the subgrade bearing value was reduced by 43, 55 and 25 percent (relative to fall values) for the years of 1949, 1950 and 1951. Plate bearing tests were performed in studies conducted in Iowa. The plates were located at the surface, top of the base course and top of the subgrade. Overall, spring bearing losses varied from 16 to 62 percent of the corresponding fall value.

Studies continued in Minnesota in 1948 and 1949 using plate tests. The results of 126 tests were recorded. The spring strength reduction ranged from 15 to 84 percent of the fall value with an average of 42 percent. Average strength values for all tests are plotted for the spring against time and shown with the comparable thawing depth in Figure 2.5.

In addition, correlations between moisture content and bearing and/or various meteorologic factors were considered in several of the studies. However, no conclusive findings were forthcoming.

2.3.2 EARLY BENKELMAN BEAM STUDIES

Preus and Tomes [2.15] performed early work using the Benkelman Beam for detecting seasonal changes in load carrying capacity. The approach taken was to use the Benkelman Beam to obtain a deflection profile by moving the wheel relative to the placement of the probe. Data was obtained on road sections in Minnesota using this technique. Maximum deflection, initial rate of deflection and flection were obtained (Figure 2.6). The results were plotted against bearing capacity estimates obtained from plate bearing tests and suggested that the critical parameter was flection when compared to autumn

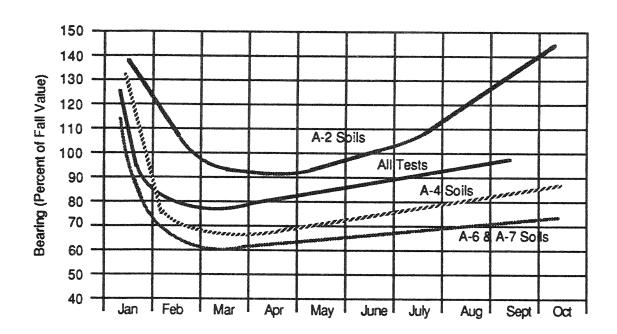
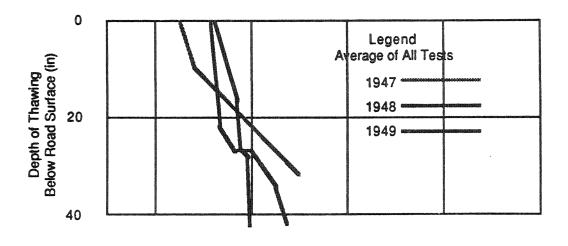



Figure 2.4. Percent Fall Bearing Value versus Time for Nebraska Soils (after Motl, 1955)

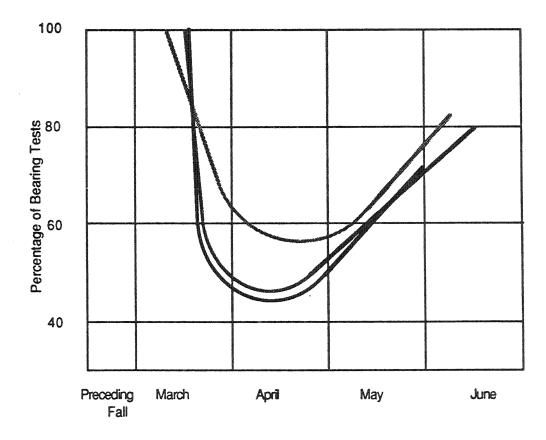


Figure 2.5. Percent Fall Bearing Value versus Time for Minnesota Soils (after Motl, 1951)

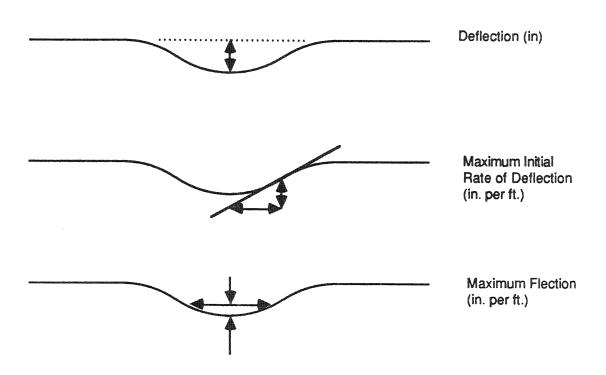


Figure 2.6. Measurements Obtained from Deflection Profiles (after Preus and Tomes, 1959)

reference values. Estimates of strength loss by plate bearing measurements, deflection measurements and rate of deflection showed reasonable agreement.

Armstrong and Csathy [2.16] suggested that older, flexible pavements in Canada are generally susceptible to damage as a result of thaw weakening. Benkelman Beam deflection data recorded throughout Canada suggested that spring load-carrying capacity was reduced by 40 percent in Alberta, 50 percent in Ontario and 30 to 60 percent in New Brunswick.

2.3.3 EARLY DYNAFLECT STUDIES

Early use of the Dynaflect to evaluate seasonal changes in the load carrying capacity of flexible pavements was performed by Scrivner et al. [2.12]. The measurements obtained and the typical deflection basin are shown in Figures 2.7 and 2.8. Using the measured deflections, a surface curvature index, SCI, can be obtained where:

and
$$\frac{d^2w}{dx^2} = \frac{SCI}{500a^2}$$

where:

a = distance between w_1 and w_2

For all analysis in this study, "a" was assumed to be 12 inches.

Dynaflect measurements were taken on an average of once a week during spring thawing at 24 test sites located in Illinois and Minnesota. A comparison of the critical period, as defined by this study, and the actual restricted period is shown in Table 2.3. In general, the restricted period was conservative compared to the critical period obtained from deflection and SCI measurements. The maximum SCI and deflection measurements are shown in Table 2.4. It was felt that, based on this information, SCI was a somewhat better indicator for imposing load restrictions. Based on the wide range of temperature conditions at test sections in this study, the authors felt that the use of deflection and/or SCI measurements were most appropriate when the following conditions were met:

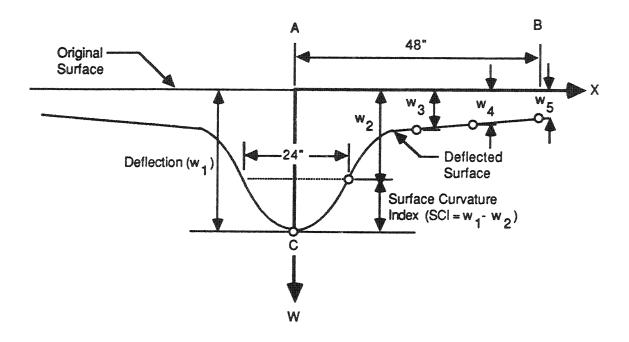


Figure 2.7. Typical Deflection Basin Constructed from Dynaflect Readings (after Scrivner et al., 1969)

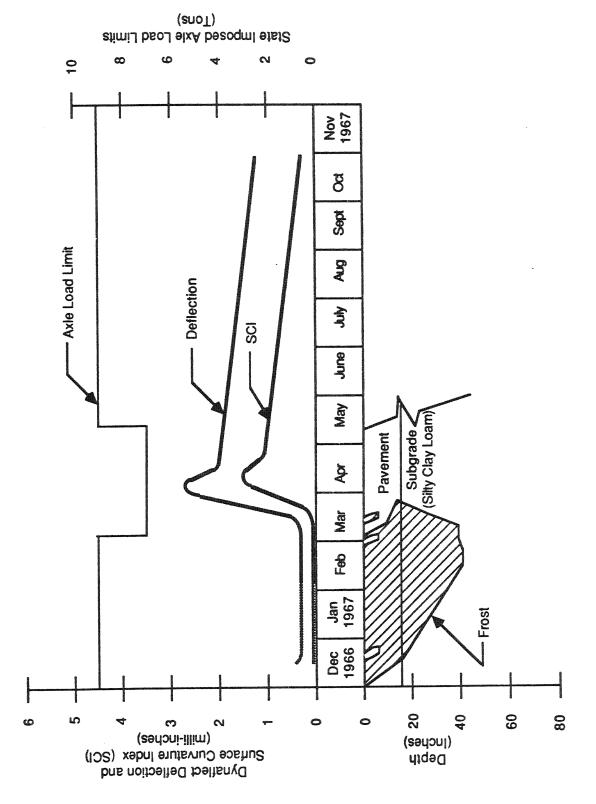


Figure 2.8. Typical Deflection, Surface Curvature, Frost Penetration and Axle Load Restriction Data versus Time

Table 2.3 Summary of Critical and Restricted Periods - 1967 (after Scrivner et al., 1969)

		Ö	Critical Period	po				Re	Restriction Period	eriod		
en on state of the	Begin Period Rapid Strength	eriod of ingth Loss	End Period of Rapic Strength Recovery	End Period of Rapid Strength Recovery	Duration (days)	ion s)	Restrictions Imposed	tions	Restrictions Removed	t ions ed	Duration (days)	tion /s)
Location	Ave. Date	Ave. Date Std. Dev. (days)	Ave. Date	Ave. Date Std. Dev. (days)	Avg.	Std. Dev.	Avg. Date	Std. Dev. (days)	Avg. Date	Std. Dev. (days)	Avg.	Std. Dev.
Northern Illinois	Mar. 3	2.3	Apr. 18	3.3	45.2 5.3	5.3	Feb. 14	0	Apr. 19	0	54	0
South- eastern Minnesota	Mar. 13	2.2	Apr. 23	3.3	40.5 2.9	2.9	Mar. 7	0	May 10	0	64	0
Eastcentral Minnesota	Mar. 19	0,1	May 1	3.0	43.0 3.1	 	Mar. 15	0.	May 15	3.5	62 3.3	3.3

Table 2.4 Normal Deflections and Surface Curvature Index by Section (after Scrivner et al., 1969)

Orde	Ordered by No	by Normal SCI			Ordere	Ordered by Normal Deflection	nal Defi	ection	
20 + 4 2 C	SCI,	W1 - W2		Restriction	400 - 400 -	Deflec	Deflection, W ₁		Restriction
	Norm.	Min.	Max.	Imposed	פברוסו החרשבוסו	Norm.	ž č	Max.	Imposed
Eastcentral Minn	60:	.00	60.	No	Eastcentral Minn	09.	.10	.62	No
Southeastern Minn	.20	3.	.32	Yes	Southeastern Minn	8.	8		Yes
Southeastern Minn	. 28	00.		2	Northern III	06:	.22	.97	£
Southeastern Minn	. 28	5	.55	Yes	Eastcentral Minn	8.	.05	1.32	% %
Central III	.28	60.	.50	ත	Southeastern Minn	1.07	\$	1.62	2
Eastcentral Minn	.29	8.	.45	2	esselessen delin alle landeren de service de la despectation de la companya de la companya de la companya de la				
Northern III	٣.	.03	.35	20	Southeastern Minn	7.		3.90	Yes
					Central III	1.21	74	1.72	ro
Central III	.38	8	.50	ro ro	Southeastern Minn	1.26	72	1.80	Yes
Southeastern Minn	.38	8.	1.22	Yes	Southeastern Minn	1.43	<u>د</u>	3.05	Yes
Southeastern Minn	.45	8.	.76	Yes	Lastcentral Minn	1.64	90:	5.60	Yes
Central III	.57	90.	.15	æ	Central III	1.71	.67	2.70	ro
-	.57	6.	.75	Yes	Southeastern Minn	1.85	:33	3.12	Yes
Eastcentral Minn	. 59	8.	1.53	Yes	Central III	1.86	.53	2.30	6 5
~	59.	8.	11.27	Yes	Eastcentral Minn	1.96	60.	2.87	Yes
Eastcentral Minn	.65	8.	. 95	Yes	Northern III	96.1	.33	3.30	Yes
Eastcentral Minn	.78	8.	7.44	Yes	Eastcentral Minn	2.19	60.	3.25	Yes
Central III	.79	=	1.98	ಸ	Northern III	2.21	.25	4.05	Yes
Northern III	.8	.02	1.38	Yes	Central 111	2.24	.97	4.10	rs
Central III	.82	.00	1.78	ю	Central III	2.34	1.02	4.16	ro
Northern Ill	.82	ප.	1.73	So	Northern III	2.42	. 56	4.20	No No
Northern Ill	. 92	.02	1.80	Yes	Eastcentral Minn	2.49	<u>∞</u>	3.10	Yes
Northern III	.94	.02	2.00	Yes	Northern 111	2.52	.33	4.42	Yes
Central III	1.09	-	2.27	ಣ	Central Ill	2.76	<u></u>	4.60	ಣ
Northern III	1.09		2.26	Yes	Northern III	3.14	83	5.20	Yes
A TO THE RESIDENCE AND A STATE OF THE PARTY			-			·	-	ages or all the contract of th	

^aLocated in the Springfield area where a restriction policy is not used.

- (a) a single distinct freezing period existed, and
- (b) the freezing index was greater than 200°F days.

The recommended equation for estimating the "safe" spring load, based on a normal SCI of 0.35 for an axle load of 18,000 lb is the following:

$$L_{safe}$$
 (kips) = $\frac{6.3}{SCI_{max}}$

Where the normal (summer) SCI is less than 0.35, the pavement should not require any load restriction.

In addition, Benkelman Beam, Curvature Meter and Plate Bearing measurements were obtained at different times throughout the year. The correlation of Dynaflect deflection and measurements from the Benkelman Beam and plate bearing test are shown in Figures 2.9 and 2.10.

2.3.4 FATIGUE BASED ANALYSIS OF THAN WEAKENING

Hardcastle and Lottman [2.18, 2.19] proposed an analytical method for obtaining spring load limits based on the cumulative damage ratio:

$$D = \frac{\sum \sum n_{ij}}{j i N_{ij}}$$

where:

 n_{ij} = actual number of applications of the ith load while the pavement is the jth condition, and

 N_{ij} = predicted number of applications to failure of the ith load while the pavement is in the jth condition.

The fatigue parameter used is the maximum tensile strain in the pavement (Figure 2.11). Comparisons of damage for load limit policies A and B can be made by:

$$\frac{D_{A}}{D_{B}} = \frac{\sum_{j}^{\sum_{i}} \frac{n_{ij}}{N_{ij}} A}{\sum_{j}^{\sum_{i}} \frac{n_{ij}}{N_{ij}} B}$$

Load levels for spring were obtained using this approach by collecting field samples of materials to measure elastic properties in the laboratory and

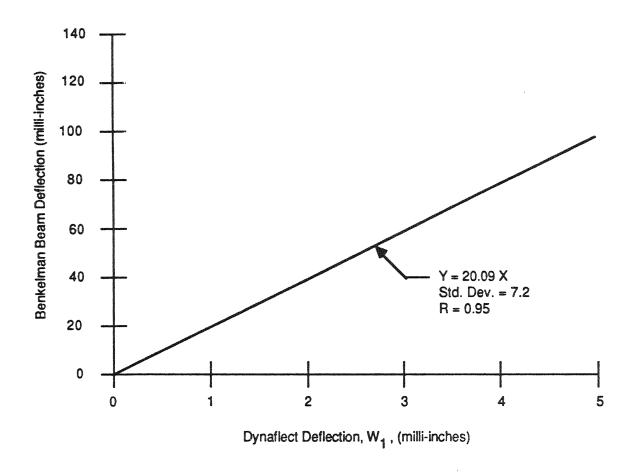


Figure 2.9. Benkelman Beam versus Dynaflect Deflections (after Scrivner et al., 1969)

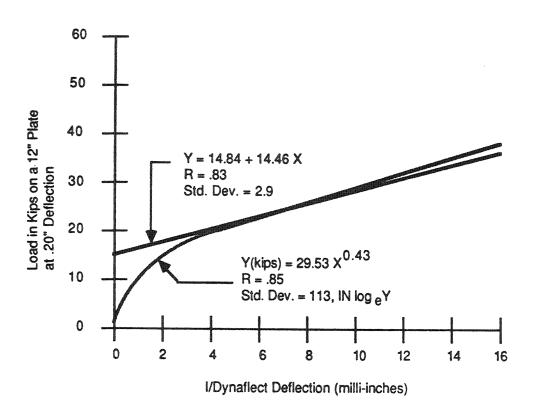


Figure 2.10. Plate Bearing versus the Reciprocal of Dynaflect Deflections (after Scrivner et al., 1969)

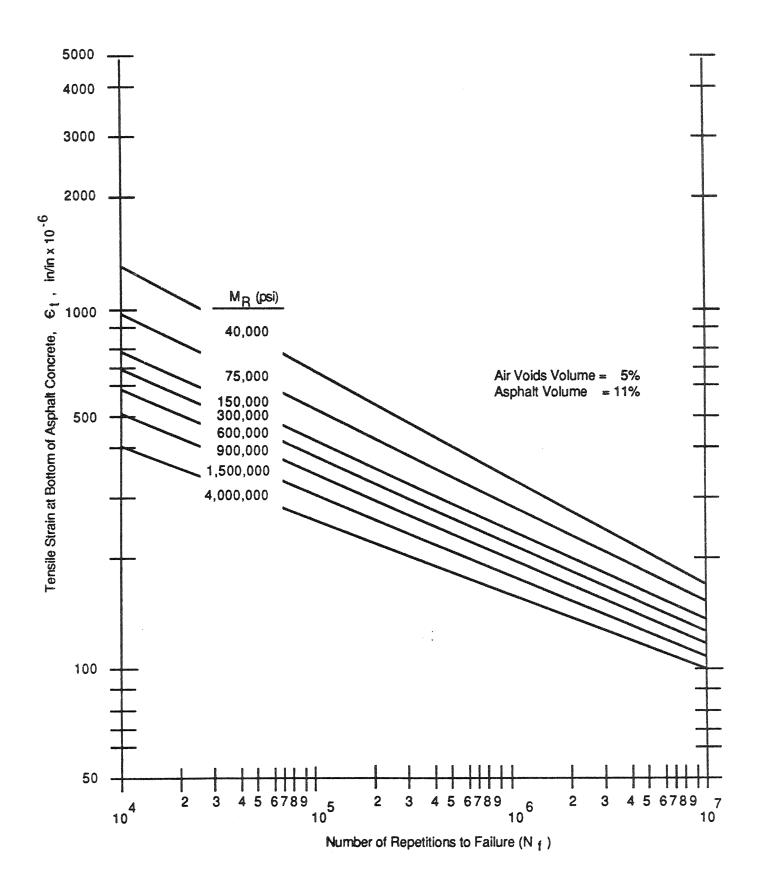


Figure 2.11. Fatigue Curves for Asphalt Mixes

performing a layered elastic analysis of the pavement system using computer program CHEV5L. From the results (stress strains and deflections) obtained, the spring load corresponding to the reference summer strain and deflection conditions could be determined. These results were compared with measured Benkelman Beam deflections with reasonable results. A comparison of spring loads obtained using fatigue consumption to load levels predicted by the NCHRP method [2.17] is shown in Table 2.5. The NCHRP method results in the greatest load reduction, approximately 50 percent. Using fatigue consumption further allows one to estimate the remaining service life of a flexible pavement for various choices of load level.

Connor [2.20] used a similar approach for estimating load reductions based on spring deflection measurements and equivalent fatigue life. He recommended comparing maximum spring deflections to acceptable pavement deflection levels based on asphalt concrete thickness and traffic index where summer reference deflections are unknown. The load level for an equivalent fatigue life can be obtained from Figure 2.12 knowing the maximum deflection in spring. Where summer deflections are known, this value can be used to enter the graph in Figure 2.12.

Stubstad and Connor [2.21] have developed an extensive pavement monitoring system using the Falling Weight Deflectometer (FWD) to be used in areas where severe winter weather conditions exist and thaw weakening affects a major portion of a road network. The FWD was selected in this study because material properties can be realistically backcalculated from the deflection basin data.

The configuration of loading and deflection measurements taken with the FWD are shown in Figure 2.13. The range of thaw depth conditions, layer thicknesses and modulus values assumed is shown in Table 2.6. From this, using the Chevron N-layer computer program a solution table was developed for about 350 cases or combinations of layer thicknesses, thaw depths, and resilient properties. For each case the resulting deflection basin, the horizontal tensile strain in the asphalt concrete and the vertical strain at the surface of the thawed base was obtained.

Table 2.5 Fatigue Life and Load Limit Comparisons (after Hardcastle and Lottman, 1978)

Origin of the Method	Spring-Thaw Load Limit Criterion	Maximum Spring-Thaw Axle Load, L (kips)	Critical Tensile Strain ($\epsilon_{f t}$)	Remaining Fatigue Life Repetitions	Relative Remaining Fatigue Life Percent
Hardcastle and Lottman, 1978	Equal tensile strains in asphalt treated base	11.5	80 X 10 ⁻⁶	44 X 10 ⁶	100
Idaho Trans- portation Department	Experience and judgment	14.0	106 X 10 ⁻⁶	35.3 x 10 ⁶	80
Hardcastle and Lottman, 1978	Equal surface deflection No Restriction	13.8 18.9	104 x 10 ⁻⁶ 157 x 10 ⁻⁶	36 x 10 ⁶ 17.1 x 10 ⁶	80 39
NCHRP Rpt. 76	Surface deflec- tion correlated with experience and policy	9.6	Not computed	Not computed	>100

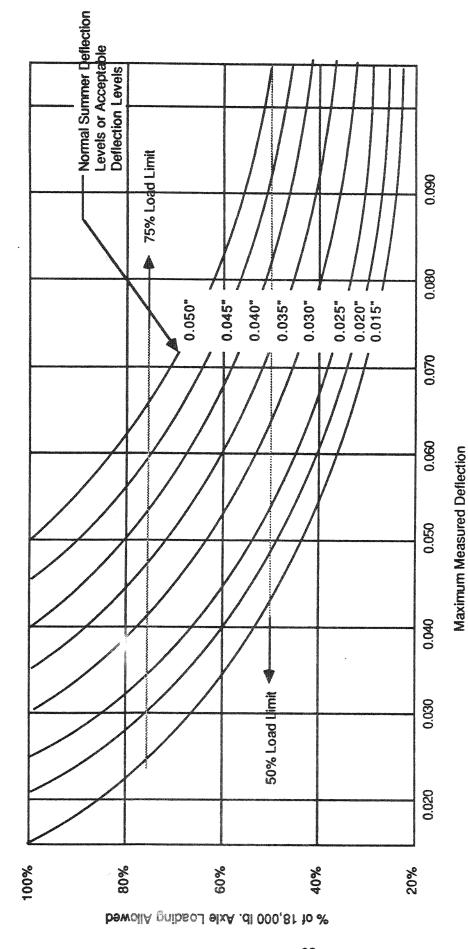


Figure 2.12. Load Limit Percentages from Measured Maximum Spring Deflections and Known or Assumed Acceptable Summer Deflection Levels (after Connor, 1980).

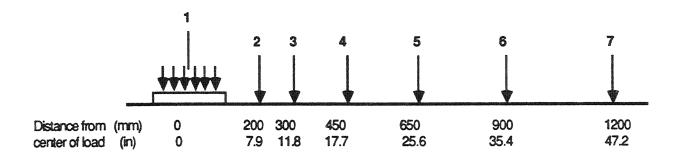


Figure 2.13. Falling Weight Deflectometer Load and Deflection Measurement Configuration (after Stabstad and Connor, 1982)

Table 2.6 Range of Pavement Structure Conditions
Assumed to Represent Alaskan Roadway Conditions

Layer	Thickness (in.)	E-Value (psi)
Asphalt Concrete	3/4 to 3	430,000 to 870,000
Granular Base	12	3,500 to 65,000
Subbase/ Embankment	59	11,000 to 22,000
Subgrade	Semi-infinite	7,000 to 15,000
All Frozen Material		1,500,000

Note: The thaw depth below the asphalt was varied from 2 inches to 14 feet.

For monitoring, the FWD was used to obtain deflection basins at various stations along the road network. The data were input into the FROST program which compared the measured deflection basin at each station with the deflection basins in the solution table. The best fit of the data was obtained and the output gave the estimated depth of thaw, the adjusted center deflection for the "summer" (no frost) condition and the damage indicator. For this study the vertical strain at the top of the base course was assumed to be the damage indicator. The information obtained from analyzing the FWD data in the FROST program can be used to impose load restrictions and/or identify specific locations in need of repair.

Lary et al., [2.22] performed an extensive investigation of spring pavement bearing capacity in the State of Washington. The FWD was used to monitor pavement response at six locations during an eighteen month period. Field sampling and laboratory testing was performed for material identification. Most material properties, in particular the resilient modulus, was estimated using the measured deflection basins and backcalculation tech-By assuming a nonlinear elastic stress disniques in the program BISDEF. tribution and the material properties obtained in BISDEF, the vertical strain at the top of the base and subgrade (ϵ_{vb} and ϵ_{vs}), the tensile strain at the bottom of the pavement (ϵ_t) , and the surface deflections (δ) were evaluated. Using summer strain and deflection levels as reference values, load levels producing strains or deflections equivalent to the summer values were obtained. This was done for tire sizes ranging from 8 - 22.5 to 16.5 -22.5. Assuming that any one of the four parameters ($\epsilon_{vs}, \epsilon_{vb}, \epsilon_{t}$ or δ) created a critical condition, the load level at which any one of these quantities exceeded the summer value was defined as critical. For the six sections analyzed, combining the most critical loading configuration and fatigue parameter, spring load limits of 33 to 45 percent of the equivalent summer loading configuration (i.e., a 55 to 67 percent load reduction) were obtained. Based on a review of all loading cases and their likelihood, a recommendation of a 60 percent reduction in loads during spring thaw weakening was recommended.

2.3.5 TEST ROAD STUDIES OF THAN MEAKENING

Studies on the loss of bearing capacity in spring have been performed on instrumented test roads. Some of these were reported in the Symposium on Bearing Capacity of Roads and Airfields in Trondheim, Norway, in 1982. These studies primarily focused on improved understanding of the mechanisms of frost heave and thaw weakening and their potential relationship. Kubo and Sugawara [2.23] investigated the bearing capacities of subgrades, subbases and bases using buried plates in the Bibi Test Road in Hokkaido, Japan. The results suggest a range of spring bearing capacities of 65 to 85 percent of normal values for all materials combined. This range of values is high compared to most results obtained from U.S. studies.

The Vormsund Test Road in Norway has been extensively studied for frost heave and bearing capacity during spring thaw by Nordal [2.24]. For this purpose several different test profile sections were established. For most sections, base and subbase materials were essentially the same. The subgrades were either silt or clay materials. Benkelman Beam deflection measurements were obtained during thawing and compared to summer values. No strong correlations of frost heaving and thaw weakening were found. Spring strength reductions were on the order of 30 percent for the silt material and 70 percent for the clay based on measurements obtained over a period of several years.

Dysli [2.25] studied thaw weakening on a full scale test road in Switzerland under carefully controlled environmental conditions. Loading, temperature and subgrade water level were maintained at specified levels in various tests. Subgrade and subbase densities, moisture contents and material stiffness properties were carefully measured. Soil temperature was measured at eight different depths. Vertical displacements were measured at nine depths with magnetic sensors. Water contents were monitored with nucleometers. A refrigeration system maintained temperature conditions and traffic loads were simulated with a dynamic jack acting on two circular plates. By varying environmental conditions, freeze-thaw cycles causing slight deformations up to punching failures could be reproduced. Dysli suggested that the results indicate that rate of thaw plays an important role along with the

permeability of the subbase and subgrade. Where punching failures had occurred, an increase in pore pressures was observed prior to failure.

The results of a study performed by Esch [2.26] on 120 pavement sections in Alaska showed a significant correlation between the maximum seasonal deflection levels, obtained with a Benkelman Beam, and the percentage of 0.075 mm and 0.02 mm particles in the base and subbase, typically a quantity used as an indicator of frost susceptibility. The fines content was obtained at six depths in the pavements that were monitored in the study. Stress levels due to a standard dual wheel load were obtained assuming a homogeneous elastic material below the pavement with a Poisson's ratio of 0.25. For the resulting vertical stress levels with depth, the critical fines content was obtained, above which increased deflections in spring would occur. The critical fines content was 6 percent (passing 0.075 mm) for depth ranging from 0 to 6 in. The critical fines content increased for greater depth.

Johnson et al., [2.56] reported on the resilient modulus of a silt under various thicknesses of asphalt concrete (for frozen, thawed and fully recovered conditions). Both field and laboratory data was obtained to examine this process. Based on field deflection data, they found resilient moduli for this specific silt soil as low as 290 psi during the critical thaw period and as high as 14,500 psi when fully recovered (thus a loss in stiffness of 98 percent when compared to summer conditions). Further, the resilient modulus of the silt when frozen ranged from a low of 20,300 to 40,600 psi and a high exceeding 200,000 psi (the resilient modulus of the frozen silt being a function of temperature and water content).

2.4 THERMAL CONSIDERATIONS

2.4.1 INTRODUCTION

Soil properties, specifically structure, particle size, pore size and to a lesser extent surface chemistry, are largely responsible for the nature of the ice present in a frozen soil. In addition, and of equal significance, are the environmental factors controlling the degree, rate and history of freezing and thawing occurring in a particular season. Many studies of thaw

weakening have focused on identifying climatic conditions and freezing depths, seeking relationships with the degree of thaw weakening.

While no evidence has been found to suggest that depth of frost penetration is an indicator of the severity of thaw weakening, the amount of frozen ground present suggests the potential for spring bearing strength loss. In addition, in order to study the pavement response in spring, the extent of frozen and thawed states must be known.

In 1929, at the Ninth Annual Meeting of the Highway Research Board [2.27], F.H. Eno outlined the importance of climate on

- (a) drainage,
- (b) subgrade and surface stability, and
- (c) load restrictions.

The concept of duration of subfreezing temperatures as a critical index for frost related pavement problems was introduced by Bouyoucos and Petit. From this, Sourwine produced the first mapping of the critical index line for the United States in 1930. From the time of the work of Eno and Taber [2.8] until the 1950's, numerous studies were performed investigating the relationship of several climatic factors related to thaw weakening. However, no conclusive correlations were forthcoming. It was suggested by Crawford and Boyd [2.27] and later echoed by Kubler [2.7, 2.28] that rate of accumulation of the freezing and or thawing index is significant in the severity of thaw weakening. Kubler's conclusions were based on an extensive study of climatological data collected in West Germany from 1952 to 1957.

2.4.2 DEVELOPMENT OF A ONE-DIMENSIONAL MODEL FOR GROUND FREEZING

2.4.2.1 SINGLE LAYER MODELS

In 1860, Neumann presented the first solution for the one dimensional advance of a freezing front due to a step increase in surface temperature in a homogeneous soil. This solution can be found in Carlslaw and Jaeger [2.29]. The solution is of the form:

 $X = \alpha t^{\frac{1}{2}}$

where:

X = depth of freezing,

t = duration of the freezing period, and

 α = constant which is a function of several soil and temperature parameters.

An approximate solution for this problem was proposed by Stefan in 1890, assuming a linear temperature distribution in the zone above the freezing front, and neglecting the temperature profile in the unfrozen zone. This solution becomes:

$$X = \left[\frac{2k_f T_s t}{L} \right]^{\frac{1}{2}}$$

where:

 k_f = thermal conductivity of frozen soil,

 T_s = applied constant temperature,

t = duration of freezing period, and

L = soil latent heat of fusion.

While the Stefan equation was considerably easier to solve, the resulting calculated freezing depths were typically greater than measured values.

Aldrich and Paynter [2.30] obtained a solution, which closely approximated the Neumann solution upon which it is based, by introducing dimensionless parameters α , μ and λ and making some slight approximations in the transcendental equation in the Neumann solution so that it could be solved digitally. The value necessary for the solution is presented in a nomograph form. This solution is called the Modified Berggren solution and is expressed as:

$$\chi = \left[\frac{48 k_{avg} n FI}{L} \right]^{\frac{1}{2}}$$

where:

$$k_{avg} = \frac{k_u + k_f}{2}$$
 in Btu/ft°F hr,

n = surface temperature coefficient, and

FI = air freezing index, (°F-days).

All other terms have been defined previously.

2.4.2.2 MULTILAYER MODELS

This solution was expanded by Aldrich [2.31] to include any number of layers of different materials. The equation for the depth of freezing for multilayer modified Berggren becomes:

$$X = \lambda \left[\frac{48 \text{ n FI}}{(L/K)_{\text{eff}}} \right]^2$$

where:

 $(\frac{L}{k})$ eff = ratio of the effective thermal properties for an n-layer system

$$\frac{\binom{L}{k}}{\text{eff}} = \frac{2}{X^2} \left[\frac{d_1}{k_1} \left(\frac{L_1 d_1}{2} + L_2 d_2 + \dots + L_n d_n \right) + \frac{d_2}{k_2} \left(\frac{L_2 d_2}{2} + L_3 d_3 + \dots + L_n d_n \right) + \frac{d_n}{k_n} \left(\frac{L_n d_n}{2} \right) \right]$$

In addition, the value of λ is determined by using weighted values of C and L to evaluate the fusion parameter $\,\mu_{},$

$$c_{wt} = \frac{c_{1d_1} + c_{2d_2} + ... + c_{nd_n}}{x}$$

$$L_{wt} = \frac{L_1d_1 + L_2d_2 + ... + L_nd_n}{x}$$

where:

where:

C = volumetric heat capacity.

A multilayer Stefan solution was proposed by Kersten and Carlson [2.32] which follows the same assumptions as the single-layer Stefan solution. The solution proceeds by requiring that heat flow be balanced at the layer interfaces. This approach yields the following equations:

for Layer 1:
$$F_1 = \frac{L_1 h_1^2}{48 k_1}$$

where:

 F_1 = the number of °F-days required to freeze layer 1

for Layer n:
$$F_n = \frac{L_n h_n}{24} (\frac{h_{n-1}}{k_{n-1}} + \frac{h_n}{2k_n})$$

The Stefan and Berggren solutions are by far the most widely used methods for estimating depth of freezing or thawing. Several similar approaches have been proposed throughout the early to mid 1900's. The reader is referred to an excellent literature summary by Moulton [2.33] for a thorough treatment of this topic.

2.4.3 EVALUATION OF THERMAL PROPERTIES

Three thermal properties, conductivity, volumetric specific heat and latent heat, are required to evaluate the equations outlined above or to perform any ground heat transfer analysis where freezing occurs. Latent heat and specific heat can be measured using calorimetric techniques. Thermal conductivity can only be evaluated indirectly by measuring temperature differences resulting from controlled heat flow in the medium where boundary conditions conform to some known analytic solution.

For engineering purposes, these properties are rarely measured. For soils, they are primarily functions of the dry density (γ_d) and the moisture content (w). Typically, estimates for ground thermal properties are made using the following equations:

(a) Latent heat:

$$L = (144 \text{ Btu/lb}) \gamma_d \text{ W} \qquad (Btu/ft^3)$$

(b) Volumetric specific heat:

Unfrozen soil

$$C_u = \gamma_d (0.17 + 1.0 \frac{w}{100})$$
 (Btu/ft³)

Frozen soil

$$C_f = \gamma_d (0.17 + 0.5 \frac{W}{100})$$
 (Btu/ft³)

The equations for thermal conductivity of soils most frequently used were developed by Kersten (2.34). They are the following:

(c) Thermal conductivity:

Unfrozen soil:

Fine-grained: $k_u = (0.9 \log_{10} w - 0.2)10^{0.01 \text{Yd}} \text{ (w)}$ Coarse-grained: $k_u = (0.7 \log_{10} w + 0.4)10^{0.01 \text{Yd}} \text{ (w)}$

Frozen soil:

Fine-grained: $k_f = 0.01(10)^{0.022\gamma d} + 0.085(10)^{0.008\gamma d}(w)$ Coarse-grained: $k_f = 0.076(10)^{0.013\gamma d} + 0.032(10)^{0.0146\gamma d}(w)$

2.4.4 EVALUATION OF THE "n" FACTOR

Lunardini [2.35] discusses the necessity of observing the precise definition of the n factor used in the Stefan and Berggren solutions:

$$n = \frac{Surface FI}{Air FI}$$

It should be obtained from temperatures measured above the ground surface level (typically four feet) and on a particular surface type and not "back-calculated" from a particular heat transfer solution such as Modified Berggren. The n-factor, as it appears in the Stefan and Berggren equations, is intended to be representative only of surface effects.

Kersten and Johnson [2.36] suggest an n-factor for freezing of 0.8 for Minnesota pavements. This, however, is based on comparing measured and predicted freezing depths. Argue and Denyes [2.37] reported the comparison of air freezing index and surface freezing index based on the measured values of the frost depth compared to calculated values using a Modified Berggren approach, which is not in strict adherence with the definition. The results, shown in Figure 2.14 for cleared asphalt surfaces, show decreasing n with decreasing FI. Using an n-factor from Figure 2.14 and the specific layer properties, the Modified Berggren equation predicted frost depths within a standard error of seven inches when compared to the measured depths.

An extensive study of climatological factors related to frost action was performed in Pennsylvania from 1969 to 1976 and reported by Hoffman et al. [2.38]. Fourteen sites throughout the state were instrumented with thermocouples to collect ground temperature data. Surface and air temperatures were compared at all sites to estimate n-factors. The average value of n for

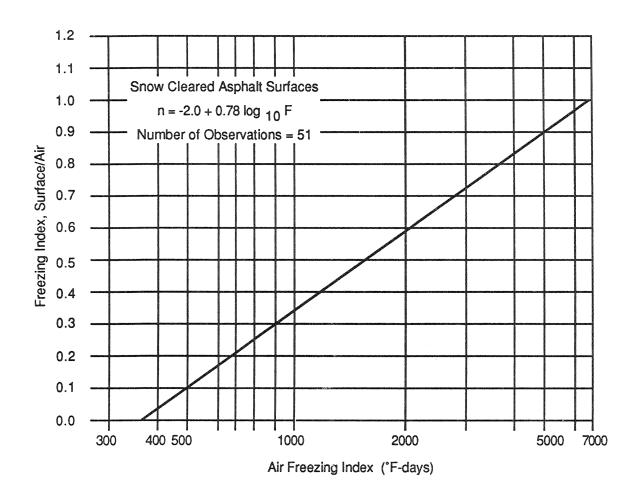


Figure 2.14. Freezing Index Surface/Air Correction Factor versus Air Freezing Index (after Argue and Denyes, 1974)

the eight years of data collection at all sites ranged from 0.25 to 0.51. The n-factor was found to increase with increasing air freezing index for the Pennsylvania data. The regression line obtained for the data was:

$$n = 0.6106 - \frac{68.0596}{AFI}$$

where:

AFI = air freezing index

Surface and air temperatures were recorded during freezing seasons in New Jersey from 1975 to 1977 at three different locations (report by Berg [2.39]). The freezing season duration, air freezing index and n-factors are shown in Table 2.7.

2.4.5 MEASUREMENT AND PREDICTION OF FROST DEPTH

Early estimates of frost penetration beneath pavements were made by Kersten and Johnson [2.36] using the layered Stefan solution. Estimates based on this technique were compared to field measurements made at nine sites near Minneapolis in 1953-54. At each location studied, the soil was sampled to a depth of eight feet and moisture contents were determined every six inches. Dry densities for the samples were evaluated using approximate methods. Air temperatures were measured in the region of the test sites as U.S. Weather Service temperature data was also collected. The depth of freezing was determined from borings done every two to three weeks.

From 1964 to 1971, 38 airports throughout Canada were instrumented with Gandahl type f ost depth indicators (Argue and Denyes, [2.37]). These were installed beneath pavement surfaces kept clear of snow. Temperatures were measured at all locations and after the start of freezing the air freezing index was tabulated. The data obtained for measured freezing depth and air freezing index is shown in Figure 2.15.

Several of the quantities used in the Modified Berggren and Stefan equations are difficult to estimate precisely, in particular, n-factors, thermal conductivity and latent heat during freezing. The sensitivity of the

Table 2.7 Freezing Indices and "n" Factors for Three New Jersey Locations (after Berg, 1979)

	V	\$. V	Dow+lan	Dortland Comont Concrete	ncwoto	Acnh	Asnhaltic Concrete	ptp
.,	C		יטו כומו	ת כבווובוו כ	וורו ברב	lider	מוכי סווכי	ردر
	Season (days) (Index (°F-days)	Season (days)	Index Season Index n- Season Index (°F-days) (°F-days)	n- factor	Season (days)	Index (°F-days)	n- factor
Bordentown	46	316	.7	93	0.29	44	181	0.57
Bedminster	ū	446	52	388	0.87	52	400	06.0
Rockaway	84	783	72	295	0.38	70	304	0.39

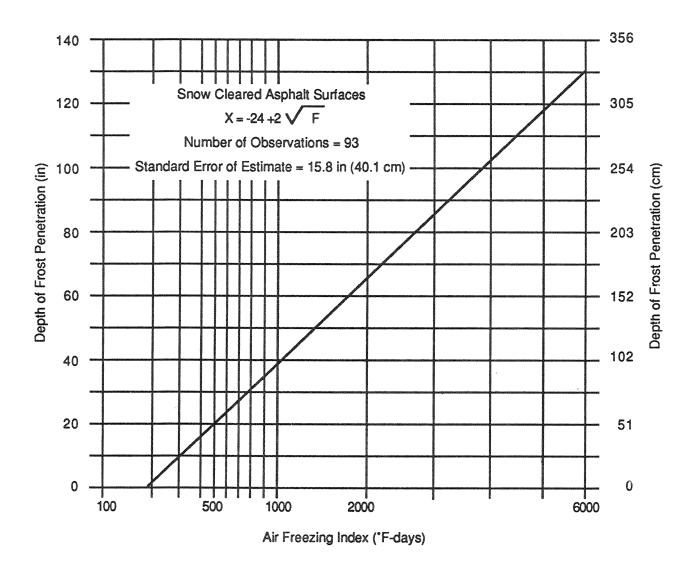


Figure 2.15. Depth of Frost Penetration versus Air Freezing Index, Canadian Pavements (after Argue and Denyes, 1974)

frost depth determined from Modified Berggren to these quantities was studied by Berg and McGaw [2.40] and Berg [2.39] for New Jersey soils.

In their work, Berg and McGaw [2.40] measured freezing depths at 30 sites in New Jersey and Modified Berggren estimates were compared to measured values. Typically, the measured values of frost penetration exceeded the predicted frost depth by a large amount. To investigate the sensitivity of the analytical solution to changes in some thermal properties which are difficult to identify, variations in water content in frozen and unfrozen soil were considered in estimations of thermal conductivity and latent heat of fusion. Using the results of Lovell [2.41] an estimate was made of the amount of unfrozen water present in the frozen soil by soil type. In addition, some adjustments in the Kersten thermal conductivity values for granular soils were made to account for the percentage of fines in the soil. In general, improved results were obtained when including these effects; however, in all cases, the freezing index and n-factor were subject to some uncertainty as well so that no strong conclusions could be made. Also, in some instances, improved results were found when using the ground temperature immediately before freezing instead of the mean annual temperature.

In a study of Pennsylvania pavements (Hoffman [2.38]), an extensive material characterization and thermal instrumentation was performed. Moisture content, dry densities, gradation analyses and Atterberg limits were estimated at several levels in a pavement profile. In addition, temperatures in the ground were measured at several elevations with thermocouples. The sites were monitored on a monthly basis during the freezing period. In addition, surface heave and deflection measurements were taken. Air temperature and precipitation data was collected from the local weather service station.

This data was used for several purposes. Estimates of depths of freezing were compared to predictions using the Corps of Engineers frost depth measurement procedure. Their findings suggest that frost depth at these sites was a function of the air freezing index (Figure 2.16). An excellent comparison was found using this very simple technique with the Pennsylvania data. In addition, an extensive study of the Modified Berggren equation was

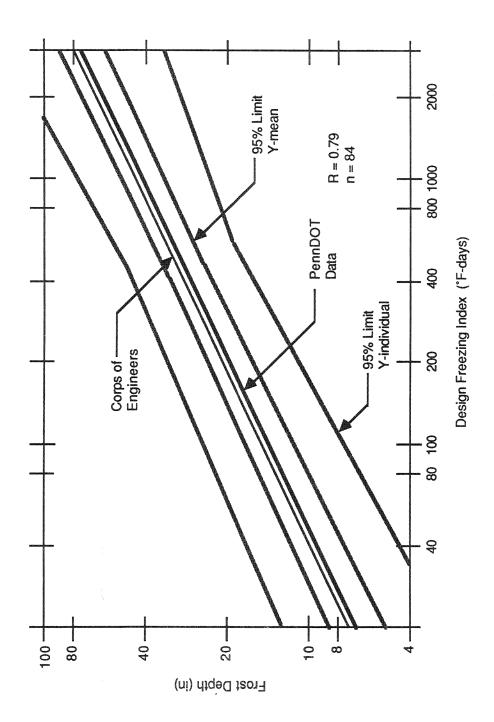


Figure 2.16. Comparison of Pennsylvania Data to Corps of Engineers Method of Frost Depth Prediction (after Hoffman et al.., 1979)

performed. The actual average ground temperature at the beginning of the freezing season was used in the analysis. In addition, thermal properties based on measured moisture contents were used. Air and pavement freezing indices obtained from measurements were used in separate analyses using the Modified Berggren equation. The best comparison between measured and predicted frost depth penetration was obtained using the air freezing index, the unfrozen moisture content and calculated thermal conductivity. The results for both analyses are tabulated in Tables 2.8 and 2.9.

Chisholm and Phang [2.42] measured frost penetration at 62 locations in Ontario, Canada, between 1970 and 1975 using frost tubes. Using air temperature data collected at nearby weather stations a correlation equation was established from a regression of the penetration depth, P, and the air freezing index, F, in °C-days where:

$$P = -0.328 + 0.0578 [F]^{\frac{1}{2}}$$

Many of the studies mentioned considered the possibility of a relationship between freezing index or freezing depth and maximum spring thaw deflections. There is, as yet, no strong evidence to suggest that these variables are correlated.

