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SECTION 1.0
DEFINITIONS

STATISTICAL [1.1]
"Having to do with numbers" or "drawing conclusions from numbers."

POPULATION [after Ref. 1.2]

All measurements or counts that are obtainable from all of the objects that process
some common characteristic. Example: a "population” of data would be the
pavement condition measured on all Interstate highways in Washington state.

SAMPLE [1.2]
A set of measurements or counts that constitute a part (or all) of the population.

RANDOM SAMPLING [1.2]
A sampling procedure whereby any one measurement in the population is as likely
to be included as any other.

BIASED SAMPLING [after Ref. 1.2]

A sampling procedure whereby certain individual measurements have a greater
chance of being included than others. Example: biased sampling would be taking
density measurements only at places on a base course that appeared to be well
compacted.

MEAN
Average of a group of measurements. The population mean is designated "p" and a

sample mean by "x."

MEDIAN [1.2]
The number, in a set of numbers arranged in ascending order, that divides the set so
that half of the numbers are higher and half are lower.

RANGE
The largest measurement minus the smallest measurement in a group of data.

STANDARD DEVIATION
A measure of variation or dispersion of a group of data. Specifically, the average
of the squares of the numerical differences of each measurement (or observation)

from the mean. The population standard deviation is designated by "¢" and a

sample standard deviation by "s.

HISTOGRAM

A graphical form of data presentation. A bar chart that shows in terms of area the
relative number of measurements of different classes. The width of the bar
represents the class interval, the height represents the number of measurements.

VARIABLE [1.3] _ _
A quantity to which any of the values in a given set may be assigned, i.e.,
something on which measurements are made.

CORRELATION
A way to measure the association between two variables.
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REGRESSION

Goes a step further than correlation. Generates an equation that can be used to
predict one variable from another (or others in multiple regression). The predicted
variable is the dependent variable and the other variables are called independent
variables.

SYSTEMATIC SAMPLING [1.2]

Selection of successive observations at uniform intervals in a sequence of time,
area, etc. Example: taking pavement deflection measurements every 500 ft.ona
project.

Examples for the calculation of sample mean, sample standard deviation, range and
a histogram are shown in Table 1.1 and Figure 1.1.



Table 1.1. Calculation of Sample Mean, Sample Standard Deviation and
Range for Procter Density Data [after Ref. 1.2]

1. Basic data (Procter density) in pcf:

107.5 100.8 107.0 101.5 107.0
112.0 111.4 124.0 103.3 101.3
104.3 109.4 103.5 114.1 98.0
106.0 99.7 110.5 105.0 93.5
101.3 102.5 95.5 94.0 110.1

2. Greek symbol " indicates a summation calculation is required. To sum the 25 density test
results above:

25
¥ xi=107.5 + 112.0 + 1043 + ... + 93.5 + 110.1 = 2,623.2

i=1

3. Sample mean (X)

_26232_ 10493 ~ 105 pef

n
X Xi
=1

n 25

X =

4. Sample standard deviation (s)

n —
3 (xj - x)2
i=1

n-1

\[(107.5 2 104.9)2 + (112.0 - 104.9)% + ... + (110.5 - 104.9)%
- 25-1

= 6.8 pcf

=N 7351

Range = largest density - smallest density

= Xmax ~ Xmin

= 124.0 - 93.5 = 30.5 pcf
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SECTION 2.0
THE NORMAL DISTRIBUTION

INTRODUCTION

The normal distribution is a data distribution that can be used to describe many
types of measurements in engineering. Basically, a normal distribution is a bell
shaped curve. Figure 2.1 illustrates a bell curve, superimposed over a histogram of
PCC compressive strength data. Such a distribution is very convenient to use

because it is characterized by the mean (U or x) and standard deviation (o or s).
As Figure 2.1 shows, most of the strength measurements cluster around the mean

( x = 4,824 psi), while fewer measurements are near the lowest (3,875 psi) and
highest (5,975 psi) strength values.

Since the normal distribution can be defined by the mean and standard deviation, a
set of measurements with equal means but differing standard deviations can be
illustrated, as shown in Figure 2.2 (subgrade density measurements). In this case,
the population mean is equal to 105 pcf and three different normal distributions are
shown for population standard deviations of 5, 7 and 9 pef. If you were a field
inspector, which of these three distributions would you prefer?

Figure 2.2 helps to provide an answer to the above question. If the total area under
the bell shaped curve is equal to 1.0, then the portion of density tests between 90
and 96 pcf is about 3.5, 8.0 and 11.0 percent for the three standard deviations of 5,

7 and 9 pet, respectively. This suggests that the distribution with ¢ = 5 pcf is
preferable. You will see how to determine these areas later in this section.

Willenbrock [2.1] (slightly modified) helps to explain Figures 2.2and 2.3

The theoretical NORMAL DISTRIBUTION extends out infinitely in
both directions from a mean of 105 pcf and never quite reaches the
horizontal axis...A NORMAL DISTRIBUTION has a total area
under the curve of 1.00 (i.e. 100 percent of the data values are
represented by the distribution). Since it extends from -co to +oo
(minus infinity to plus infinity), it encompasses all of the density
results that can occur. The area under the curve within these two

limits must therefore be equal to unity (i.e. 1.000 or 100 percent).
For all practical purposes, however, most of the data values

(actually 99.73 percent) occur between 3 © limits below 105 pef and
3 ¢ limits gbove 105 pcf.

If the area of each NORMAL DISTRIBUTION is the same (i.e. an
area equal to unity, 1.0000), then the distribution shown in
Figure 2.2 that has the largest spread (i.e., the largest standard
deviation, which occurs in case (c) where ¢ = 9 pcf) should have the
shortest overall height at the average value. Normal distribution (a),
on the other hand, has the smallest spread (i.e., O = 5 pcf), so its

horizontal spread is smaller than its distribution (c). Its vertical
spread must therefore be larger than its distribution (c).



Observed Frequency

50

45

40

35

30

25

20

15

10

X = 4824 psi
s= 387psi

-..xl

Normal Distribution

o

W0 W0 W0 W W O W0 W WLWLLW W LW
~ A N A N ~ o N A N AN AN
0 O - M N O O N M W W O O
O < T T < < ¢ O W WP W W W

Compressive Strength (psi)

Figure 2.1. Histogram and the Normal Distribution for
PCC Compressive Strength Data [after Ref. 2.1]

10



a) o =5pct b) 6 =7pct c) ¢ =9pcf.

=~ 8.0% = 11.0%
96 96
l ] ]
90 120 8490 120 126 78 90 120 132
p =105 p.ct. p =105 p.cf. p =105p.ct.

Figure 2.2. Three Normal Distributions for Procter Densities
(Same Means, Different Standard Deviations)
[after Ref. 2.1]
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A far more important result than those mentioned above is also
related to the fact that the area under the curve is equal to 100
percent. Because of this, it can be stated that THE PROBABILITY
OF FINDING A DATA VALUE BETWEEN 105 pcf and 115 pcf
IS EQUAL TO THE AREA UNDER THE NORMAL
DISTRIBUTION BETWEEN 105 pcf AND 115 pcf. For

distribution (a), as shown in Figure 2.3 (i.e., 6 = 5 pcf), the area
between 105 pcf and 115 pef represents about 48 percent of the area
under the entire distribution.

Figure 2.4 shows two normal distributions with equal population standard
deviations (0 = 5 pcf) but unequal population means (it = 85 and 105 pcf).

NORMAL DISTRIBUTION EQUATION

The height of a normal distribution (y) can be defined by its corresponding value of
x (refer to Figure 2.5) by the following equation [after Ref. 2.1]:

y= e-(x - W)2/202 Eq. 2.1

2n

where

y = vertical height of a point on the normal distribution,
x = distance along the horizontal axis,

o = standard deviation of the data distribution,

| = mean of the data distribution,
e = constant = 2.71828 ...,

7 = constant = 3.14159 ...

To illustrate how Equation 2.1 can be used to determine area under a normal
distribution, refer back to the Procter density data (Figure 2.3). Calculate the area
under the normal curve between 105 and 115 pcf for a standard deviation of 5 pcf
(this is shown in Figure 2.3 to be 0.48 or 48 percent of the total area under the
curve). These calculations are

y= L__ .(105-105)/ 2(5)% = 0.079788
(5)\/ 2n

and

yo—Ll_ (115-1052/252 - 0010798
G 2n

The approximate area under the curve is about 0.45 (or 45 percent), which is close
to the "theoretical” value of 48 percent (refer to sketch in Figure 2.6). The
significance of this value is that the probability of a density measurement falling
within the range of 105 to 115 pef is about 0.48 (let's use the "theoretical” value).

13
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Figure 2.4. Normal Distribution (Different Means,
Same Standard Deviations) [after Ref. 2.1]
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Figure 2.5. Relationship of "y" and "x" Values in the
Normal Distribution
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............................................. 0.079788

0.045293

Approx. area = (0.045293)(115-105)

=045 ~45%
............................................. // 0.010798

I
105 pcf 115 pcf x (soil density, pcf)

N\

Figure 2.6. Determination of Approximate Area
Under the Normal Distribution
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To determine such probabilities in this manner is tedious and time consuming.
There is an easier way to determine these probabilities than computing and

tabulating y's for various p's and o's. To do this, you must convert the pormal
distribution to a standard normal distribution and define a variable "z," which is:

deviation frommean X -
standard deviation ~

Z=

If you substitute z into Equation 2.1, then following relationship results:

) Eq. 2.2

Yz =
2n

where

yz = vertical height on the standard normal distribution, and
z = as previously defined.

Refer to Figure 2.7, which illustrates this important transformation. Thus, you can
see that the probability of having a density test between 105 and 115 pcf is about
47.7 percent (or 34.1 + 13.6 percent). Fortunately, the "z-statistic" has been
published in tables to allow for easy computation. Such a table is shown as
Table 2.1. You can see that

mean + 1 standard deviations = 68.2% of area
mean * 2 standard deviations = 95.4% of area
mean * 3 standard deviations = 99.8% of area

Recall that all of the area under a normal distribution is 100%.
2.1  Example (more Procter density data)

For normally distributed Procter density data with p = 105 pcf and ¢ =
5 pef, what is the probability the density will be greater than 92 pcf?

First calculate z.

222105 _ o

Now, with z = -2.6, use a cumulative standard normal distribution table
(any statistics book will have one, or use Table 2.1) to obtain the
appropriate area under the curve that equals 0.0047.

.0000 - 0.0047

Thus, P(density 292 pcf) =1
= 0.9953 or 99.53 percent

17



2.2

2.3

2.4

Example (portland cement concrete strengths)

If a distribution of PCC strength data is p = 5000 psi and ¢ = 500 psi,
answer the following questions:

(@) What is the probability that the strength of the PCC will be Jess than
6,000 psi?

(b)  What is the probability it will be Jess than 5,000 psi?
©) What is the probability it will be more than 4,000 psi?
(d) What is the probability it will be Jess than 4,000 psi?
Refer to Figure 2.8 for the results.
Example (PCC contractor trucks)
The contractor claims that his batch plant can produce PCC mix with

i = 4,824 psi

o = 387 psi
Assume that a very unrealistic job specification states that an acceptable
PCC must have a compressive strength no lower than 4,700 psi and no
higher than 5,000 psi (after seven days of cure).
Question: If the contractor sends 50 truckloads of this mix to the job site,
how many of the trucks should be rejected if you know the real, potential
compressive strength of each truckload (of course you cannot do this but
what the heck)?
Solution: Using z-statistic tables, you find that the total area under the
standard normal distribution between 4,700 and 5,000 psi is about 0.30
(recall that the maximum is 1.0000 under the curve).
Thus, approximately 30 percent of the population will be between 4,700
and 5,000 psi. Thus, 1.0000 - 0.30 = 0.70 or about 70 percent of the 50
trucks (i.e., about 35 trucks) should be rejected.

Try to match this solution by using Table 2.1. Hint: start by computing
Z4700 and Zs000, then use Table 2.1.
The "t-distribution”

The "t-distribution" is used to test sample means when the population
variance (or population standard deviation) is not known (which is usually
the case for most of the data you deal with). The "t-statistic" is quite similar
to the "z-statistic" but also includes consideration of the sample size (n).

18



where

S - Eq. 2.3
c
X -

t = Eq. 2.4
s'\n a

This concept will be illustrated in more detail in the next section.