2.4.6 MEASUREMENT AND PREDICTION OF THAW DEPTH AND THAW WEAKENING

2.4.6.1 PREDICTIONS OF THAW DEPTH

The analytical techniques for evaluating thawing depth are the same as those used for freezing depth. A major source of uncertainty is the surface coefficient, or n-factor, which for a given location and surface type is most definitely different for freezing and thawing. Several references noted in earlier sections have focused on the estimation of freezing depths and corresponding n-factors. Little research was found on the associated thawing problem.

Early investigations of thawing were performed in Minnesota by Korfhage (2.43). Six field sites were instrumented with copper-constantan thermocouple strings to observe the advancement of the thaw plane. Field measurements of thawing were compared with estimates using the Stefan equation with

Table 2.8 Measured and Predicted Frost Depths in Pennsylvania Using Air Freezing Index (after Hoffman et al., 1979)

	Total Constant of the Constant Constant Constant of the Consta	Froze	Frozen Moisture Content	re Conte	int	Unfr	Unfrozen Moisture Content	sture Coi	ntent	
Site	Actual	St-fan	fan	Ey Mod j	Exact Modified	Stefan	fan	Exact Modified	Exact dified	corps of Engineers
	(in.)	(a)	(q)	(a)	(p)	(a)	(q)	(a)	(q)	
Butler	ភ	45.0	42.0	39.6	36.7	46.8	42.8	41.0	37.3	33
Center Point	24	30.9	33.2	22.9	25.0	32.0	33.4	23.6	24.9	24
Clarion	37	47.9	45.3	7:14	39.1	52.1	48.0	45.1	41.0	36
Fulling Mill Rd.	7	9. 0. 1.0	3.8	22.0	21.9	33.1	31.6	22.6	21.4	22
Lairdsville	48	47.2	54.1	43.8	50.1	48.7	55.5	45.1	51.3	38
Lantz Corners	5	57.7	50.0	53.1	45.4	59.3	51.0	54.5	46.2	44
Meadville	30	37.3	42.9	31.8	37.0	37.8	43.0	32.2	37.0	37
Perklomenville	56	42.6	5 2. i	31.8	39.8	46.9	54.0	34.4	40.4	30
Roseglen	36	50.7	46.5	43.8	40.3	54.8	50.7	46.7	43,4	m
Somerset	34	40.7	44.0	35.0	37.9	41.4	44.0	35.5	37.8	32
State Coilege	38	49.9	46.6	44.1	41.2	 	46.3	45.0	40.8	95
Washington	24	38.3	40.7	31.3	33.8	39.0	40.9	31.8	33.8	(Y)
Welisboro	45	82.8	77.2	70.3	65.0	84.2	77.2	1.17	64.4	4
Wilkes-Barre	4	53.9	59.9	47.9	53.5	56.3	9.09	49.9	53.7	9

Inches of frost penetration predicted using graphical thermal conductivities from fileld data. Inches of frost penetration predicted using calculated thermal conductivities by Kersten's equations. (a) (a) Notes:

Table 2.9 Measured and Predicted Frost Depths in Pennsylvania Using Pavement Freezing Index (after Hoffman et al., 1979)

		Frozen	Frozen Moisture Content	e Conte	nt	unfr	Unfrozen Moisture Content	ture Con	itent	
Site	Actual	Stefan	Fan	Exact Modifi	E xact Modified	Ste	Stefan	Exact Modified	ied	Corps
5	(in.)	(a)	(9)	(a)	(b)	(a)	(b)	(a)	(b)	Erig ineers
Butler	21	40.9	38.2	35.5	32.9	42.1	38.8	36.4	33.2	29
Center Point	24	25.7	26.9	16.7	18.4	26.9	27.4	17.2	18.4	17
Clarion	37	41.8	38.8	35.8	32.5	42. 9	39.4	36.5	32.9	56
Fulling Mill Rd.	7	23.6	23.3	14.7	14.4	24.7	23.4	5.	7	16
Lairdsville	48	35.4	40.1	32.6	36.9	36.4	7	33.5	37.8	28
Lantz Corners	7	4.14	37.0	37.7	33.1	42.3	37.6	38.5	33.7	32
Meadville	30	29.0	32.5	24.6	27.8	29.4	32.6	24.9	2.5	28
Perkiomenville	56	29.8	33.5	20.0	23.3	32.1	35.1	21.2	23.9	5
Roseglen	37	27.0	27.6	22.1	22.7	29.3	28.8	23.7	23.3	17
Somerset	34	31.1	34.0	25.8	28.4	31.8	34.1	26.2	28.4	24
State College	38	35.4	33.9	30.4	29.3	36.5	34.0	31.2	29.1	27
Washington	24	26.2	27.3	19.1	20.4	27.1	27.7	<u>ي</u> ت	20.5	19
Wellsboro	45	68.4	56.0	56.5	46.3	69.7	52.9	57.0	46.7	28
Wilkes-Barre	44	31.7	35.2	27.4	30.6	34.4	36.9	29.4	31.8	25

inches of frost penetration predicted using graphical thermal conductivities from field data. Inches of frost penetration predicted using calculated thermal conductivities by Kersten's Equations. (a) Notes:

thermal conductivity values calculated using their Kersten equations. From this comparison Korfhage estimated surface n-factors and base temperatures used in computing degree-days of thaw. He concluded that a base temperature of 32°F for fine grained soils and 29°F for coarse grained soils should be used in the Stefan equation. In addition a surface correction factor, varying from 1.7 to 2.7 for fine-grained soils and 1.2 to 2.0 for coarse-grained soils was suggested by the results.

Argue and Denyes [2.37] collected thaw penetration data on cleared gravel runways from permafrost areas in Northern Canada. The data summary is shown in Figure 2.17. In addition, thaw depths were established in several locations by soundings. Based on the combined data set, an upper limit for the thaw depth as a function of thawing index (Figure 2.18) was established as:

 $x = 1.85 [I]^{\frac{1}{2}}$

where:

I = thawing index

2.4.6.2 THAW DEPTH AND THAW WEAKENING

Relationships between thaw depth and maximum spring deflections have been suggested by Connor [2.20]. Based on Benkelman Beam deflection data collected in Alaska, it was found that most road sections reached about one half the peak spring deflection level when the thaw depth reached about one foot. Peak deflections generally occurred when the thaw depth reached two to four feet below the pavement layer. In addition, it was noted that peak deflections often occurred very soon after average daily temperatures rose above 32°F. For five of seven sections studied, average daily air temperatures had been above 32°F for only four days and the average <u>air</u> thawing index was 31°F days.

In a study of Washington pavements, Lary et al. [2.22], found that the pavements studied reached a critical condition when the thawing index was approximately $30^{\circ}F$ -days.

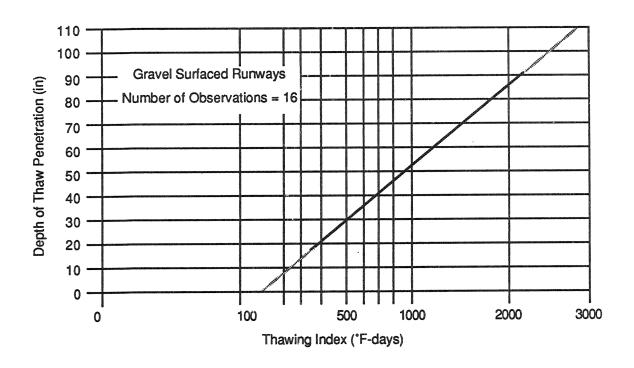


Figure 2.17. Maximum Thaw Penetration in Gravel-Surfaced Runways on Permafrost in Northern Canada (after Argue and Denyes, 1974)

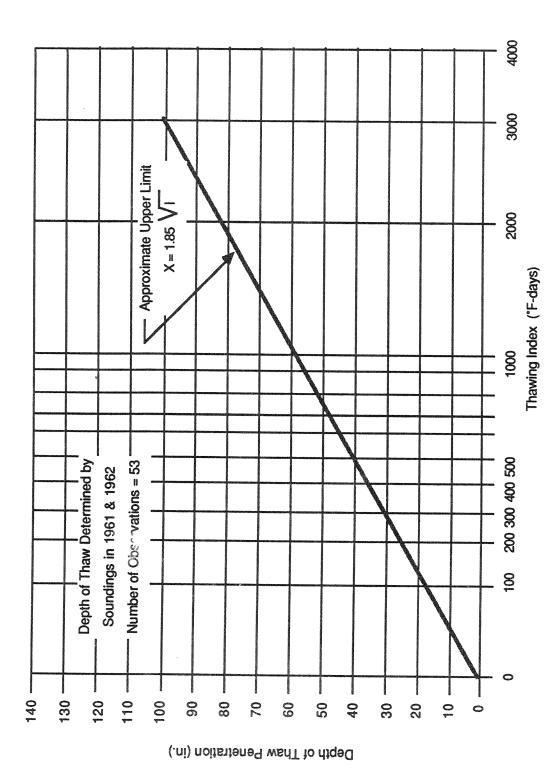


Figure 2.18. Maximum Thaw Penetration in Undisturbed Permafrost Areas in Northern Canada (after Argue and Denyes, 1974)

2.4.7 NUMERICAL METHODS FOR GROUND THERMAL ANALYSIS

Several heat transfer models have been used to evaluate frost penetration. Dempsey and Thompson [2.44] used a one-dimensional forward finite difference model for multilayer pavement thermal response. The surface energy balance equation considered the effects of short and long wave radiation, convection and air temperature. Comparisons of measured and predicted temperatures were made only at shallow depths (3 to 6 in.) in composite laboratory specimens. These results showed good agreement. The authors state that these results suggest that the surface modelling is adequate and accurate estimates of subsurface thermal properties would produce good comparisons at any depth.

Thomas and Tart [2.45] proposed using a two-dimensional finite element simulation of heat flow in soils to predict freezing and thawing. In contrast to Dempsey and Thompson, little emphasis was placed on surface effects and greater emphasis was placed on modelling the phase change effects. This was accomplished by using temperature dependent heat capacity functions to model latent heat. Large increases in specific heat (equal to latent heat) were specified over a temperature range at the freezing point of the material. The program used was DOT (Determination of Temperature) developed at Berkeley by Polinka and Wilson [2.46]. Several more sophisticated multidimensional finite element heat transfer programs are available that offer several model options (modes of heat generation and dissipation).

Chisholm and Phang [2.42] used a finite difference heat transfer model with stepwise insertion of weather data to predict frost depth and ground temperature conditions. The surface energy balance was obtained by considering solar radiation, cloud cover, air temperature, wind speed, atmospheric pressure, albedo and surface aerodynamic roughness. Using this approach a surface temperature can be obtained for input into the flow equations in the ground.

Two sites were specially instrumented to compare model predictions with field temperature conditions. Observed and predicted frost lines through the freezing and thawing season are shown in Figure 2.19. The freezing depths

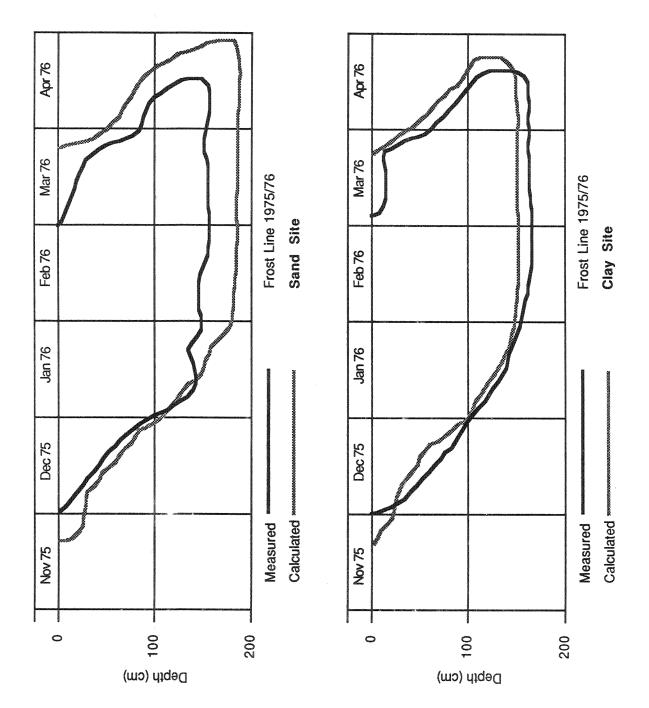


Figure 2.19. Observed and Predicted Frost Lines, Ottawa, Canada (after Chrisholm and Phang, 1983)

show reasonable agreement. Thaw lines, however, are not well predicted by the model.

Goering and Zarling [2.47] have developed a two dimensional, finite element, ground heat transfer model that runs on an IBM-PC or XT. A sinusoidally varying annual surface temperature function can be used. In addition, convective heat transfer at the ground surface can be modelled as well as radiant heat in the form of a heat flux. The latent heat of fusion is modelled using the Dirac delta function in the formulation of the global heat capacity matrix.

2.4.8 MODELLING GROUND SURFACE EFFECTS

In addition to heat being transferred at the ground surface by conduction, convection and radiation play an important role in the surface energy balance. Convective heat transfer at the ground surface is primarily due to air movement across the interface. The radiant heat is a combination of atmospheric short and long wave radiation and long wave radiation emitted from the earth's surface. The energy balance can be written as:

$$Q_{COND} + Q_{CONV} + Q_{RSN} + Q_{RLN} = 0$$

The various sources of heat interacting at the ground surface are shown schematically in Figure 2.20.

2.4.8.1 SHORT WAVE RADIATION

Theoretically, direct, clear sky, short wave radiation is a function of latitude and solar declination. The available daily direct short wave radiation on a horizontal surface for a transparent atmosphere is given by (Lunardini [2.35]):

$$Q_{RS} = 60 \times 24S \left(\frac{180 - H_{SR}}{180} \cos H_{SR} + \frac{\sin H_{SR}}{\pi} \right) \cos \delta \cos \phi$$

where:

 Q_{RS} = direct short wave radiation heat flux, in langleys/day

S = solar constant, in langleys/minute

 H_{SR} = hour angle at sunrise

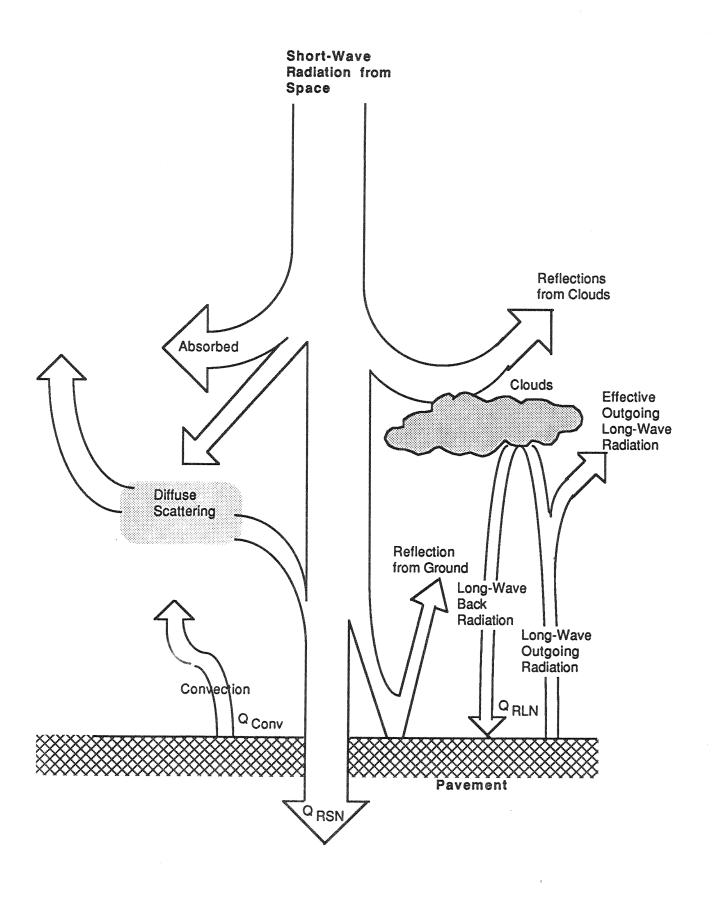


Figure 2.20. Heat Transfer between Pavement Surface and Air (after Dempsey and Thompson, 1970).

 δ = solar declination angle, and

φ = latitude.

Actual atmospheric conditions which include particulate matter, water vapor and clouds cause scattering, reflection and absorption of the short wave radiation emitted from the sun. Also, the distance between the sun and the earth varies throughout the year, altering the intensity of radiation. These factors are accounted for with empirically derived constants and function incorporated in the equation given above.

The effect of the distance between the sun and the earth on the value of the solar constant used in the equation is accounted for by the following:

$$S = S_m \left(\frac{r_m^2}{r}\right)$$
, and $\frac{r}{r_m} = 1 - 1.6733 \times 10^{-2} \cos(0.9856D)$

where:

 $S_m = 1.99 langleys/min.$, the mean solar constant,

 r_m = the mean earth/sun distance, and

D = days elapsed since December 31.

Two constants, A and B, are introduced to account for wave attenuation due to scattering and absorption and dust attenuation. The precise form of the expressions for estimating A and B varies with researchers. The B value reflects surface albedo and attenuation characteristics which are primarily due to the preciptable water vapor and the optical air mass. The cosntant A primarily accounts for the particulate matter present in the atmosphere.

In addition, corrections are made for the amount of cloud cover present, which significantly affects the amount of short wave radiation reaching the earth's surface. Several empirical expressions have been derived (see [2.35]). Some of the differences in expressions are a result of the period over which the cloud cover is being estimated, daily or monthly. The following equation includes the considerations noted above, solar distance, attenuation and cloud cover in its formulation:

$$Q_{RS} = (1 - 0.67C_s^2) 2865.6 \text{ AB } \left(\frac{r_m^2}{r}\right) \cos \delta \cos \phi \left(\frac{180 - H_{SR}}{180} \cos H_{SR} + \frac{\sin H_{SR}}{\pi}\right)$$

where:

 C_S = the average daily cloud cover during daylight hours.

This expression estimates the net <u>incoming</u> direct and diffuse daily short wave radiation. Surface albedo or reflexivity results in some of the incoming heat being reflected back to the atmosphere. Therefore, the net heat flux transmitted to the ground at the surface becomes:

$$Q_{RSN} = (1 - \alpha_s) Q_{RSC}$$

where:

 α_s = surface short wave reflexivity

2.4.8.2 LONG WAVE RADIATION

Long wave radiation is emitted by the earth's surface and the atmosphere. Long wave radiation from the earth can be expressed as:

$$Q_{RLE} = \sigma \epsilon_{e} T_{e}^{4}$$

where:

 $\sigma = 1.714 \times 10^{-9}$ Btu/hr ft² OR⁴, the Stefan-Boltzmann constant,

 $\varepsilon_{\rm p}$ = long wave emissivity of the surface, and

 T_e = surface temperature, in ^{O}R

Similarly, long wave atmospheric radiation can be written as:

$$Q_{RLA} = \sigma \epsilon_a T_a^4$$

where:

 ϵ_a = long wave emissivity of the atmosphere, which is a function of water vapor pressure and temperature, and

 T_a = air temperature at reference level, in ${}^{\circ}R$

An empirical relationship obtained by Swinbank gives:

$$\varepsilon_a = 0.398 \times 10^{-5} T_c^{2.148}$$

where:

 T_{C} = air temperature, in ${}^{O}K$

The net clear sky outgoing long wave radiation becomes:

$$Q_{RLO} = \sigma \quad \epsilon_e T_e^4 - \alpha_e \sigma \quad \epsilon_a T_a^4$$

For long wave radiation, the absorptivity is approximately equal to the emissivity or

$$\varepsilon_e = \alpha_e$$

An additional simplifying assumption is that

$$T_s \simeq T_a$$

Incorporating these assumptions, the resulting equation for net clear sky outgoing long wave radiation becomes:

$$Q_{RLO} = \sigma \varepsilon_e T_a^4 (1 - \varepsilon_a)$$

The net outgoing long wave radiation will be reduced by cloud cover. A simple approximate empirical relation based on results of several researchers is proposed in Lunardini [2.35] as:

$$Q_{RLN} = (1 - 0.8C_e)Q_{RLO}$$

where:

 C_e = the net 24 hour cloud cover.

2.4.8.3 CONVECTIVE SURFACE HEAT TRANSFER

The convective portion of the surface heat balance is due primarily to air movement and can be calculated from the following equation:

$$Q_{CONV} = h(T_S - T_a)$$

where:

 $h = convective heat transfer coefficient, in Btu/hr ft² <math>^{o}F$

 T_S = surface temperature, in OF

 T_a = air temperature, in ^{O}F

The convective process is very complex, particularly at times when temperature conditions cause air stratification which affects the natural convection process (Miller [2.48]). Convection coefficients describing convective heat transfer primarily due to the movement of fluid across a surface of particular roughness characteristics are applicable when solar and long wave radiation are at moderate levels, creating neutrally stable air conditions. The convective coefficient for forced convection is affected by

windspeed, surface roughness and orientation of the surface to the direction of air flow on the ground surface.

Duffie and Beckman [2.49] report the results of various researchers for estimating convective coefficients on horizontal plates. McAdams reports a convective coefficient of:

$$h = 5.7 + 3.8V$$

where:

h = convective coefficient, in W/m² °C

V = wind speed, in m/s

Vehrencamp [2.50] developed an empirical formula for a convective coefficient from data obtained on a dry packed lake bed. The coefficient is given by:

h =
$$122.93[0.00144T_m^{0.3}v^{0.7} + 0.00097(T_s - T_a)^{0.3}]$$

where:

h = convective coefficient, in Btu/hr ft² oF

 T_s = surface temperature, in OC

 T_a = air temperature, in ${}^{\circ}C$

 $T_m = 273.0 + (T_S + T_a)/2$, in OK

2.5 LOADING CONFIGURATIONS ON FLEXIBLE PAVEMENTS

2.5.1 INTRODUCTION

Typically in the U.S., legal load levels for roads have been established by states and the federal government. These load levels are designated by maximum allowable axle loads and maximum allowable load per inch width of tire. The majority of states imposes an 18 or 20 kip axle load limit. Allowable tire loads range from 450 to 800 lbs per inch width. A wide variety of tire sizes, typically ranging from 8 to 18 inch widths, a variety of tire configurations, single or dual, and multiple axle arrangements, create an extensive number of potential loading cases to be considered in a pavement analysis.

2.5.2 SINGLE AND DUAL TIRES

Mahoney [2.53] studied the response of flexible pavement to five single tire widths and 10 inch dual tires. The pavements studied ranged from 2 to 9 in. of asphalt concrete over an aggregate base. The analysis was performed using layered elastic theory programs. The analysis compared the damaging effects of the various tire sizes and configurations using the horizontal tensile strain as the fatigue criteria. Example results are shown in Table 2.10. The results are normalized with respect to the 10 inch dual tire configuration with an 18,000 lb. axle load. For the pavement cases considered, the single tires presented more damaging effects than dual tires for the same axle load. In a survey conducted in conjunction with this research, it was found that over 90 percent of the trucks had dual tires, with an average inflation pressure of 95 psi.

2.5.3 SINGLE AND MULTIPLE AXLES

The surface courses of pavement structures in Alaska are typically less than 3 inches. Base and subbase courses combined are typically about 12 inches thick. Johnson [2.54] studied the effects of multiple axle configurations on these relatively thin pavements. Falling Weight Deflectometer measurements on four pavement sections were taken. The resilient moduli for the four layers in the pavement structure were evaluated using reverse iterative techniques. The tensile strains for multiple axle loadings could then be evaluated for each pavement type. It was found that for average strength Alaskan pavements, multiple axles had damage factors twice as large as single axle configurations with the same load. The comparative damage factor was calculated as:

$$CDF = N_r/N_L$$

where:

 N_r = number of 18 kip single axle dual wheel loads to failure on a standard pavement, and

 N_L = number of multiple axle dual wheel loads with total axle group load TL on a given pavement.

Table 2.10 Traffic Equivalence Factors for Asphalt Concrete Pavement (after Mahoney, 1984)

Load (1bs)	30"	5				Width	dth =				
-		_	01		12"	-	14"	_	91	_	18"
Z=us	sn=2 sn=6 sn=2 sn=6 sn=2 sn=6 sn=2 sn=6 sn=6 sn=6 sn=6	sn=2	9=us	sn=2	9=us	sn=2	9=us	sn=2	sn=6	sn=2	9=us
10,000 0.35	0.35 0.17 1.24 0.30 0.89 0.27 0.64 0.24 0.50 0.22 0.40 0.20	1.24	0.30	0.89	0.27	0.64	0.24	0.50	0.22	0.40	0.20
18,000 1.00	1.00 1.00 3.52 1.76 2.45 1.58 1.82 1.41 1.41 1.28 1.21 1.15	3.52	1.76	2.45	1.58	1.82	1.41	1.41	1.28	1.21	1.15
20,000 1.21	1.21 1.37 4.25 2.42 2.96 2.16 2.19 1.94 1.69 1.75 1.35 1.58	4.25	2.42	2.96	2.16	2.19	1.94	1.69	1.75	1.35	1.58
30,000 2.47	2.47 4.64 8.71 8.17 6.06 4.49 4.49 6.56 3.48 5.92 2.77 5.35	8.71	8.17	90.9	4.49	4.49	6.56	3.48	5.95	2.77	5.35

Notes: sn=2 represents 2 to 4 inches of asphalt concrete over aggregate base. sn=6 represents 9 inches or more of asphalt concrete over aggregate base.

From the results of this study, the following is obtained:

$$CDF_m = 3.5 \times 10^{-10} \left(\frac{TL}{n}\right)^{2.22} n$$

where:

n = number of equally loaded dual wheel axles.

Similar results were found in a study by Haven and Southgate [2.55] comparing trailers with tandem axles and three axles. In addition, it was found that the most damaging effects occurred when weight on the front steering axle was increased.

2.6 LITERATURE REVIEW SUMMARY

The literature reviewed showed a number of studies which attempted to quantify the loss in pavement strength during the spring thaw. A number of the field studies showed clearly the loss in bearing capacity during this period. Further, these same studies revealed that the primary loss in pavement strength occurs in the subgrade and unstabilized base courses. Laboratory studies have been conducted to simulate the freeze-thaw process and obtain the magnitude of strength loss for various subgrade soils. These laboratory studies compared reasonably well with field studies using deflection equipment.

Field and theoretical studies had determined the depth of freezing and the duration of the freezing period. These studies and models (or variations thereof) can be used to determine the rate of advance of the thawing front. This in turn can be used to estimate the length of the critical period starting from the onset of thawing to complete thaw.

The literature reviewed, however, is short on methods used to deal with the problem of spring thaw. There are few studies on methods used to determine the magnitude of spring load restriction. Of the studies that exist, none had been fully adopted by any local or state agency. Little literature existed on methods used to determine the length of the critical thaw period. Nothing was found also on enforcement of load restrictions where these have been applied.

CHAPTER 3.0 SURVEY OF CURRENT PRACTICE

3.1 INTRODUCTION

This chapter summarizes the results of contacts and visits with selected agencies throughout the United States and Canada. The purpose of the contacts was to assess the following:

- (a) types of pavement failures associated with spring thaw,
- (b) types of facilities requiring weight restriction during the spring thaw period,
- (c) the intended purpose of weight restriction and how such policies were developed and implemented,
- (d) cost benefit analysis of weight limit enforcement on a specific facility (if available data existed), and
- (e) legal aspects of truck weights limits.

3.2 SURVEY INTERVIEW TECHNIQUES

To collect the needed information, three survey techniques were used and will be individually described.

3.2.1 INITIAL INFORMATION REQUEST

In November 1984, the request form given in Figure 3.1 was sent to 38 state agencies and Canadian provinces. This initial survey was used to identify those agencies which were then involved with load restrictions.

3.2.2 INTERVIEWS

Selected agencies with considerable experience with spring load restrictions were visited to obtain first hand their experiences with spring load restrictions. The form given in Appendix E was used by the project staff to collect the needed data.

	INFORMATION REQUEST
1.	ARE LOAD RESTRICTIONS PLACED ON ANY ROADS IN YOUR STATE DURING SPRING THAWING?
	Yes No
2.	HOW ARE LOAD RESTRICTIONS DETERMINED?
	ANALYSIS EXPERIENCE OTHER (describe briefly)
3.	DOES THE STATE HAVE GUIDELINES OR LEGISLATIONS WHICH ADDRESS THIS ISSUE?
	Yes No (If yes, please enclose copy)
4.	ARE THERE SPECIFIC DISTRICTS OR COUNTIES WITHIN YOUR STATE WHERE LOAD RESRICTIONS ARE IMPOSED?
	Yes No (If yes, can you identify these and possibly list a contact in these locations?)
* 00.	
THIS	TIONAL COMMENTS, INFORMATION, PERTINENT REFERENCE MATERIAL REGARDING SUBJECT WOULD BE GREATLY APPRECIATED.
Thar	k you very much for your time and assistance.
Retu	Dr. Joe P. Mahoney Department of Civil Engineering 121 More Hall, FX-10 University of Washington Seattle, WA 98195

Figure 3.1 Initial Information Request Form

3.2.3 FOLLOW-UP REQUESTS

Some agencies were sent the interview form given in Appendix E to obtain information on their experiences with spring load restrictions (i.e. an on-site interview was not conducted). The results of the surveys are given in the following sections.

3.3 INITIAL INFORMATION REQUEST TO STATE DOT'S

Table 3.1 summarizes the results of the initial information request. The major findings include the following:

- (a) Sixteen of the 33 states and four of the five Canadian provinces responding indicated they did impose load restrictions.
- (b) Four of the states and three of the Canadian provinces indicated that their load restrictions were based on analysis. The remaining agencies established their load restriction policies on experience.
- (c) Thirteen of the states and four of the Canadian provinces indicated their agency had guidelines and/or legislation establishing load restrictions.

Based on the results of this preliminary information request, the following state DOT's were selected for follow-up contact:

VISITS FOLLOW-UP INFORMATION REQUEST

Iowa DOT

Minnesota DOT

New Hampshire DOT

Oregon DOT

Washington DOT

Nova Scotia DOT

South Dakota DOT

Table 3.1 Summary of Information Request to State and Province DOT's Regarding Current Load Restriction Practices

State or Province		nd Restric Ouring Spr			Restrictions termined	Does State ha or Legislatio Spring Load R	n Establishing
	Yes	No 	No Reply	Analysis	Experience	Yes	No
Alaska	х			X		Х	
California		X			1	 	
Colorado		X		**************************************	 		
Connecticut		X			+	 	+
Delaware		X		The state of the s		 	+
Idaho	χ		†	X	<u> </u>	T X	
Illinois	Х				 	 	
Indiana	X		t		 	 	
Iowa	X				T \hat{x}	† 	
Kansas		X			 	 	
Maine	X				X		X
Maryland		X					
Massachusetts		X					+
Michigan	Х			Х	<u> </u>	X	
Minnesota	Х			X	1 	l 	
Missouri		X			 	+	
Montana	Х				X	Х	
Nebraska		Х				 	
New Hampshire	Х			and the state of t	 	T X	
New Jersey		Χ			 	 	
New Mexico		X					
New York		Х					
North Dakota	Х				<u> </u>	X	
Ohio		Х		and the same of th		 	
Oregon	X				1 x	1 x	
Pennsylvania			χ				
Rhode Island		Х					
South Dakota	Х				X	<u> </u>	
Texas		Х			T	†	
Vermont	X				Х		X
Washington	Χ			X	X	<u> </u>	
Wisconsin			Х			<u> </u>	
Wyoming	Χ				Х		X
Alberta	Χ			X	T X	l x	
New Brunswick	Х			X	<u> </u>	X	
Nova Scotia	Χ			X		X	
Ontario			X			 	+
Saskatchewan	X				†x	X	+

3.4 RESULTS OF INTERVIEWS AND FOLLOW-UP REQUESTS

Detailed information on load restrictions was solicited from the agencies identified above. Personal interviews were conducted in five states with a total of twelve agencies (Table 3.2). Follow-up questionnaires were obtained from six states and one Canadian Province (Table 3.3). This section describes the results of this effort.

Each agency was asked questions dealing with:

- (a) development of load restrictions,
- (b) types of highways receiving load restrictions,
- (c) design information for roads receiving load restrictions,
- (d) criteria for imposing load restrictions, and
- (e) enforcement methods.

The detailed interview form is given in Appendix E. Responses to each of the above topic areas are summarized in Tables 3.4 through 3.8.

3.4.1 DEVELOPMENT OF GUIDELINES

Specific questions dealing with (a) types of pavement failure associated with spring thaw, (b) extent of the problems, and (c) procedures used for determining locations for load restrictions were asked of all agencies (state, county, and city). The results given in Table 3.4 indicate:

- (a) The predominant types of pavement failure included alligator cracking, rutting, frost boils, and potholes.
- (b) The extent of the problem varied from very little to agency-wide, and predominantly on low volume roads.
- (c) The locations for load restrictions were based on past experience and/or surface deflection. For some of the smaller agencies, the restrictions were placed on all roads.

Table 3.2 Agencies Interviewed

State	Agency	Contact
Iowa	Department of Transportation Ames, IA	Charles L. Huisman
Minnesota	Department of Transportation	George Cochoran
	City of Maple Grove Maple Grove, MN	Gerald E. Butcher
	Wright County Buffalo, MN	W. Fingalson
	Anoka County Anoka, MN	Paul Roode
New Hampshire	Dept. of Public Works and Hwy Lebanon, NH	Dick Heath
	CRREL Hanover, NH	T. Johnson
Oregon	Department of Transportation Salem, OR	John Sheldrake
	Benton County Corvallis, OR	James Blair
Washington	Department of Transportation Olympia, WA	N. Jackson
•	Benton County Prosser, WA	J. McAuliff

Table 3.3 Follow-up Requests

State	Agency	Contact
Alaska	Department of Transportation and Public Facilities Fairbanks, AK	Dave Esch
Idaho	Department of Transportation Boise, ID	James W. Hill
Maine	Department of Transportation Augusta, ME	Richard Schofield
Montana	Department of Highways Helena, MT	Richard Wegner
North Dakota	Highway Department Bismark, ND	Stanley Haas
Nova Scotia	Department of Transportation Halifax, NS	D.C. Pugsley
South Dokata	Department of Transportation Pierre, SD	James R. Anton

Table 3.4 Development of Guidelines for Spring Load Restrictions

Location	Types of Pavement Failure Associated with Spring Thaw	Extent of Problem	How are Locations for Load Restrictions Determined?
Alaska DOT	Alligator cracking, rutting, frost boils	Statewide	FWD, visual observations, measurements of thaw depth, experience
Idaho DOT	Foundation, deep base,surface	15% of system	Experience
Iowa DOT	Spring breakup	Low volume roads	Selected by district engineers
Bremer County, Iowa	Pavement breakup, rutting	Up to 50% on aggre- gate surfaced, up to 10% on paved	Visual observation of heaving and/or pumping
Maine DOT	Alligator cracking	Low volume roads statewide	Selected by district engineers
Minnesota DOT	Rutting, alligator cracking	Limited	Experience of main- tenance engineer and deflection measurements with road rater and FWD
Anoka County, Minnesota	Alligator cracking, potholes	Not too extensive due to restrictions	Construction history and design, and Benkel- man beam deflections
Maple Grove, Minnesota	Frost boils, alli- gator cracking	City wide	Uniform load restric- tion policy for all streets

Table 3.4 Development of Guidelines for Spring Load Restrictions (Cont.)

Location	Types of Pavement Failure Associated with Spring Thaw	Extent of Problem	How are Locations for Load Restrictions Determined?
Wright County, Minnesota	Rutting, alligator cracking	Variable from year to year	Road Rater deflections
Montana DOT	Frost boils	Statewide on mini- mum structure roads	Judgment of maintenance personnel
New Hampshire DOT, Div 2	Alligator cracking, rutting, frost heave	Modest	Judgment of maintenance personnel based on whether heavy hauling is occurring
North Dakota DOT	Surface breaks, potholes	Varies yearly de- pending on frost penetration	Experience
Nova Scotia DOT	Varies depending on structure and loads	Not extensive	Benkelman beam testing
Oregon DOT	Heave, cracking, pavement breakup	Central, eastern part of state	Experience and visual observation
Benton County, Oregon	Alligator cracking and breakup	All road construc- tion types	Experience
South Dakota DOT	Potholes, edge failure, alligator cracking	Highways with thin mats typically re- stricted statewide	Experience

Table 3.4 Development of Guidelines for Spring Load Restrictions (Cont.)

Location	Types of Pavement Failure Associated with Spring Thaw	Extent of Problem	How are Locations for Load Restrictions Determined
Washington State DOT	Alligator cracking, pavement breakup	Central and Eastern Washington on a few low volume roads	Judgment of main- tenance personnel
Benton County, Washington	Pavement breakup, frost heave, base failure	Moderate	Observation of road conditions

Table 3.5 Description of Highways to Which Load Restrictions are Applied

Typical Cross Section	1½ - 2" ACP 4" - 6" Base Select Varies Subgrade	ı	Surface 6" - 8" Base Surface	3" - 6" Surface 3" Aggregate 1" - 8" Base Subgrade (clay)	1
Surface Types	ACP		ACP or BST	ACP or PCC	Seal and maintenance mixes
Soil Types	Frost susceptible	1 .	Clay and silt	Heavy black clay	Clay and till
ADT % Trucks	All	ŧ	ials <1000 <10%	<200, 5% >200, 5-10%	50 - 2,500 % Variable
Functional Class	A11	LIA	Secondary, arterials and collectors	All	Collector, local, light duty sec- condary
Location	Alaska DOT	Idaho DOT	Towa DOT	Bremer County, Iowa	Maine DOT

Table 3.5 Description of Highways to Which Load Restriction are Applied (Cont,)

Typical Cross Section	3" Surface 6" - 12" Base Subgrade	6" Base 4 - 5" Black Base Subgrade Subgrade	3" - 6" ACP	2 - 2½" ACP 3" ACP 3 - 4" Base Granular Clay Subgrade	י מפע	4" Surface 6 - 8" Base Subgrade
Surface Types	Bituminous W/aggregate base	BST, ACP	ACP and gravel	ACP primarily	ı	BST and ACP
Soil Types	All but granular	SM, CH	Clay (A-6), some gravel	A-6, range from gravel to clay	ı	Glacial till
ADT % Trucks	All	300 - 30,000 5 - 10%	400 - 1000 8 - 10%	200 - 16,000	,	20 - 1000
Functional C.ass	All	ווא	All city streets	All	Primary and Secondary	Secondary
Location	Minnesota DOT	Anoka County, Minnesota	Maple Grove, Minnesota	Wright County, Minnesota	Montana DOT	New Hamp- shire DOT Div. 2

Table 3.5 Description of Highways to Which Load Restrictions are Applied (Cont.)

		·	·		
Typical Cross Section	1	7 ACP 10" Base Subgrade	/ 2 - 4" ACP / < 10" Base / Subgrade	1	
Surface Types		ACP	Oil mats, thin ACP	Macadam, ACP	Thin mats primarily
Soil Types	i	GM, SM	Clays and pavement w/no base rock	Clay	All except rock
ADT % Trucks	1	t	<500 5 - 10%	200 - 4000 5 - 10%	Variable
Functional Class	All except Interstate	,	Secondary	Collector, minor arterial	All except Interstate
Location	North Dakota DOT	Nova Scotia Dot	Oregon DOT	Benton County, Oregon	South Dakota DOT

Description of Highways to Which Load Restrictions are Applied (Cont.) Table 3.5

Location	Functional Class	ADT % Trucks	Soil Types	Surface Types	Typical Cross Section
Washington State DOT	Secondary	< 1000	ΨS	Thin bituminous	6" Base Subgrade
Benton County, Washington	All	t	1	1	1

Table 3.6 Design Information for Roads Restricted During Spring Thawing

Location	Use of Frost Protection in Thickness Design	Are Load Restric- tions Used in Lieu of Frost Protection?	Thickness Design Method Used	Age of Pavement Restricted	Drainage Conditions
Alaska DOT	More than 50% but not full	Sometimes	Alaska procedure	-	Fair
Idaho DOT	Frost Protection not included in design	-	AASHTO, Hveem	5-10 years	Fair to poor
Iowa DOT	Less than 50% frost protection	-	AASHT0	Pre-WWII	Good to
Bremer County, Iowa	Less than 50% frost protection	-	Experience, nominal thickness	Up to 20 years	Good to excellent
Maine DOT	More than 50% but less than full protection	-	AASHTO, MDOT	10 to 20 years	Poor
Minnesota DOT	Variable	Used on Old roads which have not been replaced	Minn DOT (flexible pavements)	-	Good to poor
Anoka County, Minnesota	No	-	Minn DOT	15 to 20 years	Good
Maple Grove, Minnesota	No	Yes	Hveem, Minn DOT	7 years ±	Fair

Table 3.6 Design Information for Roads Restricted During Spring Thawing (Cont.)

	Use of Frost	A			
Location	Protection in Thickness Design	Are Load Restric- tions Used in Lieu of Frost Protection?	Thickness Design Method Used	Age of Pavement Restricted	Drainage Conditions
Wright County, Minnesota	No	. -	Minn DOT, Asphalt Inst. MS-1	15 to 20 years	Fair to poor
Montana DOT	No	-	AASHT0	*	-
New Hampshire DOT Div. 2	No	-	None used for secondary roads	Very old	Poor
North Dakota DOT	No	Yes	Stage construction	20 years	Good
Nova Scotia DOT	No	-	R1AC	10 years	Poor
Oregon DOT	More than 50% but not full protection	-	Hveem	20 ÿears +	Poor
Benton County, Oregon	No	~	Hveem	- -	Fair
South Dakota DOT	No	Yes	AASHTO	-	Good to Poor
Washington State DOT	Depth > 50% of frost depth	•	WSDOT	15 ÿears +	Fair
Benton County, Washingtor	Full protection		Standard section	10 to 15 ÿears	Fair

Table 3.7 Load Restriction Criteria

			·	•	•		
Is Deflection Measuring Equipment Used to Esta- blish Load Restrictions?	Yes (FWD)	O.	NO	ON	No	yes (FWD)	Yes (Benkelman beam)
Basis for Removal of Load Restriction	Regain strength, po- litical pressure	Judgment	Judgment	When unpaved roads dry	Clear frost suage and Visual inspection of roads	Experience, deflection measurements	Allowable loads in- crease w/time, Ben- kelman beam deflec- tion
Basis for Initiation of Load Restriction	One foot thaw and in- creasing deflection	Judgment	Judgment	Presence of water or signs of distress	Soft weather in winter and spring	Thaw depth, weather forecast	Increasing Benkelman beam deflection
How are Spring Loads Limits Established?	Experience, studies	Experience	Studies	Experience	Experience	Experience, studies	Experience, testing
Spring Load Limits	50 to 75% of normal	14K - 20K 28K - 37.8K	ŧ	10K/Ax1e	Gross weight 23K	10K - 14K 18:9 - 26.4K	10K - 14K 18.9 - 26.4K
Normal Load Limits Single Axle, Tandem Axle	20K, 34K	20K 34-37.8K	20K, 34K	20K, 34K	22K, 34K	20K, 34K	20K, 34K
Location	Alaska DOT	Idaho DOT	Iowa DOT	Bremer County, Iowa	Maine DOT	Minnesota DOT	Anoka County, Minnesota

Table 3,7 Load Restriction Criteria (Cont.)

Location	Normal Load Limits Single Axle, Tandem Axle	Spring Load Limits	How are Spring Load Limits Established?	Basis for Initialtion of Load Restriction	Basis for Removal of Load Restriction	Is Deflection Measuring Equipment Used to Esta- blish Load Restrictions?
Maple Grove, Minnesota	18K, 34K	10K, 20K	Follows state guidelines	State restriction per- iods or when moisture appears in pavement cracks and joints	State guides or visual observation of pavement drying	No
wright County, Minnesota	18K, 34K	10K - 14K	Studies by Minn DOT	Observations of pumping	Examination of frost tubes, practice of surrounding counties	No
Montana 30T	20K, 34K		Experience	When subgrade begins to lose strength	When subgrade has stabilized	No
New Hampshire DOT Div. 2	20K, 34K	300 lb/in width of tire	Experience	"Mud Season"	Observe moisture conditions	No
North Dakota DOT	20K, 34K	12K, 24K	Experience	Experience	Experience	ON
Nova Scotia DOT	9,000 KG, 17,000 KG	6,500 KG, 12,000 KG	Experience	Benkelman Beam de- flection measure- ments	Benkelman Beam de- flection measure- ments	Yes (Benkelman Beam)

Table 3.7 Load Restriction Criteria (Cont.)