19



B =105p.ct.
o= bpct
/ \\'\y
90 95 100 105 130 135 120 x
p.c.t.
yZ

Figure 2.7. The Proctor Density Distributions
(Normal and Standard Normal)
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Table 2.1 Normal Distribution Table [from Ref. 2.2]

Normal Distribution

Normal
Deviate
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-4.0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3.9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-3.8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3.7 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3.6 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
35 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
33 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
-2.9  .0019 .0018 .0018 0017 .0016 .0016 0015 0015 0014 .0014
-2.8 .0026 0025 .0024 0023 .0023 .0022 .0021 .0021 .0020 .0019
-2.7  .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
-2.3 .0107 0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
22 .0139 .0136 0132 0129 0125 0122 0119 0116 .0113 0110
-2.1 .0179 0174 0170 0166 .0162 0158 0154 0150 0146 .0143
2.0 .0228 .0222 0217 .0212 .0207 .0202 0197 .0192 L0188 .0183
-1.9  .0287 L0281 0274 .0268 .0262 .0256 .0250 0244 .0239 .0233
-1.8  .0359 0351 .0344 0336 .0329 .0322 .0314 .0307 .0301 .0294
-1.7  .0446 .0436 0427 .0418 .0409 .0401 .0392 .0384 0375 .0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 0475 .0465 .0455
-1.5 .0668 0655 .0643 .0630 .0618 .0606 .0594 .0582 0571 .0559
-1.4 .0808 .0793 07178 .0764 .0749 0735 0721 .0708 .0694 .0681
-1.3 .0968 0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
-1.2 .1151 1131 Jd112 .1093 1075 .1056 .1038 .1020 .1003 .0985
-1.1 .1357 .1335 1314 1292 1271 1251 .1230 1210 .1190 .1170
-1.0  .1587 1562 .1539 1515 .1492 .1469 .1446 .1423 .1401 1379
-9 .1841 .1814 .1788 1762 .1736 1711 .1685 .1660 .1635 .1611
-8 2119 .2090 2061 2033 .2005 1977 .1949 .1922 .1894 .1867
-7 2420 .2389 2358 2327 2296 2266 2236 2206 2177 .2148
-6 2743 2709 .2676 2643 2611 2578 2546 2514 .2483 .2451
-5 .3085 .3050 3015 2981 2946 2912 2877 .2843 2810 2776
-4 3446 .3409 3372 .3336 3300 .3264 .3228 .3192 3156 3121
-3 3821 3783 3745 3707 .3669 3632 3594 3557 3520 .3483

21




Normal

Deviate
z .00 .01 .02 .03 .04 .05 06 .07 .08 .09
-2 4207 4168 4129 4090 4052 4013 3974 .3936 3897 .3859
-1 4602 4562 4522 4483 4443 4404 4364 4325 4286 .4247
-0 .5000 4960 4920 .4880 4840 .4801 .4761 4721 4681 .4641
0.0 .5000 .5040 .5080 5120 .5160 5199 5239 5279 5319 .5359
0.1 .5398 .5438 5478 5517 5557 .5596 .5636 .5675 5714 .5753
02 .5793 5832 5871 5910 .5948 .5987 6026 .6064 .6103 .6141
0.3 6179 6217 .6255 .6293 6331 6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 6628 .6664 .6700 .6736 6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 7019 .7054 .7088 7123 7157 .7190 .7224
06 .7257 .7291 7324 7357 .7389 7422 7454 .7486 7517 .71549
0.7 .7580 .7611 .7642 .7673 .7703 7734 7764 7793 .7823 .7852
0.8 .7881 7910 .7939 7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 9015
13 9032 .9049 9066 .9082 .9099 9115 9131 9147 9162 9177
14 .9192 .9207 9222 .9236 9251 9265 9279 9292 .9306 .9319
1.5 .9332 9345 9357 9370 .9382 .9394 .9406 9418 9429 .9441
1.6 .9452 .9463 9474 .9484 .9495 .9505 9515 9525 9535 9545
1.7 .9554 9564 9573 9582 9591 9599 9608 9616 9625 .9633
1.8 9641 .9649 9656 9664 9671 9678 9686 9693 9699 .9706
1.9 .9713 9719 9726 9732 9738 9744 9750 9756 9761 .9767
20 .9772 9778 9783 .9788 9793 9798 9803 9808 9812 L9817
2.1 9821 9826 9830 9834 9838 .9842 .9846 9850 .9854 9857
2.2 .9861 .9864 9868 9871 9875 .9878 .9881 .9884 9887 .9890
2.3 9893 .9896 .9898 9901 9904 .9906 9909 9911 9913 9916
24 9918 9920 9922 9925 9927 9929 9931 9932 9934 .9936
2.5 .9938 9940 9941 .9943 9945 9946 .9948 .9949 9951 .9952
2.6 .9953 9955 .9956 9957 9959 .9960 9961 9962 9963 .9964
2.7 .9965 9966 9967 9968 9969 9970 9971 9972 9973 .9974
2.8 9974 9975 9976 9977 9977 9978 9979 .9979 9980 L9981
29 .9981 9982 9982 .9983 9984 99384 9985 9985 9986 .9986
3.0 .9987 9987 .9987 .9988 9988 9989 .9989 .9989 9990 9990
31 9990 9991 9991 9991 9992 9992 9992 .9992 .9993 .9993
32  .9993 .9993 .9994 9994 9994 .9994 9994 .9995 9995 .9995
33 .9995 .9995 .9995 9996 9996 9996 9996 9996 .9996 .9997
34  .9997 .9997 9997 9997 .9997 9997 .9997 9997 9997 .9998
35 .9998 .9998 .9998 .9998 .9998 .9998 9998 .9998 9998 .9998
3.6 .9998 9998 .9999 9999 .9999 9999 9999 9999 9999 .9999
3.7  .9999 .9999 .9999 .9999 .9999 9999 .9999 9999 .9999 .9999
3.8 .9999 .9999 9999 9999 .9999 9999 9999 9999 .9999 .9999
39 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
40 1.0000 1.0000 1.0000 1.0000 1.0000 1 .0000 1.0000 1.0000 1.0000 1.0000
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<>
4000 5000 6000 x - scale (PCC strength)