,					
Is Deflection Measuring Equipment Used to Esta- blish Load Restrictions?	ON	,	ON	No	NO
Basis for Removal of Load Restriction	Not well defined	ı	When roadbed is dry and solid, not later than 5/1	Judgment	Observation
Basis for Initiation of Load Restriction	When breakup begins	1	When thawing begins - not before 2/15	Judgment	Observation
How are Spring Load Limits Established?	Experience	ŧ	Experience	Experience, research	Experience
Spring Load Limits	8 - 10 tons gross	ţ	12K - 14K 24K - 28K	Sased on tire size	Based on tire size
Normal Load Limits Single Axle, Tandem Axle	20K, 34K	ı	20K, 34K	20 K, 34K	'
Location	Oregon DOT	Benton County, Oregon	South Dakota DOT	Washington State DOT	Benton County, Washington

Table 3.8 Enforcement Methods for Spring Load Restrictions

	,				
Location	How Are Load Restrictions Enforced?	How Are Vehicle Operations Hotified?	Can Overweight Permits be Obtained?	What Enforce- ment Methods Are Used?	Are Fines Levied?
Alaska DOT	Fixed scale installation	Newspapers, road signing	Yes	Scale crossing	Yes \$0.05/1b
Idaho DOT	Portable scale	Mail	No	All trucks stopped at scale	Yes cost per 1,000 lb
Iowa DOT	Fixed porta- ble scale and patrol	Detour and embargo maps	Yes	Patrol	Yes cost per 1,000 lb
Bremer County, Iowa	Fixed scale, patrol	Detour and embargo maps	Yes	Patrol	Yes Gost per 1,000 lb
Maine DOT	-	Roads posted	Yes	· -	Yes
Minnesota DOT	Fixed and por- table scale, relevant evi- dence law	News, mail, road signing	Yes	All trucks stopped at scale	Yes 1b
Anoka County, Minnesota	Portable scale	Post roads	Yes	Observation of vehicles	Yes cost per 1,000 lb
Maple Grove, Minnesota	Portable Scale	Newspapers, road signing	Yes -	Patro1	Yes cost per 1,000 lb
Wright County, Minnesota	Portable scale	Newspapers, radio, post roads	Yes school busses only	Selective sample	Yes cost per 1,000 lb
	, , , , , , , , , , , , , , , , , , ,				Commence Statements - 17 mars and 18 mars

Table 3.8 Enforcement Methods for Spring Load Restrictions (Cont.)

Location	How are Load Restrictions Enforced?	How are Vehicle Operators Notified?	Can Overweight Permits be Obtained?	What Enforce- ment Methods are Used?	Are Fines Levied?
Montana DOT	Fixed, port- able scale	Newspapers, radio, news, roads posted	No	All trucks Checked at man- dom Locations	Yes
New Hampshire DOT Div. 2	Portable Scale	News releases, post roads	Yes	Selective Sample	••••••••••••••••••••••••••••••••••••••
North Dakota DOT	<u>-</u>	-	ng.	-	35
Nova Scotia DOT	Fixed, port- able scale	News, notices	No	Stop trucks at scale	Yes cost per 1,000 lb
Oregon DOT	Fixed, port- able scale	Roads signs, media	Yes	Selective sample	No
Benton County, Oregon	Portable scales	Road signs, newspapers, notices	No	Stop all trucks	Yes Cost Per 1,000 lb
South Dakota DOT	Fixed and portable scales	Road signs, notices mailed	No	Stop. all .trucks	Yeş cost per 1,000 lb
Washington State DOT	Portable scales	Road signs, newspapers	Yes	Selective sample	Yes
Benton County, Washington	-	Post roads	-	_	Yes cost per 1,000 lb

3.4.2 HIGHWAYS RECEIVING LOAD RESTRICTIONS

This question was concerned with defining the types of highways receiving load restrictions. Specifically, it addressed:

- (a) What functional class of highway receives load restrictions?
- (b) What are typical values for ADT and percent trucks for these highways?
- (c) What soil types are found beneath these highways?
- (d) What surface types receive load restrictions?
- (e) What are typical cross sections for the roadways receiving load restrictions?

The responses to these questions given in Table 3.5 generally indicate the following:

- (a) Load restrictions by state agencies were applied to both primary and secondary roads but mostly secondary. Few states have applied them to Interstate facilities. Local agencies generally applied load restrictions to all types of facilities.
- (b) Of those states responding, load restrictions were generally applied to roads with ADT less than 2500 and 10 percent trucks or less. Local city and county agencies applied restrictions to roads with ADT's up to 30,000 and up to 10 percent trucks.
- (c) Primarily, load restrictions were applied to pavements which had moisture susceptible silt or clay subgrades. If the agencies had granular subgrades, load restrictions were not usually required.
- (d) Load restrictions (if used) were normally applied to aggregate and/or asphalt surfaced roads. Most portland cement concrete pavements reportedly had adequate structure to withstand the critical thaw period.
- (e) The pavement cross sections to which load restrictions were applied generally ranged as follows:

	<u>Range</u>	<u>Normal</u>
Asphalt surface, in	$1-\frac{1}{2}-5$	2 - 4
Aggregate base, in	4 - 18	6 - 12

Thicker pavements apparently have sufficient strength to overcome the thaw weakening period.

3.4.3 DESIGN INFORMATION FOR ROADS RECEIVING LOAD RESTRICTIONS

This question dealt with design information such as:

- (a) Is frost protection considered in thickness design?
- (b) Are load restrictions used in lieu of full frost protection?
- (c) What is the age of pavements receiving load restrictions?
- (d) What are the typical drainage conditions of pavements receiving load restrictions?

Responses to these questions are given in Table 3.6. The results indicate:

- (a) Some of the state agencies surveyed design pavements for partial frost protection while others did not consider frost protection in design at all. Most local agencies did not consider frost protection in their design procedure.
- (b) Several of the agencies interviewed used load restrictions in lieu of designing for full frost protection.
- (c) A variety of thickness design procedures were used to determine layer thickness. The most common was the AASHTO method. Others included the Hveem method, experience and/or precedent.
- (d) The age of pavements receiving load restrictions tended to be 10 to 20 years or older. In some cases they tended to be farm-to-market kinds of roads constructed just after World War II.
- (e) Drainage conditions for pavements receiving load restrictions varied from poor to good. There appeared to be little relation between surface drainage and the need for load restrictions.

3.4.4 LOAD RESTRICTION CRITERIA

This question dealt with:

- (a) the current load limits (normal vs spring),
- (b) methods used to establish load limits,
- (c) the basis for initiating and/or removing of the load restriction, and
- (d) whether deflection measuring equipment have been used to establish load restrictions.

Table 3.7 is used to summarize the results. The significant findings include:

- (a) For most agencies normal load limits were 18,000 to 20,000 lbs on a single axle and 34,000 lbs on tandem axles.
- (b) Spring load restrictions generally ranged from 10,000 to 14,000 lbs for single axles and 18,000 to 28,000 lbs for tandem axles.
- (c) Percentage reductions were 30 to 50 percent for single axles and 18 to 47 percent for tandem axles.
- (d) Most load limits had been established from experience. Only a few agencies such as Alaska [3.1], Minnesota [3.2] and Washington DOT [3.3] had conducted extensive studies. Much of this information has already been discussed in the literature review (Chapter 2.0).
- (e) The basis for starting the load restriction varied from experience (precence of water coming through cracks/joints or pumping) to the use of deflection measurements. By far the majority of the agencies relied on the judgment (or experience) of field personnel.
- (f) Load restrictions were removed based on the judgment of field personnel, deflection measurements, or when sufficient political pressure mounted. Most agencies, however, relied on judgment or past experiences.

(g) Only three of the agencies interviewed used deflection measurements to establish load limits.

3.4.5 ENFORCEMENT METHODS

The next question dealt with enforcement methods for spring load restrictions. Specifically, it requested information to questions such as:

- (a) how load restrictions are enforced,
- (b) how vehicle operators are notified,
- (c) are overweight permits available,
- (d) what enforcement methods are used, and
- (e) are fines levied, and if so, what are they?

Table 3.8 summarizes the responses to these questions. In general, the following impressions are noted:

- (a) Both fixed and portable weigh scales were used. Some agencies relied only on patrols.
- (b) Methods used to notify vehicle operators of the load restrictions included:
 - (i) newspapers and news releases,
 - (ii) road signs,
 - (iii) detour and embargo maps,
 - (iv) radio and television.
- (c) Most of the agencies used overweight permits. Some agencies had exceptions to the load limits (e.g., school buses and/or emergency situations).
- (d) Enforcement methods used included patrol (by police) or weighing trucks (all or a selective sample).
- (e) Fines were levied by almost all agencies. The fine was normally assessed as a cost per 1000 lb.

3.4.6 LEGAL ASPECTS

The last question dealt with legal aspects of load restrictions. Specifically, the requested information related to:

- (a) the availability of local regulations addressing load restrictions,
- (b) enforcement problems with the use of load restrictions, and
- (c) legal problems associated with load restrictions.

Table 3.9 summarizes the results of this question. The significant findings are discussed below:

- (a) All agencies had regulations allowing them to initiate and enforce load restrictions.
- (b) The major problems with enforcement included:
 - (i) lack of personnel to adequately enforce the load restriction,
 - (ii) political pressure to allow truck operations, and
 - (iii) evasive tactics of truckers.
- (c) Most agencies had not experienced legal action as a result of enforcing load limits.

3.5 EVALUATION OF SURVEY RESULTS

The survey of agencies with load restrictions provided significant information in several areas including:

- (a) types of load restrictions currently used,
- (b) basis for load limits.
- (c) criteria used to initiate and remove load restrictions,
- (d) unique capabilities of local agencies, and
- (e) requirements and problems associated with enforcement.

Each of these issues are discussed in the following sections.

Table 3.9 Legal Aspects of Load Restrictions

Agency	Local Regulations	Problems with Enforcement	Legal Problems with Kestrictions
Alaska DOT	Yes	Lack of personnel	None
Idano DOT	Yes	None	None
Iowa UOT	Yes	Lack of personnel, political pressure	None
Iowa (Bremer County)	Yes	None	None
Maine DOT	Yes	Lack of personnel	None
Minnesota DOT	Yes	None	None
Minnesota (City of Maple Grove)	Yes	Illegal loads moved during the night	Yes (on specific violation)
Minnesota (Wright County)	Yes	Political pressure	None
Minnesota (Anoka County)	Yes	Agricultural loads	None
Montana DOT	Yes	Complaints from truckers	None

Table 3.9 Legal Aspects of Load Restrictions (Cont.)

	Legal Problems with Restrictions			Yes (occasional court case)	None	None	Yes (evidence using portable) scales not accepted)	None	None
Women the designation and the supplementary of the supplement to the supplementary of the sup	Problems with Enforcement	Lack of compliance by truckers	\$	None	Complaints from operators	Lack of communication with truckers, reduction of penalties by court	Difficulties in weighing with portable scales	None	Lack of personnel
poregises and extended and the second	Local Regulations	Yes	8	Yes	Yes	Yes	Yes	Yes	Yes
	Agency	New Hampshire DOT	North Dakota DOT	Nova Scotia DOT	Oregon DOT	Oregon (Benton County)	South Dakota DOT	Washington State DOT	Washington (Benton County)

3.5.1 TYPES OF LOAD RESTRICTIONS

Most agencies interviewed restricted loads on a per axle basis. Limits differed between single and tandem axles, but not with tire size (conventional vs. flotational). The load reductions were a maximum of 60 percent for single axles and 60 percent for tandem axles.

3.5.2 BASIS FOR LOAD LIMITS

Current limits were established primarily on the basis of prior experience. Only the Alaska, Minnesota and Washington DOT's reported that they used research studies to establish or verify their load limits. There appears to be a definite need to develop a more rational approach to establish load limits.

3.5.3 CRITERIA USED TO INITIATE AND REMOVE LOAD LIMITS

Most agencies surveyed indicated that they initiated limits based on judgment. This could range from evidence of water at the surface (indicating a saturated base) or signs of cracking (which is too late). Other agencies simply relied on an established date. Few agencies used deflection or weather data to establish a starting date for load limits. Clearly, there is a need for an improved method of establishing this date.

Removal of load limits was also generally based on experience. Use of deflection measurements could greatly aid in this process and should be encouraged.

3.5.4 CAPABILITIES OF LOCAL AGENCIES TO MEASURE DEFLECTIONS

Most local agencies currently do not have the equipment or personnel to measure surface deflections. Unless this changes, it would be impractical to recommend use of deflections to establish the initiation and removal of the load limits.

Personnel used to establish these critical periods have often been from the maintenance department and would have to be trained in the use and interpretation of deflection data.

3.5.5 REQUIREMENTS AND PROBLEMS WITH ENFORCEMENT

Enforcement is usually accomplished by the county sheriff or city police. Special training is not usually required to enforce load limits.

The major problem to be overcome with enforcement is to develop a proper data base to resist political pressures to waive the limits. If the amount of damage done to the roads during the critical spring period and the associated cost of early wearout could be shown, the political problems of load limits could be minimized. The development of a visual aids package to assist local engineers in this effort would be of great value. Such a package has been developed as part of this study.

CHAPTER 4.0 ANALYSIS

4.1 INTRODUCTION

At the onset of this study methods were sought in existing practice for evaluating load restrictions and timing. A survey of current practice and interviews suggested that only organizations having access to deflection testing equipment (typically Benkelman Beam or FWD) were doing investigations more rigorous than relying on experience and observation of distress. It was decided, therefore, to undertake an extensive analysis program to try to establish some guidelines for spring load restrictions.

This study addresses two distinct issues which will be treated separately in the analysis. They are:

- (a) What magnitude of load restrictions should be imposed during the critical spring thawing period?
- (b) When should load restrictions be imposed and removed?

To evaluate the load restriction magnitude, several cases of structure and load were evaluated in a pavement structural analysis. The results of the this analysis suggest when (with respect to the position of the thawing front) the pavement structure is experiencing strains or deflections in excess of those experienced in the summer reference case. The thermal analysis suggests the actual time that the thawing has proceeded to the "critical" levels as suggested by the structural analysis.

4.2 LOAD LIMITS

4.2.1 APPROACH

4.2.1.1 INTRODUCTION

The development of guidelines for the magnitude of load restrictions during spring thawing requires the following:

- (a) method of analysis,
- (b) pavement structure composition,

- (c) loads to be analyzed, and
- (d) a basis for identifying a "critical" spring condition.

4.2.1.2 ANALYTICAL PROCEDURE

Layered elastic theory has been widely applied to analyze pavement response to load. Several analysis programs exist for mainframe and micro computers. The program selected for this study was ELSYM5. This program was developed at the University of California, Berkeley, and can be used to analyze up to ten identical loads in a five layer system. It computes stresses, strains and displacements at specified points. The program assumes the material behavior is linear elastic.

It has been widely recognized that base course and subgrade materials (both coarse and fine) exhibit nonlinear elastic behavior. Since test cases are "hypothetical," representing a range of structural conditions that might be found anywhere in the frost areas of the U.S., it was not possible to identify any meaningful nonlinear relationships. In addition, in reviewing data from previous frost studies performed for the Washington State DOT [3.3], it was found that the behavior of the materials was not highly nonlinear in the ranges studied. Therefore, it is felt that a linear elastic analysis is capable of providing adequate results.

4.2.1.3 LOADING CASES

Currently, most jurisdictions, whether national, state or local, restrict loads on classes of roads according to axle loads. Based on information obtained in the interviews and a review of current practice throughout the U.S., a maximum single axle load of 20,000 lb. and a tandem axle load of 34,000 lb. were selected as reference load levels.

The ELSYM5 program models the applied loads as wheel loads with a circular configuration. It was decided by the study team that the loading was most accurately represented by selecting the maximum load and corresponding tire pressure recommended by the Tire and Rim Association for a particular tire size. Load reductions would be modelled by maintaining the contact

pressure (tire pressure) and reducing the load, thereby reducing the contact area.

Several loading cases were evaluated including:

The loads and pressures for each of these cases are shown in Table 4.1. All loading cases were analyzed for 20 and 100 percent of the maximum load to obtain load-deflection and load-strain plots.

4.2.1.4 STRUCTURE CROSS SECTION

The structure cross sections used in the study were selected to represent as well as possible the types of road construction and subgrade materials existing in the geographic region and jurisdictions of interest. Therefore, the data obtained in the interviews (such as Table 3.5 in Chapter 3.0) were weighted heavily in the selection of the structure cross section cases.

Surface courses were assumed to be either asphalt concrete (AC) or bituminous surface treatment (BST) with thicknesses ranging from two to four inches. The base course was assumed to be unstabilized aggregate varying from six to twelve inches thick. No subbases were considered. Subgrades of both coarse and fine materials were investigated. The specific cases analyzed are shown in Table 4.2.

4.2.1.4 (a) MATERIAL PROPERTIES

Several different cases of environmental conditions occur in a pavement structure annually which have an effect on the pavement structure's stiffness properties and therefore, its response. If it is desirable to restrict loads during spring when overall structural stiffness is reduced so that the strains and deflections experienced are comparable to those during the "full strength" summer case, then the stiffness properties of the summer case and various stages of spring thawing need to be modelled.

Table 4.1 Loading Cases

Case	Size (Nomial)	Tire Pressure (psi)	Tire Load (1bs)
Single Axle (Max. Load = 20,000 lb)			
a) Single Tires	16.5 - 22.5	90	9900
b) Dual Tires	10 - 22.5	100	5000
Tandem Axle (Max. Load = 34,000 lb Axle Spacing = 48")			
a) Dual Tires	10 - 22.5	100	4250

Notes: a) All tire/axle combinations will be analyzed for 20% and 100% of the maximum allowable load. The maximum allowable load was computed using 600 lb/in width of tire of the maximum axle load, whichever is the limiting criteria

b) Tire pressures used for all cases were the maximum recommended by the Tire and Rim Association. The contract area was adjusted to give the correct load.

Table 4.2 Summer Pavement Structure

Туре	Material	Thickness (in.)	Resilient Modulus (psi)
Surface	BST or ACP ACP	2 4	300,000 300,000
Base	Gravel	6 12	Base M _R = 1.5 subgrade M _R
Subgrade	Fine-grained Coarse-grained	21 2 212	7,500 40,000

For the reference condition a range of resilient properties were selected to represent the surface course, base course and subgrade. The analysis performed assumed that for the condition of a base course underlain by a weaker material, the base course resilient modulus was a function of the underlying material. The following relationship was used:

This type of relationship was originally used by Henkelom and Klomp [4.5], has been subsequently used by the Shell Oil Company [4.6] and by the Asphalt Institute [4.1] in their respective pavement design methods. The commonly used range for the modular ratio is about 1.0 to 4.0 (for this study a value of 1.5 was selected, which is in the lower end of the range).

A range of subgrade resilient moduli were selected from results of field and laboratory data and are shown in Tables 4.2 through 4.5. The values represent typical moduli for soils ranging from silty-clay to gravel [4.1, 4.7, 3.3].

The asphalt concrete and bituminous surface treatment resilient moduli are highly dependent on temperature. The resilient modulus selected for the summer case was 300,000 psi and was based on a reference temperature of 75°F [4.6]. Based on the same reference, the surface course resilient modulus during the spring thaw (temperature of 40°F) was chosen to be 1,200,000 psi.

During the early thawing period, the base course resilient modulus can be reduced substantially due to moisture conditions and undrained loading. The base course assumed during this period was either 25 or 50 percent of the reference (summer) condition. This decision was based in part on work reported by Lary, et al. [3.3], and Shook, et al. [4.1].

When thawing occurred in the subgrade, the $Mr_{subgrade}$ was assumed to be 5 to 50 percent of the reference (summer) condition. For cases where the subgrade material was frozen, the resilient modulus was assumed to be 50,000 psi.

Table 4.3 Spring Thaw Pavement Structure (Complete Thaw)

Туре	Material	Thickness (in.)	Resilient Modulus (psi)
Surface	BST or ACP ACP	2 4	1,200,000 1,200,000
Base	Gravel	6 12	Base M _R = 1.5 Subgrade M _R
Subgrade	Fine-grain	-	15,20,25% of Summer Subgrade ^M R
	Coarse-grain	-	25,30,50% of Summer Subgrade ^M R

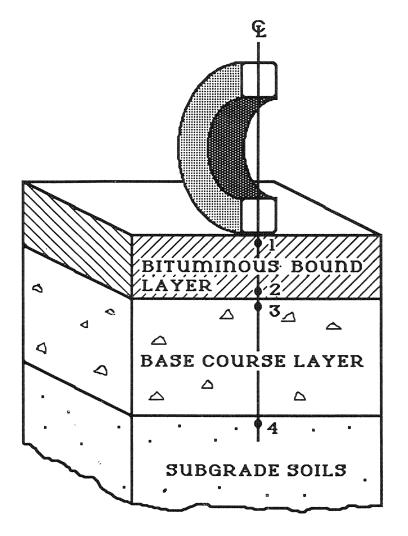
Table 4.4 Spring Thaw Pavement Structure (Thaw to Bottom of Base)

Туре	Ma	terial	Thickness (in.)	Resilient Modulus (psi)
Surface	and David Green	or ACP	2	1,200,000
		ACP	4	1,200,000
Base	G	ravel	6 12	25,50% of Summer Base ^M R
Subgrade	F	rozen	Depth of freeze minus surface, base and thawed subgrade	50,000
	Unfrozen	Fine-grain	212	7,500
	om rozen	Coarse-grain	212	40,000

Table 4.5 Spring Thaw Pavement Structure (Thaw to 4 in. Below Base)

Туре	Material	Thickness (in.)	Resilient Modulus (psi)
Surface	BST or ACP ACP	2 4	1,200,000 1,200,000
Base	Gravel	6 12	Base M _p =1.5 subgråde M _R
	Thawed fine-grain	4	5,15% of summer subgrade M _R
Subgrade	Thawed coarse-grain	4	25,50% of Summer Subgrade M _R
	Frozen fine-grain and coarse-grain	Depth of freeze minus surface, base and thawed subgrade	50,000

The cases which were analyzed during thawing included the following:


- (a) thaw to the bottom of the base course,
- (b) thaw four inches into the subgrade, and
- (c) thawing complete.

4.2.1.5 PARAMETERS CALCULATED

When a pavement fatigue analysis is performed, two strain parameters are used. These parameters are the tensile strain at the bottom of the surface course (ε _t) and the vertical strain at the top of the subgrade ($\varepsilon_{\rm VS}$). Another parameter typically considered as well is the maximum pavement surface deflection. In addition to these widely used damage indicators some researchers (Stubstad and Conner [2.21] and Lary, et al. [2.22]) have found that the vertical strain at the top of the base course ($\varepsilon_{\rm Vb}$) was also an indicator of distress due to a weakened condition. As a result, for this study, all of these parameters were considered as potential indicators of excessive load. Therefore, an increase in any one of these parameters above the reference level (summer condition) constituted a required reduction in the load level sufficient to maintain these parameters at levels comparable to the reference (or summer) conditions. The locations of these parameters are shown in Figure 4.1.

Once the ELSYM5 deflections and strains were calculated, the determination of the spring load which caused the same damage as the maximum legal allowable load during the summer could be computed. This can be illustrated using a plot such as the one shown in Figure 4.2. The plot was constructed as follows:

- (a) Surface deflection (δ), ϵ t, ϵ vb, and ϵ vs were plotted for two loads used in the spring analysis (hence spring thaw material properties), and load-deflection and load-strain lines were drawn through these points. The load levels used in the analysis were 20 and 100 percent of the legal maximum.
- (b) This was done for different structural profiles and material combinations.

- 1 PAVEMENT SURFACE DEFLECTION
- 2 HORIZONTAL STRAIN AT BOTTOM OF BITUMINOUS LAYER
- 3 VERTICAL STRAIN AT TOP OF BASE COURSE
- 4 VERTICAL STRAIN AT TOP OF SUBGRADE

Figure 4.1 Pavement Response Locations Used in Evaluating Load Restrictions

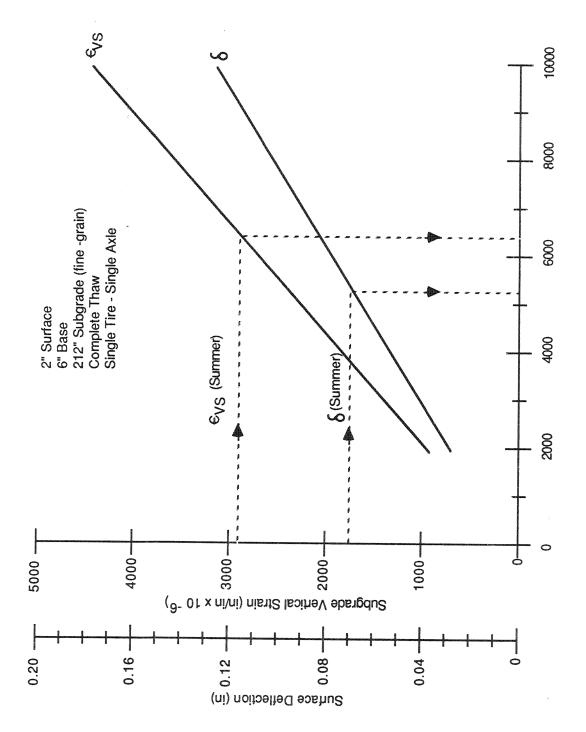


Figure 4.2 Graphical Illustration of the Determination of Allowable Load During Spring Thaw Period

Tire Load (lbs)

The next step was to determine the spring load which would result in the same deflections and strains as the summer case. This was accomplished by entering the plot on the vertical axis with the summer deflection, or any summer strain value. A horizontal line was then drawn across to intersect the appropriate load-deflection or load-strain line. At the intersection a vertical line was drawn down to intersect the horizontal or tire load axis. These values were the tire loads which would result in the same deflection and strains as obtained during the summer under the maximum allowable loading. From these values, the percentage reduction in summer load required to maintain the same strains and deflections were computed.

4.2.1.6 SENSITIVITY ANALYSIS

A sensitivity analysis was carried out to test how the magnitude of load reduction varied with some variation in the input parameters. To do this first the pavement surface modular ratio ($M_{\rm r}$ spring/ $M_{\rm r}$ summer) was varied from 1.25 to 3.75. The second item tested was the magnitude of the subgrade strength reduction during the spring thaw. The percentage reduction in resilient modulus was varied from 70, 80 and 85 percent for fine-grained soils, and 50, 70 and 75 percent for coarse-grained soils.

The results of the sensitivity analysis showed that:

- (a) Load reduction during spring thaw is more sensitive to changes in subgrade than pavement surface modulus.
- (b) The subgrade strength reduction of 75 percent for fine grained soils resulted in a reasonable values for spring load reductions when compared to current practice. The corresponding values for coarse grained soils was found to be 50 percent.

4.2.2 STRUCTURAL ANALYSIS RESULTS

The summary of the results of the structural analysis are shown in Tables 4.6 through 4.12 for all cases considered. The thawing cases include: complete thaw, partial thaw to the bottom of the base course, and partial thaw four inches into the subgrade (i.e., four inches below the bottom of the

Percent Load Reduction for Complete Thaw - Fine-grained Soils -Single Axle - 75 Percent Reduction in Subgrade Resilient Modulus Table 4.6

Pavement	int ins				Load Reduct	Load Reduction (Percent)		PRI VOTETTO VOLD RECONSTRUCTURA GALANCINGO	
Section	ion	Single Tire	Single Tire ^(a) - Pavement Response Criteria	ıt Response	. Criteria	Dual Tire ^(b)) - Pavement Response Criteria	Response	Criteria
Surface Thick- ness (in.)		Base Pavement Thick- Surface ness Maximum (in.) Deflection	Bituminous Tensile Strain	Base Vertical Strain	Subgrade Vertical Strain	Pavement Surface Maximum Deflection	Bituminous Tensile Strain	Base Vertical Strain	Subgrade Vertical Strain
2	9	46	NR	13	31	53	NR	6	45
	12	47	NR	91	20	54	N N	12	22
4	9	21	NR	N.	NR	27	NR	NR	ಬ
	12	23	X X	N.	22	29	ž	£	က

Notes: (a) Single tire

Tire size: 16,5 - 22.5
Maximum legal tire load: 9,900 lb.
Tire pressure: 90 psi

9,900 lb. Maximun

(b) Dual tires

Tire size: 10 - 22.5 Maximum legal load per tire = 5,000 lb. Tire pressure: 100 psi

(c) NR = No Reduction

Percent Load Reduction for Complete Thaw - Coarse-grained Soils - Single Axle - 50 Percent Reduction in Subgrade Resilient Modulus Table 4.7

NP NP 23
NR NR 19 24

9,900 lb. Single tire Tire size: 16.5 - 22.5 Maximum legal tire load: 9 Tire pressure: 90 psi (a) Notes:

Dual tires Tire size: 10 - 22.5 Maximum legal load per tire = 5,000 lb. Tire pressure: 100 psi

(P)

NR = No Reduction (၁)

Table 4.8 Percent Load Reduction for Complete Thaw - Dual Tire-Tandem Axle^(C)

			p=1000000000000000000000000000000000000			
		Subgrade Vertical Strain	7	42	m	24
	oil(b) Sriteria	Base Vertical Strain	X.		S. S.	X.
	Coarse-grained Soil ^(b) Pavement Response Criteria	Bituminous Tensile Strain	NR	NR	R	A.
Load Reduction (Percent)	Соал Раvеше	Pavement Surface Maximum Deflection	46	39	Parama Baranca	22
Load Reduct	ia	Subgrade Vertical Strain	45	56	13	39
	1 Soil(a) 1se Criter	Base Vertical Strain	51	53	5.	7
	Fine-grained Soil ^(a) Pavement Response Criteria	Bituminous Tensile Strain	X.	X X	X	NR
	d	Pavement Surface Maximum Deflection	63	52	29	33
± .	on	Base Thick- ness (in.)	9	12	9	2
Pavement	Section	Surface Thick- ness (in.)	2		4	

Notes: (a) Fine-grained soil (b) Coar
75 percent reduction in 50 p
resilient modulus in r
(relative to summer (rel

Coarse-grained soil (c) Dua 50 percent reduction in resilient modulus max (relative to summer tir condition)

Dual tire tandem axle tire size: 10 - 22.5 maximum legal load per tire: 4,250 lb. Tire pressure: 100 psi

(d) NR = No Reduction

Table 4.9 Percent Load Reduction for Thaw to Bottom of Base Course-fine-grained Soil - Single Axle - 75 Percent Reduction in Base Course Resilient Modulus

Pavement C+mic+ins]	int maj				Load Reduct	Load Reduction (Percent)			
Section	on	Single Tire	Single Tire ^(a) - Pavement Response Criteria	nt Response	. Criteria	Dual Tire ^{(b}	Dual Tire ^(b) - Pavement Response Criteria	Response	Criteria
Surface Thick- ness (in.)	Base Thick- ness (in.)	Pavement Surface Maximum Deflection	Bituminous Tensile Strain	Base Vertical Strain	Subgrade Vertical Strain	Pavement Surface Maximum Deflection	Bituminous Tensile Strain	Base Vertical Strain	Subgrade Vertical Strain
2	9	NR	NR	37	NR	NE	NE	N. N.	NE
	12	NR	NR	24	NR	R	뷤	NE	Ä
4	9	æ	N.	۷١	NR	NE NE	m K	뷜	M Z
	12	×	NR	ž	Ä.	Ä	Æ	Ä	Ä

Notes: (a) Single tire Tire size: 16.5 - 22.5 Maximum legal tire load: 9,900 lb. Tire pressure: 90 psi

Dual tires

Tire size: 10 - 22.5

Maximum legal load per tire = 5,000 lb.
Tire pressure: 100 psi

(d) Not Evaluated

NR = No Reduction

(c)

Percent Load Reduction for Thaw to Bottom of Base Course - Coarse-grained Soil - Single Axle - 50 Percent Reduction in Base Course Resilient Modulus Table 4.10

child Constraint Services						
	Criteria	Subgrade Vertical Strain	W.	ž	A.	ž
COLLEGE PRODUCTION COLLEGE PRODU	Response	Base Subgrade Vertical Vertical Strain Strain	6	œ	æ	×
) - Pavement Response Criteria	Bituminous Tensile Strain	NR	NR	NR	æ
Load Keduction (Percent)	Dual Tire ^(b)	Pavement Surface Maximum Deflection	8	24	NR	ന
Load Reduct	re ^(a) - Pavement Response Criteria	Subgrade Vertical Strain	NR	N W	NR	N.
A manufactura de la composição de la com		Base Vertical Strain	39	38	NR	X X
		Bituminous Tensile Strain	57	99	NR	NR
	Single Tire ^(a)	Pavement Surface Maximum Deflection		18	NR	N.
in raj	- u	Base Thick- ness (in.)	9	2	9	12
Pavement	Section	Surface Thick- ness (in.)	2		4	

Single tire Tire size: 16.5 - 22.5 Maximum legal tire load: 9,900 lb. Tire pressure: 90 psi Notes: (a)

(P)

Dual tires

Tire size: 10 - 22.5

Maximum legal load per tire = 5,000 lb.
Tire pressure: 100 psi

(c) NR = No Reduction

Table 4.11 Percent Load Reduction for Partial Thaw (4 in. below bottom of base) - Single Tire - Single Axle

		T 2:		-		
AND COLUMN ACCORDING TO THE PARTY OF THE PAR	P	Subgrade Vertical Strain	33	39	NR	71
	Soil(b) e Criteri	Base Vertical Strain	38	38	NR	Š
	Coarse-grained Soil(b) Pavement Response Criteria	Bituminous Tensile Strain	62	99	NR	N.
Load Reduction (Percent)	Pav	Pavement Surface Maximum Deflection	34	41	23	30
Load Reduct	Ď.	Subgrade Vertical Strain	55	64	32	42
	Soil(a) nse Criter	Base Vertical Strain	45	39	25	12
THE PROPERTY CONTRACTOR OF THE PROPERTY OF THE	Fine-grained Soil(a) Pavement Response Criteria	Bituminous Tensile Strain	N.	R	NR	æ
······································	d	Pavement Surface Maximum Deflection	13	36	NR	2
יי זיי	uo	Base Thick- ness (in.)	9	12	9	12
Pavement	Section	Surface Thick- ness (in.)	2		4	

Notes: (a) Fine-grained soil
85 percent reduction in
resilient modulus
(relative to summer
condition)
(d) NR = No Reduction

Single tire
Tire size: 16.5 - 22.5
Maximum legal load:
9,900 lb.
Tire pressure 90 psi

(၁)

Percent Load Reduction for Partial Thaw (4 in. below bottom of base) - Dual Tire - Single Axle Table 4.12

							E v
majaw Opania a majaw III a majaw II a majaw I	rs	Subgrade Vertical Strain	58	39	7	23	Dual Tires Tire size: 10-22.5 Maximum legal load per tire = 5,000 lb Tire pressure = 100 psi Pavement response taken under inside tire duals
	Soil(b) e Criteri	Base Vertical Strain	80	∞	NR	NR	Dual Tires Tire size: 10-22.5 Maximum legal load tire = 5,000 lb Tire pressure = 100 Pavement response t under inside tire d
	Coarse-grained Soil(b) Pavement Response Criteria	Bituminous Tensile Strain	NR	N N	NR	NR	(c)
Load Reduction (Percent)	Cc	Pavement Surface Maximum Deflection	NR	ω	NR	NR	Coarse-grained soil 50 percent reduction in resilient modulus (relative to summer condition)
Load Reduct		Subgrade Vertical Strain	57	99	41	25	
	Soil(a) 1se Criter	Base Vertical Strain	42	37	33	21	(q)
	Fine-grained Soil(a) Pavement Response Criteria	Bítuminous Tensile Strain	NR	NR	NR	NR	Fine-grained soil 85 percent reduction in resilient modulus (relative to summer condition)
	a .	Pavement Surface Maximum Deflection	p	31	NR	NR	
، د ب	on On	Base Thick- ness (in.)	9	12	9	12	(a) :se: (a)
Pavement	Section	Surface Thick- ness (in.)	2		4		Notes:

base). The results are also shown by the three tire and axle configurations used: single tire-single axle, dual tire-single axle and dual tire-tandem axle.

4.2.2.1 DISCUSSION OF RESULTS

4.2.2.1 (a) MAGNITUDE OF LOAD REDUCTION

As shown in Tables 4.6 through 4.12, the magnitude of load restriction varies with both pavement structure and load response parameter (deflection and strain). The calculated load reductions (for those cases which require a reduction) ranged from a low of 1 percent to a high of 69 percent. For all cases, the surface deflection and vertical subgrade strain provided the most consistent load reduction values (for the assumed conditions). strain (bottom of surface course) and vertical strain at the top of the subgrade criteria resulted in the largest reductions in load. An average load reduction of 34 percent results for the complete thaw and partial subgrade thaw cases for fine and coarse-grain soils for the subgrade vertical strain criterion (includes both two and four inch thick surface courses). For the same conditions but for two inch thick surface courses only, the average load reduction increases to 45 percent. The corresponding value for four inch thick surface courses is 21 percent. An average load reduction of 39 percent results for the complete thaw and partial subgrade thaw cases for fine-grained soil and both thickness levels of surface course (based on the subgrade vertical strain criterion as before). For the same conditions but for two and four inch thick surface courses, the average load reduction is 52 and and 25 percent, respectively.

Thus, for fine-grained soils (which are the kinds of soils which generally necessitate the need for load restrictions), a load reduction of about 50 percent is needed for thin surfaced bituminous pavements. The benefit of thicker surface courses (or stabilized pavement layers in general) is illustrated for the four inch thick surface course. For the fine-grain subgrade case, a load reduction of about 25 percent is needed (or one-half the load reduction amount needed for the two inch thick surface course).

4.2.2.1 (b) TIRE CONFIGURATION

From the data in Tables 4.6 though 4.12, there are no significant differences in reductions for single and dual tires. For both fine and coarse-grained soils in the complete thaw case, the dual tire configuration results in slightly higher reductions than the single tire. The dual tandem configuration results in about the same range of load reductions; although, the deflections and strain levels are lower than the single and dual tire single axle cases. The maximum strain values for the dual tandem configuration generally occurred between the dual tires.

4.2.2.1 (c) CONSEQUENCE OF MAINTAINING LOADS

An evaluation of the consequences of maintaining the maximum summer loads during the spring was performed. This was done by examining criteria generally accepted as indicators of pavement distress. These are the maximum tensile strain at the bottom of the bituminous bound layer (fatigue cracking) and the vertical strain at the top of the subgrade (rutting). The Asphalt Institute criteria, as used in MS-1 [4.1], have been used to determine the number of load applications to failure for any given strain. The results are shown in Tables 4.13 through 4.20 for prediction of loads to failure for complete thaw, thaw to bottom of base and thaw four inches below the bottom of the base.

The predicted loads to failure for the load cases evaluated are relatively low for the fine-grained subgrade cases (both summer and spring conditions). This is in part due to the cross sections selected for evaluation but primarily he material properties (the principal material property being resilient modulus). The negative percent change in the loads to failure (summer to spring) is consistently high for the two inch thick surface course cases. For the four inch thick surface course, occasionally the spring condition (with the higher stiffness surface course) results in a positive change in the estimated loads to failure (i.e., longer pavement life).

Change in Pavement Life - Single Tire - Single Axle - Tensile Strain Bottom of bituminous Bound Layer - Complete Thaw (a) (b) Table 4.13

	Percent	Loads to Failure	-94%	-94%	-34%	-37%
d Soil	Spring ^(c)	Loads to Failure	128,600	152,900	624,600	705,900
Coarse-grained Soil	Sp	Strain (in/in x 10 ⁻⁶	312	296	193	186
Coar	Summer	Loads to Failure	2.1x10 ⁶	2.5x10 ⁶	956,100	1.1X10 ⁶
Andreas regional and another section and the s	Sum	Strain (in/in x 10 ⁻⁶	190	182	243	232
	Percent	Loads Loads to Failure	-64%	%99-	+97%	+84%
1 Soil	Spring(c)	Loads to Failure	3,900	4,400	72,100	76,700
Fine-grained Soil	Spr	Strain (in/in x 10 ⁻⁶	905	870	372	365
Fi	Summer	Loads to Failure	10,800	12,900	36,600	41,800
	Sum	Strain (in/in x 10 ⁻⁶)	950	868	655	629
ment	Section	Base Thick- ness (in.)	9	12	9	12
Pave	Sect	Surface Base Thick- Thick- ness ness (in.) (in.)	2		4	

Notes: (a) Equation for estimating number of logds to cause up to $^{10\%}_{RR}$ cracking in the wheel path: log N $_{\rm f}$ = 15.947 -3.291 log ($^{-t}_{10}$) - 0.854 log ($^{-R}_{10}$)

(b) Single tire - single axle: Load = 9,900 lb. Tire pressure = 90 psi

(c) Spring case for complete thaw(i) Fine-grain: 75% reduction in subgrade resilient modulus(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

Change in Pavement Life - Single Tire - Single Axle - Subgrade Vertical Strain Criterion - Complete Thaw(a)(b) Table 4.14

Pave	ment		Ē	Fine-grained Soil	1 Soil		Angure rannyamenta departmenta referenta rannya	Coar	Coarse-grained Soil	d Soil	
Sect	Section	Sum	Summer	Spr	Spring(c)	Percent	Sum	Summer	Spi	Spring ^(c)	Percent
Surface Base Thick-ness ness (in.)	Base Thick- ness (in.)	Strain (in/in x 10 ⁻⁶)	Loads to Failure	Strain (in/in. x 10 ⁻⁶)	Loads to Failure	Change Loads to Failure	Strain (in/in x 10-6)	Load to Failu	Strain Loads (in/in) to x 10^{-6} Failur	S Strain Loads (in/in to $x = x = 10^{-6}$) Failure	Change Loads to Failure
	9	3,120	230	4,482	45	-80%	755	1.3X10 ⁵	1,060	1,060 2.9X10 ⁴	-78%
2	12	1,670	3,810	3,330	172	%56-	368	3.4X10 ⁶	265	592 0.4x10 ⁶	880
V	9	1,570	5,020	1,480	1,480 6,540	+30%	200	8.5X10 ⁵	497	497 0.9X10 ⁶	
4	12	1,000	37,960	1,290	1,290 12,120	-68%	270	1.3X10'	334	334 5.2X10°	%09-

Notes: (a) Equation for estimating number of loads to cases a 0.75 in. rut: $N_f = 1.077 \times 10^{18} (\frac{1}{c})^4.4843$

(b) Single tire - single axle: Load = 9,900 lb Tire pressure = 90 psi

(c) Spring case for complete thaw(i) Fine-grain: 75% reduction in subgrade resilient modulus(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

Change in Pavement Life - Single Tire - Single Axle - Tensile Strain Bottom of Bituminous Bound Layer - Thaw to Bottom of Base Course(a)(b) Table 4.15

Pave	ment		Fi	Fine-grained Soil	d Soil			Coars	Coarse-grained Soil	d Soil	
Sect	Section	Summer	mer	Spr	Spring(c)		Sum	Summer	Spi	Spring ^(c)	,
Surface Thick- ness (in.)	Surface Base Fhick- Thick- ness ness (in.) (in.)	Strain (in/in XlO-6)	Loads to Failure	Strain (in/in X10-6)	Loads to Failure	Loads Change to Loads Failure to Failure	Strain (in/in X10-6)	Loads to Failure	Strain Loads (in/in to X10-6) Failure	Loads to Failure	Loads Change to Loads Failure to Failure
2	9	950	10,800	641	12,020	+ 11%	190	2.1X10 ⁶	274	197,130	-91%
	12	899	12,900	742	7,430	- 42%	182	2.5X10 ⁶	286	171,190	-93%
4	9	655	36,600	270	206,900	+465%	243	956,000	170	948,360	96
	12	629	41,800	301	144,680	+246%	232	1.1X10 ⁶	176	846,050	-23%

Notes: (a) Equation for estimating number of loads to cause up to 10% cracking in the wheelpath:

log $N_f = 15.947 - 3.291$ log $(\frac{\epsilon_\xi}{10^-6})$ -0.854 log $(\frac{M_R}{10^3})$

(b) Single tire - single axle: Load = 9,900 lb Tire pressure = 90 psi

(c) Spring case for thaw to bottom of base(i) Fine-grain: 75% reduction in base resilient modulus(ii) Coarse-grain: 50% reduction in base resilient modulus

Change in Pavement Life - Single Tire - Single Axle -Tensile Strain Bottom of Bituminous Bound Layer -Thaw 4 in. Below Bottom of Base(a)(b) Table 4.16

-	*****		4	ggassam markens	***************************************	and the same of th
NATIONAL SERVICE SERVI		Loads Change to Loads Failure to Failure	-93%	-93%	-15%	-27%
d Soil	Spring(c)	Loads to Failure	161,700	167,300	815,170	800,280
Coarse-grained Soil	dS	Strain in/in X10-6)	291	288	178	179
Coar	Summer	Loads to Failure	2.1X10 ⁶	2.5x10 ⁶	956,100	1.1x10 ⁶
,	Sum	Strain (in/in X10-6)	190	182	243	232
and greatery during		Loads Change to Loads Failure to Failure	- 51%	- 68%	+233%	+125%
1 Soil	Fine-grained Soil Spring(c)	Loads to Failure	5,260	4,080	122,000	94,130
ne-graine		Strain (in/in X10-6)	824	890	317	343
Ţ.	Summer	Loads to Failure	10,800	12,900	36,600	41,800
	Sum	Strain (in/in X10-6)	950	899	655	629
avement	Section	Base Thick- ness (in.)	9	12	9	12
Pave	Sect	Surface Thick- ness (in.)	2		4	

Notes: (a) Equation for estimating number of loads to cause up to 10% cracking in the wheel path: $\log N_f = 15.947 = 3.291 \log \left(\frac{\epsilon}{10^-6}\right) -0.854 \log \left(\frac{R}{10^3}\right)$

g
$$N_f = 15.947 = 3.291 \log \left(\frac{\epsilon t}{10.6}\right) -0.854 \log \left(\frac{R}{10.3}\right)$$

(b) Single tire - single axle: Load = 9,900 lb. Tire pressure = 90 psi

(c) Spring case for complete thaw(i) Fine-grain: 85% reduction in subgrade resilient modulus(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