Area =
0.0228

z-scale

Z 4000 Z 5000 Z 6000

From Table 2.1

74000 = :1_00_95?;55_9'29-= 2 (area less than Z = -2 equals 0.0228)

75000 = §0_0—95_0-'650—02= 0 (area less than Z = 0 equals 0.5000)

6000 - 5000
26000="gg0 - *+2 (arealessthanZ=+2 equals 0.9772)

(a) P (strength < 6000 psi) = 1.000 - 0.0228 = 0.9772 or 97.72%
(b) P (strength <5000 psi) = 1.000 - 0.5000 = 0.5000 or 50.00%
(c) P (strength = 4000 psi) = 1.000 - 0.0228 = 0.9772 or 87.72%
(d) P (strength < 4000 psi) = 0.0228 or 2.28%

Figure 2.8. PCC Strength Probabilities
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2.2

SECTION 2.0 REFERENCES

Willenbrock, Jack H., "A Manual for Statistical Quality Control of Highway
Construction - Volume L" Federal Highway Administration, National Highway
Institute, Washington, D.C., January 1976.

Ulberg, Cy, "Highway Research Manual," Draft Final Report, Research Project

Y3399, Task 29, Washington State Department of Transportation, Olympia, WA,
August 1987.
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SECTION 3.0
TESTS OF HYPOTHESES

INTRODUCTION

Hypothesis testing is a way in which statistical methods can be used to help in the
decision making process. Such testing considers the mean and standard deviation
of a group of data, the confidence level (a probability statement) and something
about the population being sampled. Hypothesis testing is extremely helpful in
performing multiple regression analysis and hence it is important for you to
understand the basics.

HYPOTHESES

Webster's Seventh New Collegiate Dictionary defines hypothesis as "...a tentative
assumption made in order to draw out and test its logical or empirical
consequences....an assumption or concession made for the sake of argument..."
You can begin to see the problem in explaining hypothesis testing.

There are always two hypotheses for any statistical test [3.1]. These hypotheses
are

Ho = null hypothesis (most important)
H; = alternative hypothesis

* What is about to be presented is one of the fundamental problems in statistics which
is the use of "double negative" statements. Any hypothesis must be tested

statistically to be rejected or not rejected (this is a statistical way of accepting
something).

The hypotheses (Ho or Hp) can result in two types of errors if the wrong one is
selected, as shown in Table 3.1. The probability of the Type I and II errors is very
important, since it determines how carefully you must distinguish between frue and

false hypotheses.

Table 3.1. Types of Hypothesis Errors

*The Actual Decision”

“The Truth" RejectH Accept H o
Ho tue Type | Error () Correct!
H, false Correct! Type Il Error (B3) -
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(This is an area in which statistical "games" can be played, so you need to be very
careful). These probabilities are [after Ref. 3.1]

P(Type L error) = o
P(Type Il error) = B

The general form for calculating the z-statistic for hypothesis testing is

(sample mean) - (hypothesized value)

Zeale = standard error
where

sample mean = x

hypothesized value = p (sometimes assumed to = 0 in regression
hypothesis testing)
c o

standard error = T = standard deviation of means of random
n
samples of size n from a "parent” population with
standard deviation 6. Standard error is sometimes
designated O;.

sample size = n

The same general form applies to the t-statistic for hypothesis testing when none of
the population statistics (1, ©) are known:

_ (sample mean) - (hypothesized value)

fealc standard error
where
sample mean = X
hypothesized value = J (again, sometimes an assumed or stated value)
standard error = S %
Vn

2.1  Example (PCC contractor)

For this example, use the data shown in Figure 2.1. This contractor states
that his batch plant has produced a mix in the past of

p = 4,824 psi
G = 387 psi

(Since these are population statistics, you can assume that these data were
collected over a long period of time)

On the job you take six samples (cylinders) with the result that x =
4,549 psi.
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2.2

Question: Is the contractor correct?

Solution: Assume that the data are normally distributed and use hypothesis
testing.

Ho: p = 4,824 psi
Hi: p < 4,824 psi

X- | 4549 - 4824

z = = -1.74
cale == 3876

Zcritical = -1.65 (for Type I error (or ) = 5%) (Refer to Table 2.1
to determine z.)

since zcalc > Zcritical, reject Ho

Thus for your job, you must judge the contractor's claim to be jncorrect.
Refer to Figure 3.1 for an illustration of this process.

Example (PCC contractor again) [after Ref 3.2]

The PCC mix contractor claims the following:

PCC mix = 4,000 psi (28-day compressive strength)

You take a random sample of five cylinders and cure them for 28 days
(n =95).

The results:
x = 3,740 psi
s = 390psi
n= 5

Question: If you are willing to accept a 5 percent chance of a Type I error
(i.e., rejecting a frue Ho), should you believe the contractor?

Solution

Ho: p 4,000 psi (null hypothesis)
Hi: 1t < 4,000 psi (alternative hypothesis)

. x - | _ 3740 - 4000 _
e T s 39015

teritical (@ 5%) < -2.13 (one-tail o = 5% with
v =n- 1 = 4 degrees of freedom)

-1.48
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Therefore, you accept Hp, since

teale = -1.48 < -2.13 = teritical

You have no "statistical" reason to doubt the contractor's claim. Refer to
Figure 3.2(a) which further illustrates this example. However, note that if
the Type I error (rejecting a true Ho) were reduced to a 1 percent chance,
then

teritical (@1%) > -3.747 (one-tail < =1% with 4 degrees of freedom)

Thus, you are even more unwilling to accept the alternate hypothesis (Hy)
that the contractor's claim was incorrect. Note that the Type I error protects
against rejecting a true null hypothesis. In other words, you can select a
low Type I error level so that it is difficult to reject the null hypothesis.
However, as the Type I error level decreases, the Type II error level
increases (not rejecting a false Hy). Itis not easy to illustrate the calculation
of the Type II error (B), but this example is a good case since a Type I error
level of about 11 percent would be needed to reject the null hypothesis.

Often the Type I error is termed the "seller’s risk" and the Type II error the
"buyer's risk.” For the example, the lower the Type I error the lower the
risk of the contractor. Correspondingly, the Type II error increases the risk
of the DOT accepting PCC of lower than specified quality (again not
rejecting a false Hp). Needless to say, a balance between Type I and Type
I errors is needed (but not necessarily the same number or value because
one error type may be more important than another) in developing
statistically based materials "acceptance plans.”