Change in Pavement Life - Single Tire -Single Axle - Subgrade Vertical Strain Criterion - Thaw 4 in. Below Bottom of Base(a)(b) Table 4.17

lane and the same	_				***************************************	
		Percent Change Loads to Failure	-78%	-88%	+ 2%	55%
d Soil	Spring(c)	Loads to Failure	28,500	413,820	865,030	5.9X10 ⁶
Coarse-grained Soil	Sp	Strain in/in X10-6)	1,066	587	498	325
Coar	Summer	Loads to Failure	1.3X10 ⁵	3.4X10 ⁶	8.5X10 ⁵	1.3X10 ⁷
And the Control of th	Sum	Strain (in/in X10-6)	755	368	200	270
		Loads Change to Loads Failure	-97%	%66-	-83%	-92%
d Soil	Spring(c)	Loads to Failure	8	43	870	2,910
Fine-grained Soil	Spr	Strain (in/in X10-6)	6,532	4,534	2,323	1,773
Ë	Summer	Loads to Failure	230	3,810	5,020	37,960
	Sum	Strain (in/in X10-6)	3,120	1,670	1,570	1,000
ment	Section	Surface Base Thick- Thick- ness ness (in.) (in.)	9	12	9	12
Pave	Sect	Surface Thick- ness (in.)	2		4	

Notes: (a) Equation for estimating number of loads to cause a 0.75 in. rut: $N_f = 1.077 \times 10^{18} (\frac{1}{\epsilon_{VS}})$ (b) Simple time - eincle also simple - ein

Single tire - single axle: Load = 9,900 lb. Tire pressure = 90 psi

(q)

(c) Spring case for complete thaw(i) Fine-grain: 85% reduction in subgrade resilient modulus(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

Change in Pavement Life - Dual Tire - Single Axle - Subgrade Vertical Strain Criterion - Complete Thaw(a)(b)(d) Table 4.18

. Coarse-grained Soil	Summer Spring ^(C)	Strain Loads Strain Loads Change (in/in to X10-6) Failure (in/in to Loads	438 1.5X10 ⁶ 742 144,700 -90%	284 1.1X10 ⁷ 489 938,700 -91%	352 4.1X10 ⁶ 409 2.1X10 ⁶ -49%	224 3.1X10 ⁷ 300 8.4X10 ⁶ -73%
umphrosenee den co		Loads Change to Loads X	-63%	%26	-19%	-14%
1 Soil	Spring ^(C)	Loads to Failure	66	270	099,6	15,000
Fine-grained Soil	Spr	Strain (in/in X10-6)	3,766	3,015	1,357	1,230 15,000
Ĺ	Summer	Loads to Failure	1,360	6,560	1,295 11,910	1,190 17,400
	Sum	Strain (in/in X10-6)	12,101	1,360	1,295	1,190
ment	Section	Base Thick- ness (in.)	9	12	9	12
Pave	Sect	Surface Thick- ness (in.)	2		4	

(a) Equation for estimating number of loads to cause a 0.75 in. rut: $N_f = 1.077 \times 10^{18} \left(\frac{1}{\epsilon_{vs}}\right)^{4.4843}$ Notes:

(b) Dual tire - single axle: Load = 5,000 lb Tire pressure = 100 psi

(c)

Spring case for complete thaw
(i) Fine-grain 75% reduction in subgrade resilient modulus
(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

(d) Strain response between dual tires

Change in Pavement Life - Dual Tire - Single Axle - Subgrade Vertical Stain Criterion - Thaw 4 in. Below Bottom of Base(a)(b)(d) Table 4.19

·						
		Loads Change to Loads Failure to Failure	*9/-	#68 -	-24%	%69
d Soil	Spring ^(c)		179,710	1.7X10 ⁶	3.4X10 ⁶	1.5x10 ⁷
Coarse-grained Soil	Sp	Strain in/in X10-6)	707	426	368	262
1	mer .	Loads to Failure	7.6X10 ⁵	1.6x107	4.5X10 ⁶	4.9X10 ⁷
Summer		Strain (in/in X10-6)	513	260	344	202
		Loads Change to Loads Failure	-98%	%66-	-91%	-72%
Soil	Spring(c)	Loads to Failure	53	95	1,710	5,840
Fine-grained Soil	Spr	Strain (in/in X10-6)	4,983	3,800	1,996	1,518
		Loads to Failure	1,350	15,680	18,990	20,520
Summer		Strain (in/in X10-6)	2,105	1,218	1,167	1,147
ment	Section	Surface Base Thick- Thick- ness ness (in.) (in.)	9	12	9	12
Paver	Sect	Surface Thick- ness (in.)	2		4	

(a) Equation for estimating number of loads to cause a 0.75 in.rut: $N_f = 1.077 \times 10^{18} \left(\frac{1}{\epsilon_{vs}}\right)^{4.4843}$ Notes:

(b) Dual tire - single axle: Load = 5,000 lb Tire pressure = 100 psi

(c) Spring case for complete thaw(i) Fine-grain: 85% reduction in subgrade resilient modulus(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

(d) Strain response beneath inside tire of dual set

Change in Pavement Life - Dual Tire -Tandem Axle - Subgrade Vertical Strain Criterion - Complete Thaw(a)(b)(d) Table 4.20

Pave	ment		ű.	Fine-grained Soil	d Soil		,	Coars	Coarse-grained Soil	d Soil	
Sect	Section	Sum	Summer	Spr	Spring(c)		Sum	Summer	Sp	Spring ^(c)	
Surface Thick- ness (in.)	Base Thick- ness (in.)	Strain (in/in X10-6)	Loads to Failure	Strain (in/in X10-6)	Loads to Failure	Percent Change Loads to Failure	Strain (in/in X10-6)	Loads to Failure	Strain in/in X10-6)	Loads to Failure	Loads Change to Loads Failure to Failure
2	9	1,780	2,860	3,227	200	93%	370	3.3X10 ⁶	629	303,550	-91%
	12	1,150	20,280	2,531	540	-97%	240	2.3X10 ⁷	412	412 2.0x10 ⁶	% 6-
4	9	1,058	29,480	1,213	15,970	-46%	297	8.8X10 ⁶	341	341 4.7x10 ⁶	-47%
	12	0/9	670 228,690	1,056	29,730	-87%	190	6.5%107	250	1.9x10 ⁷	-71%
NAME OF THE OWNER		· · · · · · · · · · · · · · · · · · ·	-		- Constitution of the Cons	Ten and a second		de la constante de la constant		1 A ARA	***************************************

Notes: (a) Equation for estimating number of loads to cause a 0.75 in.rut: $N_{\rm f}=1.077{\rm X}10^{18}\,(\frac{1}{{\rm c}})^{4.4843}$

(b) Dual tire - tandem axle: Load = 4,250 lb.Tire pressure = 100 psi

(c)

Spring case for complete thaw
(i) Fine-grain: 75% reduction in subgrade resilient modulus
(ii) Coarse-grain: 50% reduction in subgrade resilient modulus

(d) Strain response between one set of dual tires (with exception of 4/12 fine-grain case where strain response directly under inside tire)

4.2.3 STRUCTURAL ANALYSIS SUMMARY

The following summary statements are warranted:

- (a) The range of magnitudes for spring load reductions depends on the subgrade soil type and the thickness of the pavement surface and base layers.
- (b) The allowable loads during the spring thaw period were based on the assumption that critical pavement response parameters (such as deflection and strain) should not exceed those estimated for summer conditions. The load reduction needed for fine-grain subgrades was about 50 percent and approximately one-half that amount for coarsegrained subgrades.
- (c) The maximum pavement surface deflection and the vertical strain on top of the subgrade were load response parameters that consistently necessitated load reductions over the range of cases considered.

4.3 TIMING LOAD LIMITS

4.3.1 APPROACH

In order to perform a realistic ground thermal analysis for climate conditions where ground freezing occurs, the following capabilities must be present in a heat transfer model:

- (a) the ability to include latent heat effects,
- (b) the ability to analyze a transient problem, and
- (c) the ability to include energy fluxes (i.e., energy changes) at the surface due to radiant and convective heat transfer.

The finite element program TDHC, developed at the University of Alaska-Fairbanks (Goering and Zarling [2.47]), was selected for the thermal analysis in this study. The program is capable of performing a transient, two-dimensional heat transfer analysis. Latent heat is modelled using a Dirac Delta function in the heat capacitance matrix. Surface temperatures may be input as a sinusoidally varying function. Convective heat transfer can be included

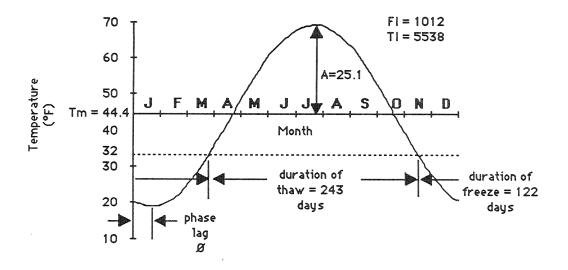
for a sinusoidally varying fluid temperature. Radiant heat can be included as a surface heat flux.

4.3.2 THERMAL DATA REQUIRED FOR INPUT

In order to identify the surface temperature function, the mean annual and monthly average temperatures were obtained for 60 locations in frost areas in the United States (excluding Alaska) from Cinquemani et al. [4.2]. Harmonic temperature functions for all locations were obtained by equating the area under the discontinuous monthly temperature function to the area under a sine curve (Figure 4.3). Once the equivalent sine curve was defined, the amplitude of temperature variation, the phase lag with respect to January 1, the freezing and thawing indices and the duration of the freezing and thawing periods were obtained (Table 4.21). The results from all 60 locations were combined into seven cases of freezing conditions ranging from 400 to 2000°F-days, as shown in Table 4.22.

Fixed temperature boundary conditions were required to perform the analysis. In order to identify a fixed temperature at some depth in the ground, the geothermal gradient as well as the depth where surface temperature oscillation effects become negligible were required. Many values have been reported in the literature for the geothermal gradient (see Lunardini, [2.35]) ranging from 0.00309 to 0.031°F/ft. A value of 0.02°F/ft. was selected for this study.

The depth at which the ground temperature oscillates less than one percent of the surface temperature oscillation in a homogeneous material can be found from the following:


$$\frac{T - T_m}{T_a} = e^{-2\pi} \left(\frac{x}{2\sqrt{\pi D\alpha}} \right)$$

where:

T = ground temperature,

T_m = mean annual surface temperature,

 T_a = amplitude of temperature variation,

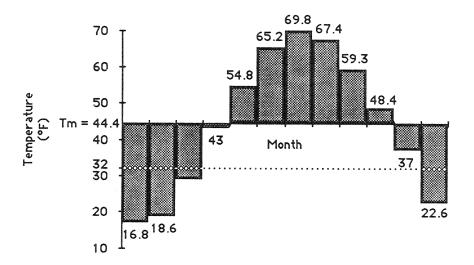


Figure 4.3 Area Under Discontinuous Temperature Function Equated to Area Sinusoidal Temperature Function for Burlington, Vermont

Table 4.21 Temperature Function Data

Start of Thaw		12-Mar
Thawing Index (°F-days)	6576 7230 6862 5904 6771 6845 6631 6841 6841 6300 4402 4328 4328 5622 5895 4370 4793 5234 6008	2008
Phase Lag (days)	13 13 13 14 15 15 16 17 17 18 18 18 18 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	14
Amplitude of Temp. Variation (°F)	23.0 26.7 26.7 27.7 27.7 27.7 27.7 27.7 23.3 23.3 23	- 1
Mean Annual Temp. (°F)	49.1 44.9 46.3 46.3 46.3 46.3 46.3 46.3 46.3 46.3	
Duration of Freeze (days)	85 102 108 101 101 102 83 83 83 115 116 1165 117 1188 1133 1188 1188 1188	C
Freezing Index (°F-days)	335 368 657 1232 785 533 339 486 312 339 674 1127 308 559 559 533 1482 835 1999 676 1267 730 956	35.
Location	Hartford CONN Burlington IA DesMoines IA Mason City IA Sioux City IA Pocatello ID Chicago ILL Moline ILL Fort Wayne IND South Bend IND Caribou ME Alpena MI Detroit MI Flint MI Ste. Ma MI Traverse City MI Duluth MN Int'l Falls MN Minn St. Paul MN Rochester MN Billings MT Cut Bank MT Cut Bank MT Great Falls MT Helena MT Great Falls MT Helena MT Lewiston MT Missoula MT Missoula MT	ו אוומן כא

Table 4.21 Temperature Function Data (Cont.)

Start of Thaw	24-Mar 27-Mar 03-Mar 03-Mar 10-Mar 11-Mar 12-Mar 06-Mar 17-Mar 16-Mar 15-Mar 16-Mar 18-Mar 17-Mar
Thawing Index (°F-days)	5338 5315 4964 7121 6930 6641 6641 6641 6256 5732 6020 5184 6259 6310 6403 6403 6403 6403 6521 6671 6786 6788
Phase Lag (days)	122 122 123 125 125 125 125 125 125 125 125 125 125
Amplitude of Temp Variation (°F)	29.7 28.9 26.9 26.9 22.2 23.2 23.2 23.2 25.3 25.3 25.3 25.3
Mean Annual Temp (°F)	41.4 40.8 40.1.1 40.1.2 40.1.2 40.1.3
Duration of Freeze (days)	145 149 100 100 101 127 129 129 128 128 128 136 119
Freezing Index (°F-days)	1907 2103 2007 5103 579 582 582 582 582 582 622 723 4433 308 411 1295 1295 1295 1012 1012 1026 1045 850 615
Location	Fargo ND Minot ND Grand Island NEB North Omaha NEB North Platte NEB Scottsbluff NEB Concord NH Albany NY Binghamton NY Buffalo NY Massena NY Rochester NY Syracuse NY Toledo OH Youngstown OH Burns ORE Erie PA Huron SD Pierre SD Rapid City SD Sioux Falls SD Burlington VT Eau Claire WIS Green Bay WIS La Crosse WIS Madison WIS Casper WYO Cheyenne WYO

Table 4.22 Freezing Index Cases for Thermal Analysis

Start of Thaw	03-Mar 06-Mar 14-Mar 20-Mar 23-Mar 23-Mar
Duration of Thaw (days)	275 269 253 241 235 229 215
Duration of Freeze (days)	90 96 112 124 130 136
Phase Lag (days)	8 8 8 8 5 5 E E
Amplitude (°F)	23.8 24.0 24.1 24.6 26.9 27.1
Mean An: Jal Temperature (°F)	49.0 48.2 45.6 44.1 42.5 40.0
Freezing Index (°F-days)	400 500 750 1000 1250 2000

x = depth,

p = period of oscillation, and

 α = thermal diffusivity.

When the quantity $x/2\sqrt{\pi p\alpha}$ is greater than 0.8, the amplitude of the temperature envelope is less than one percent of the surface fluctuation. For the materials assumed in this study, the depth where fluctuations were less than one percent ranged from 35 to 40 feet. Therefore, temperatures were fixed at a depth of 50 feet for the ground thermal modelling. At 50 feet the temperature was fixed based on the mean annual temperature for the freezing index case of interest and the geothermal gradient.

The short wave radiation heat flux during spring at the ground surface was estimated using the data provided be Cinquemani et al. [4.2]. The data are measured monthly values of average daily incoming direct and diffuse solar radiation. Therefore, scattering, cloud cover and solar distance are reflected in the values. The data for all 60 locations for the months of March, April and May are shown in Table 4.23.

Correlations of locations (primarily latitude) or freezing index and solar radiation could not be verified by the data. The primary dependent variable for solar radiation was solar declination or time of the year. Therefore, average values for March, April and May were calculated from all 60 locations. The net short wave radiant heat flux absorbed at the pavement surface was calculated as $(1-\alpha_s)$ times the monthly value obtained above. A value of 0.1 for α_s , the surface reflectivity, was used (Scott [4.3]). The values of net short wave radiation used for the thermal analysis are given in Table 4.24.

No data was found for values of long wave radiation over the area of interest. Therefore, the long wave radiation was estimated following the procedure outlined in Chapter 2.0 for the months of March, April and May. The mean monthly temperature was calculated for the seven freezing index cases for March, April and May and are shown in Table 4.24. The values for average monthly sunshine for seventeen locations in the geographic areas of interest were obtained from U.S. Weather Service data found in Ruffner and Bair [4.4].

Table 4.23 Solar Radiation Data for March, April and May

Location	Incoming Short	: Wave Radiatio	n (BTU/day)
Location	March	April	May
Hartford CONN	477.5	714.7	978.5
Burlington IA	579.2	858.6	1165.1
DesMoines IA	580.7	860.7	1180.5
Mason City IA	553.7	836.2	1168.0
Sioux City IA	568.6	841.6	1170.4
Pocatello ID Chicago ILL	539.2 507.0	882.0 759.5	1371.4
Moline ILL	535.1	812.0	1106.9 1118.6
Fort Wayne IND	455.2	697.6	982.0
South Bend IND	415.7	659.6	992.5
Caribou ME	419.3	724.0	1133.1
Alpena MI	362.1	616.6	1028.2
Detroit MI	417.4	680.4	1000.2
Flint MI	383.1	636.4	956.8
Grand Rapids MI	369.6	648.3	1014.4
Sault Ste. Mar MI	324.8	603.3	1028.6
Traverse City MI	310.8	567.5	1001.0
Duluth MN	388.6	672.8	1034.5
Int'l Falls MN	355.7	662.5	1045.9
Minn-St. Paul MN	464.0	763.9	1103.5
Rochester MN	477.0	752.8	1081.9
Billings MT Cut Bank MT	486.0 402.2	763.2 687.8	1189.5
Dillon MT	526.5	846.2	1128.0 1279.2
Glasgow MT	388.0	671.3	1104.9
Great Falls MT	420.5	720.2	1170.4
Helena MT	419.4	708.8	1145.5
Lewistown MT	420.0	692.2	1128.4
Miles City MT	457.0	745.3	1185.0
Missoula MT	311.8	574.2	981.5
Bismarck ND	466.8	775.7	1168.1
Fargo ND	414.9	705.7	1097.9
Minot ND	383.7	655.9	1044.3
Grand Island NEB	661.3	917.0	1265.2
North Omaha NEB	634.0	892.1	1225.0
North Platte NEB Scottsbluff NEB	692.4	958.3	1333.0
Concord NH	675.7 459.5	950.5 686.1	1307.4 973.6
Albany NY	459.5 456.5	688.4	985.9
Binghamton NY	385.8	575.8	851.2
Buffalo NY	348.9	546.4	888.5
Massena NY	391.2	620.1	977.5
Rochester NY	364.3	559.5	903.4

Table 4.23 Solar Radiation Data for March, April and May (Cont.)

	incoming short	Wave Radiation	(BTU/day)
Location	March	April	May
Syracuse NY Toledo OH Youngstown OH Burns OR Erie PA Huron SD Pierre SD Rapid City SD Sioux Falls SD Burlington VT Eau Claire WIS Green Bay WIS LaCrosse WIS Madison WIS Milwaukee WIS Casper WYO Cheyenne WYO Sheridan WYO	385.1 434.8 385.1 490.0 345.6 488.2 530.0 542.3 532.6 385.3 451.7 451.2 481.3 515.2 479.4 683.2 765.8 517.5	571.3 680.4 586.5 792.0 576.8 744.7 795.1 826.5 802.1 606.8 746.4 724.9 764.7 804.0 736.5 1013.5 1067.8 788.2	890.4 996.7 890.1 1187.1 920.4 1113.7 1206.5 1228.8 1152.2 940.2 1090.2 1104.2 1100.8 1136.0 1088.8 1441.1 1433.1 1204.8

Table 4.24 Radiation and Weather Data for TDHC Analysis

	March	April	May
Net short wave radiation flux (BTU/hr)	27.0	40.5	54.0
Average monthly Temperature (°F)	30.8	43.7	55.4
Average monthly cloud cover (%)	44	44	40
Net long wave radiation flux (BTU/hr)	18.4	17.9	18.4
Net radiant heat flux at ground surface (BTU/hr)	9.0	22.5	36.0

The data are shown in Table 4.25. The average monthly values used for the estimate of long wave radiation are shown in Table 4.24. The resulting values of hourly average long wave radiation by month and the net radiant heat flux at the ground surface due to all radiant effects are given in Table 4.24.

It was decided that the empirical formula of Vehrencamp was most suited to estimating the convection coefficient for a pavement surface. The value obtained using the average spring temperatures above and an average windspeed of 11.7 miles per hour (Ruffner and Bair, [4.4]) was equal to 3.2 Btu/hr ft² °F.

4.3.3 PAVEMENT STRUCTURE SECTIONS

The sections used in the thermal analysis were selected from those analyzed in the structural analysis. It was felt that typically the majority of pavements experiencing thaw weakening are underlain with fine grained materials. Therefore, this type of subgrade was emphasized in the analysis. Sections included two and four inches of asphalt concrete, six and twelve inches of base and fine and coarse-grain subgrade for freezing conditions ranging from 400 to 2000°F-days. A total of four basic sections were analyzed and are shown in Figure 4.4. All structural sections and freezing index cases analyzed with TDHC are given in Table 4.26.

4.3.4 MATERIAL THERMAL PROPERTIES

The thermal properties required for the analysis are the frozen and unfrozen thermal conductivity, the frozen and unfrozen volumetric specific heat and the latent heat. These properties are functions of the dry density of the material, γ_d , and the moisture content, w, as outlined in Chapter 2.0. The dry density and moisture content used in the study for all materials including asphalt, aggregate base, and subgrades are shown in Table 4.27. Also included in this table are the thermal properties.

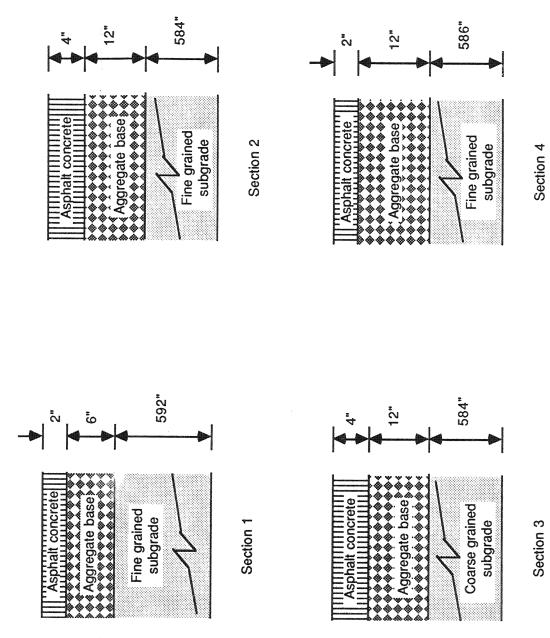


Figure 4.4 Pavement Structures for Thermal Analysis

Table 4.25 Percent Monthly Sunshine for March, April and May

	Percent Sunshine				
Location	March	April	May		
Boise ID Chicago ILL Des Moines IA Detroit MI Sault Ste. Marie MI Minn. St. Paul MN Havre MT Missoula MT Williston MT N. Platte ND Lincoln NEB Buffalo NY Bismarck ND Fargo ND Rapid City SD Burlington VT Green Bay WIS	60 62 53 50 53 55 70 48 60 59 56 45 60 56 61 50 52	65 49 55 55 56 66 51 57 62 60 51 57 56 57 50 51	70 62 60 60 58 60 72 54 61 61 62 57 62 57 55 55		

Table 4.26 Pavement Structures and Freezing Index Cases for TDHC Analysis

Freezing		vement Structur	al Sections	CONTRACT PROGRAMMENT OF A MANAGEMENT AND A MANAGEMENT OF THE STATE OF
Index Case (°F-days)	2 in. AC/BST 6 in. Base Fine Subgrade	4 in. AC 12 in. Base Fine Subgrade	4 in. AC 12 in. Base Coarse Subgrade	2 in. AC/BST 12 in. Base Fine Subgrade
400	Х	X	Х	
500	Х	Х	х	х
750	х	χ	х	
1000	Х	χ	Х	X
1250	Х	Х	Х	
1500	Х	χ	х	
2000	Х	Х	χ	

Table 4.27 Material Thermal Properties

Material	Dry Density (1b/ft3)	Moisture Content, w (%)	Frozen Thermal Conductivity, k (BTU/1b ft °F)	Unfrozen Thermal Conductivity k (BTU/1b ft °F) ^U	Frozen Volumetric Volumetric Specific Heat, C _f Sp (BTU/ft ³)	Unfrozen Volumetric Decific Heat, C _u (BTU/ft ³)	Latent Heat, L (BTU/ft ³)
Asphalt Concrete	138	0	98.0	98.0	78.0	28.0	0
Aggregate Base	130	4	1.15	1.36	24.7	27.3	749
Fine- grained Subgrade	96	2	0.71	0.64	23.3	30.4	2025
Coarse- grained Subgrade	120	10	1.74	1.45	26.4	32.4	1728

4.3.5 ANALYTICAL METHOD

To perform the thermal finite element analysis, a generalized finite element grid was generated (Figure 4.5) using triangular elements. The four structure section grids are shown in Figures 4.6 to 4.9. In order to accurately model the ground thermal response to surface temperature oscillations, the procedure discussed below was followed for all cases analyzed.

Each freezing index case and profile was initialized by performing a TDHC analysis which began when the surface temperature $(T_{\rm S})$ was equal to the mean annual surface temperature $T_{\rm m}$ on day (365/4 + $_{\varphi}$) from January 1. The initial ground temperature profile for this day equals $T_{\rm m}$ for all nodes except 81 and 82 which are $T_{\rm m}$ plus one-degree Fahrenheit. The analysis runs for one year using a time step of two days. The temperature profile obtained when $T_{\rm S}$ equals $T_{\rm m}$ minus the amplitude of temperature variation $(T_{\rm a})$ on day January 1 plus $_{\varphi}$ is input into a subsequent analysis where time steps are reduced to one day through the remaining freezing season and the duration of the thawing period.

In order to include the effects of radiation and convection at the surface in the spring months, the radiant heat flux (Btu/hr ft 2) and the convection coefficient (Btu/hr ft 2 °F) are input as step functions each month until thawing is complete. Each month the problem is initialized with the final temperature profile from the preceding month and the appropriate convective and heat flux values for that month. An example of the stepwise input for a freezing index of 1000°F-days and a fine-grained subgrade with a four inch surface and twelve inch base is shown in Appendix C.

4.3.6 RESULTS

Based on results from previous studies and observations of thawing it was determined that some indication of a) when thawing reached the bottom of the base course; b) when thawing proceeded a small amount into the subgrade (four inches was selected); and c) when thawing was complete should be estimated. These cases are shown in Figure 4.10. The date given in days after January 1 for these times as well as the day when the air temperature went above 32°F for all structure and freezing cases are shown in Table 4.28. In

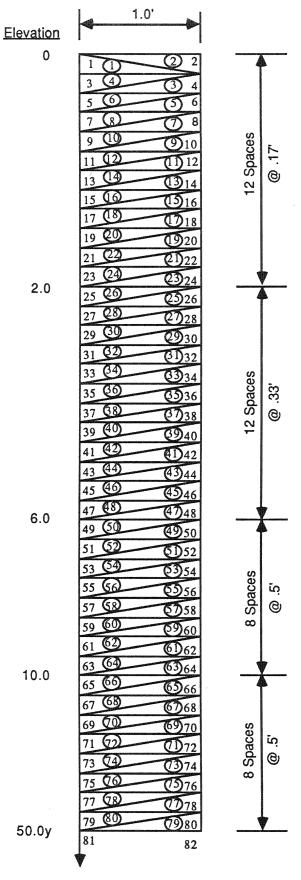


Figure 4.5 Generalized Finite Element Grid

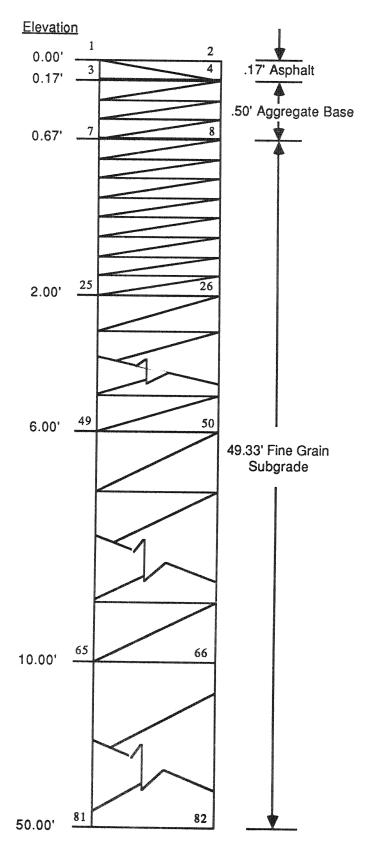


Figure 4.6 Finite Element Hesh for Section 1

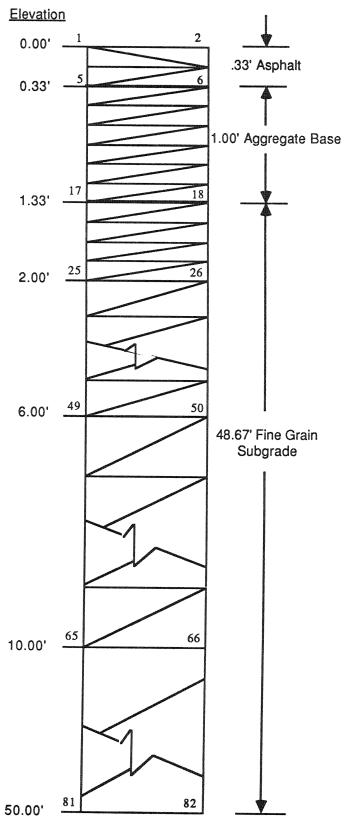


Figure 4.7 Finite Element Mesh for Section 2

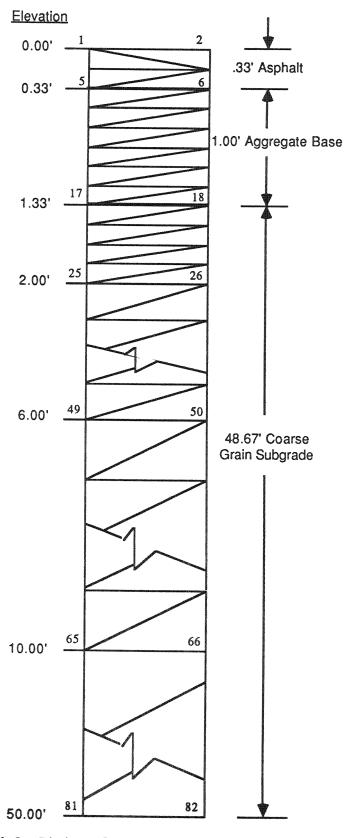


Figure 4.8 Finite Element Mesh for Section 3

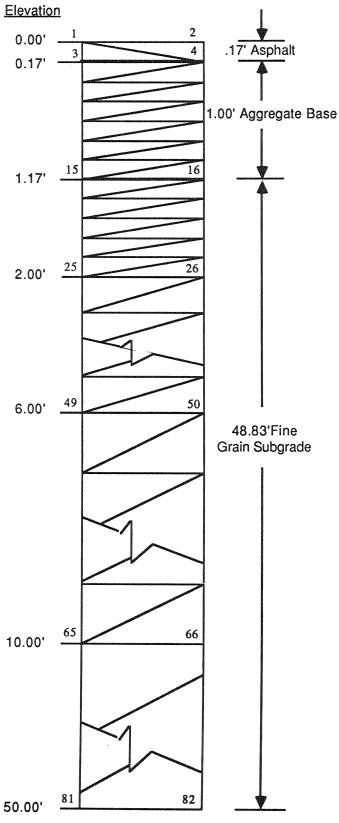


Figure 4.9 Finite Element Mesh for Section 4

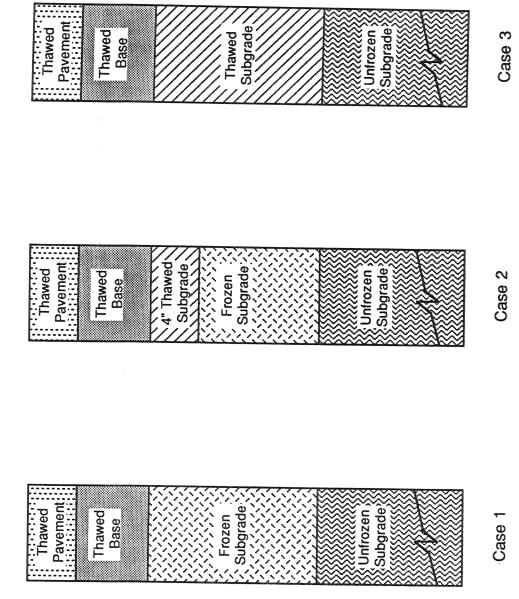


Figure 4.10 Thawing Cases Evaluated from Results of TDHC

Table 4.28 Advancement of the Thawing Plane Referenced to an Air Temperature = 32°F

Duration of Thaw (days)		13 25 22 33 36 40		10 22 22 24 34 34		21 20 18 19 36
Day of Complete Thaw(b)		76 91 101 102 113		73 87 96 102 113		61 87 94 98 99 107 124
Day Thaw is 4 in. Below Base(b)		61 70 80 80 81 87		66 80 78 82 87 95		- 80 82 84 87 93
Day Base Thawed(b)		61 68 68 74 79 89		62 70 77 79 85		61 68 75 80 81 82 92
Day Air Temp = 32°F(b)		63 66 74 80 88 88		63 66 74 80 88 88		63 66 74 80 84 88
Freezing Index (°F-days)	2/6/592 fine ^(a)	400 500 750 1000 1250 1500	4/12/584 fine	400 500 750 1000 1250 1500	4/12/584 coarse	400 500 750 1000 1250 1500 2000

Advancement of the Thawing Plane Referenced to an Air Temperature = 32°F (Cont.) **Table 4.28**

Freezing Index (°F-day)	Day Air Temp = 32°F(b)	Day Base Thawed (B)	Day Thaw is 4 in. Below Base(b)	Day of Complete Thaw(b)	Duration of Thaw (days)
2/12/586 fine 500 1000	99 80	62 78	70 86	82 106	18 26

(a) Notes:

Pavement section: 2" Asphalt concrete pavement 6" Aggregate Base 592" Fine-grained subgrade

(b) The values shown in these columns represent the calendar day number (e.g. day = 1 is January 1 and day = 63 is March 4 for calendar year 1985)

addition, the duration of thawing for the three thawing cases is shown in the table.

The thawing index is a measure of the temperature input and duration required to cause thawing. Based on a traditional reference temperature of 32°F, the thawing index for the three cases of thawing for all structural sections and freezing cases was calculated (Table 4.29).

Due to the net incoming heat flux at the ground surface during spring, the surface temperature (T_S) is greater than the air temperature. The surface temperature for all cases when the air temperature is 32°F is shown in Table 4.30 as well as the air temperature and day when the surface temperature reaches 32°F and thawing actually begins.

The results obtained suggest relatively consistent air temperatures between 29 and 30°F when thawing actually begins with the exception of the lower freezing index cases of 400 and 500°F-days. The anomalies are due to the fact that temperatures are very close to 32°F when the first heat flux step is introduced. Since the air temperatures when pavement thawing actually begins are typically between 29 and 30°F, the data were reanalyzed based on these reference thawing temperatures.

Tables 4.31 and 4.32 show the day when air temperatures reach 29 and 30°F respectively, the day when thawing has progressed to the bottom of the base, four inches into the subgrade and through the originally frozen material. The duration of thawing based on these reference temperatures is also given. Thawing indices for all levels of thawing noted above were calculated based on 29 and 30°F. These are shown in Tables 4.33 and 4.34.

Plots of the thawing index as a function of freezing index for each structural section for 29, 30 and 32°F based thawing indices are included in Appendix D. The fine-grained subgrade cases generally suggest a good correlation of these variables with R squared values greater than 0.9. The coarse grained subgrade results were not as satisfactory with R squared values much lower. The linear equations representing the least squares fit of the data and the R squared values for all cases are shown in Table 4.35. In addition, the results for all fine-grained sections were combined. The results for 29, 30 and 32°F based thawing indices are shown in Figures 4.11 to 4.13.

Table 4.29 Thawing Indices for Three Thawing Cases Based on 32°F

Freezing Index (°F-days)	Thawing Index for Base (32°F datum) (°F-days)	Thawing Index for 4 in. into Subgrade (32°F datum) (°F-days)	Thawing Index For Total Thaw (32°F datum) (°F-days)
2/6/592 fine			·
400 500 750 1000 1250 1500 2000	- - - - - 1	- 4 10 2 2 2 5 20	30 113 153 117 280 341 430
4/12/584 fine			
400 500 750 1000 1250 1500 2000	- 4 2 - - 5 9	2 34 5 2 28 5 20	18 79 103 117 144 228 318
4/12/584 coarse			
400 500 750 1000 1250 1500 2000	1 1 - 2 - 11	36 15 7 18 3	80 84 81 100 148 354
2 /12/586 fine			
500 1000	- -	4 12	46 160

Note: (a) Pavement section:
2" Asphalt concrete pavement
6" Aggregate Base
592" Fine grained subgrade

Table 4.30 Surface and Air Temperatures

Freezing Index (°F-days)	Air Temperature When Surface Temp = 32°F (°F)	Surface Temperature When Air Temp = 32°F (°F)
2/6/592 fine ^(a)		
400 500 750 1000 1250 1500 2000	31.4 30.5 29.3 29.4 28.7 29.4 29.4	- 34.0 34.5 34.4 34.3 34.0
4/12/584 fine		
400 500 750 1000 1250 1500 2000	31.4 30.5 29.5 29.4 29.4 29.4 29.4	34.1 34.0 34.0 34.5 34.4 34.3 34.0
4/12/584 coarse		
400 500 750 1000 1250 1500 2000	31.5 29.6 29.4 28.3 29.4 29.8	34.0 33.8 34.4 35.1 34.4 33.9

Notes: (a) Pavement section:
2" Asphalt concrete pavement
6" Aggregate Base
592" Fine-grained subgrade

Table 4.31 Advancement of the Thawing Plane Referenced to an Air Temperature = 29°F

		en de en	
Duration of Thaw (days)	24 35 36 31 41 44	31 31 32 37 41	31 27 27 31 43
Day of Complete Thaw(b)	76 91 101 102 113 120 128	73 87 96 102 113	61 87 94 98 107 124
Day Thaw is 4 in. Below Base(b)	61 70 80 80 81 87 95	66 80 78 82 87 87	80 82 84 87 86 93
Day Base Thawed(b)	61 65 68 78 74 79 89	62 70 77 79 85	61 68 75 80 81 82 92
Day Air Temp = 29°r(b)	52 56 65 71 72 81	52 56 65 71 72 81	52 56 65 71 72 76
Freezing Index (°F-days)	2/6/592 fine (a) 400 500 750 1000 1250 1500 2000	400 500 750 1000 1250 1500	4/12/584 coarse 400 500 750 1000 1250 1500 2000

Advancement of the Thawing Plane Referenced to an Air Temperature = $29^{\circ}F$ (Cont.) Table 4.31

Freezing Index (°F-days)	Day Air Temp = 29°F(b)	Day Base Thawed(b)	Day Thaw is 4 in. Below Base ^(b)	Day of Complete Thaw(b)	Duration of Thaw (days)
2/12/586 fine 500 1000	56 71	62 78	98	82 106	26 35

(a) Notes:

Pavement section: 2" Asphalt concrete pavement 6" Aggregate Base 592" Fine-grained subgrade

(b) The values shown in these columns represent the calendar day number (e.g. day = 1 is January 1 and day = 63 is March 4 for calendar year 1985).

Table 4.32 Advancement of the Thawing Plane Referenced to an Air Temperature = 30°F

And the second s			
Duration of Thaw (days)	20 33 38 38 41 45	17 27 28 28 34 39	27 26 24 28 28
Day of Complete Thaw(b)	76 91 101 102 113 120	73 87 96 102 104 113	61 87 98 99 107 124
Day Thaw is 4 in. Below Base	61 70 80 80 81 87	66 80 82 87 87 95	882 844 87 86
Day Base Thawed(b)	61 65 68 78 74 79	62 70 77 79 85	61 68 75 80 81 82
Day Air Temp = ა∪°F(b)	56 60 68 74 75 79	56 60 68 74 75 79	56 60 68 74 75 79
Freezing Index (°F-days)	2/6/592 fine (a j 400 500 500 750 1000 1250 1500 2000	4/12/584 fine 400 500 750 1000 1250 1500 2000	400 500 750 1000 1250 1500

Advancement of the Thawing Plane Referenced to an Air Temperature = 32°F (Cont.) Table 4.32

Freezing Index (°F-days)	Day Air Temp = 32°F(b)	Day Base) Thawed(b)	Day Thaw is 4 in. Below Base(b)	Day of Complete Thaw (b)	Duration of Thaw (days)
2/12/586 fine 500 1000	60 74	62 78	7.0	82 106	22 32

Notes: (a)

Pavement section:
 2" Asphalt concete pavement
 6" Aggregate Base
 592" Fine-grained subgrade

(b) The values shown in the columns represent the calendar day number (e.g. day = 1 is January 1 and day = 63 is March 4 for calendar year 1985)

Thawing Indices for Three Thawing Cases Based on 29°F Table 4.33

Freezing Index (°F-days)	Thawing Index for Base (29°F datum) (°F-days)	Thawing Index for 4 in. into Subgrade (29°F datum) (°F-days)	Thawing Index for Total Thaw (29°F datum) (°F-days)
2/6/592 fine ^(a)			
400 500 750 1000 1250 1500 2000	14 16 6 13 4 4 20	14 34 50 23 27 33 58	88 207 258 214 401 467 561
4/12/584 fine			
400 500 750 1000 1250 1500 2000	16 33 26 11 16 25 38	31 95 35 27 73 34 58	68 160 193 202 232 409 461
4/12/584 coarse			
4^0 500 750 1000 1250 1500 2000	14 25 22 21 24 13 40	14 95 58 40 58 30 43	14 161 163 156 176 237 479
2/12/586 fine			
500 1000	7 13	43 48	112 256

Notes: (a) Pavement section:
2" Asphalt concrete pavement
6" Aggregate Base
592" Fine-grained subgrade

Thawing Indices for Three Thawing Cases Based on 30°F Table 4.34

Freezing Index (°F-days)	Thawing Index for Base (30°F datum) (°F-days)	Thawing Index for 4 in. into Subgrade (30°F datum) (°F-days)	Thawing Index for Total Thaw (30°F datum) (°F-days)
2/6/592 fine ^(a) 400 500 750 1000 1250 1500 2000	5 6 0 6 0 12	5 20 34 12 18 21 43	65 172 220 173 359 423 520
4/12/584 fine 400 500 750 1000 1250 1500 2000	7 20 15 4 7 15 25	17 72 22 16 55 22 43	48 129 160 172 211 367 422
4/12/584 coarse 400 500 750 1000 1250 1500 2000	5 13 12 12 14 6 25	5 72 40 27 42 19 30	5 130 134 129 148 205 434
2/12/586 fine 500 1000	2 6	27 33	86 221

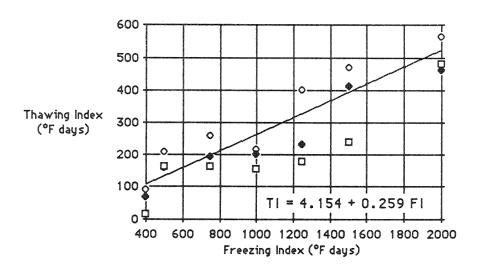

Notes: (a) Pavement section
2" Asphalt concrete pavement
6" Aggregrate Base
592" Fine-grained subgrade

Table 4.35 Regression Analysis for Thawing Index as a Function of Freezing Index

Case	Regression Equation	Correlation Coefficient (R)	28.
Section 1; 29°F	TI = 18,350 + 0.280 FI	926	.915
Section 2; 29°F	TI = 0.0.794 + 0.232 FI	. 952	906.
Section 3; 29°F	TI =35.332 + 0.221 FI	.895	.801
Section 1, 2, 4; 29°F	TI = 4.154 + 0.259 FI	. 930	.865
Section 1; 30°F	TI = -10.051 + 0.271 FI	. 956	. 914
Section 2; 30°F	TI = -21.178 + 0.224 FI	. 961	. 924
Section 3; 30°F	TI = -48.793 + 0.206 FI	668.	808
Section 1, 2, 4; 30°F	TI = -20.398 + 0.250 FI	. 936	.877
Section 1; 32°F	TI = -46.439 + 0.242 FI	196.	. 923
Section 2; 32°F	TI = -35.974 + 0.170 FI	926.	. 952
Section 3; 32°F	TI = -59.660 + 0.172 FI	.864	.747
Section 1, 2, 4; 32°F	TI = -44.449 + 0.208 FI	.921	.848
			weeks


Table 4.35 Regression Analysis for Duration of Thawing as a Function of Freezing Index (Cont.)

Case	Regression Equation	Correlation Coefficient (R)	. R ²
Section 1; 29°F	D = -43.598 + 27.141 log FI	.872	. 760
Section 2; 29°F	$D = -32.341 + 21.704 \log FI$	068.	.792
Section 3; 29°F	D = -60.133 + 29.780 log FI	.752	. 565
Section 1, 2, 4; 29°F	$D = -39.771 + 24.985 \log FI$.834	969.
Section 1; 30°F	D = -54.133 + 29.634 log FI	.892	.795
Section 2; 30°F	D = -42.876 + 24.198 log FI	806.	.824
Section 3; 30°F	D = -70.668 + 32.273 log FI	.774	. 599
Section 1, 2, 4; 30°F	D = -50.496 + 27.541 log FI	. 858	.736
Section 1; 32°F	D = -67.846 + 32.333 log FI	968.	.802
Section 2; 32°F	D = -56.589 + 26.897 log FI	916.	.840
Section 3; 32°F	D = -35.788 + 19.381 log FI	. 628	.394
Section 1, 2, 4; 32°F	D = -63.760 + 30.088 log FI	.883	622.