At least one illustration of ignoring the Type II error (B) is appropriate The
PCC mix contractor example will be used.

Assume that the sample results,

actually represent the true population (i.e., b = 3,740 psi instead of | =
4,000 psi). First, calculate the value of ;, which corresponds to t = -2.13
(< = 5%). This value is the one that separated the rejection and acceptance
region for Hp (1 2 4,000 psi). (Refer to Figures 3.2(a) and (b).)

—"%%O—O- - 213

V5

- x= 3,628 psi
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2.3

The value of the Type II error (B) is the area under the curve (or
distribution) with p = 3,740 psi and ¢ = 390 psi but within the acceptance
region of the original Ho, distribution (1 = 4,000 psi). This is illustrated in
Figure 3.2(b).

3,628 - 3,740
t=—"—7350 =

V5

(Use a t-table, available in most statistics books.)
~ B =P(t=-0.64) = 0.78 (or 78%)

-0.64

Therefore, there is a 78 percent chance of accepting a false Ho (1 = 4,000)
if the true population mean (i) = 3,740 psi. You can see that the B will

change as the correct population mean changes. Clearly, this level of B is
quite high. Thus, the DOT's risk (the "buyer's risk") is too high. A

balance in setting o<,  and sample size levels is very important in the proper
use of these kinds of statistical tests. This leads to another important area of
statistics, generally called "acceptance testing" and "operating characteristic
curves,” which is not appropriate for discussion in these notes.

Example (Friction Number data - paired t-test)

The friction number data are for SR-82. The milepost locations indicate that
the friction testing was performed on portland cement concrete surfaces
only. The friction tests were essentially obtained every one-half mile in all
available lanes. The friction number data are shown in Table 3.2. Lane 1 is
the "outside" or "curb" lane in all cases.

Table 3.3 presents a few basic statistical measures of the friction number
data. This includes mean, standard deviation, the number of data points and
the coefficient of variation. The coefficient of variation is a dimensionless
number that is the standard deviation divided by the mean multiplied by 100
(to convert to a percent). Stated another way, this value is used to express
the standard deviation as a percentage of the mean.

A review of the information in Table 3.3 shows that, in general, the mean
(or average) friction number is highest for the "inside" or "median” lanes.
This is not surprising since the traffic in the inside lanes is generally lower
than that in the "outside" lanes. These differences are about 7 friction
numbers. Further, the coefficient of variation is generally higher for the
inside lanes. This might suggest that studded tire wear (higher wear
exposure in the outside lanes) results in more uniform but Jower friction
numbers.

Often you may have some idea of what outcome to expect from a
comparison of test data (in this case a comparison of friction number data
between lanes on SR-82). You may then pose a tentative assumption (or
hypothesis) in order to test the outcome. This "test" is done with sample
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data (friction numbers in this case) and the "t-statistic." For this analysis,
the proposed hypothesis (or "null" hypothesis) is that there are no
statistically significant differences among the differences between the mean
friction numbers of the lanes. The mean friction number differences were
based on "paired” observations, i.e., at a specific milepost the difference
between any two friction numbers from two separate traffic lanes was
calculated.  The probability level chosen for this comparison was 95
percent. This implies that there is only a 5 percent chance that the true null
hypothesis will be rejected. If the null hypothesis was accepted, then the
last column of Table 3.4 would show "no significant difference." This
would suggest that there would be only a 5 percent chance of the conclusion
being wrong, and one could conclude (for the specific test data used) that
there was no real difference in friction numbers for the two lanes compared.
On the other hand, if the last column in Table 3.4 showed "significant
difference," then the null hypothesis would be rejected. This would result
in the conclusion that there was real difference in friction numbers for the
specific lanes and route being compared.

A review of the conclusions drawn in Table 3.4 (and the formulas shown in
Table 3.5 and the calculations in Table 3.6) suggest that the inside lane has
"significantly" higher friction numbers than the other lanes. This indicates
that the lower exposure to vehicle traffic (and studded tires) results in higher
pavement friction resistance (not a surprising finding). A review of the
WSDOT Road Log reveals that this section of SR-82 is 15 years old.
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//

95% of area

\

4549 psi 4824 psi x - scale (PCC comp. str.)

-1.74 -1.65 0 Z - scale

Figure 3.1. Hypothesis Testing with Population
Mean and Standard Deviation Known
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Reject <@—— Accept
Ho Ho
/— t - distribution
Area = 0.05
|
-2.13 0 t - statistic

@

1 T '
3,628 3,740 4,000 x (PCC strength, psi)
} i
-2.13 0 t (n = 4,000)
j ]
-064 0 t (n = 3,740)

(b)

Figure 3.2. t - test Example (PCC Contractor)
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Table 3.2. Friction Number Data, SR 82 (MP 4.0 - 14.0)

Friction Numbers
Mileposts Eastbound Westbound

Lane 1 Lane 2 Lane 1 Lane 2

4.0 40.4 50.6 38.5 46.4
4.5 36.2 50.5 41.0 47.2
5.0 38.3 443 40.6 47.7
5.5 401 46.0 38.7 46.8
6.0 41.3 47 .4 39.6 44 .4
6.5 42.6 45.9 40.4 47.8
7.0 35.4 43.9 39.5 47.7
7.5 37.9 48.1 41.1 43.3
8.0 41.0 48.6 43.3 55.3
8.5 41.6 45.5 41.7 49.2
9.0 41.0 44.3 38.8 51.7
9.5 40.0 48.5 40.8 46.1
10.0 39.9 50.3 38.6 46.5
10.5 42.9 47.3 43.6 404
11.0 41.8 46.2 41.0 50.7
115 43.8 46.5 41.7 49.5
12.0 40.9 55.9 42 .1 47.0
12.5 415 52.9 41.5 53.4
13.0 43.4 50.3 40.8 52.5
13.5 46.3 52.6 40.9 46.4
14.0 40.4 54.0 41.4 46.5

Note: Lane 1: "Outside” or "curb" lane
Lane 2: "inside” or "median" lane
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Table 3.3. Basic Statistics for Friction Number Data, SR 82

Lane Direction and Number

Route Mileposts Parameter WB EB
1 2 1 2

SR-82 4.0-14.0 Mean (X} 40.7 48.4 40.8 48.6

Std. Dev. (s) 1.4 3.0 2.5 3.4

Data Points (n) 21 21 21 21

Coeff. of Var. 3.4% 6.2% 6.1% 7.0%

Table 3.4. Results of Hypothesis Testing for Friction Number Data, SR 82

Lane t - statistic ©
Comparison Conclusion '°
Route Mileposts | (Dir: Lane @ tae @ :
ypothesis)
Nos.) Calculated (@=005)
SR-82 4.0-14.0 WB: 1-2 -12.587 -2.086 Significant Difference
EB: 1-2 -9.540 -2.086 Significant Difference
Lane 1 is "Outside" lane of two lanes in one direction.
Lane 2 is "Inside" lane of two lanes in one direction.
Notes:

@

(b)

(©

t-statistic calculated from paired friction number observations for lane directions
and numbers shown.

t-statistic for a Type | error of 5% (o= 0.05) for n-1 degrees of freedom
(number of data points minus one).

Conclusion based on the initial hypothesis that there are no significant
differences in friction numbers for the cases shown.
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Table 3.5. Formulas Used in Friction Number Statistical Analysis [after Ref. 3.1]

1. Statistical tests reported are "means tests for paired samples."

2. Null hypothesis is Hp: & = 8¢

Hi: 8280
where: o= mean difference between paired friction numbers
80= O (assumes there is no difference between pairs on a population
basis)
3. t-statistic
(330 _@-0)
I
W Vn
: Zd;
where: d= =

n = sample size
2di= X(xi1 - xi2)
xj1 = individual friction number from Lane 1 (for example)

xip = individual friction number from Lane 2 (for example)

sg= (Zdiz oo az)l/z

n-1 n-1

Reference 3.1:
Lelank Blank, 1
McGraw — Hill, 1980, p384 630.
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Table 3.6. Friction Number Example — Calculation of t-statistics
1. Summation of differences between Lane 1 and Lane 2:
Y.di = -162.9 (eastbound) ¥d; = -159.9 (westbound)
To illustrate: ¥dj = (40.4 -50.6) + (362 - 50.5) + ... + (404 - 54.0) = -162.9 (for eastbound)
2. Summation of squared differences between Lane 1 and Lane 2:
¥d;2 = 1541.3 (eastbound) ; 2= 1371.2 (westbound)
To illustrate: $di2 = (40.4 -50.6)2 + (36.2 - 50.5)2 + ... + (404 - 54.0) = 1541.3 (for eastbound)

3. Calculate mean of friction number differences:

= Zf_i - 1—62%2 -.7.757 (eastbound)
d= -ZTdi-= - -1—52—91—9 =-7.614 (westbound)

4. Calculate standard deviation of the differences:

[¥di2  n_ 2]1/2
sa=| 51 " 1 @

(15413 21
sa=| =35 - (%(-)) (-7.757)2]”2 = 3.726 (eastbound)

[1371.2 1
84 = 320 - Cm) (-7.614)2]1/2 = 2.772 (westbound)

5. Calculate t-statistic:

d-0
Sd_

Vn

oo =T O) 9540 (eastbound)

V21

alc = ('7'61.‘;7' ) _ -12.587 (westbound)

V21

6. Determine t value

teale =

teritical = £ 2.086 (for two tail Type I error = 5% with v =n - 1 = 20 degrees of freedom)
(the teritical concept is illustrated in Figure 3.3)
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Reject 419 AcceptH <4-1P Reject
Ho Ho

t - distribution

Area = 0.025 ‘/——Area = 0.025

-2.086 0 +2.086 t - statistic

Figure 3.3. t- test Example (SR-82 Friction Numbers)
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SECTION 3.0 REFERENCES
Blank, Leland, Statistical Procedures for Engineering, Management, and Science,
McGraw - Hill Book Company, 1980.
Willenbrock, Jack H., "A Manual for Statistical Quality Control of Highway

Construction - Volume 1," Federal Highway Administration, National Highway
Institute, Washington, D.C., January 1976.
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SECTION 4.0
REGRESSION ANALYSIS

INTRODUCTION

Recall from SECTION 1.0 that regression analysis can be used to generate an
equation to predict one variable from another (or others, which constitutes multiple
regression). The predicted variable is the "dependent variable" and the other
variables are called "independent variables."

Sir Francis Galton (England) apparently first used the term "regression” in the
context of statistics in the late 1800s [4.1]. He was studying the inheritance of
human characteristics and noted that offspring tend to "revert" (regress) toward
"mediocrity.” What he was trying to say was that children'’s heights, as they grow
into adults, tend toward an average or median height.

CORRELATION

In statistics, there are several ways two variables can be evaluated so that their
collective association can be measured. A common measure of association is
correlation. A few of the more significant points about correlation include [after
Ref. 4.2] the following.

", 1mn

(@) The correlation coefficient is designated by "r.

(b) The correlation coefficient can range between -1 and +1. If the two

variables whose association is being measured are designated as "y" and

"x", then the correlation coefficient is positive if an jncrease iny
corresponds to an increase in x.

(c) The correlation coefficient equals 1.0 if all of the y and x values fall on a
straight line.

(d) When the correlation coefficient approaches 0.0, then there is little (if any)
association between y and x (however, there are exceptions - refer to Figure
10.2 (p. 221) of the MINITAB manual [4.2]).

The basic equation for determining the correlation coefficient is

P0G y) Eq 4.1
TEa- vEg- v q'

The "computation” formula for r is

IxXy
L Eq.4.2

[(zxZ -(-Z—::XXZW - @%—)i)]m

Zxy -

Ir=
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2.1

Example - calculation of the correlation coefficient

An example of correlation will be a comparison of asphalt concrete resilient
modulus values obtained in the same laboratory by two different technicians
[4.3]. The laboratory data are for a gravel aggregate specimens tested at

77°F. They are shown on Table 4.1.

To simplify the calculations, units of X106 psi will be used, along with

Equation 4.2.