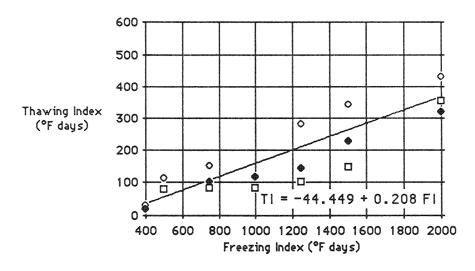
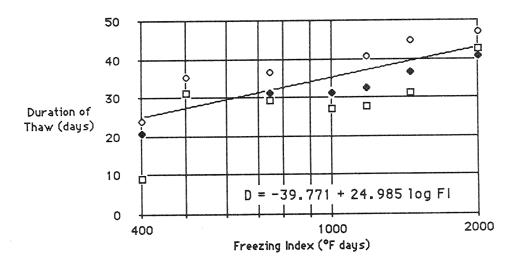

- Section 1
- Section 2
- □ Section 4

Figure 4.11 Thawing Index (based on 29°F) versus Freezing Index for all Fine Grain Subgrade Cases

- Section 1
- Section 2
- □ Section 4

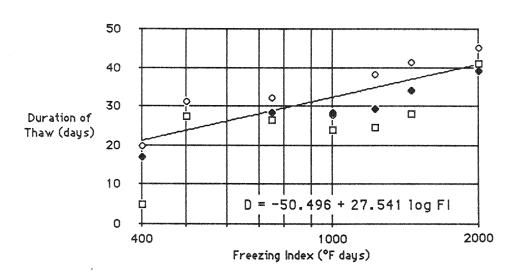
Figure 4.12 Thawing Index (based on 30°F) versus Freezing Index for all Fine Grain Subgrade Cases

- O Section 1
- Section 2
- □ Section 4


Figure 4.13 Thawing Index (based on 32°F) versus Freezing Index for all Fine Grain Subgrade Cases

In addition, the correlation of freezing index and duration of thaw based on 29, 30 and 32°F was considered. In general, the results were not as significant as the relationship of freezing and thawing index. The best fit was found relating duration of thaw to the logarithm of the freezing index. The resulting equations and R squared values for all cases are shown in Table 4.36. Plots of all sections are included in Appendix D. Figures 4.14 through 4.16 show the results of all fine grained sections combined for 29, 30, and 32°F based thaw durations. Here again, the coarse-grained results were less consistent than the fine-grained results. A possible explanation for poor results from the coarse-grained section may be that the low latent heat and high thermal conductivity result in thawing that is sufficiently rapid to cause the finite element program to be unstable for time steps of one day.

In addition, the TDHC analyses generated freezing depths for each profile and freezing index case analyzed. The results are shown in Table 4.37. Also shown in the table are freezing depths computed using the Multilayered Modified Berggren analysis using a surface "n" factor of 1.0 which is comparable to the TDHC input. In general, the Modified Berggren results yield greater freezing depths than the TDHC analysis. These results are shown graphically in Figure 4.17. While Modified Berggren depths are typically greater, a good correlation exists for all sections between the depth predicted using both analysis techniques (Figure 4.17). The regression equations for the relationship of TDHC freezing depth and Modified Berggren freezing depth are given in Table 4.37 for each pavement section individually and all cases combined.


Table 4.36 Regression Analysis for TDHC Depth of Freezing as a Function of Modified Berggren Depth of Freezing

Case	Regression Equation	Correlation Coefficient (R)	R ²
Section 1	DF = 0.555 + 0.750 MB	966.	. 993
Section 2	DF = 0.393 + 0.808 MB	. 993	986.
Section 3	DF = 0.102 + 0.812 MB	. 993	986.
Section 1,2,3,4	DF = 0.436 + 0.773 MB	. 989	876.

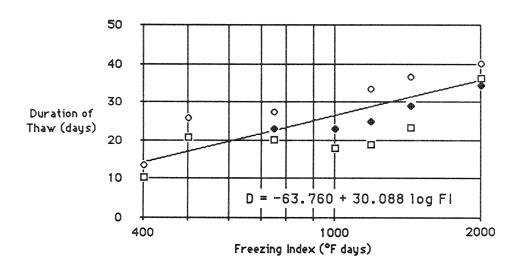

- O Section 1
- Section 2
- ☐ Section 4

Figure 4.14 Duration of Thaw (based on 29°F) versus log Freezing Index for all Fine Grain Subgrade Cases

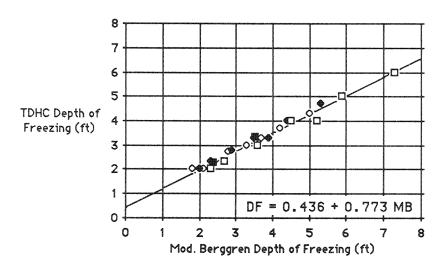

- Section 1
- Section 2
- ☐ Section 4

Figure 4.15 Duration of Thaw (based on 30°F) versus log Freezing Index for all Fine Grain Subgrade Cases

- Section 1
- Section 2
- ☐ Section 4

Figure 4.16 Duration of Thaw (based on 32°F) versus log Freezing Index for all Fine Grain Subgrade Cases

- Section 1
- Section 2
- □ Section 3
- Section 4

Figure 4.17 TDHC Depth of Freeze versus Modified Berggren Depth of Freeze for all Cases

Freezing Depths Estimated from TDHC and Multilayered Modified Berggren Table 4.37

Freezing Index (°F-days)	Depth of Freeze TDHC (ft)	Mod Berg Depth of Freeze (ft)
2/6/592 fine ^(a) 400 500 750 1000 1250 1500 2000	2.0 2.0 2.7 3.0 3.3 3.7 4.3	1.8 2.1 2.8 3.3 3.7 4.2 5.0
4/12/584 fine 400 500 750 1000 1250 1500 2000	2.0 2.3 2.8 3.3 3.3 4.0 4.7	2.0 2.3 2.9 3.5 3.9 4.4 5.3
4/12/584 coarse 400 500 750 1000 1250 1500 2000	2.0 2.3 3.0 4.0 4.0 5.0 6.0	2.3 2.7 3.6 4.5 5.2 5.9 7.3
2/12/586 fine 500 1000	2.3 3.3	2.3 3.5

Notes: (a) Pavement profile:
2" Asphalt concrete pavement
6" Aggregate Base
592" Fine-grained subgrade

CHAPTER 5.0 DEVELOPMENT OF GUIDELINES

5.1 INTRODUCTION

Based on the literature review and analysis conducted in this study, the following guidelines will be presented in this chapter:

- (a) where to apply load restrictions,
- (b) the magnitude of the load restrictions, and
- (c) when to apply and remove load restrictions.

The guidelines are general in scope and not intended to be "absolute" being as the nature of the problem is site specific.

5.2 GUIDELINES FOR WHERE TO APPLY LOAD RESTRICTIONS

The analysis presented in Chapter 4.0 (specifically Tables 4.6 through 4.12) was based on the assumption that pavement response (deflection and strain) during the spring thaw should be limited to those estimated for summer conditions. The way to achieve equal pavement response is to reduce allowable axle loads (or individual tire loads). Further, many agencies have the capability to measure pavement surface deflections with equipment such as the Benkelman Beam, Dynaflect, or Falling Weight Deflectometer. Thus for both the fine and coarse-grain subgrade cases, the percent increase in surface deflection was calculated for summer to complete spring thaw for both single tire - single axle and dual tires - single axle conditions. These deflection increases were matched with the associated load reduction percentages with a summary shown in Table 5.1 and plotted in Figure 5.1.

An examination of Figure 5.1 reveals that pavement sections which have surface deflections 45 to 50 percent higher during the spring thaw than summer values are candidates for load restrictions. Clearly, this is not an absolute criterion for selecting pavement sections to receive load restrictions. Site specific conditions could significantly alter the deflection increase threshold. For example, a relatively "thin" or "weak" pavement section may have relatively high summer deflections. Thus spring thaw deflections may need to increase much less than the threshold level of

Table 5.1 Surface Deflection Increases (from Summer to Complete Spring Thaw Case) and Associated Load Reductions

processing and the second seco	2	-	an and an alternative value of		************						
Dual Tires - Single Axle	Load Reduction (b) (Percent)	er de la companya de	45	55	2	ო		1	42	14	25
Dual Tires -	Surface Deflection Increase (a) (Percent)		7	611	38	41		29	89	29	31
Single Axle	Load Reduction (b) (Percent)	Miller en	31	50	ŧ	22		31	39	802	19
Single Tire - Single Axle	Surface Deflection Increase (a) (Percent)		84	98	25	29		44	46	10	12
Pavement Structural Section	Base Thickness (in)	Fine-grained Subgrade	9	12	9	2	Coarse-grained Subgrade	9	12	9	2
Pave Struc Sect	Surface Thickness (in)	Fine-grain	0	2	4	4	Coarse-gra	2	2	4	4

Increase in pavement surface deflection from summer to complete spring thaw. (a) Notes:

Load reductions from Tables 4.6 and 4.7 for the subgrade vertical strain response criterion. 9



Figure 5.2 Increase in Pavement Life Due to Application of Load Reductions (Based on Rutting Failure Criterion).

45 to 50 percent to necessitate load reductions. Surface deflection increases of less than 45 percent result in load reductions of about 25 to 30 percent or less which is in agreement with the work by Connor [2.20] as originally described with Figure 2.12.

Other criteria which should be considered in selecting pavements for load restrictions include:

- (a) surface thickness,
- (b) pavements on fine-grained subgrades, and
- (c) local experience relating to observed moisture and pavement distress.

If the surface thickness of a pavement is about two inches or less and in an area where the FI is greater than 400°F-days (i.e., modest depth of freezing), then this suggests that load restrictions should be considered.

Pavements on fine-grained subgrades such as silts and clays (Unified Soil classifications ML, MH, CL and CH) are candidates for load restrictions. Again, the depth of ground freezing is important.

The observed site specific drainage is significant in assessing the need for load restrictions. Items such as poor drainage from side ditches, available ground water, high winter precipitation, and snow removal policies should be considered. For example, pavement in cold but dry locations probably will not need any type of restrictions.

Another criterion to use for selecting load restriction locations involves observation of pavement distress such as fatigue (alligator) cracking an ! rutting. If these distress types primarily occur during the spring thaw, load restrictions are needed if options such as strengthening the overall pavement structure are not possible (or appropriate).

Overall, local experience relating to the conditions associated with the performance an individual agency's road network is important. Clearly, various nondestructive pavement response measures such as surface deflection can help define the potential pavement weakening during the thaw period; however, the experience of agency personnel should be used to the fullest extent possible.

5.3 GUIDELINES FOR LOAD RESTRICTION MAGNITUDE

From Chapter 3.0 (specifically Table 3.7), the range of load reductions used by the summarized agencies range from about 20 to 60 percent. An average load reduction for seven locations (individual state areas) is approximately 44 percent (standard deviation of about 8 percent). This suggests that reducing the load on individual axles (or tires) by about 40 to 50 percent reduces the associated pavement response to levels that preclude or reduce the resulting pavement distress to acceptable levels.

To further examine the amount of load reduction needed, Figures 5.2 and 5.3 were developed. Figures 5.2 is a plot of load reduction (percent) versus the increase in pavement life due to the application of load restrictions (percent). The load reduction percentages were obtained from Tables 4.6, 4.7, 4.8, 4.11, and 4.12 in Chapter 4.0 (for the vertical strain at the top of the subgrade cases only). The increase in pavement life was obtained from Tables 4.14, 4.17, 4.18, 4.19, and 4.20. To determine the increase in pavement life from these tables, the negative change in pavement life (based on the rutting failure criterion) is eliminated due to load reductions, thus increasing the potential pavement life. All three tire-axle configurations were used. This curve contains data points for both the two and four inch thick surface courses and both fine and coarse-grain subgrades for the rutting failure criterion (a wide range of conditions). Undoubtedly, different failure criteria would tend to shift the curve.

The results based on Figure 5.2 show that as the load reduction percentage is increased the associated pavement life is increased (as one would expect). An increasing slope is noted for load reductions greater than about 20 percent. The following potential pavement life increases result as a function of load reduction (starting with a load reduction of 20 percent):

Load Reduction (%)	Pavement Life Increases (%)
20	62
30	78
40	88
50	95

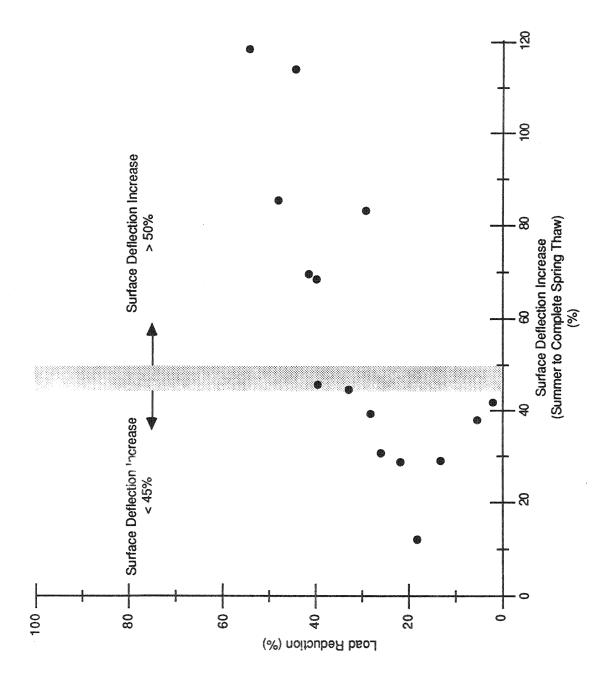


Figure 5.1. Development of Surface Deflection for Locating Pavements Requiring Load Restrictions.

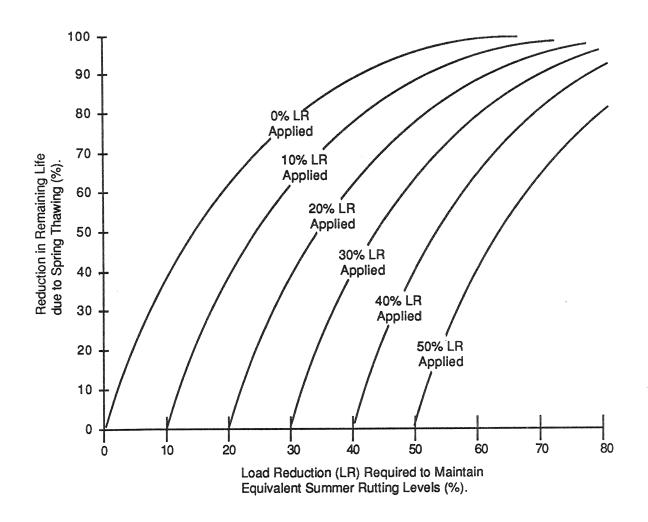


Figure 5.3. Reduction in Remaining Life Due to Difference between the Load Reduction Applied and the Load Reduction Required.

Thus, if the 44 percent load reduction level is used (average of the seven state areas previously noted), this results in a potential improvement in pavement life of about 90 percent. The basic (and very conservative) assumption is that all the pavement damage (hence load reduction benefit) can occur during the thaw weakened period. For some pavements, this may actually occur but generally would not be the case for most. What this curve allows is for an agency to select the amount of benefit desired and restrict loads accordingly.

Clearly, the needed level of load reduction is not as simple as an examination of Figure 5.2 suggests. For example, many thin or generally weak pavement structures need high levels of load reduction during the spring thaw period to prevent significant pavement damage (i.e., small or even modest levels of load reduction will not preclude significant pavement damage). To further assist agencies, Figure 5.3 was developed. This figure is a plot of the load reduction required to maintain equivalent summer rutting levels (similar to Figure 5.2) versus reduction in remaining life due to spring thawing. The family of curves shown are for various levels of actually applied load reduction (0 to 50 percent). For example, if a pavement section actually needed (or required) a 40 percent load reduction to prevent pavement damage from exceeding that accumulated during the summer but only a 30 percent load reduction was actually applied, then the reduction in remaining life would be about 40 percent. Again, if the required load reduction is 40 percent but only a 20 percent load reduction was applied, then the reduction in remaining life would be slightly more than 60 percent. (Figure 5.3 was developed for the same tire-axle cases as used in Figure 5.2 and the rutting failure criterion. The differences in remaining life between the actually applied and required load reductions were based on the relative values of the equivalent summer vertical subgrade strain (which results in the required load reduction) and that strain resulting from the actually applied load reduction.)

If load restrictions are to be used, it appears that a <u>minimum</u> load reduction of 20 percent is needed. Load reductions greater than 60 percent would appear to be excessive (given the assumptions used in preceding

analysis). Further, general national practice is to use load reductions ranging from 40 to 50 percent. The analysis performed in this study tends to confirm this range of load reduction.

5.4 GUIDELINES FOR WHEN TO APPLY AND REMOVE LOAD RESTRICTIONS

5.4.1 WHEN TO APPLY LOAD RESTRICTIONS

A primarily activity in the study was to develop guidelines on when to apply and remove load restrictions (assuming that load restrictions are needed). These guidelines are based on easy to obtain air temperature data from local weather stations or site specific high-low recording thermometers. It is assumed that most agencies do not have the capability to use deflection measuring equipment during the start of the critical period to assess when to apply load restrictions.

A review of the thermal analysis information presented in Chapter 4.0 results in a two possible times for applying load restrictions. Both are based on Thawing Index (TI) calculated by use of a 29° F datum (not the normally used 32° F). (A discussion on how to calculate the thawing index and an example is included in Appendix F). These two criteria follow:

5.4.1.1 SHOULD LEVEL

The "should" load restriction level occurs after accumulating a $TI = 25^{\circ}F$ -days following the start of the thawing period. This is used to estimate thaw to the bottom of the base course.

5.4.1.2 MUST LEVEL

The "must" load restriction level occurs after accumulating a $TI = 50^{\circ}F$ -days following the start of the thawing period. This is used to estimate thaw to approximately four inches below the bottom of the base course.

5.4.1.3 SHOULD AND MUST LEVELS FOR THIN PAVEMENT SECTIONS

The "should" level for thin pavements (such as two inches of asphalt concrete with a six inch aggregate base) could be as low as a $TI = 10^{\circ}F$ -days. The corresponding "must" level $TI = 40^{\circ}F$ -days.

5.4.1.4 DISCUSSION

The above criteria are best suited for use during the "normal" start of the spring thaw period (generally late February to April). A different condition exists for mid-winter thawing cases. First, the sun angle is lower for a mid-winter thaw than used in the analysis suggesting a higher base temperature (such as 31° F) for calculating TI. Second, for most areas, the percent cloud cover is higher during mid-winter.

The temperature based TI criteria are best applied for fine-grained soils. The analysis presented in Chapter 4.0 showed more consistent results for this soil type than coarse-grained.

5.4.2 WHEN TO REMOVE LOAD RESTRICTIONS

Based on the literature review (Chapter 2.0), interviews (Chapter 3.0), and the structural and thermal analyses (Chapter 4.0), the duration of the load restriction period should approximate the time required to achieve complete thawing.

Two different approaches were developed in the study to predict the duration of load restrictions both of which are based on regression equations with Freezing Index (FI) as the independent variable.

The first equation was developed for the fine-grained subgrade cases (which tend to be the most critical) and can be used to estimate the load restriction duration as a function of FI. This equation is:

Duration (days) =
$$22.62 + 0.011$$
 (FI)

where:

Duration = duration for complete thaw based on a start date when the air temperature is 29°F or above, (days),

FI = freezing index (OF-days)

An approximate solution to the above equation is:

Duration \simeq 25 + 0.01 (FI)

A brief comparison of the two solutions as a function of FI is shown in Table 5.2.

The two above equations are based on fine-grained soils at a moisture content of 15 percent and a range of FI from 400 to 2000 $^{\rm OF}$ -days. Predicted durations outside of this data range may result in poor estimates. Further, for locations with relatively low FI (400 to 500 $^{\rm OF}$ -days), the predicted durations are probably conservative (i.e., longer than actual).

Another approach to use in estimating the time required for complete thawing to occur (hence duration of load restrictions) is based on a TI criterion. The TI (again based on a 29°F air temperature datum) is estimated from a regression equation which has the independent variable of FI. The resulting equations have higher correlation coefficients than those for estimating duration as a function of FI. The equation selected for potential use is (based on fine-grain cases and 15 percent moisture content):

$$TI = 4.154 + 0.259 (FI)$$

An approximate solution is:

TI
$$\simeq$$
 0.3 (FI)

A comparison of these two equations is provided in Table 5.3. An example of estimating when to place load restrictions and how long to maintain them using temperature data obtained from a high-low thermometer throughout the freezing and thawing period is shown in Appendix G.

Table 5.2 Comparison of Equations Used to Predict Duration for Complete Thaw

Freezing Index (°F-days)	Complete Thaw- Duration Based on Original Regression Equation (a) (days)	Complete Thaw- Duration Based on Approximate Regression Equation (b) (days)
400	27	29
500	28	30
750	31	32
1000	34	35
1250	36	38
1500	39	40
2000	45	45

Notes: (a) Duration (days) = 22.62 + 0.011 (FI)

(b) Duration (days) \approx 25 + 0.01 (FI)

Table 5.3 Comparison of Predictions Used for Determining the Duration of the Load Restriction Period Based on Thawing Index

Freezing Index (°F-days)	Prediction of Thawing Index (29°F datum) Based on Original Regression Equation (a) (°F-days)	Prediction of Thawing Index (29°F datum) Based on Approximate Regression Equation (b) (°F-days)
400	108	120
500	134	150
750	198	225
1000	263	300
1250	328	375
1500	393	450
2000	522	600

Notes: (a) TI = 4.154 + 0.259 (TI)

(b) TI \approx 0.3 (FI)

CHAPTER 6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The following conclusions are warranted:

- (a) The use of load restrictions to reduce or preclude pavement damage during spring thaw periods is widely used in the U.S. and Europe. Load restrictions are primarily applied to low volume road networks.
- (b) Investigations in the U.S. of the thaw weakening process in pavement structures increased during the late 1940's.
- (c) Extensive examinations have been conducted in recent years in states such as Alaska, Minnesota and Washington.
- (d) Surveys conducted in this study reveal the following:
 - (i) Load restrictions are applied mostly to pavements which have subgrades composed of moisture susceptible silts and clays.
 - (ii) Load restrictions are applied mostly to aggregate and/or asphalt surfaced pavements. These pavements are usually older (about 20 years).
 - (iii) The maximum legal loads are generally reduced from about 40 to 50 percent for single axles and 30 to 50 percent for tandem axles.
 - (iv) Judgment by field personnel is primarily used to assess where, when, how much and how long to apply load restrictions.
- (e) For determining where to apply load restrictions, the following is often considered:
 - (i) comparison of summer and spring pavement surface deflection data.

- (ii) surface thickness,
- (iii) moisture conditions,
- (iv) subgrade type,
- (v) local experience.
- (f) A temperature based criterion appears to be a straightforward and easy way to determine when and for how long to apply load restrictions.
- (g) The average load restriction applied by the agencies interviewed (based on seven individual state areas) is about 44 percent. Further, an analysis based on characterizing a pavement structure as a layered elastic system suggests that a minimum load restriction level (if any load reduction is needed) is 20 percent. Load reductions greater than 60 percent are not justifiable for the wide range of cases studied. Current national practice and the analysis performed in this study suggests that for those pavements needing load restrictions, load reductions ranging from 40 to 50 percent should accommodate a wide range of pavement conditions.

6.2 RECOMMENDATIONS

The following recommendations are provided on where, how much, when and how long to apply load restrictions:

(a) Where to apply load restrictions. If pavement surface deflections are available to an agency, spring thaw deflections greater than 45 to 50 percent of summer deflections suggest a need for load restriction. Further, considerations such as depth of freezing (generally areas with Freezing Indices of 400°F-days or more), pavement surface thickness, moisture condition, type of subgrade, and local experience should be considered. Subgrades with Unified Soil Classifications of ML, MH, CL and CH will result in the largest pavement weakening.

- (b) Load restriction magnitudes can be based on guidance provided in Figures and 5.2 and 5.3 (Chapter 5.0). A minimum load reduction level should be 20 percent. Load reductions greater than 60 percent generally are not warranted based on potential pavement damage. A load reduction range of 40 to 50 percent should accommodate a wide range of pavement conditions.
- (c) When to apply load restrictions. Load restrictions <u>should</u> be applied after accumulating a Thawing Index (TI) of about 25°F-days (based on an air temperature datum of 29°F) and <u>must</u> be applied at a TI of about 50°F-days (again based on an air temperature datum of 29°F). Corresponding TI levels are less for thin pavements (e.g. two inches of asphalt concrete and six inches of aggregate base).
- (d) When to remove load restrictions. Two approaches are recommended both of which are based on air temperatures. The duration of the load restriction period can be directly estimated by:

Duration (days) =
$$25 + 0.01$$
 (FI)

Further, the duration can be estimated by use of TI and the following relationship:

$$TI \approx 0.3 (FI)$$

REFERENCES

CHAPTER 1.0

- 1.1 , "The AASHO Road Test, Report 5, Pavement Research," Special Report 61E, Highway Research Board, Washington D.C., 1962.
- 1.2 Monismith, C.L. and D.B. McLean, "Technology of Thick Lift Construction Structural Design Considerations," <u>Proceedings</u>, Association of Asphalt Paving Technologists, Cleveland, Ohio, 1972.
- 1.3 , "AASHTO Interim Guide for Design of Pavement Structures 1972," American Association of State Highway and Transportation Officials, Washington, D.C., 1981.

CHAPTER 2.0

- 2.1 , "Roadway Design in Seasonal Frost Areas," Transportation Research Board, NCHRP Report No. 26, 1974, pp. 104.
- 2.2 Guimont, M., "Effects of the Spring Thaw on Quebec's Roads and Specific Regulations," Roads and Transportation Association of Canada Conference, Halifax, Nova Scotia, 1982, pp. 22.
- 2.3 Kankare, E. and Lampinen, A., "Average Values and Seasonal Variation in the Load-Carrying Capacity of Some Finnish Roads," <u>Frost Action on</u> Roads, Oslo, Norway, 1973, pp. 152-154.
- 2.4 Boutonnet, M., Faure, B. and Mothes, J., "Surveillance and Protection of the French Road Newtork during the Thaw Period," Frost Action on Roads, Oslo, Norway, 1973, pp. 155-156.
- 2.5 Livet, J., "Technical and Regulatory Aspects of Traffic Restrictions during Thawing Period for Public Roads in France," Frost Action in Soils, Oslo, Norway, No. 22, 1981, pp. 23-26.
- Thomassen, S. and Eirum, R., "Norwegian Practices for Axle Load Restrictions in Spring Thaw, <u>International Symposium on Bearing Capacity of Roads and Airfields</u>, Trondheim, Norway, Vol. 2, 1982, pp. 921-930.
- 2.7 Kubler, G., "Influence of Meteorologic Factors on Frost Damage," Highway Research Board, Highway Research Record No. 33, 1963, pp. 217-257.
- 2.8 Taber, S., "Frost Heaving," <u>Journal of Geology</u>, Vol. XXXVII, No. 4, 1929.

- 2.9 Motl, C.L., "Report of Committee on Load Carrying Capacity of Roads as Affected by Frost Action," <u>Proceedings</u>, Highway Research Board Meeting, Vol. 26, 1948, pp. 273-281.
- 2.10 Motl, C.L., "Load Carrying Capacity of Roads as Affected by Frost Action," Highway Research Board, Highway Research Report No. 10-D, 1950, pp. 1-18.
- 2.11 Motl, C.L., "Load Carrying Capacity of Roads as Affected by Frost Action," Highway Research Board, Highway Research Bulletin No. 40, 1951, pp. 1-38.
- 2.12 Motl, C.L., "Load Carrying Capacity of Frost-Affected Roads," Highway Research Board, Highway Research Bulletin No. 96, 1955, pp. 1-23.
- 2.13 Motl, C.L., "Report of Committee on Load-Carrying Capacity of Roads as Affected by Frost Action," <u>Proceedings</u> Highway Research Board Meeting, Vol. 34, 1955, pp.439-453.
- 2.14 Meskal, G.A., "Load Carrying Capacity of Roads as Affected by Frost Action," Final Report, Highway Research Board, Highway Research Bulletin No. 207, 1959, pp. 1-32.
- 2.15 Preus, C.K. and Tomes, L.A., "Frost Action and Load-Carrying Capacity Evaluation by Deflection Profiles," Highway Research Board, Highway Research Bulletin No. 218, 1959, pp. 1-10.
- 2.16 Armstrong, M.D. and Csathy, T.I., "Frost Design Practice in Canada," Highway Research Board, Highway Research Record No. 33, 1963, pp. 170-201.
- 2.17 Scrivner, F.H., Peohl, R., Moore, W.M. and Phillips, M.B., "Detecting Seasonal Changes in Load-Carrying Capabilities of Flexural Pavements," Highway Research Board NCHRP Report No. 76, 1969, pp. 38.
- 2.18 Hardcastle, J.H. and Lottman, R.P., "A Rational Method for Estallishing Spring Thaw Load Limits on Idaho Highways," Final Report, University of Idaho, Moscow, Idaho, 1978, pp. 22.
- 2.19 Hardcastle, J.H., Lottman, R.P. and Buu, T., "Fatigue Based Criteria for Seasonal Load Limit Selection," Transportation Research Board, Transportation Research Record No. 918, 1983, pp. 22-30.
- 2.20 Connor, B., "Rational Seasonal Load Restrictions and Overload Permits," Alaska Department of Transportation, Juneau, Alaska, 1980, pp. 54.

- 2.21 Stubstad, R.N. and Connor, B., "Prediction of Damage Potential on Alaskan Highways During Spring Thaw Using the Falling Weight Deflectometer," Alaska Department of Transportation, Fairbanks, Alaska, 1982, pp. 22.
- 2.22 Lary, J.A., Mahoney, J.P., and Sharma, J., "Evaluation of Frost Related Effects on Pavements," Washington State Department of Transportation, Report WA-RD 67.1, Olympia, WA, May 1984.
- 2.23 Kubo, H. and Sugawara, T., "The Influence of Frost Action on the Bearing Capacity of Flexible Pavements," International Symposium on Bearing Capacity of Roads and Airfields, Trondheim, Norway, 1982, pp. 344-352.
- 2.24 Nordal, R.S., "Frost Heave and Bearing Capacity During Spring Thaw at the Vormsund Test Road," Proceedings of the Symposium on Bearing Capacity of Roads and Airfields, Trondheim, Norway, 1973, pp. 374-382.
- 2.25 Dysil, M., "Swiss Philosophy and Developments Concerning the Loss of Bearing Capacity During Thaw," International Symposium on Bearing Capacity of Roads and Airfields, Trondheim, Norway, 1982, pp. 334-343.
- 2.26 Esch, D.C. (1982), "Prediction of Roadway Strength from Soil Properties," International Symposium on Bearing Capacity of Roads and Airfields, Trondheim, Norway, pp. 353-362.
- 2.27 Crawford, C.B. and Boyd, D.W., "Climate in Relation to Frost Action," Highway Research Board, Highway Research Bulletin No. III, 1955, pp. 63-75.
- 2.28 Kubler, G., "Influence of Meteorological Factors on Frost Damage in Roads," Proceedings of the Symposium on Frost Action on Roads, Oslo, Norway, 1973, pp. 37-39.
- 2.29 Carlslaw, H.S. and Jaeger, J.C., <u>Conduction of Heat in Solids</u>. Clarendon Press, Oxford, England, 1947, pp. 386.
- 2.30 Aldrich, H.P. and Paynter, H.M., "Analytical Studies of Freezing and Thawing in Soils," U.S. Army Corps of Engineers Arct. Constr. Frost Eff. Lab, New England Division, Boston, Mass., First Interim Report, 1953.
- 2.31 Aldrich, H.P., "Frost Penetration Below Highway and Airfield Pavements," Highway Research Board Bulletin No. 135, 1953, pp. 124-149.
- 2.32 Kersten and Carlson, M.S., "Soil Temperature and Ground Freezing," Highway Research Board Bulletin No. 71, Highway Resarch Board, Washington, D.C., 1953.

- 2.33 Moulton, L.K., "Prediction of the Depth of Frost Penetration: A Review of the Literature," West Virginia University Engineering Experiment Station, Report No. 5, 1969, pp. 1-105.
- 2.34 Kersten, M.S., "Thermal Properties of Soils, " University of Minnesota Engineering Experiment Station. Bulletin No. 28, 1949, pp. 227.
- 2.35 Lunardini, V.J. <u>Heat Transfer in Cold Climates</u>. Van Holstrand Reinhold Company. New York, N.Y., 1981, pp. 731.
- 2.36 Kersten, M.S. and Johnson, R.W., "Frost Penetration under Bituminous Pavements," Highway Research Board, Highway Research Bulletin No. III, 1955, pp. 37-62.
- 2.37 Argue, G.H. and Denyes, B.B., "Estimating the Depth of Pavement Frost and Thaw Penetrations," Transportation Research Board, Transportation Research Record No. 497, 1874, pp. 18-30.
- 2.38 Hoffman, G.L., Cumberledge, F. and Bhajandas, A.C., "Frost Action on Pavements Technical Report," Pennsylvania Department of Transportation, Vol. I and II, 1979.
- 2.39 Berg, R.L., "Improved Drainage and Frost Action Criteria for New Jersey Pavement Design: Phase II," U.S. Army Corps of Engineers, CRREL Special Report No. 79-15, 1979, pp. 51.
- 2.40 Berg, R.L. and McGaw, R.W., "Improved Drainage and Frost Action Criteria for New Jersey Pavement Design, Phase 2: Frost Action," USACRREL Special Report 78-9, 1978.
- 2.41 Lovell, W., "Temperature Effects on Phase Composition and Strength of Partially Frozen Soil," Highway Research Board Bulletin 168, Highway Research Board, 1957, pp. 74-95.
- 2.42 Chisholm, R.A. and Phang, W.A., "Measurement and Prediction of Frost Penetration in Highways," Presented at TRB Annual Meeting, Washington, D.C., 1983, pp. 31.
- 2.43 Korfage, G.R., "A Study of Thawing in Highway Sections." Master's Thesis, University of Minnesota, 1960, pp. 100.
- 2.44 Dempsey, B.J. and Thompson, M.R., "A Heat Transfer Model for Evaluating Frost Action and Temperature Related Effects in Multilayered Pavement Systems," Highway Research Board, Highway Research Record No. 342, 1970, pp. 39-56.
- 2.45 Thomas, H.P. and Tart, R.G., "Two-Dimensional Simulation of Freezing and Thawing in Soils," <u>Proceedings</u>, Cold Regions Engineering Specialty Conference, Montreal, Quebec, 1984, pp. 265-274.

- 2.46 Polinka, R.M. and Wilson, E.L., "Finite Element Analysis of Nonlinear Heat Transfer Problems," Report No. UC SESM 76-2, University of California at Berkeley, 1976.
- 2.47 Goering, D. and Zarling, J., "TDHC Finite Element Program User's Manual," University of Alaska, Fairbanks, Alaska, 1985, pp. 51.
- 2.48 Miller, T.W. "The Surface Heat Balance in Simulations of Permafrost Behavior." Presented at the Annual Winter Meeting of the American Society of Mechanical Engineers, Houston, Texas, December 1975, pp.16.
- 2.49 Duffie, J.A. and Beckman, W.A. Solar Engineering of Thermal Processes, John Wiley and Sons, Inc. New York, N.Y. 1980, pp.762.
- Vehrencamp, J.E., "Experimental Investigation of Heat Transfer at an Air-Earth Interface." <u>Transactions</u>, American Geophysical Union. Vol. 34, No. 1, 1953, pp. 22 29.
- 2.51 U.S. Department of Army and Air Force, "Calculation Methods for Determination of Depths of Freeze and Thaw in Soils Emergency Construction," Army Technical Manual TM 5-892-6, 1966, pp. 75.
- 2.52 Yoder, E.F. and Witczak, M.W., <u>Principles of Pavement Design</u>, John Wiley & Sons, Inc. New York, N.Y., 1975.
- 2.53 Mahoney, J.P., "Research Summary Report Evaluation of Present Legislation and Regulation on Tire Sizes, Configurations and Load Limits," Contract Y-2811, Washington State Department of Transportation, Olympia, WA, July 1984.
- 2.54 Johnson, J.B., "Vehicle Load Effects on Alaskan Flexible Pavement Structures," Alaska Department of Transportation, 1983, pp. 23.
- 2.55 Havens, J.H., Southgate, H.F. and Deen, R.C., "Fatigue Damage to Flexible Pavements Under Heavy Loads," Transportation Research Board, Transportation Research Record No. 725, 1979, pp. 15-22.
- Johnson, T.C., Cole, D.M., and Chamberlain, E.J., "Influence of Freezing and Thawing on the Resilient Properties of a Silt Soil Beneath on Asphalt Concrete Pavement," CRREL Report 78-23, Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, New Hampshire, September 1978.

CHAPTER 3.0

- 3.1 Connor, B., "Rational Seasonal Load Restrictions and Overload Permits," Alaska Department of Transportation, Juneau, Alaska, 1980, pp. 54.
- 3.2 Kersten, M.S. and Skok, E.L., "Application of AASHO Road Test Results to Design of Flexible Pavements in Minnesota," Interim Report, Investigation No. 183, Minnesota Department of Highways, 1968.
- 3.3 Lary, J.A., Mahoney, J.P. and Sharma, J., "Evaluation of Frost Related Effects on Pavements," Washington State Department of Transportation, Report WA-RD 67.1, Olympia, WA, May 1984.

CHAPTER 4.0

- 4.1 Shook, J.F. et. al, "Thickness Design of Asphalt Pavments-The Asphalt Institute Method" Proceedings, Fifth International Conference on the Structural Design of Asphalt Pavements, August, 1982.
- 4.2 Cinquemani, V., Owenby, J.R. and Baldwin, R.G., "Input Data for Solar Systems," NOAA Report to Department of Energy, November 1978.
- 4.3 Scott, R.F., <u>Heat Exchange at the Ground Surface</u>. CRREL Monograph II-A1.
- 4.4 Ruffner, J.A. and Bair, F.E., ed. The Weather Almanac, Gale Research Company, Detroit, Michigan, 1984, pp. 812.
- 4.5 Henkelom, W. and Klomp, A.J.G., "Dynamic Testing as a Means of Controlling Pavements During and After Construction," <u>Proceedings</u>, First International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, Michigan, 1962.
- 4.6 Claussen, A.I.M., Edwards, J.M., Sommer, P., and Uge, P., "Asphalt Pavement Design -- The Shell Method," <u>Proceedings</u>, Fourth International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, Michigan, 1977.
- Johnson, T.C., Cole, D.M., and Chamberlain, E.J., "Influence of Freezing and Thawing on the Resilient Properties of a Silt Soil Beneath an Asphalt Concrete Pavement," Report 78-23, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H., September 1978.