X X
0.204 0.195
0.231 0.207
0.227 0.198
0.228 0.204
0.261 0.229
0.195 0.180
0.225 0.206
0.216 0.202
0.205 0.182
0.232 0.235
0.205 0.186
0261 0237

Ty =2.690 ZXx=2461

After Equation 4.2:

0.5557 -

¥2

0.0416
0.0543
0.0515
0.0520
0.0681
0.0380
0.0506
0.0467
0.0420
0.0538
0.0420

0.0681

K2

0.0380
0.0428
0.0392
0.0416
0.0524
0.0324
0.0424
0.0408
0.0331
0.0552
0.0346

0.0562

(2.461)(2.690)
12

Ir=

_0.00403
T = 0.00437

= +0.92

2
[(0.5087 . 2"‘161 0.6078 -

(2.690)2
12

____.)]1/2

XY

0.0398
0.0478
0.0449
0.0465
0.0598
0.0351
0.0464
0.0436
0.0373
0.0545
0.0381

0.0619

Zy2 = 0.6078 Zx2=0.5087 Zxy = 0.5557



Table 4.1.  Asphalt Concrete Resilient Modulus Data
by Two Technicians - Gravel Aggregate at 77°F

Resifient Modulus (psi)
Specimen ) at77°F
No. Operator Operator
y X
1 204,000 195,000
2 231,000 207,000
3 227,000 198,000
4 228,000 204,000
5 261,000 229,000
6 195,000 180,000
7 225,000 206,000
8 216,000 202,000
9 205,000 182,000
10 232,000 235,000
11 205,000 186,000
12 261,000 237,000
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3 LINEAR REGRESSION WITH ONE INDEPENDENT VARIABLE

3.1

3.2

Basic Regression Model

First, examine a basic regression mode] (or equation, which in this case
indicates the same thing):

yi= bo + bixi + €j Eq. 4.3
where
yi = value of the dependent variable for the ith data point,

x; = value of the independent variable for the ith data point,

bo,b1 = constants (regression parameters),

€ j = random error term, and
i=1,2,3 ..,n

The above model is a simple, linear model. It is simple since there is only
one independent variable (x). It is linear since both the parameters (bg, b1)
and the independent variable (x) are not power functions.

The regression parameters (bo, b;) are usually called regression
coefficients. The coefficient by is the slope of the regression line and the
coefficient bg is the intercept of the regression line. This is illustrated in
Figure 4.1, which is a plot of Skid Number at 40 mph versus ADT per lane
for pavement field data for a select type of limestone rock asphalt surface
course. The resulting equation, based on eight data points, is

SN0 = 56.9 - 0.00666 (ADT LANE)

The intercept (bo) at zero ADT per lane is 56.9. This is analogous to a new
pavement surfacing that has received no traffic. The slope (b1) is 0.00666,
which means that the Skid Number is reduced by 0.00666 for each increase
of 1 ADT per lane (or more understandably, the Skid Number is reduced by
about 6.7 for each increase of 1,000 ADT per lane).

Method of Least Squares

The best relationship (or line) to use to predict some y from x is one that
minimizes the differences between the regression line and the actual data. In
Figure 4.2 (a), a clear association is shown and one not so clear is shown in
Figure 4.2 (b). Thus, Figure 4.2 (a) probably comes closest to minimizing
the differences between the line and the plotted y and x data points.

The minimization of the differences between the regression line and the
actual data points is illustrated in Figure 4.3, i.e., the differences between

the fitted data on the regression line (1) and the actual data points (y;) are
minimized . More specifically, the squared differences are minimized, i.e.,

a minimum of Z(¥j - yi)z. The squared term results from the derivation,
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which is based on calculus. From this basic idea come the following
equations, which are used to obtain the regression coefficients for a simple,
linear regression model:

Z(xi- X)@i-¥) o
by = = (basic Eq. 4.4
1 % e 02 ) q
Xxi) (Zyj
EXiyi - ( l)n( Yi)
by = (computational) Eq. 4.5
) (ZXi)z
I - ———
n
bp= y-b1 x (basic) Eq. 4.6
bo =;11- Cyi- bi1Zxj) (computational) Eq. 4.7

3.3  Example - determination of a regression line by the method of least squares

Use the data from Table 4.1 to apply an "adjustment” to the resilient
modulus data obtained by Operator "x". In other words, predict the
modulus values that would be obtained by Operator "y" from what you
know about the results obtained by Operator "x." Determine the appropriate
regression line (the basic information needed to determine bo and by is

contained in SECTION 2.1).

Zxi) (Zy;
inyi-( l)n( yi)

by = (from Eq. 4.5) =—

)2
2. (Zx1)
le —"n

(2.461) (2.690)

03537~ 2 _ 0.00403

- — =
0.5087 - G230

- 1.0100

bo = (from Eq. 4.7) = = (¥ - b1Zx)

—J5 (2.690 - (10100)2.461))

= 0.0170
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SN4g = 56.9 - 0.00666 (ADT/lane)
R% =077

(original data points not available)

b, =0.00666
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Figure 4.1. Skid Numbers versus ADT per Lane for
Limestone Rock Asphalt Surfaces



(a) A clear association between the line and the data points

(b) Unclear associations between lines and the data points

Figure 4.2. Data Fits
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® ctual datapoint (y; )

[ fitted points v i)

Figure 4.3. Tllustration of Minimization of Differences Between
the Regression Line and the Data Points
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Table 4.2. Actual and Predicted Resilient Modulus Values for Operator Y

Resilient Modulus (psi)
at 77°F
Specimen Actual Predicted
No. Operator Operator Operator
y y* X
1 204,000 214,000 195,000
2 231,000 226,000 207,000
3 227,000 217,000 198,000
4 228,000 223,000 204,000
5 261,000 248,000 229,000
6 195,000 199,000 180,000
7 225,000 225,000 206,000
8 216,000 221,000 202,000
9 205,000 201,000 182,000
10 232,000 254,000 235,000
11 205,000 205,000 186,000
12 261,000 256,000 237,000

* Rounded to nearest 1,000 psi
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4 SSTO 4 SSE
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T SSR Ve 4 SSTO=SSR+SSE

© (d)

Figure 4.4. Ilustration of Deviations Used to Determine
Sum of Squares
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3.4

The following regression equation results:

¥ = 0.0170 + 1.0100 (x)

The results of this equation (predicted y) are shown for each of the original
"y" and "x" data points in Table 4.2.