APPENDIX A

DATA SUMMARY FOR SUMMER CONDITIONS

Summer Conditions - Single Tire - Single Axle

Pavement Structural Section	~	lesilien	t Modul	Resilient Modulus (psi)		Pavement	Pavement Response(a)(b)	
Surface Base Thickness Thickness (in.) (in.)		Surface Base	Base	Subgrade	δ (in.)	(in/in X 10 ⁻⁶)	(in/in X 10 ⁻⁶)	(in/in X 10 ⁻⁶)
Fine-grained Subgrade	rade							
2 6	ריז	300,000 11,250 7,500	11,250	7,500	0.0700	+950	-4370	-3120
2 12	m_	300,000 11,250 7,500	11,250	7,500	0.0657	668+	-4400	-1670
4 6	(*)	300,000 11,250 7,500	11,250	7,500	0.0455	+655	-2200	-1570
4 12	4.3	300,000 11,250 7,500	11,250	7,500	0.0433	+629	-2250	-1000
Coarse-grained Subgrade	ubgrade							i. i. i.
2 6	(-)	300,000 60,000 40,000	60,000	40,000	0.0161	+190	-1050	- /55
2	.,,	300,000 60,000 40,000	60,000	40,000	0.0149	+182	-1050	- 368
4 6	,	300,000 60,000 40,000	60,000	40,000	0.0126	+243	608 -	- 500
4 12	256.4 24.2 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	300,000 60,000 40,000	60,000	40,000	0.0119	+232	- 814	- 270

Notes: (a) + tension - compression

(b) (i) Surface deflection (δ) (ii) Horizontal strain bottom of surface coarse (ϵ_1) (iii) Vertical strain top of base ($\epsilon_y b$) (iv) Vertical strain top of subgrade ($\epsilon_y c_y$)

Summer Conditions - Dual Tires - Single Axle - Pavement Response Between Tires Table A.2

	_	NAME OF TAXABLE PARTY.	-	distant	45 MARKAGE T TO 1 TO	onomunion	natemáni).p	OMERON COOK	-	nesiano misa	name of the last	-	
	(in/in X 10 ⁻⁶)		-2101 -2105	-1360	-1295 -1167	-1190 -1147		- 438	- 284	- 260	- 344	- 224 - 202	n dual tires h inside f dual set
Pavement Response(a)(b)	(in/in X 10 ⁻⁶)		-1774 -3494	-1778	-1337 -1685	-1362 -1702		- 171	168	- 336	- 656	- 335 - 657	(c) (i) BDT = between dual tires BIT = beneath inside tire of dual set
Pavement	(in/in x 10 ⁻⁶)	NEO O-NEON ESTADOR CONTRIBUTION DE CONTRIBUTIO	-426 +706	-455 +682	+ 75 +399	+ 54	применения в приме	-284	-290	577÷ - 76	+173	- 84 +167	
	ه (in.)		0.0547	0.0508	0.0399	0.0379		0.0110	0.0101	0.0123	0.0104	0.0089	(b) (i) Surface deflection (6) (ii) Horizontal strain bottom of surface
·	Location (c)		BDT		807 F118	108 118		108	18	801 108	BIT	BDT FIR	deflection train
us (psi)	Subgrade		7,500	7,500	7,500	7,500	The state of the s	40,000	40,000	40,000	,	40,000) Surface det) Horizontal
t Modul	Base		11,250	11,250	11,250	11,250		000,09	60,000	60,000	kat rejişlirildi	60,000	(a)
Resilient Modulus (psi)	Surface		300,000 11,250	300,000 11,250	300,000 11,250 7,500	300,000 11,250		300,000 60,000 40,000	300,000 60,000 40,000	300,000 60,000 40,000		300,000 60,000 40,000	sfon
ent ural on	Base Thickness (in.)	d Subgrade	9	. 21	9	12	Coarse-grained Subgrade	9	12	ø		12	(a) + tension - compression
Pavement Structural Section	Surface Thickness (in.)	Fine-grained Subgrade	2	2	4	4	Coarse-grai	2	2	4		*	Notes:

(ii) Horizontal strain bottom of surface coarse (ε_t) (iii) Vertical strain top of base (ε_t) (iv) Vertical strain top of subgrade (ε_s) - compression

Table A.3 Summer Condition - Dual Tires - Tandem Axle

Resilient Modulus (psi) Pavement Response (a)(b)	Base Subgrade Location δ $\epsilon_{\rm t}$ $\epsilon_{\rm t}$ $\epsilon_{\rm vb}$ $\epsilon_{\rm vb}$ $\epsilon_{\rm vs}$ $\epsilon_{\rm vs}$ $\epsilon_{\rm vs}$ $\epsilon_{\rm vs}$ $\epsilon_{\rm to}$ $\epsilon_{\rm vs}$ $\epsilon_{\rm v$	7,500 BA 0,0226 + 15 + 34	0.0525 + 683 0.0210 + 6	7,500 BA 0.0206 + 70 - 22 RM 0.0507 + 50 - 22	7,500 BA 0.0222 + 60 BW 0.0366 + 30 DT 0.0362 + 30 0.0362 + 30		40,000 BA 0,0042 -	40,000 BA 0.0042 - 11 + 6 - 120 - 12	40,000 BA 0.0041 - 5 + + 8 + 77 1 BW 0.0102 - 77	40,000 BA 0.0043 + 165 - 600 -	0,0095 + 165 - 600 0,0095 + 165 - 600	(b) (i) Surface deflection (6) (c) (i) BA = between axles on (ii) Horizontal strain bottom surface centerline of dual	(iii) Vertical strain top of base (ε_y) (ii) BW = between dual wheels (iv) Vertical strain top of subgrade (ε_y)
Resilient M	Surface Ba	300,000 11,250	300,000 11,	300,000 11,250	300,000 11,250		300,000 60,000	300,000 60,000	300,000 60,000	300,000 60,000	water group and have	-	
Pavement Structural Section	ggeggeggliden en it den eren standigegeggere van en delakterine en e	Fine-grained Subgrade	2 12	4 6	4 12	Coarse-grained Subgrade	5 6	2 12	9 4	4 12		Notes: (a) + tension - compression	

APPENDIX B

DATA SUMMARY FOR SPRING THAW CONDITIONS

Table B.1 Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw - Pavement Structure 2/6/212(a)

	-		silient 1	Resilient Modulus (psi)	si)			Pavement Response	mse	
Subgrade Type	keduction in Subgrade Resilient Modulus	Surface Course	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of Full Load	6 (in.) (b)	$ \begin{array}{c c} \epsilon_t & \epsilon_{vb} \\ (in/in \ x \ 10^6) & (in/in \ x \ 10^6) & (in/in \ x \ 10^6) \\ (b) & (b) & (b) \end{array} $	^E vb (in/in X 10 ⁻⁶) (b)	(in/in x 10 ⁻⁶)
Fine-grain	85%	1,200,000 1,700	1,700	1,120	7,500	20	0.0326	+ 341	-1600 -6060	-1200
	80%	1,200,000 2,250	2,250	1,500	7,500	202	0.0285	+ 326	-1480	-1074
	75%	1,200,000 2,800	2,800	1,880	7,500	100 100	0.0260	+ 336 + 315 + 902	-1390 -4945	- 979 -4482
Coarse-	75%	1,200,000 15,000	15,000	10,000	40,000	20	0.0088	+ 210	- 783 -2190	- 416 -1714
grant.	70%	1,200,000 18,000	18,000	12,000	40,000	2000	0.0079	+ 198	- 729 -1974	- 373 -1518
	20%	1,200,000 30,000	30,000	20,000	40,000	20 100	0.0057	+ 166	- 590 -1440	- 269 -1060
Notes:	Notes: (a) Surface course = Base Thawed subgrade = Unfrozen subgrade =	ace course ed subgrade ozen subgra	= 2 in. = 6 in. : = 40 in. ide = 212 in	نہ	(i) Surfac (ii) Horizc (ii) Vertic (iv) Vertic	ce deflection ontal strain b cal strain top	ottom of of base of subgr	(b) (i) Surface deflection (δ) (ii) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) (iii) Vertical strain top of base ($\epsilon_{\mathbf{v}}$ b) (iv) Vertical strain top of subgrade ($\epsilon_{\mathbf{v}}$ s)	(£ [‡])	

Table B.2 Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw-Pavement Structure 2/12/34/212(a)

				-				
	^e vs (in/in X 10 ⁻⁶) (b)	- 860 -4577	- 742 -3834	- 659	- 223	- 195 - 898	- 131 - 592	
nse	^E vb (in/in X 10 ⁶) (b)	-1676 -6346	-1540	-1443 -5150	- 795 -2235	- 740 -2000	- 595 -1457	(£ ¢)
Pavement Response	$ \frac{\varepsilon_{t}}{(in/in \times 10^{6})} \left \frac{\varepsilon_{vb}}{(in/in \times 10^{6})} \right \frac{\varepsilon_{vs}}{(in/in \times 10^{6})} $	+ 335	+ 320	+ 308 + 308 + 870	+ 204	+ 193	+ 163 + 296	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{y}}$) Vertical strain top of subgrade ($\epsilon_{\mathbf{y}}$)
	ه (in.) (b)	0.0319	0.0278	0.0252	0.0083	0.0074	0.0054	(s) ottom of s of base (
	Percent of Full Load	20	20	20 20 100	20	07 001	100 100	Surface deflection ($^{(\chi)}$) Horizontal strain bottom of surface c Vertical strain top of base $^{(\epsilon)}$) Vertical strain top of subgrade $^{(\epsilon)}$
si)	Subgrade Unfrozen	7,500	7,500	7,500	40,000	40,000	40,000	(b) (i) Surfac (ii) Horizc (iii) Vertic (iv) Vertic
Resilient Modulus (psi	Subgrade Thawed	1,120	1,500	1,880	10,000	12,000	20,000	
silient	Ваѕе	1,700	2,250	2,800	15,000	18,000	30,000	
Re	Surface Course	1,200,000 1,700	1,200,000 2,250	1,200,000 2,800	1,200,000 15,000	1,200,000 18,000	1,200,000 30,000	Surface course = Base = Thawed subgrade = Unfrozen subgrade =
***************************************	in Subgrade Resilient Modulus	85%	%08	75%	75%	70%	20%	Notes: (a) Surf Base Thaw Unfr
	Subgrade Type	Fine-grain			Coarse-	= = =		Notes:

202

Table B.3 Spring Thaw Condition - Single Tire - Single Ax]e - Complete Thaw - Pavement Structure 4/6/38/212(a)

	Daduction	Re	silient	Resilient Modulus (psi)	si)			Pavement Response	onse	
in Sc Res	in Subgrade Resilient Modulus	Surface Course	Base	Subgrade Thawed	Subgrade Subgrade Thawed Unfrozen	Percent of Full Load	(in.) (b)	$\begin{pmatrix} \epsilon_t \\ (in/in \ X \ 10^6) \end{pmatrix} \begin{pmatrix} (in/in \ X \ 10^6) \\ (b) \end{pmatrix} \begin{pmatrix} (in/in \ X \ 10^6) \\ (b) \end{pmatrix}$	^E vb (in/in X 10 ⁶) (b)	(in/in x 10 ⁻⁶)
	85%	1,200,000 1,700	1,700	1,120	7,500	20	0.0159	+106	- 483	- 329
	80%	1,200,000 2,250	2,250	1,500	7,500	50	0.0137	+104	435	- 316
	75%	1,200,000 2,800	2,800	1,880	7,500	100	0.0613 0.0125 0.0571	+385 +102 +372	- 405 -1640	- 286 -1480
	75%	1,200,000 15,000	15,000	10,000	40,000	20	0.0042	+ 82	- 256 - 892	- 151
	20%	1,200,000 18,000	18,000	12,000	40,000	07 [0.0039	+ 79	- 2 4 3 - 829	- 140 - 653
	50%	1,200,000 30,000	30,000	20,000	40,000	100	0.0031	+ 70	- 209 - 665	- 112 - 497
	Notes: (a) Surfa Base Thawe Unfro	face course = 4 in. e = 6 in. wed subgrade = 38 in. rozen subgrade = 212 in.	= 4 in. = 6 in. = 38 in. de = 212 in		(b) (i) Surfac (ii) Horizc (iii) Vertic (iv) Vertic	Surface deflection (§) Horizontal strain bottom of surface contical strain top of base $\binom{\mathcal{E}}{\{\epsilon_{VS}\}}$ Vertical strain top of subgrade $\binom{\mathcal{E}}{\{\epsilon_{VS}\}}$	(S) oottom of of base of subgr	Surface deflection (§) Horizontal strain bottom of surface course $\{\epsilon_{\mathbf{t}}\}$ Vertical strain top of base $\{\epsilon_{\mathbf{y}}\}$ Vertical strain top of subgrade $\{\epsilon_{\mathbf{y}}\}$	(£ [‡])	

Table B.4 Spring Thaw Condition - Single Tire - Single Axle - Complete Thaw - Pavement Structure 4/12/32/212(a)

		ſ · · · · -				1										
	10.6	000000000000000000000000000000000000000														
	(in/in)	- 324	- 272	-1427	- 239	0621-	- 99	- 526	- 90	- 468	- 68	- 334				
	(10%)	00	2	о	-		m	0	_	4	e	2				
onse	⁵ vt (in/in) (t	- 510	- 452	-182	74 -	0/1-	- 263	- 92	- 25	- 85	- 21			(E*)	د.	
t Resp	10 ⁻⁶)	, o ~					_	_	_	~	_			ourse		
Pavement Response	$ \begin{array}{c c} \varepsilon_t & \varepsilon_{vb} \\ (in/in \ x \ 10^6) & (in/in \ x \ 10^6) & (in/in \ x \ 10^6) \\ (b) & (b) & (b) \end{array} $	+106	+10.	+37	01+	+36	¥ +	+23	+ 77	+22:	+	+18	(b) (i) Surface deflection (δ)	urface co	Vertical strain top of base (E,k)	(3) app
	δ (in.) (b)	0.0159	0.0137	0602	0124	0.0558	0.0041	0197	0038	0178	0030	0133		m of s) aseq	subara
		0.0	-	<u> </u>	<u> </u>	-	0.	<u>.</u>	<u>.</u>	· ·	<u>.</u>	0	n (6)	botto	op of	oo of
	Percent of Full Load	0.5		_			_	_	_	_	_		ection	strain	ain t	rain to
	Perce	20	58	ĕ	7	ĕ	56	<u>ŏ</u>	707	<u>ŏ</u>	5(0	e def	ntal	al sti	al sti
	Subgrade Unfrozen	7,500	7,500		7,500		40,000		40,000		40,000		Surfac	Horizo	Vertic	Vertic
osi)	Subg	7,	7,		· ·		40,		40,		40,		(;)	(;;)	(1,1)	(iv)
Resilient Modulus (psi	Subgrade Thawed	1,120	1,500		1,880	***************************************	10,000		12,000		20,000					
t Modu	Sut					+							Ë	= 12 in.	2 in.	12 in.
, ilien	Base	1,200,000 1,700	,200,000 2,250		,200,000 2,800		,200,000 15,000		,200,000 18,000		.200,000 30,000		11	11	اا 3	Infrozen subgrade = 212 in.
Re	Surface Course	0,000	0,000	(000,		000,0		000,0		000.0		e course		subgrade	Subdra
		1,200	1,200		7,20		1,200		1,200		1,200		ace co		ed sul	07Pn
Reduction	in Subgrade Resilient Modulus	85%	80%		%¢/		75%		70%		20%		Surf	Base	Thaw	Infr
Redu	in Sul Resi Modu	80	8	i	~		7		7		2		(a)			
	ade e	Fine-grain					ė,						Notes:		Thawed	
	Subgrade Type	Fine-					Coars	grain) 							
				-												

Table B.5 Spring Thaw Condition - Dual Tires - Single Axle -(a) -Complete Thaw Thaw - Pavement Structure 2/6/40/212^(a) -Between Wheels

	^E vs (in/in X 10 ⁻⁶) (b)	-1023 -4999	- 875 -4271	- 773 -3766	- 264 -1279	- 230	- 153 - 742	
ween Wheels	⁶ vb (in/in X 10 ⁶) (b)	- 924 -4592	- 801	- 714 -3556	- 233	- 199	- 122 - 665	(£)
Pavement Response Between Wheels	$ \begin{array}{c c} \epsilon_t & \epsilon_{vs} & \epsilon_{vs} \\ (in/in \ x \ 10^6) & (in/in \ x \ 10^6) & (in/in \ x \ 10^6) \\ (b) & (b) & (b) \\ \end{array} $	+ 50	+ 37	+ 28	- 25	- 28	- 33	Surface deflection ($^{(\delta)}$) Horizontal strain bottom of surface course ($^{(\epsilon}_{\mathbf{t}}$) Vertical strain top of base ($^{(\epsilon)}_{\mathbf{v}}$) Vertical strain top of subgrade ($^{(\epsilon)}_{\mathbf{v}}$)
Paveme	δ (in.) (b)	0.0316	0.0267	0.0237	0.0064	0.0056	0.0037	(6) oottom of o of base o of subgr
	Percent of Full Load	20	200	100	20	07 [100	Surface deflection (δ) Horizontal strain bottom of surface c Vertical strain top of base ($\epsilon_{\rm yb}$) Vertical strain top of subgrade ($\epsilon_{\rm ys}$)
si)	Subgrade Unfrozen	7,500	7,500	7,500	40,000	40,000	40,000	1
Resilient Modulus (psi)	Subgrade Thawed	1,120	1,500	1,880	10,000	12,000	20,000	2 in. (b) (i) 6 in. (ii) 40 in. (iii) 212 in. (iv)
silient	Base	1,700	2,250	2,800	15,000	18,000	30,000	11 11 11 11
Re	Surface Course	1,200,000 1,700	1,200,000	1,200,000 2,800	1,200,000 15,000	1,200,000 18,000	1,200,000 30,000	face course a wed subgrade rozen subgrade
	Reduction in Subgrade Resilient Modulus	85%	80%	75%	75%	70%	20%	(a) Surri Base Thav
	Subgrade Type	Fine-grain			Coarse-	grain		Notes:

Table B.6 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 2/12/34/212^(a) - Between Wheels

Pavement Response Between Wheels	$\begin{pmatrix} \epsilon_t \\ (in/in \times 10^6) \\ (b) \end{pmatrix} \begin{pmatrix} \epsilon_{vb} \\ (in/in \times 10^6) \\ (b) \end{pmatrix} \begin{pmatrix} (in/in \times 10^6) \\ (b) \end{pmatrix}$	179 -	+ 32 - 839 - 713	-4166	- /415	3700
Pavement	δ (in.) (b)	0.0304	0.0255	0.1260	0.0225	יי טוננ ט
	Percent of Full Load	20	20	100	001	
psi)	Subgrade Unfrozen	7,500	7,500	1	006,/	_
silient Modulus (psi	Subgrade Thawed	1,120	1,500		088,	
silient	Ваѕе	1,700	2,250	0	7,800	
	Surface Course	1,200,000 1,700	1,200,000 2,250	000	1,200,000 2,800	-
Reduction	in Subgrade Resilient Modulus	85%	80%	i.	, 5%	
Processor	Subgrade Type	Fine-grain				

Table B.7 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 4/6/38/212(a) - Between Wheels

TO THE RESIDENCE OF THE PROPERTY OF THE PROPER	^E vs (in/in X 10 ⁻⁶) (b)	- 338 -1664	- 302	- 1488 - 276 - 1357	- 125	- 10- - 113 - 113	- 333 - 84 - 409	
tween Wheels	(in/in x 10 ⁶)	- 324	- 292	-1460 - 269 -1343	- 125	- 032	- 5/5 - 84 - 431	ن و (د
Pavement Response Between Wheels	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 37	+ 34	+ + +	+ -	+ + -	+ 63 + 37	Surface deflection (δ) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{v}})$ Vertical strain top of subgrade $(\epsilon_{\mathbf{v}s})$
Pavem	δ (in.) (b)	0.0132	0.0119	0.0591 0.0111 0.0549	0.0038	0.018/	0.0025	(5) outtom of of base of subgr
	Percent of Full Load	20	200	00 00 100 00	20	385	1000	Surface deflection (δ) Horizontal strain bottom of surface c Vertical strain top of base ($\epsilon_{\rm V}$) Vertical strain top of subgrade ($\epsilon_{\rm V}$ s)
si)	Subgrade Unfrozen	7,500	7,500	7,500	40,000	40,000	40,000	
Resilient Modulus (psi)	Subgrade Thawed	1,120	1,500	1,880	10,000	12,000	20,000	4 in. (b) (i) 6 in. (ii) 38 in. (iii) 212 in. (iv)
silient	Base	1,700	2,250	2,800	15,000	18,000	30,000	
	Surface Course	1,200,000 1,700	1,200,000 2,250	1,200,000 2,800	1,200,000 15,000	1,200,000 18,000	1,200,000 30,000	ace course ed subgrade ozen subgrade
Reduction	in Subgrade Resilient Modulus	85%	80%	75%	25%	70%	20%	Notes: (a) Surfac Base Thawec
	Subgrade Type	Fine-grain			Coarse-	grain		Notes:

Table B.8 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 4/12/32/212^(a) - Between Wheels

-	⁶ vs (in/in X 10 ⁶) (b)	- 316	-1562 - 277	-1370	-1230	86 -	- 482	- 427	- 61	- 300	male consequentes and a second		
ween Wheels	(in/in x 10 ⁶)	- 339	- 1690 - 305	-1524	-1400	- 130	- 653	- 593	- 87	- 441	The control of the co	ω ()	
Pavement Response Between Wheels	${\rm tr}^{\rm et}_{(in/in\ X\ 10^6)}$ ${\rm (in/in\ X\ 10^6)}$ ${\rm (in/in\ X\ 10^6)}$ ${\rm (in/in\ X\ 10^6)}$	+ 36	+ 203 + 33	+ 188 + 30	+ 175	+ 8	99 4 +	+ 56	-	+ 31		Horizontal strain bottom of surface course (E.)	()
Pavemen	(in.)	0.0130	0.017	0.0581	0.0536	0.0036	0.0179	0.0160	0.0024	0.0117	(8)	ottom of s	of base (
ACCIONES ACCIONALES ANA CONTRACTOR SERVICES AND CONTRA	Percent of Full Load	20	20 02	100	100	50	000	38	20	100	Surface deflection (§)	ntal strain bo	Vertical strain top of base $(\epsilon_{i,j})$
si)	Subgrade Unfrozen	7,500	7,500	7.500		40,000	000 OV	•	40,000	•			
Resilient Modulus (psi)	Subgrade Thawed	1,120	1,500	1.880		10,000	12 000	200	20,000			in. (ii)	
silient	Base	1,700	2,250	2,800		15,000	18 000	2	30,000	-	**		= 32 in.
ANT DESCRIPTION AND DESCRIPTION OF THE PERSON OF THE PERSO	Surface Course	1,200,000 1,700	1,200,000 2,250	1,200,000 2,800		1,200,000 15,000	1 200 000 18 000		1,200,000 30,000		Surface course		id subgrade $= 32$ in.
Reduction	in Subgrade Resilient Modulus	85%	80%	75%		75%	70%		20%		Notes: (a) Surfa	Base	Thawe
	Subgrade Type	Fine-grain				Coarse-	grain				Notes:		

Table B.9 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 2/6/40/212(a) - Beneath Tire

			illient M	Resilient Modulus (psi)	si)	Paver	ent Respo	Pavement Response Beneath Inside Tire of Duals	ide Tire of Du	als
Subgrade Type	Reduction in Subgrade Resilient Modulus	Surface Coarse	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of Full Load	ه (in.) (b)	$\begin{pmatrix} \epsilon_{t} & \epsilon_{vb} \\ (in/in \times 10^{6}) & (in/in \times 10^{6}) & (in/in \times 10^{6}) \\ (b) & (b) & (b) \end{pmatrix}$	^E vb (in/in X 10 ⁻⁶) (b)	(1n/in x 10 ⁻⁶)
Fine-grain	85%	1,200,000 1,700	1,700	1,120	7,500	20	0.0314	+188	-1129	- 896 -4585
	80%	1,200,000 2,250	2,250	1,500	7,500	200	0.0261	+179 +586	-1014 -4229	- 765 -3924
	75%	1,200,000 2,800	2,800	1,880	7,500	100	0.0232	+173 +549	- 935 -3826	- 677 -3461
Coarse-	75%	1,200,000 15,000	15,000	10,000	40,000	20	0.0066	+123	- 501 -1645	- 255 -1200
grain	70%	1,200,000 18,000	18,000	12,000	40,000	020	0.0058	+118	- 476	- 226 -1054
	20%	1,200,000 30,000	30,000	20,000	40,000	100	0.0041	+104 +215	- 382	- 158 - 721
Notes	Notes: (a) Surf Base Thaw Unfr	Surface course = Base = Thawed subgrade = Unfrozen subgrade =	= 2 = 6 = 40 ide = 21	2 in. (b) (6 in. (12 12 in. (13 12 12 12 in. (13	(b) (i) Surfa (ii) Horiz (iii) Verti (iv) Verti	Surface deflection (δ) Horizontal strain bottom of surface convertical strain top of base (ϵ_{yb}) Vertical strain top of subgrade (ϵ_{ys})	(5) bottom of p of base p of subgr	Surface deflection ($^{\delta}$) Horizontal strain bottom of surface course ($^{\epsilon}_{\mathbf{t}}$) Vertical strain top of base ($^{\epsilon}_{\mathbf{v}}$) Vertical strain top of subgrade ($^{\epsilon}_{\mathbf{v}_{\mathbf{S}}}$)	(£ 4 3)	

Table B.10 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 2/12/34/212(a) - Beneath Tire

	Dadiction	Ke	Si. ient	Resilient Modulus (psi)	si)	Paven	nent kespo	Pavement Kesponse Beneath Inside lire of Duals	ide iire of Du	S
Subgrade Type	in Subgrade Resilient Modulus	Surface Coarse	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of Full Load	(in.) (b)	$\begin{pmatrix} \epsilon_{t} \\ (in/in \times 10^{6}) \\ (b) \end{pmatrix} \begin{pmatrix} \epsilon_{vb} \\ (in/in \times 10^{6}) \\ (b) \end{pmatrix} \begin{pmatrix} (in/in \times 10^{6}) \\ (b) \end{pmatrix}$	^E vb (in/in X 10 ⁻⁶) (b)	(in/in X 10 ⁶) (b)
Fine-grain	85%	1,200,000	1,700	1,120	7,500	20	0.0306	+186	-1169	-1757
	80%	1,200,000	2,250	1,500	7,500	2025	0.0254	+176	-1048	- 619
	75%	1,200,000	2,800	1,880	7,500	1000	0.0223	+363 +170 +526	- 964 -3950	- 530 - 530 -2718
Coarse-	75%	1,200,000 15,000	15,000	10,000	40,000	20	0.0062	+120	- 506 -1666	- 158
; ; ;	70%	1,200,000 18,000	18,000	12,000	40,000	200	0.0055	912	472	- 137
	50%	1,200,000 30,000	30,000	20,000	40,000	50	0.0246	+102	384	+/0 - 89 -
				,		100	0.0170	+207	-1122	- 436
Notes:	(a) Surf	ace course	. 2 .			e deflection	(9)	Surface deflection (◊)		
	Base	.	= 12			ntal strain b	ottom of	surface course ((E*)	
	Thawed subgrade = 34 in.	ed subgrade	= 34	in. (iii)		Vertical strain top of base $(\epsilon_{i,h})$	of base	(ε,,μ)	٠	
	Unfr	ozen subgra	ide = 212			al strain top	of subgr	ade ^{U(E,C)}		

Table B.11 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 4/6/38/212(a) Beneath Tire

		Rec	silient	Resilient Modulus (psi	Si)	Pavem	ent Respo	Pavement Response Beneath Inside Tire of Duals	ide Tire of Du	als
	Reduction						Ŷ	e e	e _{vb}	evs Evs
Type	Resilient Modulus	Surface Coarse	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of Full Load	(in.) (b)	(in/in x 10 ⁶) (in/in x 10°) (in/in x 10°) (b) (b)	(in/in X 10°) (b)	(in/in X 10°9) (b)
Fine-grain	85%	1,200,000 1,700	1,700	1,120	7,500	20	0.0172	+ 68 +265	- 415 -1615	- 375 -1486
	80%	1,200,000 2,250	2,250	1,500	7,500	20	0.0148	+ 64	- 368	- 318
	75%	1,200,000 2,800	2,800	1,880	7,500	200	0.0544 0.0133 0.0505	+252 + 62 +244	-1436 - 339 -1348	- 280 - 280 -1211
Coarse-	75%	1.200.000 15.000	15.000	10.000	40,000	20	0.0039	+ 42	- 170	- 110
grain	20%	1.200,000 18,000	18,000	12,000	40,000	100 20	0.0175	+ 41	159	- 99
	20%	1,200,000 30,000	30,000	20,000	40,000	100 02 02 1	0.0158	+143 + 36 +118	- 047 - 132 - 512	- 74
			***************************************			100	0.0110	0111		A commence of the second of th
Notes:	(a)	Surface course == Base ==	= 4 in.		(b) (i) Surfac (ii) Horizo	ce deflection ontal strain b	(a) ottom of	Surface deflection $(^{\delta})$ Horizontal strain bottom of surface course $(^{\varepsilon}_{\mathbf{t}})$	(E f)	
	Thaw Unfr	ved subgrad€ ∙ozen subgra	e = 38 in. ide = 212 in.		iii) Verti (iv) Verti	cal strain top cal strain top	of base	ade ^{(,} vs)		

Table B.12 Spring Thaw Condition - Dual Tires -Single Axle - Complete Thaw - Pavement Structure 4/12/32/212^(a) - Beneath Tire

SA3	(in/in X 10°) (b)	- 382	- 312	- 269 -1080	- 87	- 434	- 76 - 385	- 53 - 270	
evb 6	(in/in x 10°9) (b)	- 429 -1680	- 3//	- 341 -1402	- 174	- 718	- 162 - 662	- 135 - 521	(c [‡])
ú	(in/in x 10°b) (b)	+ 68 +261	+ 64	+ 61	+ 42	+146	+ 40	+ + +	Surface deflection ($\stackrel{\circ}{\cdot}$) Horizontal strain bottom of surface course ($^{}_{\epsilon_t}$) Vertical strain top of base ($^{}_{\epsilon_v}$) Vertical strain top of subgrade ($^{}_{\epsilon_v}$)
ŵ	(in.) (b)	0.0170	0.0145	0.0130	0 0038	0.0168	0.0034	0.0025	(:) bottom of p of base p of subgr
	Percent of Full Load	20	28	200	96	200	325	282	Surface deflection ($\stackrel{\circ}{\cdot}$) of surface c Horizontal strain top of base ($^{\varepsilon}_{Vb}$) Vertical strain top of subgrade ($^{\varepsilon}_{Vs}$)
***************************************	Subgrade Unfrozen	7,500	7,500	7,500	000	5,000	40,000	40,000	(b) (i) Surfa (ii) Horiz (iii) Verti (iv) Verti
	Subgrade Thawed	1,120	1,500	1,880	000	20,00	12,000	20,000	1
	Base	1,700	2,250	2,800	000	2,000	18,000	30,000	= 4 i = 12 e = 32 ade = 212
	Surface Coarse	1,200,000	1,200,000	1,200,000		1,200,000	1,200,000	1,200,000	Surface course = 4 in. Base = 12 in. Thawed subgrade = 32 in. Unfrozen subgrade = 212 in.
Reduction	nn Subgrade Resilient Modulus	85%	80%	75%	The second secon	75%	70%	50%	Notes: (a) Surf Base Thaw
		Fine-grain		0.0-feesivabaptalis		Coarse-	grain		Notes
	Reduction	Surface Base Subgrade Subgrade Percent of Coarse Thawed Unfrozen Full Load	Reduction	Reduction	Reduction	Reduction Resilient Subgrade Subgrade Subgrade Percent of (in.)	Reduction	Reduction	Reduction

Table B.13 Spring Thaw Condition - Dual Tires -Tandem Axle - Complete Thaw -Pavement Structure 2/6/40/212(a)

			7	, , , , ,			AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN TH	Daved	Davement Recoonse	95	
	Reduction	Kesi	Tient Mo	Kesillent modulus (ps.	-			Q	£ + 3	Evh	, V,
Subgrade Type	in Subgrade Resilient Modulus	Surface Course	Base	Subgrade Thawed	Subgrade Unfrozen	vercent of full Load	Location (c)	т. (б)	(in/inX10 ⁶) (b)	(in/inx10 ⁻⁶) (in/inx10 ⁻⁶) (in/inx10 ⁻⁶) (b) (b)	(in/inx10 ⁻⁶) (b)
Researce COSTOCIONES CONTRACTOR C	75	1,200,000	2,800	1,800	7,500	20	8W W	0.0119	+ 30	. 598 - 598	89 - 660 - 753
Fine-grain						00 L	D 88 87 ¥	0.0211 0.0598 0.1040	+154 +152 +189	- 801 - 408 -2986	- 5// - 463 -3227
	85	1,200,000	1,700	1,120	7,500	20	DA M	0.0960 0.0193 0.0296	+ 502 + 48 + 48	-3301 - 180 - 783	- 198 - 847
						001	P B B B F D	0.0287 0.0882 0.1380 0.1250	+168 +222 +282 +585	- 976 - 916 -3894 -4137	- 749 -1005 -4151 -3788
Se-	50	1,200,000	30,000	20,000	40,000	20	BA BW	0.0012	+ 2 - 29	+ 3 - 103 - 338	+ 7 - 129 - 133
grain						100	0 8 8 D T T T T T T T T T T T T T T T T T	0.0059 0.0166 0.0166	+ 94 - 91 +206	+ 12 - 556 -1013	+ 34 - 629 - 619
Notes: (a)	Surface c Base Thawed su Unfrozen		2 in. (b) (1) (6 in. (11) (11) (11) (11) (11) (11)		Surface deflection (3) Horizontal strain bottom of surface course (2,1) Vertical strain top ^t of base (g _{Vb})	ction (ε) rain botto rse (ε_t) in top of	m of base (_{exb}		(c) BA = bet 0 BW = bet 0	between axles on centerline of dual tires between dual wheels centere on one axle	between axles on centerline of dual tires between dual wheels centered on one axle
		•		(iv) Ver	tical stra	in top of	subgrade	(ε _{νs})	ŧ	incered unlections inside wheel	

Table B.14 Spring Thaw Condition - Dual Tires -Tandem Axle - Complete Thaw -Pavement Structure 2/12/34/212^(a)

Reduction	Resil	ient Moc	Resilient Modulus (psi	(Colonia e e e e e e e e e e e e e e e e e e e			Pavement Response	ıse	
	Surface Course	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of full Load	Location (c)	å .(d)	(in/inX10 ⁻⁶)	^{evb} ((in/inX10 ⁶) (b)	(in/inX10 ⁻⁶) (in/inX10 ⁻⁶) (in/inX10 ⁻⁶)
-	1,200,000	2,800	1,800	7,500	20	88	0.0116		- 68	- 160
						. MG	0.0201	+ 21	- 628	- 526
*****						ТО	0.0205	+151	- 828	- 459
	O) OLOUP TO				00	BA	0.0582	+168	- 348	- 810
						36	0.0996	+167	-3128	-2581 230F
	000	,		1	ç	5 6	0.0361	784+	246	200
	1,200,000	., 8	0.71,1	005,7	20	\$ 8	0.0172	+ .	- 165	290
	Mary and pro-					× 0.00	0.02/0	+ 40	- 823	71/ -
			-			<u></u>	0.0281	+165	5001-	- 645
					9	84	0.0862	+207	- 838	-1460
						36	0.1330	+261	4085	-3502
	***************************************					ы	0.1214	+266	-4304	-3108
1-	1.200.000	30,000	20,000	40.000	20	BA	0.0012	+	+ 2	4
)				- M	0.0031	.3	401	- 84
						6	0.0036	+ 92	- 339	- 74
		***************************************			901	84	0.0060	+ 7	+ 12	- 22
							0.0155	8-	- 560	- 412
	***************************************	unante i				Б	0.0156	+199	-1019	- 367
	Notes: (a) Surface course = 2 Base = 1 Thawed subgrade = 3 Unfrozen subgrade = 2	2 in. (b) (i 12 in. (ii) 34 in. 212 in. (iii	~~	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\rm L}$) Vertical strain top of subgrade Vertical strain top of subgrade	tion (δ) ain botton se (εt) n top of t	n of base (e _{yb} subgradě ^b	(s ^A 3)	(c) BA = beth 01 BW = beth 01 DT = cen 1	BA = between axles on centerline of dual tires BW = between dual wheels centered on one axle DT = centered directly under inside wheel	centerline els centered y under

Table B.15 Spring Thaw Condition - Dual Tires -Tandem Axle - Complete Thaw -(a) Pavement Structure 4/6/38/212^(a)

	T		1	7 -
	^e vs (in/inXlO ⁻⁶) (b)	- 147 - 245 - 260 - 735 - 1213 - 1072 - 304 - 347 - 1075 - 1503	- 69 - 69 - 62 - 33 - 341 - 316	centerline els centerec y under
95	(in/inX10 ⁻⁶) (in/inX10 ⁻⁶) (b) (b)	- 133 - 238 - 301 - 666 - 188 -1207 - 204 - 300 - 300 - 1023 -1505	. 4 . 71 . 114 . 23 . 363 . 450	between axles on centerline of dual tires between dual wheels centered on one axle centered directly under inside wheel
Pavement Response	(in/inX10 ⁻⁶)((b)	+ 30 + 58 + 148 + 148 + 169 + 230 + 36 + 36 + 65 + 179 + 200 + 254	+ + 5 + + 27 + + 27 + 108	BA = BW = DT =
Pav	ة. (5)	0.0103 0.0133 0.0133 0.0516 0.0514 0.0135 0.0136 0.0173 0.0672	0.0014 0.0023 0.0025 0.0068 0.0115	(c) (c)
	Location (c)	88 B B B B B B B B B B B B B B B B B B	BB BW DT BW DT	ase (Exb)
	Percent of full Load	20 100 20 100	100	Surface deflection (δ) Horizontal strain bottom of surface course (ε _t) Vertical strain top of base (ε _V b)
7	Subgrade Unfrozen	7,500	40,000	Surface deflection (δ) Horizontal strain both surface course ($\epsilon_{\rm t}$) Vertical strain top of Vertical strain top of
Resilient Modulus (psi)	Subgrade Thawed	1,800	20,000	££ £\$
lient Mo	Base	2,800	30,000	4 in. (b) 6 in. (338 in. 212 in. (i
Resi	Surface Course	1,200,000	1,200,000	11 11 11 11 <u>0</u>
Reduction	in Subgrade Resilient Modulus	75 85	50	Notes: (a) Surface course Base Thawed subgrade Unfrozen subgra
	Subgrade Type	Fine-grain	Coarse- grain	Notes: (a)

Table B.16 Spring Thaw Condition - Dual Tires -Tandem Axle - Complete Thaw -Pavement Structure 4/12/32/212(a)

	Reduction	Resi	lient Mod	Resilient Modulus (psi)			Parallel and Paral	Pav	Pavement Response	Se	The state of the s
Subgrade Type	in Subgrade Resilient Modulus	Surface Course	Base	Subgrade Thawed	Subgrade Unfrozen	Percent of full Load	Location (c)	ه in. (b)	(in/inX10 ⁻⁶)	(in/inX10 ⁻⁶) (in/inX10 ⁻⁶) (in/inX10 ⁻⁶) (b) (b)	evs (in/inX10 ⁻⁶) (b)
Fine-grain	75	1,200,000	2,800	1,800	7,500	20 100 20 100	8A 0 T 0 B 0 D 0 T 0 D 0 T 0 D 0 D	0.0102 0.0109 0.0131 0.0508 0.0510 0.0510 0.0135 0.0171 0.067	+ 29 + 29 + 57 + 142 + 163 + 225 + 35 + 35 + 64 + 175 + 195 + 250	- 131 - 248 - 248 - 308 - 1255 - 1255 - 313 - 313 - 1016 - 1563	- 172 - 227 - 257 - 804 -1165 -1056 - 250 - 291 - 356 -1251
Coarse- grain	50	1,200,000	30,000	20,000	40,000	100	BA DT BA DT DT	0.0013 0.0022 0.0024 0.0066 0.0110	+ 5 + 31 + 23 + 23 + 104	- 3 - 73 - 116 - 17 - 372 - 458	- 14 - 51 - 44 - 69 - 250
Notes: (a)	Surface c Base Thawed su Unfrozen	1 de = 1	4 in. (b) 12 in. 32 in. 212 in. (i	SE ES	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) Vertical strain top of subgrade($\epsilon_{\rm t}$)	tion (s) ain bottom se (εt) n toptof b n top of s	of ase (e ubgraděb	(c) (c)	BA = BW = DT =	between axles on centerline of dual tires between dual wheels centered on one axle centered directly under inside wheel	centerline els centered y under

Table B.17 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212(a) - Base M_R @ 25%

	Thawed Base	Res	illent	Resilient Modulus (psi)	si)			Pavement Response	sponse	
Case No.	Case PerBent of No. Summer Base MR	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	δ (in.) (b)	et (in/in X 10 ⁻⁶) (b)	$\binom{\epsilon_t}{(in/in \times 10^{-6})} \binom{\epsilon_v b}{(in/in \times 10^{-6})} \binom{\epsilon_v x}{(in/in \times 10^{-6})} \binom{\epsilon_v x}{(b)}$	^E vs (in/in X 10 ⁻⁶) (b)
-	25	1,200,000	2,810	50,000	7,500	20 100	0.0119	+259	-1797	- 51 - 224
2	25	1,200,000	3,750	50,000	10,000	100	0.0104	+247 +592	-1568 -5556	- 61 - 262
m	25	1,200,000	9,380	50,000	25,000	20 100	0.0068	+209	-1028	- 97 - 391
4	25	1,200,000 15,000	15,000	20,000	40,000	20 100	0.0056	+189	- 831	- 115 - 454
(a	(a) Surface course Base Frozen subgrade Unfrozen subgrade	nurse = 2 in. = 6 in. sgrade = 40 in. subgrade = 212 in.	n. .in.		(a) (iii) (ivi)		Surface deflection (6) Horizontal strain bott Vertical strain top of Vertical strain top of	Surface deflection (§) Horizontal strain bottom of surface c Vertical strain top of base ($_{\rm V}^{\rm V}$) Vertical strain top of subgrade ($_{\rm V}^{\rm V}$)	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{y}}$) Vertical strain top of subgrade ($\epsilon_{\mathbf{v}}$)	t)

Table B.18 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212^(a) - Base M_R @ 25%

Resilient Surface Base	esilient	illient Mod	Su Su	ulus (p	st) Subgrade	Percent	8	Pavement Response	y dv ³	S A S
Summer Base M _R Course Dase Frozen Unfrozen	Dase		Frozen Unfro	Unfro	ren	of Full Load	(in.)	$(in/in \times 10^{-6})(in/in \times 10^{-6})(in/in \times 10^{-6})$	(in/in X 10 ⁶) (b)	(in/in X 10 ⁶) (b)
25 1,200,000 2,810 50,000 7,500	2,810 50,000	20,000		7,500		100	0.0160	+285	-1575 -5646	- 29 - 144
25 1,200,000 3,750 50,000 10,000	3,750 50,000	3,750 50,000		10,000		100	0.0138	+270 +683	-1407	- 37
25 1,200,000 9,380 50,000 25,000	9,380 50,000	20,000		25,000		100	0.0084	+222 +499	- 974 -2983	- 56
25 1,200,000 15,000 50,000 40,000	20,000	20,000		40,000		100	0.0065	+197 +410	- 804 -2274	- 63 - 279
(a) Surface course = 2 in. (b) (i) Base = 12 in. (ii) Frozen subgrade = 34 in. (iii) Unfrozen subgrade = 212 in. (ivi)	= 2 in. = 12 in. = 34 in. le = 212 in.		(d)	(9)	2223		eflection 1 strain strain to	Surface deflection (5) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{t}}$) Vertical strain top of submad b	ice course (e	

Table B.19 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212(a) - Base M_R @ 25%

	Thawed Base	Res	illient P	Resilient Modulus (psi)	(15)			Pavement Response	sponse	
Case No.	Percent of Summer Base MR	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	δ (in.) (b)	$ (in/in \times 10^{-6}) (in/in \times 10^{6}) (in/in \times 10^{6}) (in/in \times 10^{6}) (in/in \times 10^{6}) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c$	^E vb (in/in X 10 ⁶) (b)	^e vs (in/in X 10 ⁶) (b)
	. 52	1,200,000	2,810	50,000	7,500	20 100	0.0053	+ 90 +270	- 598 -2629	- 12
2	25	1,200,000	3,750	50,000	10,000	20 100	0.0048	+ 87 +258	- 535 -2254	- 18
m	25	1,200,000	9,380	50,000	25,000	20	0.0033	+ 78 +217	- 336 -1373	- 37
4	25	1,200,000 15,000	15,000	50,000	40,000	20 100	0.0028	+ 73 +199	- 300	- 47
(a	(a) Surface course Base Frozen subgrade Unfrozen subgrade	ourse = 4 in. = 6 in. bgrade = 38 in. subgrade = 212 in.]		(i) (d) (ii) (iii) (vi)		Surface deflection (5) Horizontal strain bott Vertical strain top of Vertical strain top of	Surface deflection (δ) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{v}})$ Vertical strain top of subgrade $(\epsilon_{\mathbf{v}})$	face course (Eq.)	

Table B.20 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure $4/12/32/212^{(a)}$ - Base M_R @ 25%

						7
	'vs (in/in X 10 ⁻⁶) (b)	- 43	2 2 8	- 13	- 29	
sponse	$\binom{t}{(in/in \ X \ 10^{-6})} \binom{v_{vb}}{(in/in \ X \ 10^{-6})} \binom{v_{vs}}{(in/in \ X \ 10^{-6})}$	- 480 -2148	- 436 -1872	- 326 -1219	- 278	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{v}}$) Vertical strain top of subgrad $\mathbf{e}^{\mathbf{v}}(\epsilon_{\mathbf{v}s})$
Pavement Response	[.] t (in/in X 10 ⁻⁶) (b)	+ 95 +301	+ 92 +286	+ 83 +239	+ 77	Surface deflection (s) Horizontal strain bottom of surface c Vertical strain top of base (e _V) Vertical strain top of subgrade (e _{VS})
	δ (in.) ((b)	0.0067	0.0058	0.0038	0.0031	eflection l strain strain to
	Percent of Full Load	20 100	100	20	100	
151)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(i) (ii) (iii) (iv)
Resilient Modulus (psi)	Subgrade Frozen	50,000	20,000	50,000	50,000	
sillent	Base	2,810	3,750	9,380	15,000	n. in.
Res	Surface Course	1,200,000	1,200,000	1,200,000	1,200,000 15,000	ourse = 4 in. = 12 in. grade = 32 in. subgrade = 212 in.
Thawed Base	Case Perent of No. Summer Base MR	25	25	25	25	(a) Surface course Base Frozen subgrade Unfrozen subgrade
-	Case No.	_	~	ю	4	(a)

Table B.21 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212(a) Base M_R @ 50%

	Thawed Base	Re	Rilient	Resilient Modulus (osi)	151)			Pavement Response	sponse	
Case No.	MR as a Percent of Summer Base M _R	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	δ (in.) (b)	(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (b)$	(in/in X 10 ⁻⁶) (b)	(in/in X 10 ⁶) (b)
_	50	1,200,000	5,625	50,000	7,500	20 100	0.0090	+230	-1299 -4373	- 74
2	. 50	1,200,000 7,500	7,500	50,000	10,000	20 100	0.0079	+218	-1138 -3675	- 86 - 352
т	20	1,200,000 18,750	18,750	50,000	25,000	20 100	0.0053	+179	- 750 -2051	- 121 - 476
4	50	1,200,000 30,000	30,000	20,000	40,000	20 100	0.0044	+157	- 603 -1468	- 135 - 518

(b) (i) Surface deflection ($^{\wedge}$) (ii) Horizontal strain bottom of surface course ($^{}_{\epsilon_t}$) (iii) Vertical strain top of base ($^{}_{\epsilon_v}$) (iv) Vertical strain top of subgrade ($^{}_{\epsilon_v}$)

Surface course = 2 in.
Base = 6 in.
Frozen subgrade = 40 in.
Unfrozen subgrade = 212 in.

Notes: (a)

Table B.22 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/32/212^(a) - Base M_R @ 50%

	r	r		-		T
	(in/in X 10 ⁻⁶) (b)	- 43 - 196	- 221	- 64	- 67	(E ^t)
sponse	(in/in X 10 ⁻⁶)	-1197	-1066	- 732 -1984	- 597 -1466	surface course (Eyb)
Pavement Response	(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6)$	+ 248 + 600	+ 233 + 543	+ 185	+ 160	Surface deflection (§) Notice that is strain bottom of surface course (ϵ_t) Vertical strain top of base (ϵ_v) Vertical strain top of subgrade (ϵ_v)
	δ (in.) (b)	0.0117	0.0100	0.0061	0.0047	ce deflecontal strainstrains
	Percent of Full Load	20 100	100	20 100	100	(b) (i) Surface deflection (5) (ii) Horizontal strain bott (iii) Vertical strain top of (iv) Vertical strain top of
si)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(q)
Resilient Modulus (psi)	Subgrade Frozen	50,000	20,000	50,000	20,000	in. in.
skilient	Base	5,625	7,500	18,750	30,000	= 2 ii = 12 = 32 te = 212
Ŗ	Surface Course	1,200,000 5,625	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000	ce course n subgrade
Thawed Base	MR as a Percent of Summer Base M _R	50	20	20	20	Notes: (a) Surface course = 2 in. Base = 12 in. Frozen subgrade = 32 in. Hinfrozen subgrade = 712 in.
	No.	garcias	2	т	4	Not

Table B.23 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212(a) - Base M_R @ 50%

	(in/in X 10 ⁻⁶)	- 24	- 30	- 50 - 216	- 59 - 252	د. (د.
sponse	(in/in X 10 ⁶) (b)	- 454 -1810	- 402 -1549	- 272 - 935	- 223 - 718	surface course (ε) adė ^{(ε} ν _s)
Pavement Response	(in.) $(in/in \times 10^{-6}) (in/in \times 10^{-6}) (in/in \times 10^{-6}) (in/in \times 10^{-6})$	+ 83 +240	+ 80 +228	+ 71 + +190	+ 65	Surface deflection (§) Horizontal strain bottom of surface course ($_{\rm t}_{\rm t}$) Vertical strain top of base ($_{\rm t}_{\rm t}$) Vertical strain top of subgrade ($_{\rm t}_{\rm t}$)
	(in.)	0.0045	0.0040	0.0028	0.0024	e deflec ntal str al strai
	Percent of Full Load	20 100	20	100	20	(b) (i) Surfac (ii) Horizo (iii) Vertic (iv) Vertic
(1)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(q)
Dociliont Modulus (nei)	Subgrade	50,000	50,000	50,000	50,000	4 in. 6 in. 38 in. 212 in.
11:00+	Base	5,625	7,500	18,750	30,000	
ď	Surface Course	1,200,000 5,625	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000	Surface course = Base Frozen Subgrade = Unfrozen subgrade =
Themed Race	MR as a Percent of Summer Base MR	50	50	50	20	Notes: (a) Surfa Base Froze Unfrc
	Case No.	_	2	m	4	×

Table B.24 Spring Thaw Condition - Single Tire - Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212(a) - Base M_R @ 50%

	x 10 ⁻⁶)	12 73	97	31	36 165	
	(in/in)		8 8	8	\$ B	ırse (ε _t .
esponse	(in/in X 10 ⁶	- 383 -1545	- 350	- 258 - 878	- 218 - 698	of surface couse $(\varepsilon_{\rm V})$
Pavement Response	l ii	+ 89 +265	+ 85 +251	+ 73	+ 67	Surface deflection (§) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{b}})$ Vertical strain top of subgrad $\{\epsilon_{\mathbf{v}}\}$
	(in.)	0.0054	0.0047	0.0031	0.0025	rface def rizontal rtical st
	Percent of Full Load	20 100	100	100	20 100	(b) (i) Sur (ii) Hor (iii) Ver (iv) Ver
osi)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	
Resilient Modulus (psi)	Subgrade Frozen	50,000	50,000	50,000	20,000	4 in. = 12 in. = 32 in. = 212 in.
esilient	Base	5,625	7,500	18,750	30,000	de
α	Surface Course	1,200,000	1,200,000	1,200,000 18,750	1,200,000 30,000	Surface course Base Frozen Subgrade = Unfrozen subgrade =
Base	t of ase M _R				•	(a)
Thawed	rk as a Percent of Summer Base M _R	20	90	20	20	Notes: (a
9369	No.		2	m	4	

Table B.25 Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212(a) - Base M_R @ 50% - Between Wheels

·						
	(in/in X 10 ⁻⁶)	- 47	- 52 - 253	- 68 - 324	- 71 - 344	(F. t.)
Setween Wheels	(in/in X 10 ⁶) (b)	- 586 -2912	- 469 -2332	- 206 -1074	- 126 - 686	urface course $\binom{\epsilon_{\rm V}}{{\rm d}^{\rm e}}(\epsilon_{\rm V_S})$
Pavement Response Between Wheels	(in.) $(in/in \times 10^6)(in/in \times 10^6)(in/in \times 10^6)$	+ 28 + 52	+ 32 + 72	+ 39	+ 38	Surface deflection (ε) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{y}}$) Vertical strain top of subgrad \mathbf{e} ($\epsilon_{\mathbf{y}}$)
Pave	δ (in.) (b)	0.0062 0.0306	0.0052	0.0031	0.0024	deflect tal stra strair
	Percent of Full Load	20 100	100	100	20 100	
si)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(b) (1) (11) (111) (11)
Resilient Modulus (psi)	Subgrade Frozen	50,000	50,000	50,000	50,000	. :
Rilient	Base	5,625	7,500	18,750	30,000	= 2 in. = 6 in. = 40 in. = 212 in
Re	Surface Course	1,200,000 5,625	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000	Surface course = 2 in. Base = 6 in. Frozen subgrade = 40 in. Unfrozen subgrade = 212 in.
Thawed Base	MR as a Percent of Summer Base MR	50	90	90	50	Notes: (a) Surface Base Frozen Unfroze
	Case No.	_	2	ю	4	Note

Table B.26 Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212(a) - Base M_R @ 50% - Between Wheels

	Re	skilient	Resilient Modulus (psi)	051)		Рауе	Pavement Response Between Wheels	Between Wheels	
Surface Course	a	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load		(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6)$ (b) (b) (b)	(in/in X 10 ⁶) (b)	(in/in X 10 ⁻⁶) (b)
1,200,000 5,625	0	5,625	50,000	7,500	20 100	0,0084	- 20	- 524 -2621	- 34
1,200,000 7,500		7,500	50,000	10,000	100	0.0069	- 20	- 426 -2140	- 38
1,200,000 18,750		18,750	50,000	25,000	100	0.0037	- 40 - 90	- 199 -1040	- 47 - 230
1,200,000 30,000		30,000	20,000	40,000	20 100	0.0027	- 40	- 125 - 677	- 49 - 278
e course s subgrade en subgrade		= 2 in. = 12 in. = 34 in. = 212 in.	:	(b) (1) (11) (11) (11) (vr)	Ì	Surface deflection (6) Horizontal strain bott Vertical strain top of Vertical strain top of	Surface deflection (δ) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{v}})$ Vertical strain top of subgrade $(\epsilon_{\mathbf{v}})$	urface course ((وئ

Table B.27 Spring Thaw Condition - Dual Tires - Single Axle -Thaw to Bottom of Base - Pavement Structure 4/6/38/212(a) - Base M_R @ 50% - Between Wheels

	Thomas Baco	9	-		,	1,00		Paver	Pavement Response Between Wheels	tween Wheels	
	I NO MCC DO		¥	FILLENT	Kerillent Modulus (ps/)	1150		A			
Case No.	MR as a Percent Summer Bas	e M R	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	(in.)	(in.) $(in/in \times 10^6)(in/in \times 10^6)(in/in \times 10^6)$ (b) (b) (b)	(in/in X 10 ⁶) (b)	(in/in X 10 ⁻⁶) (b)
	20		1,200,000 5,625	5,625	50,000	7,500	20 100	0.0039	+ 7	- 293 -1452	- 19
	90		1,200,000 7,500	7,500	50,000	10,000	20 100	0.0033	+ 52	- 243 -1213	- 24
	20		1,200,000 18,750	18,750	50,000	25,000	20 100	0.0021	0+27	- 131	- 36 - 176
	20		1,200,000 30,000	30,000	50,000	40,000	20	0.0017	+ 2 +17	- 92 - 469	- 41
	Notes: (a) Su	Surface Base Frozen Unfroze	urface course ase rozen subgrade nfrozen subgrade	= 4 in. = 6 in. = 38 in. = 212 in.	in.	(b)	(b) (i) Surface (ii) Horizor (iii) Vertica (iv) Vertica	deflec ntal strail il strail	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{t}}$) Vertical strain top of subgrad δ	urface course $\frac{\varepsilon}{(\varepsilon_{VS})}$	$(\epsilon_{\mathbf{t}})$

Table B.28 Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212^(a) - Base M_R [@] 50% - Between Wheels

tween Wheels	$ \frac{\varepsilon_{t}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vb}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vs}}{(in/in \times 10^{-6})} $	- 247 - 13 -1234 - 66	- 210 - 17 -1050 - 82	- 122 - 27 - 613 - 130	- 90 - 30 - 454 - 146	Surface deflection ($\&$) Horizontal strain bottom of surface course ($e_{\mathbf{t}}$) Vertical strain top of base ($e_{\mathbf{v}}$) Vertical strain top of subgrade ($e_{\mathbf{v}}$)
Pavement Response Between Wheels	(in/in x 10 ⁻⁶) (b)	+10	+10	0+40	0+20	Surface deflection ($\&$) Horizontal strain bottom of surface of Vertical strain top of base $(e_{\rm D})$ Vertical strain top of subgrad $\&$ $(e_{\rm L_{\rm c}})$
Pave	δ (in.) (b)	0.0048	0.0040	0.0024	0.0019	deflect tal stra strain
	Percent of Full Load	20 100	20 100	20 100	20 100	
osi)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(b) (d) (11) (11) (11) (vi)
Resilient Modulus (psi)	Subgrade Frozen	50,000	50,000	50,000	50,000	
silient	Base	5,625	7,500	18,750	30,000	= 4 in. = 12 in. = 32 in. = 212 in.
Re	Surface Course	1,200,000	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000	Surface course = Base Frozen subgrade = Unfrozen subgrade =
Thawed Base	MR as a Percent of Summer Base M _R	50	50	50	50	Notes: (a) Surface Base Frozen Unfroze
(No.	,	2	ю	4	Note

Table B.29 Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212^(a) - Base M_R @ 50% - Beneath Tire

^E vs (in/in X 10 ⁻⁶) (b)	- 43 - 204	- 50 - 232	- 70 - 312	- 76 - 340	(23)
(in/in X 10 ⁻⁶) (b)	- 836 -3182	- 727 -2665	- 476 -1519	- 385 -1137	urface course ^{E,b} de ^{b(E,s)}
(in/in X 10 ⁶) (b)	+131	+125 +283	+109 +225	+100+195	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{b}}$) Vertical strain top of subgrad δ ($\epsilon_{\mathbf{v}_{\mathbf{S}}}$)
δ (in.) (b)	0.0060	0.0053	0.0035	0.0029	deflect tal stra strair
Percent of Full Load	20 100	100	100	20 100	(i) Surface ii) Horizon ii) Vertica iv) Vertica
Subgrade Unfrozen	7,500	10,000	25,000	40,000	(b) (i) (ii) (iii) (iv) (iv)
Subgrade Frozen	50,000	50,000	50,000	50,000	٠٠
Base	5,625	7,500	18,750	30,000	= 2 in. = 6 in. = 40 in. = 212 in.
Surface Course	1,200,000	1,200,000	1,200,000	1,200,000	face course = e = zen subgrade = rozen subgrade =
MR as a Percent of Summer Base MR	% 05	% 05	% 05	20%	Notes: (a) Surface course Base Frozen subgrade Unfrozen subgrade
Case No.	_	2	т	4	Note
	MR as a Surface Base Subgrade Subgrade Summer Base MR	Mk as a Surface Base Subgrade Subgrade Percent Of Course Surface Base Frozen Unfrozen Of Full Load 5.625 50,000 7,500 20 00	MR as a Surface Base Frozen Unfrozen of Full Load Furmer Base MR	Mk as a Surface Base Subgrade Subgrade Percent of Course Summer Base Mk Course Summer Base Mk Course Summer Base Mk Course Summer Base Mk Course Subgrade Subgrade Percent of Full Load Full Load Summer Base Mk Course Subgrade Summer Base Mk Subgrade Subgra	MR as a Surface Base Frozen Unfrozen of Summer Base MR Course Summer Base MR Course Summer Base MR Course Summer Base MR Course So Summer Base MR Frozen Unfrozen Of Full Load Full Load So 1,200,000 7,500 50,000 10,000 10,000 1000 50,000 10,000 1000 50,000 25,000 1000 50,000 50,000

Table B.30 Spring Thaw Condition - Dual Tires - Single Axle - Thaw to Bottom of Base - Pavement Structure 2/12/34/212(a) - Base M_R @ 50% - Beneath Tire

	4	·				-
Duals	(in/in X 10 ⁶) (b)	- 24 - 142	- 29	- 41 - 204	- 43	e ^f)
nside Tire of	(in/in X 10 ⁻⁶) (b)	- 769 -2933	- 683 -2497	- 468 -1484	- 385	irface course (Va) E ^V (E _{VS})
Pavement Response Beneath Inside Tire of Duals	(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6)$	+140	+133	+112	+101	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) Vertical strain top of base ($\epsilon_{\rm y}$) Vertical strain top of subgrade ($\epsilon_{\rm y}$)
ent Resp	δ (in.) (b)	0.0077	0.0066	0.0040	0.0031	Surface deflection (6) Horizontal strain bott Vertical strain top of Vertical strain top of
Paven	Percent of Full Load	100	20	100	20 100	1
osi)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000	(b) (i) (ii) (iii) (iv)
Resilient Modulus (psi)	Subgrade Frozen	20,000	20,000	50,000	20,000	
silient	Base	5,625	7,500	18,750	30,000	= 2 in. = 12 in. = 34 in. = 212 in.
Re	Surface Course	1,200,000	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000	course subgrade n subgrade
Thawed Base	MR as a Percent of Summer Base M _R	50%	209	≥0 %	% 0 %	Notes: (a) Surface course = Base = Frozen subgrade = Unfrozen subgrade =
	no.	g-map	2	ю	4	Note

Table B.31 Spring Thaw Condition - Dual Tires - Single Axle -Thaw to Bottom of Base - Pavement Structure 4/6/38/212^(a) - Base M_R @ 50% - Beneath Tire

	Thawed Base		skilient	Resilient Modulus (psi)	osi)	Раvеп	ent Resp	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
No.	Percent of Summer Base MR	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	δ (in.) (b)	(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6)$ (b) (b) (b)	^{Evb} bo ⁶) (in/in X 10 ⁶) (b)	(in/in X 10 ⁻⁶) (b)
-	≈05	1,200,000 5,625	5,625	50,000	7,500	20 100	0.0034 0.0180	+ 42	- 309 -1463	- 13
2	50%	1,200,000 7,500	7,500	50,000	10,000	100	0.0030	+ 41 +134	- 267 -1234	- 18
က	ి05	1,200,000 18,750	18,750	50,000	25,000	20 100	0.0021	+ 36 +111	- 173	- 32 - 160
4	20%	1,200,000 30,000	30,000	20,000	40,000	20 100	0.0018	+ 34	- 140	- 38

Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) Vertical strain top of base ($\epsilon_{\rm b}$) Vertical strain top of subgrade δ (b) (i) (ii) (iii) (iv) Notes: (a) Surface course = 4 in.
Base = 6 in.
Frozen subgrade = 38 in.
Unfrozen subgrade = 212 in.

Table B.32 Spring Thaw Condition - Dual Tires - Single Axle -Thaw to Bottom of Base - Pavement Structure 4/12/32/212^(a) - Base M_R @ 50% - Beneath Tire

	Thawed Base	R	silient.	Resilient Modulus (psi)	isi)	Paven	ent Resp	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
No. F	MR as a Percent of Summer Base M _R	Surface Course	Base	Subgrade Frozen	Subgrade Subgrade Frozen Unfrozen	Percent of Full Load	δ (in.) (b)	(in.) $(in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6) (in/in \times 10^6)$ (b) (b)	(in/in X 10 ⁶) (b)	(in/in X 10 ⁶) (b)
poses.	20%	1,200,000	5,625	50,000	7,500	20 100	0.0043	+ 45 +163	- 275 -1275	. 2 - 61
2	20%	1,200,000 7,500	7,500	20,000	10,000	100	0.0037	+ 43	- 241	- 10
m	20%	1,200,000 18,750	18,750	20,000	25,000	100	0.0024	+ 37	- 165	- 139
4	20%	1,200,000 30,000	30,000	50,000	40,000	20 100	0.0019	+ 34	- 137 - 532	- 25

Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{v}_{\mathbf{b}}}$) Vertical strain top of subgrade ($\epsilon_{\mathbf{v}_{\mathbf{s}}}$) (b) (i) (i) (iii) (iii) (iii) (iii) Surface course = 4 in.
Base = 12 in.
Frozen subgrade = 32 in.
Unfrozen subgrade = 212 in. Notes: (a) Surface course Base

Table B.33 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212(a) - Base M_R @ 50% - Beneath Tire

	Thawed Base	Res	silient	Resilient Modulus (psi)	psi)	Pave	ment Res	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
Case No.	M _R as a Percent of Summer Base M _R	Surface Course	Base	Subgrade Frozen	Subgrade Unfrozen	Percent of Full Load	δ (in.) (b)		(in/in X 10 ⁻⁶) (b)	(in/in X 10 ⁻⁶
	ž0 5	1,200,000 5,625	5,625	50,000	7,500	20 100	0.0057	+ 117 + 284	- 720 -2791	- 35
A	20%	1,200,000 7,500	7,500	20,000	10,000	20	0.0050	+ 113 + 266	- 631 -2349	- 42 - 196
	20%	1,200,000 18,750	18,750	50,000	25,000	20	0.0033	+ 98 + 215	- 419 -1363	- 59 - 268
	20%	1,200,000 30,000 50,000	30,000	20,000	40,000	100	0.0027	+ 90 + 188	- 277 - 757	- 68
· · · · · · · · · · · · · · · · · · ·	Notes: (a) Surface course Base Frozen subgrade Unfrozen subgrade	ce course n subgrade zen subgrade		2 in. 6 in. 40 in. 212 in.		(9)	(b) (i) (ii) (iii) (iv) (iv)	Surface deflection (6) Horizontal strain botto course (e _t) Vertical strain top of Vertical strain top of	Surface deflection (δ) Horizontal strain bottom of surface course (ϵ_{+}) Vertical strain top of base ($\epsilon_{\rm vb}$) Vertical strain top of subgrade ($\epsilon_{\rm vs}$)	f surface e (^e vb) grade (^e v _S)

Table B.34 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure $2/12/34/212^{\rm (a)}$ - Base $\rm M_R$ @ 50% - Beneath Tire

	10_01		ogostywy sawy na nad ac a tao a t			and the second s	
Duals	(in/in X (b)	- 18	- 23	- 34	- 35		ırface درون اوردی اوردی
Inside Tire of	(in/in ^C Vb 10 ⁻⁶) (b)	- 661 -2574	- 590 -2200	- 411	- 277 - 756		ion (6) in bottom of su top of base (E
Pavement Response Beneath Inside Tire of Duals	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 124 + 319	+ 119	+ 101 + 225	+ 91		(i) Surface deflection (δ) (ii) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) (iii) Vertical strain top of base ($\epsilon_{\rm Vb}$) (iv) Vertical strain top of subgrade ($\epsilon_{\rm Vb}$)
ment Res	3 (in.) (b)	0.0072 0.0362	0.0061	0.0037	0.0029	4	
Pave	Percent of Full Load	20 100	100	100	100		(a)
psi)	Subgrade Unfrozen	7,500	10,000	25,000	40,000		
Resilient Modulus (psi)	Subgrade Frozen	50,000	50,000	50,000	50,000		2 in. 12 in. 34 in. 212 in.
silient	Base	5,625	7,500	18,750	30,000		11 11 11 11
Re	Surface Course	1,200,000	1,200,000 7,500 50,000	1,200,000 18,750	1,200,000 30,000		ourse bgrade subgrade
Thawed Base	M _R as a Percent of Summer Base M _R	50%	50%	50%	20%		Notes: (a) Surface co Base Frozen sul Unfrozen s
	Case No.	-	2	т	d		Notes:

Table B.35 Spring Thaw Condition - Dual Tires - Tandem Axle -Thaw to Bottom of Base - Pavement Structure 4/6/38/212^(a) - Base M_R @ 50% - Beneath Tire

of Duals		- 10 - 67	- 14	- 26	- 37	and the second s	of surface ise ($\epsilon_{ m vb}$)
Inside Tire	evb (in/in X l (b)	- 261 -1251	- 226 -1058	- 147	- 110 - 460		tion (&) ain bottom n top of ba
Pavement Response Beneath Inside Tire of Duals	(in/in X 10 ⁻⁶) (b)	+ 36 + 129	+ 35 + 122	+ 31	+ 29		(i) Surface deflection (δ) (ii) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) (iii) Vertical strain top of base ($\epsilon_{\rm vb}$)
ment Res	6 (in.)	0.0035 0.0186	0.0031	0.0021	0.0017	une (g. elektrico) e reconst armittablente	(ii) (iii)
Pave	Percent of Full Lo	20 100	100	20 100	100		(9)
051)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000		
Resilient Modulus (psi)	Subgrade Frozen	50,000	20,000	50,000	50,000		4 in. 6 in. 38 in. 212 in.
silient	Base	5,625	7,500	18,750	30,000		
Re	Surface Course	1,200,000	1,200,000 7,500	1,200,000 18,750	1,200,000 30,000 50,000		Surface course Base Frozen subgrade Unfrozen subgrade
Thawed Base	M _R as a Percent of Summer Base M _R	20%	20%	20%	20%		Sur Bas Fro Unf
	No.	_	2	м	4		Notes: (a)

Table B.36 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/12/32/212(a) - Base M_R @ 50% - Beneath Tire

-				-			1
Duale	Evs (in/in X 10 ⁻⁶)	. 43	8 00	- 17	- 23		urface E _{vb}) de (E.)
nside Tire of	(in/in x 10 ⁻⁶	- 235 - 1087	- 205	- 140	- 106 - 380		cion (5) lin bottom of s top of base (
Pavement Response Beneath Inside Tire of Duals	$ \begin{pmatrix} \epsilon_{t} & \epsilon_{vb} & \epsilon_{vb} \\ (in/in \times 10^{-6}) & (in/in \times 10^{-6}) & (in/in \times 10^{-6}) \\ (b) & (b) &$	+ 39 + 148	+ 37 + 138	+ 32 + 109	96 + 4		Surface deflection (δ) Horizontal strain bottom of surface course (ϵ_t) Vertical strain top of base (ϵ_{vb}) Vertical strain top of subgrade (ϵ_{c})
ment Res	(in.) (b)	0.0043	0.0037 0.0190	0.0023	0.0018		
Pave	Percent of Full Load	20	100	100	100		(q)
psi)	Subgrade Subgrade Frozen Unfrozen	7,500	10,000	25,000	40,000		
Resilient Modulus (psi)	Subgrade Frozen	50,000	50,000	20,000	20,000		4 in. 12 in. 32 in. 212 in.
Silient	Base	5,625	7,500	18,750	30,000		B B B B
Re	Surface Course	1,200,000	1,200,000 7,500	1,200,000	1,200,000 30,000	A CONTRACTOR OF THE CONTRACTOR	Surface course Base Frozen subgrade Unfrozen subgrade
Thawed Base	M _R as a Percent of Summer Base M _R	20%	%05	50%	20%		Surfa Base Froze Unfro
	Case No.		2	က	4		Notes: (a)

Table B.37 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 2/6/40/212(a) - Base M_R @ 25% - Beneath Tire

	Thawed Base	Re	silient	Resilient Modulus (psi)	psi)	Pave	ment Res	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
Case No.	M _R as a Percent of Summer Base M _R	Surface Course	Ваѕе	Subgrade Frozen	Subgrade Unfrozen	Percent of Full Load	(in.) (b)	$ \frac{\varepsilon_{t}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vb}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vb}}{(in/in \times 10^{-6})} $	^e vb (in/in X 10 ⁻⁶) (b)	(in/in X 10 ⁻⁶) (b)
	25%	1,200,000	2,810	50,000	7,500	20 100	0.0073 0.0369	+ 129 + 334	- 958 -4207	- 22 - 121
2	25%	1,200,000	3,750	20,000	10,000	100	0.0064 p.0312	+ 124 + 313	- 868 -3566	- 28 - 145
м	25%	1,200,000	9,380	50,000	25,000	20	p.0041	+ 109 + 254	- 570 -2057	- 48 - 222
4	25%	1,200,000 15,000 50,000	15,000	20,000	40,000	100	p.0033 p.0147	+ 102 + 228	- 462 -1556	- 57 - 258
										0.000
Notes: (a)		Surface course Base Frozen subgrade Unfrozen subgrade	10 20 30 EL	2 in. 6 in. 40 in. 212 in.		(9)	(1) (11) (111) (1v)	Surface deflection (δ) Horizontal strain bottom of surface course (ϵ t) Vertical strain top of base (ϵ_{vb}) Vertical strain top of subgrade (ϵ_{vs})	tion (6) ain bottom of n top of base n top of subgr	surface (e _{vb}) ade (e _{vs})

Table B.38 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure $2/12/34/212^{(a)}$ - Base M_R @ 25% - Beneath Tire

f Duals	$\binom{\varepsilon_{t}}{(in/in \times 10^{-6})} \binom{\varepsilon_{vb}}{(in/in \times 10^{-6})} \binom{\varepsilon_{vs}}{(in/in \times 10^{-6})}$	- 10 - 80	- 15	- 28 - 153	- 34		surface (c _{vb}) rade (c _{vc})
Inside Tire o	[£] vb (in/in X 10 ⁻ (b)	- 866 -3723	- 776 -3209	- 540 -1951	- 449 -1509	Doğumuya mazon-Boocce	tion (6) ain bottom of n top of base
Pavement Response Beneath Inside Tire of Duals	(in/in X 10 ⁻⁶) (b)	+ 136 + 383	+ 132 + 356	+ 115 + 278	+ 105 + 243	· Order syrage	Surface deflection (6) Horizontal strain bottom of surface course (ϵ_{t}) Vertical strain top of base (ϵ_{vb}) Vertical strain top of subgrade (ϵ_{vc})
ment Res	δ (in.) (b)	0.0095 0.0499	0.0082	0.0050	0.0039		(i) (ii) (iii) (vi)
Pave	Percent of Full Load	100	100	20 100	100		(a)
psi)	Subgrade Unfrozen	7,500	10,000	25,000	40,000		
Resilient Modulus (psi)	Subgrade Frozen	20,000	20,000	20,000	20,000		2 in. 12 in. 34 in. 212 in.
silient	Base	2,810	3,750	9,380	15,000		
Re	Surface Course	1,200,000	1,200,000	1,200,000	1,200,000 15,000 50,000		e course I subgrade en subgrade
Thawed Base	M _R as a Percent of Summer Base M _R	25%	25%	25%	25.8%		Surfac Base Frozen Unfroz
(Case No.		2	(A)	4		Notes: (a)

Table B.39 Spring Thaw Condition - Dual Tires - Tandem Axle - Thaw to Bottom of Base - Pavement Structure 4/6/38/212(a) - Base M_R @ 25% - Beneath Tire

-			Profits against Write Front Section 12 and 1			***************************************	MANAGEMENT DESCRIPTION OF THE PROPERTY OF THE	THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF		
	Thawed Base	Re	silient	Resilient Modulus (psi)	osi)	Pave	ment Res	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
	M _R as a Percent of Summer Base M _R	Surface Course	Base	Subgrade Frozen	grade rozen	Percent of Full Lo	(in.) ($ \frac{\varepsilon_{t}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vb}}{(in/in \times 10^{-6})} \frac{\varepsilon_{vs}}{(in/in \times 10^{-6})} $	^e vb (in/in X 10 ⁻⁶) (b)	^E vs (in/in X 10 ⁻⁶) (b)
	25%	1,200,000	2,810	50,000	7,500	20 100	0.0043	+ 39 + 150	- 380 -185 6	. 35
	25%	1,200,000	3,750	50,000	10,000	100	0.0037	+ 38 + 141	- 325 -1585	- 7
	25%	1,200,000	9,380	50,000	25,000	20	0.0024	+ 34 + 116	- 203 - 930	- 19 - 104
	25%	1,200,000	15,000	15,000 50,000	40,000	200	0.0020	+ 32 + 106	- 163 - 709	- 24
						No supplementaries	and the second second			And the state of t
1	Notes: (a) Surface Base Frozen Unfroze	ace course en subgrade ozen subgrade		4 in. 12 in. 38 in. 212 in.		(9)		(i) Surface deflection (δ) (ii) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) (iii) Vertical strain top of base ($\epsilon_{\rm vb}$) (iv) Vertical strain top of subgrade ($\epsilon_{\rm vb}$)	tion (δ) ain bottom of n top of base n top of subgr	surface (E _{vb}) ade (E _{vs})

Table B.40 Spring Thaw Condition - Dual Tires - Tandem Axle -Thaw to Bottom of Base - Pavement Structure 4/12/32/212^(a) - Base M_R @ 25% - Beneath Tire

			Management Committee of the Committee of	-				PARTY CONTRACTOR OF THE PARTY		AND THE PROPERTY OF THE PROPER
	Thawed Base		silient	Resilient Modulus (psi)	psi)	Pave	ment Res	Pavement Response Beneath Inside Tire of Duals	nside Tire of	Duals
no.	M _R as a Percent of Summer Base M _R	Surface Course	Base		Subgrade Subgrade Frozen Unfrozen	Percent of Full Lo	(in.) (b)	$\binom{\varepsilon}{(in/in \times 10^{-6})} \binom{\varepsilon_{vb}}{(in/in \times 10^{-6})} \binom{\varepsilon_{vs}}{(in/in \times 10^{-6})}$	(in/in X 10 ⁻⁶)	^E vs (in/in X 10 ⁻⁶) (b)
pro-	25%	1,200,000	2,810	50,000	7,500	20 100	0.0057	+ 43 + 175	- 340 -1534	<u>- 20</u>
2	25%	1,200,000	3,750	20,000	10,000	20 100	0.0048	+ 41	- 291 -1336	. 34
т	25%	1,200,000	9,380	20,000	25,000	20 100	0.0028	+ 36 + 130	- 187 - 841	- 13 - 78
4	25%	1,200,000 15,000	15,000	50,000	40,000	100	0.0022	+ +	- 153 - 664	- 17
	THE PROPERTY OF THE PROPERTY O									
Notes: (a)		Surface course Base Frozen subgrade Unfrozen subgrade	II II II II	4 in. 12 in. 32 in. 212 in.		(p)	(1) (11) (111) (1v)	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\rm t}$) Vertical strain top of base ($\epsilon_{\rm vb}$) Vertical strain top of subgrade ($\epsilon_{\rm co}$)	tion (6) Win bottom of some top of base (1)	surface (e _{vb}) de (e)

Spring Thaw Condition - Single Tire - Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 2/6/4/36(a) Table B.41

Pavement Response	(in.) $(in/in \times 10^6)$ $(in/in \times 10^6)$ $(in/in \times 10^6)$ $(in/in \times 10^6)$ (b) (b)	0.0275 + 356 - 2940 - 2381 0.1330 +1040 -13,140 -11,340	0.0184 + 306 - 1958 - 1525 0.0801 + 824 - 7449 - 6532	0.0073 +198 - 800 - 436 0.0313 +412 - 2260 - 1760	0.0055 +161 - 593 - 274 0.0239 +291 - 1457 - 1066	(b) (i) Surface deflection (^δ) (ii) Horizontal strain bottom of surface course (^c _t) (iii) Vertical strain top of base (^c) (iv) Vertical strain top of subgrade (^c)
		0.0	000	0.0	<u></u>	ion (6) in bott top of top of
	Percent of Full Load	20 100	100	20	20	ce deflect ontal stra cal strain
,i)	Subgrade Frozen	50,000	50,000	50,000	50,000	(i) Surfacii) Horizo
Resilient Modulus (psi)	Subgrade Thawed	375	1,120	10,000	20,000	_
ilient M	Base	260	1,690	15,000	30,000	11 11 11 11
	Surface Course	1,200,000	1,200,000 1,690	1,200,000 15,000	1,200,000 30,000	Surface course Base Thawed subgrade Frozen subgrade
	keduction in Subgrade Resilient Modulus	96	85	75	50	(a)
	Subgrade Type	Fine-grain		Coarse-	: : :	Notes:

Spring Thaw Condition - Single Tire - Single Axle -Thaw - 4 in. into Subgrade - Pavement Structure 2/12/4/30^(a) Table B.42

	T		~	-	 -1
(in/in x 10 ⁻⁶)	-1525 -8388	- 953 -4534	- 243 -1030	- 134	
(in/in X 10 ⁶)	- 2565	- 1798	- 800 - 2250	- 596	(1)
(in/in x 10 ⁶) (b)	+ 368 +1120	+ 322 + 890	+ 200 + 420	+ 160 + 288	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{t}}$) Vertical strain top of subgrade ($\epsilon_{\mathbf{t}}$)
(in.)	0.0332	0.0219	0.0080	0.0057	(6) of base (of subgra
Percent of Full Load	20 100	100	20 100	20 100	Surface deflection (δ) Horizontal strain bottom of surface convertical strain top of base ($\epsilon_{\rm V}$) Vertical strain top of subgrade ($\epsilon_{\rm V}$)
Subgrade Frozen	50,000	20,000	50,000	50,000	1
Subgrade Thawed	375	1,120	10,000	20,000). (b) (i) n. (ii) l. (iii) n. (iv)
Base	260	1,690	15,000	30,000	= 2 in. = 12 in. = 4 in.
Surface Coarse	1,200,000	1,200,000	1,200,000	1,200,000	ace course ed subgrade en subgrade
in Subgrade Resilient Modulus	95	85	75	50	Notes: (a) Surface Base Thawed
1	Fine-grain		Coarse- grain		Notes:
	Base Subgrade Subgrade Percent of Thawed Frozen Full Load	in Subgrade Resilient Surface Base Subgrade Subgrade Percent of (in.)	Subgrade Surface Base Subgrade Subgrade Percent of (in.)	Subgrade Resilient Surface Base Thawed Frozen Full Load (in.)	Name

Spring Thaw Condition - Single Tire - Single Axle - Thaw 4 in. into Subgrade - Pavement Structure $4/6/4/34^{(a)}$ Table B.43

	,s 10 ⁻⁶)	10.10	on m	0.0	8	
	(in/in (t	- 715 -3976	- 429 -2323	- 170 - 740	- 11 <i>7</i> - 498	
Response	^e vb (in/in x 10 ⁻⁶) (b)	-1019 -5129	- 599 -2917	- 279 - 978	- 216 - 690	(3)
Pavement Response	$ \begin{array}{c c} \varepsilon_t & \varepsilon_{vs} \\ (in/in \ X \ 10^6) \\ (b) & (in/in \ X \ 10^6) \\ (b) & (b) \\ \end{array} $	+104 +376	+ 98 +317	+ 77 +214	+ 67	Surface deflection (§) Horizontal strain bottom of surface course ($_{\bf t}$) Vertical strain top of base ($_{\bf t}$) Vertical strain top of subgrad $_{\bf t}$ $_{\bf t}$ $_{\bf t}$
	6 (in.) (b)	0.0107	0.0070	0.0040	0.0033	(&) nottom of of base of subgr
	Percent of Full Load	20 100	20 100	20 100	20 100	Surface deflection (δ) Horizontal strain bottom of surface contical strain top of base ($\frac{1}{\epsilon}$) Vertical strain top of subgrade($\frac{1}{\epsilon}$)
Si)	Subgrade Frozen	50,000	20,000	50,000	50,000	(b) (i) Surfac (ii) Horizc (iii) Vertic (iv) Vertic
Resilient Modulus (psi)	Subgrade Thawed	375	1,120	10,000	20,000	4 in. (b) (i 4 in. (i 34 in. (
Silient	Base	260	1,690	15,000	30,000	1
	Surface Coarse	1,200,000	1,200,000 1,690	1,200,000 15,000	1,200,000 30,000 20,000	ace course ed subgrade
1	reduction in Subgrade Resilient Modulus	95	85	75	50	Notes: (a) Surface course Base Thawed subgrade Erozen subgrade
	Subgrade Type	Fine-grain		Coarse- grain		Notes:

Spring Thaw Condition - Single Tire - Single Axle - Thaw 4 in. into Subgrade - Pavement Structure 4/12/4/28 (a) Table B.44

	Dodi+2mpod		silient	Resilient Modulus (psi)	si)	proserventerence of the second	and demonstration to the second section (1904)	Pavement Response	sponse	and the section of th
Subgrade Type	neduction in Subgrade Resilient Modulus	Surface Coarse	Base	Subgrade Thawed	Subgrade Frozen	Percent of Full Load	δ (in.) (b)	$\binom{\epsilon_t}{(in/in \times 10^6)} \binom{\epsilon_{vb}}{(in/in \times 10^6)} \binom{\epsilon_{vs}}{(in/in \times 10^6)}$	(in/in X 10 ⁶)	⁶ vs (in/in x 10 ⁶) (b)
Fine-grain	96	1,200,000	260	375	50,000	20 100	0.0144	+107 +407	- 935 -4145	- 566 -2995
	85	1,200,000 1,690	1,690	1,120	50,000	100	0.0086	+100	- 541 -2554	- 295
Coarse- grain	75	1,200,000 15,000	15,000	10,000	50,000	20 100	0.0043	+ 78 +221	- 271	- 104
	20	1,200,000 30,000	30,000	20,000	50,000	100	0.0034	+ 67	- 216	- 68
Notes:	(a) Sur Base Than	Notes: (a) Surface course Base Thawed subgrade Frozen subgrade	= 4 in. = 12 in. = 4 in.		(b) (i) Surfac (ii) Horiza (iii) Vertic (iv) Vertic	Surface deflection (6) Horizontal strain bottom of surface Vertical strain top of base (E) Vertical strain top of subgrade(E)	(6) ottom of of base of subgr	Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{t}}$) Vertical strain top of subgrade($\epsilon_{\mathbf{t}}$)	(E [‡])	

Table B.45 Spring Thaw Condition - Dual Tires - Single Axle - Thaw 4 ip. into Subgrade - Pavement Structure 2/6/4/36^(a) - Beneath Tire

	k 10 ⁻⁶)	20	33	79	59	
f Duals	(in/in)	-1692 -9489	- 947 -4983	- 263	- 159 - 707	
e Tire o	vb (b) (b)	250 200	1293 5888	512 1685	385 1124	
Insid	e (in/in	- 2250 -11,200	1 1	, ,		(E +)
Pavement Response Beneath Inside Tire of Duals	$ \begin{array}{c c} & \varepsilon_{\bf t} & \varepsilon_{\bf vb} \\ (in/in\ x\ 10^6) & (in/in\ x\ 10^6) & (in/in\ x\ 10^6) \\ (b) & (b) & (b) \end{array} $	+185	+164 +466	+118 +259	+102 +205	Surface deflection (6) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{y}})$ Vertical strain top of subgrade $(\epsilon_{\mathbf{y}})$
avement R	(in.)	0.0197	0.0110	0.0040	0.0030	(6) oottom of o of base o of subgr
	Percent of Full Load	20 100	20 100	20 100	20 100	Surface deflection ($^{(\delta)}$) Horizontal strain bottom of surface contical strain top of base ($^{(\epsilon)}$) Vertical strain top of subgrade ($^{(\epsilon)}$)
(1,3)	Subgrade Frozen	50,000	50,000	20,000	50,000	(b) (i) Surfac (ii) Horize (iii) Vertic (iv) Vertic
Pocilion Modulus (nci)	Subgrade Thawed	375	1,120	10,000	20,000	
cilion+ N	Base	260	1,690	15,000	30,000	= 2 in. = 6 in. = 4 in.
***************************************	Surface	1,200,000	1,200,000 1,690	1,200,000 15,000	1,200,000 30,000	Surface course = 6 Base = 6 Thawed subgrade = 6 Unfrozen subgrade = 5
	Reduction in Subgrade Resilient Modulus	95	85	75	20	Notes: (a) Surf Base Thaw Unfr
	Subgrade Type	Fine-grain		Coarse- grain		Notes:

Table B.46 Spring Thaw Condition - Dual Tires - Single Axle - Thaw 4 in, into Subgrade - Pavement Structure 2/12/4/30(a) - Beneath Tire

	Reduction		silient	Resilient Modulus (psi)	si)		Pavement F	Pavement Response Beneath Inside Tire of Duals	Inside Tire of	Duals
Subgrade Type	in Subgrade Resilient Modulus	de t Surface Course	Base	Subgrade Thawed	Subgrade Frozen	Percent of Full Load	δ (in.) (b)	$ \begin{array}{c c} \epsilon_t & \epsilon_{vs} \\ (in/in \ X \ 10^6) & (in/in \ X \ 10^6) & (in/in \ X \ 10^6) \\ (b) & (b) & (b) \end{array} $	(in/in X 10 ⁻⁶)	(in/in x 10 ⁶)
Fine-grain	95	1,200,000	260	375	50,000	20 100	0.0274	+194 +701	-2087 -9771	-1325 -7403
	85	1,200,000	1,690	1,120	50,000	20 100	0.0142	+170	-1225	- 658
Coarse- grain	75	1,200,000 15,000	15,000	10,000	50,000	20 100	0.0044	+119	- 509 -1678	- 152
	20	1,200,000 30,000	30,000	20,000	50,000	20 100	0.0031	+102	- 384	- 87
Notes:	Notes: (a) Surface Base Thawed Frozen	Surface course Base Thawed subgrade Frozen subgrade	= 2 in. = 12 in. = 4 in.	n. (b) (i) (ii) (ii) n. (iii) (iv)		Surface deflection (δ) Horizontal strain bottom of surface c Vertical strain top of base (ϵ) Vertical strain top of subgrade (ϵ)	(6) ottom of s of base (Surface deflection (δ) Horizontal strain bottom of surface course ($\epsilon_{\mathbf{t}}$) Vertical strain top of base ($\epsilon_{\mathbf{t}}$) Vertical strain top of subgrad δ	, t)	

Table B.47 Spring Thaw Condition - Dual Tires - Single Axle -Thaw 4 in. into Subgrade - Pavement Structure 4/6/4/34(a) - Beneath Tire

e of Duals	$\begin{pmatrix} \epsilon_t \\ (in/in \times 10^6) \end{pmatrix} \begin{pmatrix} \epsilon_{vb} \\ (in/in \times 10^6) \end{pmatrix} \begin{pmatrix} in/in \times 10^6 \\ (b) \end{pmatrix}$	- 788	- 386	8 8	- 74	
ι Inside Tir	^E vb (in/in X l' (b)	-1110	- 543 -2502	- 179 - 768	- 136 - 529	(¹ 3)
Pavement Response Beneath Inside Tire of Duals	(in/in x 10 ⁻⁶) (b)	+ 59 +249	+ 50 +204	+ 38 +126	+ 34 +106	Surface deflection (δ) Horizontal strain bottom of surface course $(\epsilon_{\mathbf{t}})$ Vertical strain top of base $(\epsilon_{\mathbf{t}})$ Vertical strain top of subgrad $(\epsilon_{\mathbf{t}})$
Pavement R	δ (in.) (b)	0.0101	0.0052	0.0021	0.0017	(8) bottom of p of base p of subgr
Care Care Care Care Care Care Care Care	Percent of Full Load	20 100	20 100	20	20	 (b) (i) Surface deflection (6) (ii) Horizontal strain bottom of surface c (iii) Vertical strain top of base (Eb) (iv) Vertical strain top of subgrade (E)
61)	Subgrade Frozen	50,000	20,000	50,000	50,000	(i) Surfa (ii) Horiz (iii) Verti
Docilion+ Modulus (nei)	Subgrade	375	1,120	10,000	20,000	
riliont 1	Base	260	1,690	15,000	30,000	
	Surface	1,200,000	1,200,000	1,200,000 15,000	1,200,000 30,000	Surface course Base Thawed subgrade
A CANADA CALLANA CALLA	Reduction in Subgrade Resilient Modulus	95	82	75	90	(a)
	Subgrade i Type	Fine-grain	:	Coarse- grain		Notes:

Table B.48 Spring Thaw Condition - Dual Tires - Single Axle - Thaw 4 in into Subgrade - Pavement Structure 4/12/4/28(a) - Beneath Tire

of Duals	⁶ vs (in/in X 10 ⁻⁶) (b)	- 679 -2542	- 324 -1518	- 76 - 423	- 49 - 262	
Inside Tire o	⁶ vb (in/in X 10 ⁻⁶) (b)	- 982 -3531	- 504 -2126	- 177 - 749	- 136 - 529	(ε [,] t.)
Pavement Response Beneath Inside Tire of Duals	$\begin{pmatrix} \epsilon_t \\ (in/in \times 10^6) \\ (b) \end{pmatrix} \begin{pmatrix} \epsilon_{vb} \\ (in/in \times 10^6) \\ (b) \end{pmatrix} \begin{pmatrix} (in/in \times 10^6) \\ (b) \\ (b) \end{pmatrix}$	4 66 + 66	+ 53 +22 4	+ 39 +132	+ 35	Surface deflection (6) Horizontal strain bottom of surface course $\{\epsilon_{\mathbf{t}}\}$ Vertical strain top of base $\{\epsilon_{\mathbf{t}}\}$ Vertical strain top of subgrade $\{\epsilon_{\mathbf{t}}\}$
avement	δ (in.) (b)	0.0145	0.0072 0.0316	0.0024	0.0018	(6) ottom of of base of subgr
	Percent of Full Load	20 100	20 100	20 100	20 100	ce deflection ontal strain b cal strain top
si)	Subgrade Frozen	50,000	20,000	50,000	50,000	(b) (i) Surfac (ii) Horizc (iii) Vertic (iv) Vertic
Resilient Modulus (psi)	Subgrade Thawed	375	1,120	10,000	20,000	
silient	Base	260	1,690	15,000	30,000	= 4 in. = 12 in. = 4 in. = 28 in.
	Surface Course	1,200,000	1,200,000	1,200,000 15,000 10,000	1,200,000 30,000	ace course ed subgrade en subgrade
Deduction	in Subgrade Resilient Modulus	92	85	75	20	Notes: (a) Surface course Base Thawed subgrade Frozen subgrade
	Subgrade Type	Fine-grain		Coarse- grain		Notes:

APPENDIX C

TEMPERATURE INPUT DATA FOR TDHC ANALYSIS

Table C.1 Temperature Input Data of TDHC Analysis

Phase I			
ME DATA			
1.825,109.	25,1.1,5	50	
NODE DATA	v/cT\	V/FT\	Tomn
Node	X(FT)	Y(FT)	Temp
1.000	0.000	0.000	44.1 44.1
2.000 3.000	1.000 0.000	0.000 0.167	44.1
4.000	1.000	0.167	44.1
5.000	0.000	0.333	44.1
6.000	1.000	0.333	44.1
7.000	0.000	0.500	44.1
8.000	1.000	0.500	44.1
9.000	0.000	0.667	44.1
10.000	1.000	0.667	44.1
11.000	0.000	0.833	44.1
12.000	1.000	0.833	44.1 44.1
13.000 14.000	$0.000 \\ 1.000$	$1.000 \\ 1.000$	44.1
15.000	0.000	1.167	44.1
16.000	1.000	1.167	44.1
17.000	0.000	1.333	44.1
18.000	1.000	1.333	44.1
19.000	0.000	1.500	44.1
20.000	1.000	1.500	44.1
21.000	0.000	1.667	44.1
22.000 23.000	$\frac{1.000}{0.000}$	1.667 1.833	44.1 44.1
24.000	1.000	1.833	44.1
25.000	0.000	2.000	44.1
26.000	1.000	2.000	44.1
27.000	0.000	2.333	44.1
28.000	1.000	2.333	44.1
29.000	0.000	2.667	44.1
30.000	1.000	2.667	44.1
31.000	0.000	3.000	44.1
32.000 33.000	$\frac{1.000}{0.000}$	3.000 3.333	44.1 44.1
34.000	1.000	3.333	44.1
35.000	0.000	3.667	44.1
36.000	1.000	3.667	44.1
37.000	0.000	4.000	44.1
38.000	1.000	4.000	44.1
39.000	0.000	4.333	44.1
40.000	1.000	4.333	44.1
41.000	0.000	4.667	44.1
42.000 43.000	$\frac{1.000}{0.000}$	4.667 5.000	44.1 44.1
44.000	1.000	5.000	44.1

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

```
Phase I (Cont,)
ME DATA
1.825,109.25,1.1,50
NODE DATA
                      Y(FT)
    Node
            X(FT)
                             Temp
  45.000
            0.000
                     5.333
                             44.1
  46.000
            1.000
                     5.333
                             44.1
 47.000
            0.000
                     5.667
                             44.1
 48.000
                             44.1
            1.000
                     5.667
  49.000
            0.000
                     6.000
                             44.1
  50.000
            1.000
                     6.000
                             44.1
                     6.500
  51.000
            0.000
                             44.1
  52.000
                     6.500
            1.000
                             44.1
  53.000
                     7.000
            0.000
                             44.1
  54.000
            1.000
                     7.000
                             44.1
  55.000
            0.000
                     7.500
                             44.1
  56.000
            1.000
                     7.500
                             44.1
  57.000
            0.000
                     8.000
                             44.1
  58.000
            1.000
                     8.000
                             44.1
  59.000
            0.000
                     8.500
                             44.1
 60.000
            1.000
                     8.500
                             44.1
 61.000
            0.000
                     9.000
                             44.1
  62.000
            1.000
                     9.000
                             44.1
 63.000
                     9.500
            0.000
                             44.1
 64.000
            1.000
                     9.500
                             44.1
 65.000
            0.000
                    10.000
                             44.1
 66.000
            1.000
                    10.000
                             44.1
 67.000
            0.000
                    15.000
                             44.1
 68.000
            1.000
                    15.000
                             44.1
 69.000
            0.000
                    20.000
                             44.1
 70.000
            1.000
                    20.000
                             44.1
 71.000
            0.000
                    25.000
                             44.1
 72.000
            1.000
                    25.000
                             44.1
 73.000
            0.000
                    30.000
                             44.1
 74.000
            1.000
                    30.000
                             44.1
 75.000
                    35.000
            0.000
                             44.1
 76.000
            1.000
                    35.000
                             44.1
 77.000
            0.000
                    40.000
                             44.1
 78.000
                             44.1
            1.000
                    40.000
 79.000
            0.000
                    45.000
                             44.1
 80.000
            1.000
                    45.000
                             44.1
 81.000
            0.000
                    50.000
                             45.1
 82.000
            1.000
                    50.000
                             45.1
 FIXED NODE TEMPERATURES
 81,45.1
 82,45.1
 HARMONIC NODE TEMPERATURES
 1,44.1,24.6,18
 2,44.1,24.6,18
 END
```

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

Phase II TIME DATA 1,18,.33,4 NODE DATA Y(FT) 0.000 Node X(FT) 0.000 Temp. 19.50 1.000 19.50 2.000 1.000 0.000 0.167 20.300 3.000 0.000 20.300 1.000 0.167 4.000 5.000 0.000 0.333 21.100 0.333 21.100 1.000 6.000 0.500 21.700 7.000 0.000 21.700 0.500 1.000 8.000 0.667 22.300 9.000 0.000 22.300 0.667 10.000 1.000 22,900 0.000 0.833 11.000 22.900 $12.000 \\ 13.000$ 0.833 1.000 23.500 0.000 1.000 23.500 1.000 1.000 14.000 0.000 1.167 24.100 15.000 1.167 24.100 1.000 16.000 24.680 1.333 17.000 0.000 1.333 24.680 18.000 1.000 1.500 25.640 19.000 0.000 25.640 1.500 20.000 1.000 26.600 0.000 1.667 21.000 26.600 1.667 22.000 1.000 0.000 1.833 27.540 23.000 27.540 1.000 1.833 24.000 28.480 25.000 0.000 2.000 2.000 28.480 1.000 26.000 30.340 2.333 27.000 0.000 1.000 2.333 30.340 28.000 32.120 2.667 29.000 0.000 32.120 2.667 30.000 1.000 32.960 3.000 31.000 0.000 32.960 32.000 1.000 3.000 33.780 33.000 0.000 3.333 34.000 1.000 3.333 33.780 34.570 35.000 0.000 3.667 34.570 36.000 1.000 3.667 35.340 37.000 0.000 4.000 1.000 4.000 35.340 38.000 36.100 4.333 39.000 0.000 1.000 4.333 36.100 40.000 0.000 4.667 36.830 41.000 1.000 36.830 4.667 42.000 37.540 0.000 5.000 43.000 5.000 37.540 1.000 44.000

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

```
Phase II (Cont.)
Time Data
1,18,.33,4
NODE DATA
                              Temp,
    Node
             X(FT)
                      Y(FT)
  45.000
            0.000
                     5.333
                             38.230
  46.000
            1.000
                     5.333
                             38.230
  47.000
                             38.900
            0.000
                     5.667
  48.000
            1.000
                     5.667
                             38.900
  49.000
            0.000
                     6.000
                             39.550
  50.000
                     6.000
            1.000
                             39.550
  51.000
            0.000
                     6.500
                             40.490
  52.000
                     6.500
                             40.490
            1.000
 53.000
            0.000
                     7.000
                             41.380
 54.000
                     7.000
                             41.380
            1.000
                             42.230
  55.000
            0.000
                     7.500
                     7.500
                             42.230
 56.000
            1.000
 57.000
            0.000
                     8.000
                             43.030
 58.000
            1.000
                     8.000
                             43.030
 59.000
                     8.500
            0.000
                             43.780
 60.000
            1.000
                     8.500
                             43.780
                     9.000
 61.000
            0.000
                             44.480
 62.000
            1.000
                     9.000
                             44.480
 63.000
            0.000
                     9.500
                             45.140
 64.000
            1.000
                     9.500
                             45.140
 65.000
            0.000
                    10.000
                             45.750
 66.000
            1.000
                    10.000
                             45.750
 67.000
            0.000
                    15.000
                             49.600
 68.000
            1.000
                    15.000
                             49.600
 69.000
            0.000
                    20.000
                             50.470
 70.000
                    20.000
                             50.470
            1.000
                             49.910
                    25.000
 71.000
            0.000
 72.000
            1.000
                    25.000
                             49.910
                    30.000
 73.000
            0.000
                             48.940
 74.000
            1.000
                    30.000
                             48.940
 75.000
            0.000
                    35.000
                             47.950
                             47.950
 76.000
            1.000
                    35.000
 77.000
            0.000
                    40.000
                             47.010
 78.000
            1.000
                    40.000
                             47.010
 79.000
            0.000
                    45.000
                             46.060
                             46.060
 80.000
                    45.000
            1.000
                             45.1
 81.000
            0.000
                    50.000
 82.000
            1.000
                    50.000
                             45.1
 FIXED NODE TEMPERATURES
 2
 81,45.1
 82,45.1
 HARMONIC NODE TEMPERATURES
 1,44.1,24.6,18
 2,44.1,24.6,18
 END
```

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

Phase III TIME DATA 1,62,.25,2 NODE DATA Node 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 20.000 21.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 30.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000	X(FT) 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000	Y(FT) 0.000 0.000 0.167 0.167 0.333 0.500 0.500 0.667 0.833 1.000 1.167 1.167 1.167 1.167 1.167 1.16	Temp. 26.23 26.420 26.420 26.420 26.640 26.800 26.970 27.150 27.150 27.330 27.520 27.710 27.710 28.030 28.360 28.360 28.360 28.690 29.040 29.740 29.740 30.460 31.180 31.920 32.520 33.110
33.000 34.000 35.000	$0.000 \\ 1.000 \\ 0.000$	3.333 3.333 3.667 3.667	31.920 31.920 32.520 32.520

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

Phase III TIME DATA	(Cont.)		
1,62,			
NODE DATA			
Node	X(FT)	Y(FT)	Temp.
45.000	0.000	5.333	35.440
46.000	1.000	5.333	35.440
47.000	0.000	5.667	36.010
48.000	1.000	5.667	36.010
49.000	0.000	6.000	36.570
50.000	1.000	6.000	36.570
51.000	0.000	6.500	37.390
52.000 53.000	$1.000 \\ 0.000$	6.500 7.000	37.390 38.180
54.000	1.000	7.000	38.180
55.000	0.000	7.500	38.950
56.000	1.000	7.500	38.950
57.000	0.000	8.000	39.690
58.000	1.000	8.000	39.690
59.000	0.000	8.500	40.410
60.000	1.000	8.500	40.410
61.000	0.000	9.000	41.100
62.000	1.000	9.000	41.100
63.000	0.000	9.500	41.760
64.000	1.000	9.500	41.760
65.000	0.000	10.000	42.380
66.000	1.000	10.000	42.380
67.000 68.000	$0.000 \\ 1.000$	15.000 15.000	47.020 47.020
69.000	0.000	20.000	49.080
70.000	1.000	20.000	49.080
71.000	0.000	25.000	49.390
72.000	1.000	25.000	49.390
73.000	0.000	30.000	48.840
74.000	1.000	30.000	48.840
75.000	0.000	35.000	47.960
76.000	1.000	35.000	47.960
77.000	0.000	40.000	47.010
78.000 79.000	1.000	40.000 45.000	47.010 46.060
/9.000	0.000	45.000	40.000

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

```
Phase III (Cont.)
Time Data
1,62,.25,2
NODE DATA
           X(FT)
                    Y(FT)
                           Temp.
   Node
                           46.060
           1.000
 80.000
                  45.000
 81.000
           0.000
                  50.000
                           45.10
                  50.000
                           45.10
 82.000
           1.000
 FIXED NODE TEMPERATURES
 2
 81,45.1
 82,45.1
 CONVECTION SURFACES WITH HARMONIC TEMPERATURES
 1,2,3.2,44.1,24.6,18
 HEAT FLUX AT SURFACES
 1,2,9.0
 END
```

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

Phase IV			
TIME DATA			
1,90,.31,2			
NODE DATA			
Node	X(FT)	Y(FT)	Temp.
1.000	0.000	0.000	37.93
2.000	1.000	0.000	37.93
3.000	0.000	0.167	37.340
4.000	1.000	0.167	37.340
5.000	0.000	0.333	36.740
6.000	1.000	0.333	36.740
7.000	0.000	0.500	36.380
8.000	1.000	0.500	36.380
9.000	0.000	0.667	36.020
10.000	1.000	0.667	36.020
11.000	0.000	0.833	35.680 35.680
12.000 13.000	1.000	0.833 1.000	35.340
14.000	1.000	1.000	35.340
15.000	0.000	1.167	35.000
16.000	1.000	1.167	35.000
17.000	0.000	1.333	34.670
18.000	1.000	1.333	34.670
19.000	0.000	1.500	33.980
20.000	1.000	1.500	33.980
21.000	0.000	1.667	33.280
22.000	1.000	1.667	33.280
23.000	0.000	1.833	32.600
24.000	1.000	1.833 2.000	32.600 32.040
25.000 26.000	$0.000 \\ 1.000$	2.000	32.040
27.000	0.000	2.333	31.970
28.000	1.000	2.333	31.970
29.000	0.000	2.667	31.940
30.000	1.000	2.667	31.940
31.000	0.000	3.000	31.920
32.000	1.000	3.000	31.920
33.000	0.000	3.333	32.180
34.000	1.000	3.333	32.180
35.000	0.000	3.667	32.640
36.000	1.000	3.667	32.640
37.000	0.000	4.000	33.100
38.000	1.000	4.000	33.100
39.000	0.000	4.333	33.560
40.000	1.000	4.333	33.560
41.000	$0.000 \\ 1.000$	4.667	34.020
42.000 43.000	0.000	4.667 5.000	34.020 34.480
44.000	1.000	5.000	34.480
	~ ° ~ ~ ~	~ . ~ ~ ~	J

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

Phase IV (Cont.)			
TIME DATA			
1,90,.31,2			
NODE DATA	V/ET\	Ý(FT)	Temp.
Node	X(FT)	• •	*
45.000	0.000	5.333 5.333	34.950 34.950
46.000 47.000	1.000	5.667	35.410
48.000	1.000	5.667	35.410
49.000	0.000	6.000	35.860
50.000	1.000	6.000	35.860
51.000	0.000	6.500	36.540
52.000	1.000	6.500	36.540
53.000	0.000	7.000	37.220
54.000	1.000	7.000	37.220
55.000	0.000	7.500	37.880
56.000	1.000	7.500	37.880
57.000	0.000	8.000 8.000	38.520 38.520
58.000 59.000	1.000	8.500	39.160
60.000	1.000	8.500	39.160
61.000	0.000	9.000	39.770
62.000	1.000	9.000	39.770
63.000	0.000	9.500	40.370
64.000	1.000	9.500	40.370
65.000	0.000	10.000	40.960
66.000	1.000	10.000	40.960
67.000	0.000	15.000	45.600
68.000	1.000	15.000	45.600
69.000	0.000	20.000	48.090
70.000	1.000	20.000	48.090
71.000	0.000	25.000 25.000	48.880 48.880
72.000 73.000	$1.000 \\ 0.000$	30.000	48.640
74.000	1.000	30.000	48.640
75.000	0.000	35.000	47.910
76.000	1.000	35.000	47.910
77.000	0.000	40.000	47.000
78.000	1.000	40.000	47.000
79.000	0.000	45.000	46.060

Table C.1 Temperature Input Data of TDHC Analysis (Cont.)

```
Phase IV (Cont.)
TIME DATA
1,90,.31,2
NODE DATA
    Node
             X(FT)
                     Y(FT)
                               Temp.
                              46.060
                    45.000
  80.000
             1.000
                              45.10
  81.000
             0.000
                     50.000
                               45.10
  82.000
            1.000
                     50.000
  FIXED NODE TEMPERATURES
  2
 81,45.1
  82,45.1
 CONVECTION SURFACES WITH HARMONIC TEMPERATURES
 1,2,3.2,44.1,24.6,18
HEAT FLUX AT SURFACES
  1,2,22.5
  END
```

APPENDIX D

PLOTS OF MODELS FOR PREDICTING THAWING INDEX OR THAWING DURATION FROM FREEZING INDEX

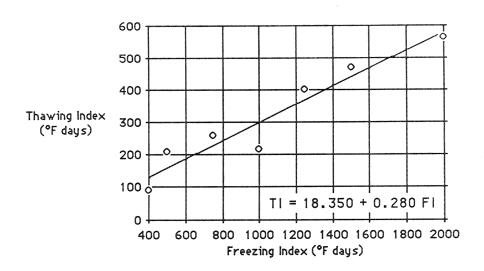


Figure D.1 Thawing Index (based on 29°F) versus Freezing Index for Section 1.

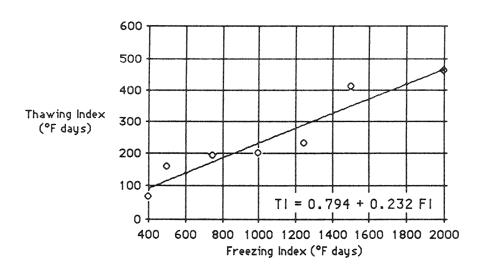


Figure D.2 Thawing Index (based on $29^{\circ}F$) versus Freezing Index for Section 2.

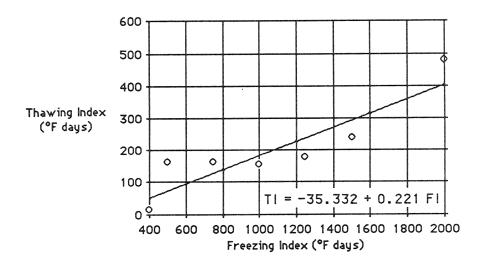


Figure D.3 Thawing Index (based on 29° F) versus Freezing Index for Section 3.

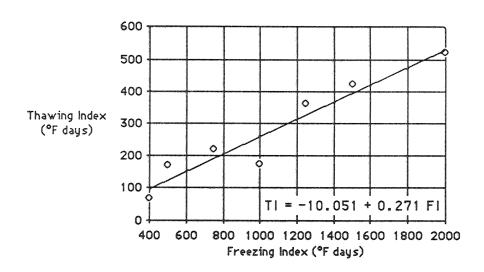


Figure D.4 Thawing Index (based on 30°F) versus Freezing Index for Section 1.

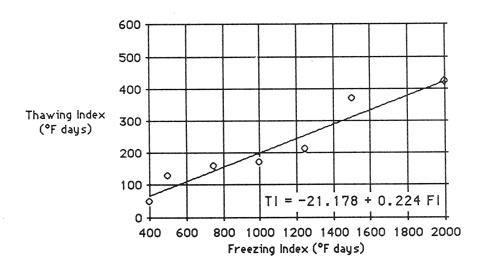


Figure D.5 Thawing Index (based on 30°F) versus Freezing Index for Section 2.

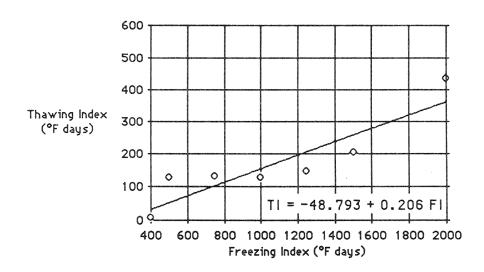


Figure D.6 Thawing Index (based on 30°F) versus Freezing Index for Section 3.

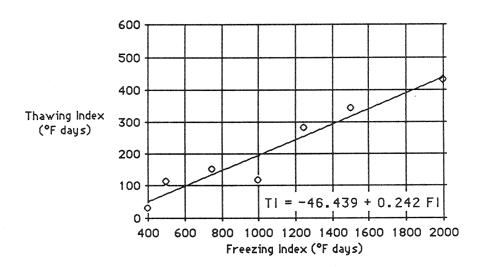


Figure D.7 Thawing Index (based on 32°F) versus Freezing Index for Section 1.

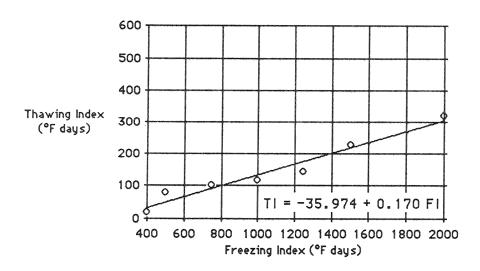


Figure D.8 Thawing Index (based on 32⁰F) versus Freezing Index for Section 2.

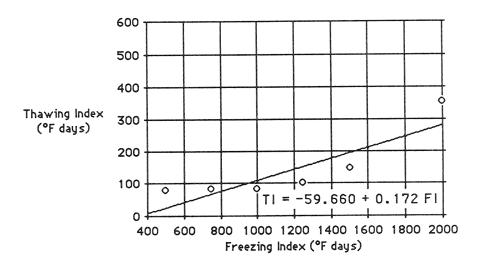


Figure D.9 Thawing Index (based on 32° F) versus Freezing Index for Section 3.

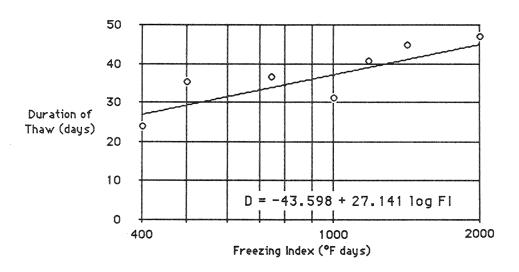


Figure D.10 Duration of Thaw (based on 29°F) versus log Freezing Index for Section 1.

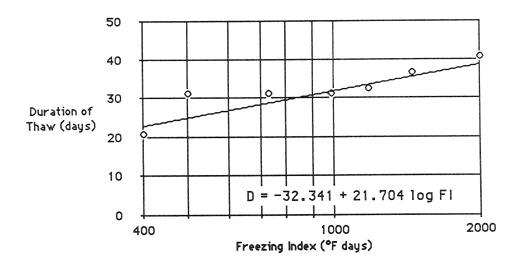


Figure D.11 Duration of Thaw (based on 29°F) versus log Freezing Index for Section 2.

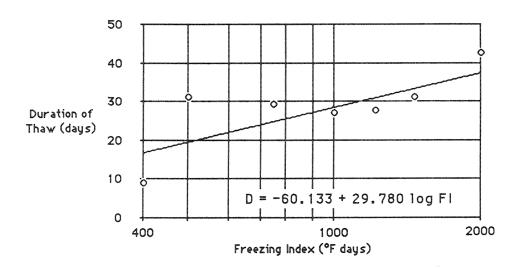


Figure D.12 Duration of Thaw (based on 29⁰F) versus log Freezing Index for Section 3.

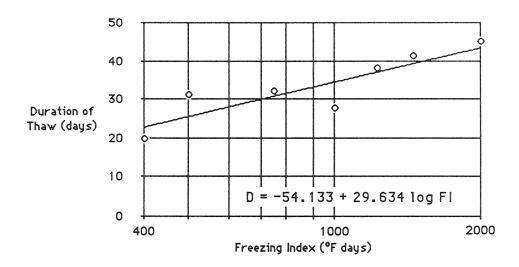


Figure D.13 Duration of Thaw (baed on 30°F) versus log Freezing Index for Section 1.

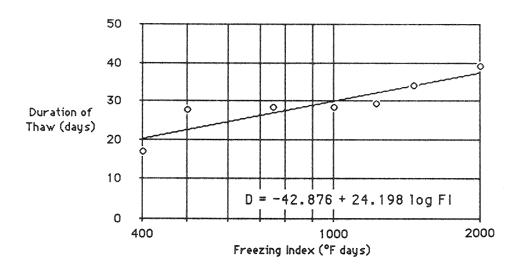


Figure D.14 Duration of Thaw (based on 30°F) versus log Freezing Index for Section 2.

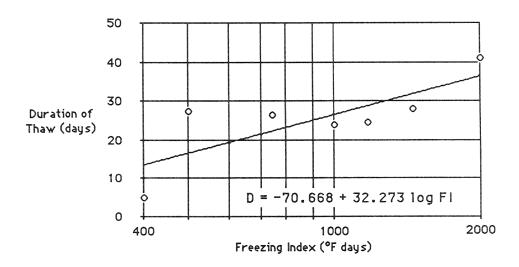


Figure D.15 Duration of Thaw (based on $30^{\circ}\mathrm{F}$) versus log Freezing Index for Section 3.

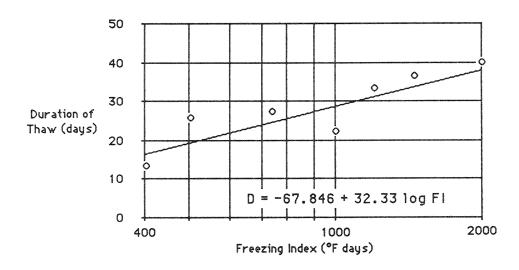


Figure D.16 Duration of Thaw (based on 32^{0}F) versus log Freezing Index for Section 1.

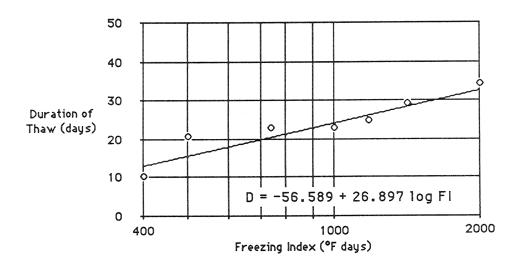


Figure D.17 Duration of Thaw (based on 32°F) versus log Freezing Index for Section 2.

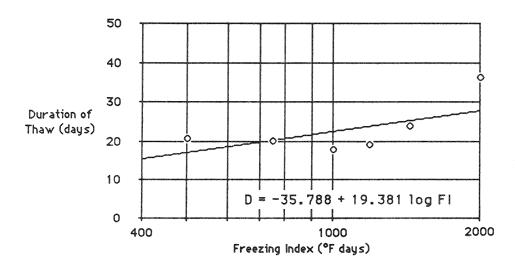


Figure D.18 Duration of Thaw (based on $32^{0}\mathrm{F}$) versus log Freezing Index for Section 3.

APPENDIX E INTERVIEW FORM

INTERVIEW FORM

for FHWA Project on "Guidelines for Spring Highway Use Restrictions"

* *	*	*	*				ጵ				*							*				*		*	*
	Age	ncy	:				a		awww																
	Com																			<u>/_</u>			····	Nati-	
	Add	res	s: _						west description of the second											enimentum (TAT)	·····			-	
			•	DOMESTIC					**********	J		was also	de romania esta esta		wester-1976			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	INS	TRU	CTI	<u>ons</u>		Τf	you	r a	gen	ıcy	th has	su	ippo	rti	.ng	da	ta,	re	por	o t	he or	int leg	erv isla	iew atio	on,
* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
I.	DEVE	LOP	MEN	т о	F J	OAD	RE	STR	ICI	OI	IS														
I.1	Wha	t t	ype	s o	f p	ave	men	t f	ail	.ure	ar	e a	880	cia	tec	1 w	lth	spi	ring	g tl	naw'	?			
I.2	How	ex	ten	siv	e a	re	the	se	pro	b1e	ems?	(€	g.	, a	ger	ncy	-wi	de)							
																									•
1.3	a)	Wh	en	wer	e t	he	fir	st	Spr	ing	g Lo	ad	Res	tri	.ct:	ion	s i	nit	iat	ed	by :	youı	c ag	geno	ey?
	• \	•••				- 3 6		1	المسامد			1	امما			ria	+ i ^	nc	dati	a rm	ina	<i>a</i> ?			
	b)	НС	w a	re	spe	C11.	LC	TOC	atı	ons	s fo) E J	Loac	LE	BL.	110	LIO	115	uet	CIM	LIIC	u.			
	c)	Wc	uld	ջ ս	i.de	lin	es	add	lres	ssin	ng v	vhei	e t	:o 1	mp	ose	10	ad	res	tri	cti	ons	be	cf	
	~,						igen				_				•										

I.4	a)	What studies, if any, were conducted or decision processes used pr to instituting the restriction measures?	ior
	b)	If studies were conducted, they were performed by:	
		Federal Agency State Agency	
		Local Other ()	
	c)	Have any follow-up studies been carried out to access the effective of the Spring Load Restriction program?	ness
II. <u>C</u>	RITI	ERIA FOR IMPOSING LOAD RESTRICTIONS (Information requested applies t those areas of your jurisdiction for which load restrictions appl	o y):
II.1	To	o what classes of highways are Load Restriction applied to?	
	a)		
	b)	ADT & % Trucks	
	c)	Soil Type(s)	
	d)	Surfacing Type(s)	
	e)		
		(C.10001)	
	f)	Othe	
11.2	En	nvironmental Factors:	
	a)	Annual Precipitation	
		i) Rainfall Amount (in.)	
		ii) Snow Amount (in.)	
		iii) Typical start date of freezing weather	
		iv) Typical start date of thawing weather	
	b)	Freezing Index (°F-day)	
	c)	Depth of frost penetration (ft.)	
	d)	Basis for frost determination (if instruments were used, please standard instruments)	ate

e) Source of weather data (if used)
II.3 Design Information:
a) Is frost protection used in thickness design in all susceptible areas? Yes No
If yes, i)Full Protection (Total Pavement = Frost Dept
ii) More than 50% but less than Full Protection
iii) Less than 50%
If no, are load restrictions used in lieu of design for full fros protection?
b) What thickness design method is used?
i) Standard Section
ii) Hveem Method
iii) AASHTO
iv) Other
c) Average age of pavements which receive load restrictions
d) Drainage conditions in pavements with load restrictions
i) Good
ii) Fair
iii) Poor
e) Source of Water
III. ENFORCEMENT OF LIMITS
III.1 Criteria for Enforcement:
a) Weight limit on trucks (normal or other than spring thaw):
i) Gross weight limit
ii) Single axle weight limit
iii) Tandem axle weight limit
b) Weight limit or trucks (spring thaw):
i) Gross weight limit
ii) Single axle weight limit
iii) Tandem axle weight limit
c) How are the weight limits set?
Local experience
Past studies (please reference specific study)
General (state or national) guidelines
Bridge Formula

	d) Enforcement Period
	i) Basis for initiation of load restriction
	ii) Basis for removing load restriction
	iii) Do you use deflection measuring equipment to initiate or
	remove load restrictions?
	YesNo
	If yes, what type of deflection equipment is used?
171.2 E	NFORCEMENT:
a)	
	Restrictions?
	Name
	Address
	Phone No
b)	
	Fixed scale installations
	Portable scale
	Other
c)	How are truck operators notified?
d)	Are there exceptions to overweight trucks (e.g., school buses, movement of vital commodities, etc.) Yes No
e)	Which agency issues overweight permits*
	Cost
f)	What percent increase of personnel (if any) is required for the enforcement effort?
g)	What level of training is required of enforcement personnel?
h)	What enforcement methods are used?
	Stop all trucks Other (please describe)
	Selective sample

^{*} Obtain copies of forms

i) What is the total annual additional cost of spring load enforcement?	
Significant: Yes No	
j) How are fines are levied on overweight trucks?	
Cost/1,000 lbs.	
Other	
III.3 Has any cost-benefit analysis of weight limit enforcement been carrie out on any facility? Yes No	d
(If yes, please provide reference or relavent information)	
IV. LEGAL ASPECTS	
IV.1 Are there existing state or local regulations which address load restrictions? Yes No	
(If yes, please provide a copy)	
IV.2 What problems (if any) are associated with the enforcement of load restrictions?	
IV.3 Have there been any legal problems with load restrictions (e.g. court cases, etc.)?	

APPENDIX F CALCULATION OF THE THAWING INDEX BASED ON A 29°F DATUM

APPENDIX F

CALCULATION OF THE THAWING INDEX BASED ON A 29°F DATUM

The surface thawing index for this pavement problem is a measure of the magnitude and duration of the temperature differential when thawing begins. It is measured in degree-days. The thawing index can be evaluated using the following equation:

$$TI_{29} = \Sigma (\overline{T} - 29^{\circ}F)$$

where:

$$\overline{T} = \frac{1}{2}(T_H + T_L)$$
 in °F,

 T_{H} = maximum daily temperature (°F), and

 T_1 = minimum daily temperature (°F).

Estimate the thawing index given the temperature data shown in Figure F-1.

Steps

- 1. The values in columns 2 and 3 are obtained from reported local daily high-low temperatures <u>or</u> from a high-low thermometer located near the road section to be restricted.
- 2. The average daily temperature is equal to

$$\frac{1}{2}$$
 (column 2 + column 3)

For 3/11:

$$\overline{T} = \frac{1}{2} (33 + 27) = \frac{1}{2} (60) = 30 \, ^{\circ}F$$

3. The thawing degree-days per day is equal to

Daily
$$TI_{29} = \overline{T}$$
 (from column 4) - 29°F

Col. 1	Col. 2 Measure Temperat		Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Thawing Index based	Col. 6 Accumulated Thawing Index
Day (date)	High (T _H)	Low (T _L)	(T)	on 29° F datum (° F - days)	
3/ 1 3/ 2 3/ 3 3/ 4 3/ 5 3/ 6 3/ 7 3/ 8 3/ 9 3/10 3/11 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20	30 28 31 27 33 34 36 35 31 27 33 37 39 32 41 40 40 43 40 36	20 17 23 19 25 24 28 28 25 21 27 27 30 26 29 30 32 33 30 28	25 22 27 23 29 29 32 28 24 30 32 34 30 35 35 36 38 35 36	-4 -7 -6 0 0 3 3 1 -5 1 3 5 1 6 6 7 9 6 3	 3 6 5 0 1 4 9 10 16 22 29 38 44 47

Figure F-1. Form for Calculating Thawing Index.

For 3/11:

Daily TI
$$_{29} = (30 - 29) = 1^{\circ}F - day$$

4. The accumulated degree days is equal to the sum of the daily thawing indexes from the start of thawing up to the day of interest. The work performed in this study suggests that for thawing periods starting in late February to April, thawing below an asphalt or bituminous pavement begins when air temperatures go above 29°F. Therefore, the thawing period will start when values of the average daily temperature (column 4) go above 29°F for several days. For this example, the thawing period begins on 3/7. From this date, the calculation of thawing index begins.

```
TI_{29} = \Sigma (column 5 after the start of thawing)

On 3/11:

TI_{29} = 3 (from 3/7) + 3 (from 3/8) - 1 (from 3/9)
- 5 (from 3/10) + 1 (from 3/11)
= 1°F-day
```

APPENDIX G

EXAMPLE OF DATA COLLECTION AND ESTIMATION OF START AND DURATION FOR IMPOSING LOAD RESTRICTIONS

APPENDIX G

EXAMPLE OF DATA COLLECTION AND ESTIMATION OF START AND DURATION FOR IMPOSING LOAD RESTRICTIONS

Location: Coldspot, U.S.A.

Pavement section typically restricted during spring thawing

2⅓ inches asphalt 6-8 inches base Silty subgrade

High and low daily temperatures are collected through freezing and thawing period to calculate freezing index, based on 32°F, and thawing index based on 29°F.

Calculating the Freezing Index

The freezing index is a measure of the magnitude and duration of the temperature differential during the freezing period. The freezing index is calculated using the following equation:

$$FI = \Sigma (32 - \overline{T})$$

where:

 $\overline{T} = \frac{1}{2} (T_H + T_L) \text{ in } {}^{\circ}F,$

 T_H = maximum daily temperature (°F), and

 T_L = minimum daily temperature (°F).

The following temperature data was collected for Coldspot to identify the freezing period and the freezing index (see Figure G-1).

Steps:

- 1. When \overline{I} becomes less than or equal to 32°F for several days, the freezing season begins. The freezing season for this year begins on November 7.
- 2. The average daily temperature is equal to

$$\overline{T} = \frac{1}{2}$$
 (column 2 + column 3)

Col. 1 Day	Col. 2 Measure Temperat High		Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Freezing Index based on 32° F datum (° F - days)	Col. 6 Accumulated Freezing Index based on 32° F datum
(date)	(T _H)	(T _L)	M		(°F days)
10/15 10/16 10/17 10/18 10/19 10/20 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29 10/30 10/31 11/ 1 11/ 2 11/ 3 11/ 4 11/ 5 11/ 6 11/ 7 11/ 8 11/ 9 11/10 11/11 11/12 11/13 11/14 11/15 11/16 11/17	45 50 67 43 41 38 48 48 48 49 40 41 41 45 45 40 40 41 40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40	28 25 41 31 28 30 31 29 31 35 29 27 20 22 29 34 26 26 36 29 24 21 16 30 26 11 26 21 21 21 21 21 21 21 21 21 21 21 21 21	36 38 54 37 33 36 34 38 42 30 34 30 32 41 40 30 33 44 36 32 43 29 24 31 24 24 22 29 21 28		 2 0 2 1 1 3 11 12 20 28 36 36 39 51 62 66

Figure G-1. Form for Calculating Freezing Index.

Col. 1	Col. 2 Col. 3 Measured Daily Temperature (* F) High Low		Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Freezing Index based on 32° F datum	Col. 6 Accumulated Freezing Index based on 32° F	
Day (date)	(T _H)	(TL)	ന	(° F - days)	datum (°F days)	
11/18 11/19 11/20 11/21 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30 12/ 1 12/ 2 12/ 3 12/ 4 12/ 5 12/ 6 12/ 7 12/ 8 12/ 9 12/10 12/11 12/12 12/13 12/14 12/15 12/16 12/17 12/18 12/19 12/20 12/21	32 48 43 36 53 39 29 34 37 33 36 30 20 23 27 33 37 37 34 23 15 11 29 18 14 20 21 34 18 5 9 13	22 22 28 26 28 27 15 12 20 26 24 27 11 11 21 25 31 33 20 15 1 -5 6 8 5 9 -4 3 -6 6 -8 -6 8	27 35 36 31 40 33 22 23 24 27 29 28 30 24 16 17 24 29 34 35 27 19 8 3 18 13 10 14 8 18 6 0 0 4	5 -3 -4 1 -8 -1 0 9 8 5 3 4 2 8 6 15 8 3 -2 -3 5 13 4 29 14 19 22 18 24 14 26 32 32 28	71 68 64 65 57 56 66 75 83 88 91 95 97 105 121 136 144 147 145 142 147 160 184 213 227 246 268 286 310 324 350 382 414 442	

Figure G-1 (cont.). Form for Calculating Freezing Index.

Col. 1 Day	Col. 2 Measure Temperat High (T _H)		Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Freezing Index based on 32° F datum (° F - days)	Col. 6 Accumulated Freezing Index based on 32° F datum (°F days)
(date) 12/22 12/23 12/24 12/25 12/26 12/27 12/28 12/29 12/30 12/31 1/ 1 1/ 2 1/ 3 1/ 4 1/ 5 1/ 6 1/ 7 1/ 8 1/ 9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24	18 22 12 13 13 23 35 31 22 27 26 6 -3 5 13 21 8 12 10 9 11 19 24 27 23 19 24 46 30 44 31 39 39 39 39 39	8 12 -4 -2 4 -5 22 17 15 18 5 -1 2 -1 2 -5 0 -9 1 -2 5 7 13 6 4 9 11 12 20 15 9	13 17 4 6 8 9 28 24 18 22 16 -3 -8 -2 4 10 3 4 5 0 6 8 14 22 18 22 18 22 18 22 19 22 19 22 19 22 19 22 19 22 24 22 24 22 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	19 15 28 26 24 23 4 10 16 35 40 34 22 29 28 27 32 26 18 10 14 20 16 0 4 11 4 6 5 8	461 476 504 530 554 577 581 589 603 613 629 664 704 738 766 788 817 845 872 904 930 954 972 982 996 1016 1032 1032 1036 1047 1051 1057 1062 1070

Figure G-1 (cont.). Form for Calculating Freezing Index.

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6
	Measured Daily Temperature (° F)		Average Daily Temperature, (°F)	Daily Freezing Index based on 32° F datum	Accumulated Freezing Index based on 32° F
Day (date)	High (T _H)	Low (T _L)	(T) ·	(° F - days)	datum (°F days)
1/25 1/26 1/27 1/28 1/29 1/30 1/31 2/ 1 2/ 2 2/ 3 2/ 4 2/ 5 2/ 6 2/ 7 2/ 8 2/ 9 2/10 2/11 2/12 2/13 2/14 2/15 2/16 2/17 2/18 2/19 2/20 2/21 2/22 2/23 2/24 2/25 2/26 2/27	45 34 20 18 15 31 27 26 7 5 6 24 20 23 16 7 8 -1 11 21 24 46 53 61 44 44 36 44 36 44 36 33 27 26 36 37 26 36 36 36 36 36 36 36 36 36 36 36 36 36	25 12 4 2 7 -11 8 6 -16 -12 -2 -9 -11 -20 -32 -13 -5 26 34 37 37 29 26 21 31 32 25 20 17 18	35 23 12 10 11 10 18 16 -5 -8 -3 11 14 15 7 4 -2 -10 -10 4 44 49 40 36 31 32 34 35 29 24 22 27	-3 9 20 22 14 16 37 40 35 18 17 28 34 42 28 34 -12 -17 -8 -4 1 0 -2 -3 3 8 10 5	1067 1076 1096 1118 1139 1161 1175 1191 1228 1268 1303 1324 1342 1359 1384 1412 1446 1488 1530 1558 1576 1572 1560 1543 1535 1531 1535 1531 1532 1532 1532 153

Figure G-1 (cont.). Form for Calculating Freezing Index.

Col. 1	Col. 2 Measure Temperat		Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Freezing Index based on 32° F datum	Col. 6 Accumulated Freezing Index based on 32° F
Day (date)	High (T _H)	Low (T <u>L)</u>	(TI)	(° F - days)	datum (°F days)
2/28 3/ 1 3/ 2 3/ 3 3/ 4 3/ 5 3/ 6 3/ 7 3/ 8 3/ 9 3/10 3/11 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20	31 32 21 29 27 24 22 35 39 39 30 38 44 24 48 41 34 23 20 24 30	26 21 11 -5 9 3 9 14 19 17 20 18 23 7 5 16 5 12 13 15 23	28 26 16 12 18 14 16 24 29 28 25 28 34 16 26 28 20 18 16 20 26	4 6 16 12 14 18 3 4 7 4 2 16 4 12 14 16 12 16 16 16 16 16 16 16 16 16 16 16 16 16	1557 1563 1579 1599 1613 1631 1647 1655 1658 1662 1669 1673 1671 1687 1693 1697 1709 1723 1739 1751

Figure G-1 (cont.). Form for Calculating Freezing Index.

For 11/25:

$$\overline{T} = \frac{1}{2} (34 + 12) = 23^{\circ}F$$

3. The freezing degree-days per day (column 5) is equal to

Daily FI =
$$32 - \overline{1}$$
 (from column 4)

For 11/25:

Daily FI =
$$(32 - 23) = 9$$
°F-days

4. The freezing index is the accumulation of daily freezing degree days from the start of freezing

FI =
$$\Sigma$$
 (32 - \overline{T}) from the start of freezing

For 11/25:

FI =
$$(3+8+1+8+8+8+0+3+12+11+4+5-3-4$$

+ 1 - 8 - 1 + 10 + 9)
= 75° F-days

5. The freezing season ends for pavements when the average daily air temperatures (column 4) in spring go above 29°F for several days causing thawing of the pavement to begin. The thawing season for Coldspot for this year begins on March 21 (refer to Figure G-2). The freezing index for the entire freezing season from November 7 to March 20 is

FI =
$$\Sigma$$
 (32 - \overline{T})
FI = (3 + 8 + 1 + 8 + ... + 16 (March 18) + 12 (March 19) + 6 (March 20))
FI = 1757°F-days

Estimating the Time to Place Load Restrictions

The pavement consists of $2\frac{1}{2}$ inches of AC on 6 to 8 inches of base. This would be classified as a <u>thin</u> pavement. The "should" level for placing load restrictions for thin pavements is

Col. 1	Col. 2 Measure Temperat		Col. 4 Average Daily Temperature, (*F)	Col. 5 Daily Thawing Index based on 29° F datum	Col. 6 Accumulated Thawing Index based on 29° F
Day (date)	High (T _H)	Low (T _L)	(T)	(° F - days)	datum (°F days)
3/21 3/22 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/ 1 4/ 2 4/ 3 4/ 4 4/ 5 4/ 6 4/ 7 4/ 8 4/ 9 4/10 4/11 4/12 4/13 4/14 4/15 4/16 4/17 4/18 4/19 4/20 4/21 4/22 4/23 4/24	43 47 40 44 51 49 61 57 51 52 33 53 53 55 55 56 57 41 43 45 45 45 42 37	22 16 23 20 18 29 26 34 33 32 36 27 33 21 19 16 32 24 30 38 25 17 43 28 26 17 32 29 29 20 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32	32 32 32 34 38 46 36 42 36 42 40 46 36 42 31 38 36 33 36 33	3 3 3 5 5 9 19 17 7 13 14 13 1-3 5 15 11 12 13 11 17 3 7 20 3 5 4 2 9 7 4	3 6 9 12 17 22 31 50 67 74 87 97 111 124 123 120 125 140 152 165 190 203 214 231 234 241 268 288 291 296 292 294 303 310 314
4/25	43	28	36	7	321

Figure G-2. Form for Calculating Thawing Index.

Col. 1	Col. 2 Measure Temperati	ure (° F)	Col. 4 Average Daily Temperature, (°F)	Col. 5 Daily Thawing Index based on 29° F datum	Col. 6 Accumulated Thawing Index based on 29° F	
Day (date)	High (T _H)	Low . (T _L)	ന	(° F - days)	datum (°F days)	
4/26 4/27 4/28 4/29 4/30 5/ 1 5/ 2 5/ 3 5/ 5 5/ 6 5/ 7 5/ 8 5/ 9 5/10 5/11 5/12 5/13 5/14 5/15 5/16 5/17 5/18 5/19 5/20 5/21 5/22 5/23 5/24 5/25 5/26 5/27 5/28 5/29	59 58 45 54 54 54 54 54 54 54 56 66 67 69 77 69 77	30 30 31 29 31 28 26 39 42 30 24 27 41 27 25 30 36 34 30 32 30 27 24 29 40 48 46 56 53 47 40 40 36 50 50 50 50 50 50 50 50 50 50 50 50 50	44 44 38 44 36 40 42 46 49 37 39 46 47 46 47 46 47 49 60 64 64 66 61 64 49 52 64 44	15 15 9 15 7 11 13 17 20 8 10 17 22 11 3 11 17 18 17 21 11 8 13 20 31 35 35 35 37 32 27 15 20 23 35 15	336 351 360 375 382 393 406 423 443 451 461 478 500 511 514 525 542 560 577 598 609 617 630 650 681 716 751 788 820 847 862 882 905 940 955	
5/30 5/31	54 66	34 32	49	20	975 975	

Figure G-2 (cont.). Form for Calculating Thawing Index.

TI₂₉ should restrict = 10°F-days

The thawing season starts on March 21.

$$TI_{29}$$
 = 3 (March 21) + 3 (March 22) + 3 (March 23)
3 (March 24)
= $12^{\circ}F$ -days

The load restrictions should be placed by March 25.

(Note: Example of calculating thawing index is in Appendix F.)

The "must" level for restricting a thin pavement is

$$TI_{29}$$
 must restrict = 40°F-days
 TI_{29} = 3 (3/21) + 3 (3/22) + 3 (3/23) + 3 (3/24) + 5 (3/25)
+ 5 (3/26) + 9 (3/27) + 19 (3/28)
= 50°F-days

The load restrictions must be placed by March 29.

Estimating the Duration for Load Restrictions

The duration may be estimated in days or in thawing degree-days (this method is preferred). It is preferable to estimate the duration of the thawing period using the thawing index based on 29°F.

To estimate the number of thawing degree days required for the restricted period the exact equation is:

$$TI_{29} = 4.154 + 0.259 (FI)$$

 $T_{29} = 4.154 + 0.259 (1757°F-days)$
 $= 459°F-days$

On May 5, the TI29 (column 6) is 451°F-days

On May 6, the TI₂₉ is 461°F-days

Therefore, the load restrictions should be removed by May 7.

The simpler approximate equation for the thawing degree-days required for the restricted period which may be used in place of the above equation is:

$$TI_{29} = 0.3 (FI)$$

 $TI_{29} = 0.3 (1757°F-days)$
= 527°F-days

On May 11, the TI_{29} is $525^{\circ}F$ -days.

Therefore, the load restrictions should be removed by May 12.

Alternatively, the duration of the thawing period may be estimated in days.

The exact equation for estimating duration in days is

$$D = 22.62 + 0.011 (FI)$$

For this freezing season in Coldspot,

A simpler approximate equation for estimating duration in days which may be used instead of the preceding equation is

				*	
					·