Sum of squares (or the basic information needed to evaluate how "good" a
regression line "fits" the data)

3.4.1

3.4.2

Total sum of squares (SSTO) [after Ref. 4.5]

If all y; data points were identical, then all y; = y, which would
mean there would be no need for any statistical measure (regression
line, etc). However, this is rarely the case with real data. To best
evaluate the "fit" of a regression line to actual data, three types of
sum of squares measures will be examined, the first of which is
illustrated in Figure 4.4 (a) and is denoted the total sum of squares
(SSTO):

n
SSTO= 3 (yvi- ¥)?
i=1
If SSTO = 0, then all data points must have the same value. The
larger the SSTO, the greater the difference between the y; data
points. The calculation of SSTO for the five data points shown in
Figure 4.4 (a) is

SSTO =(y1- ¥2+(y2- Y2+ 3~ Y2+ (a- Y2+ (s-y)?
5 —
=¥ (i- y)?
1=1
Use squared terms, since the sum of deviations of yj - y by
definition is zero (which gets us nowhere).

Error sum of squares (SSE)

The "fit" of the regression line to actual data results in some error
("lack-of-fit"), as shown in Figure 4.4 (b). This error is defined as

yi- Y
Thus, the error sum of squares (SSE) is defined as

n
SSE= 3 (i~ 902

or for Figure 4.4 (b), as
SSE = (y1- §1)2 + (y2- §22 + (y3 - §3)2 + (y4 - §a)2 + (5 - ¥5)?
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Stated another way, the SSE is the amount of the sum of squares
best explained by the mean ( y) of the dependent variable. The SSE
=SSTO whenall y=7y.

3.4.3 Regression sum of squares (SSR)

Hopefully, for a regression line you wish to develop, the SSTO is
much larger than the SSE. The difference is termed the regression
sum of squares (SSR):

n -
SSR = 'Zl ¢i- y?
1=

These deviations are illustrated by the dashed lines shown in Figure
4.4 (c). Since the SSR is composed of deviations between the
"fitted" regression line and the mean of the data points, the larger the
SSR the better the fit of the regression line to the data. Stated
another way, the SSR is the amount of the sum of squares explained
by the regression equation. For Figure 4.4 (c), SSR is

SSR=(f1- Y2+ @2- Y2+ @3- )2+ Fa- y2+Fs- y)?

3.4.4 Final overview of sum of squares
From the previous sections, we can see that

vi-y = $i-y + yi- i
total deviation deviation of fitted deviation around the
regression value about  regression line
the mean

or Z(yi- 2= (fi- v)2+Z (yi- §»?
SSTO = SSR + SSE

3.5  Regression line "goodness-of-fit"
3.5.1 Coefficient of determination (R2)

The R2 value explains how much of the total variation in the data is
explained by the regression line. Stated another way, the R2

"_ mn

measures the reduction in the total variation for "y" associated with
the use of "x". The R2= 1.0 when all data points fall on the
regression line, as shown in Figure 4.5 (a). The R2 = 0 when the
regression line matches the average (or mean) of the data points, as
illustrated in Figure 4.5 (b). In other words the mean of the data
points is as good a predictor of "y" as any line fit through the data
points.

For example, if R2 = 0.20, then the total variation in y is reduced by

only 20 percent when x is used (on the other hand r = \/_R—2 =+/0.2
= 0.45).
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A R2 = 1.0 (or 100%)

~ y=bg +b; x
y
>
X
(@
? R2 =0 (or 0%)
°
> : -y
y =
¢ ° °
>

(b)

Figure 4.5. Illustrations of the Coefficient of Determination (R 2)
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Measured Stress
Bottom of Asphalt Concrete (psi)
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1
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70 80 90 100 110 120

Tire Pressure (psi)

Data y X
Point (pavement stress) (tire pressure)
1 50 70
2 100 80
3 200 90
4 150 100
5 300 120

Figure 4.6 Example Data - Tire Pressures
versus ACP Stress
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3.6

3.5.2 Mean square error (MSE) and root mean square error (RMSE)
The mean square error is calculated as follows:

3 SSE _SSE
~ error degrees of freedom ~ n-2

MSE

The root mean square error is simply the square root of MSE:

RMSE = VMSE

The RMSE is the standard deviation of the distribution of § for a
specific x. Stated another way, the RMSE is the standard deviation
of the regression line. The larger the RMSE for a specific
regression equation, the poorer the associated predictions.

Another example

An example with five data points is shown in Figure 4.6. Assume that
these data resulted from a study of truck tire inflation pressures versus
measured horizontal stresses on the bottom of an asphalt concrete surface

course. The regression line should more easily estimate the pavement stress
for any tire pressure.

() Determine the regression coefficients (bg, b1)

Data

Point Y X y2 x2 Xy
1 50 70 2,500 4,900 3,500
2 100 80 10,000 6,400 8.000
3 200 90 40,000 8,100 18,000
4 150 100 22.500 10,000 15,000
5 300 120 90,000 14,400 36.000

Ty =800 Zx=460 Zy2=165,000Xx2= 43,800 Zxy = 80,500

y=32_160and x=22-02

_(Zx)) (Zyi)

by = (from Eq. 4.5) EXiYi L
1 = (from Eq. 4.5) = >
Txi? - (_E_"n;)_

) (80,500) - (460)5(800)  (6900)
B 460)2  _ (1,480)
(43,800) - —5—

= 4.662
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bo = (from Eq. 4.7) = %(Zyi - b1Zxj)

- %(300 - 4.662(460))

= -268.90

The following regression equation results (and refer to Figure 4.7):

§ = -269 + 4.662 (x)

non,

This results in the following predicted values for "y":

Data Predicted y Actualy Actual x
Poj : : m .

1 57 50 70

2 104 100 80

3 151 200 90

4 197 150 100

5 290 300 120

(b) Total sum of squares (SSTO)
SSTO = (50-160)2 + (100-160)2 + (200-160)2 + (150-160)2 + (300-160)2
=12,100 + 3,600 + 1,600 + 100 + 19,600
= 37,000
{©) Error sum of squares (SSE)
SSE = (50-57)2 + (100-104)2 + (200-151)2 + (150-197)2 + (300-290)2
= 49 + 16 + 2401 + 2209 + 100

4,775
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Measured Stress
Bottom of Asphalt Concrete (psi)

300

250

200

150

100

50

— y = -269 + 4.662(x)

O predicted point
@ actual data point

I .
70 80 90 100 110 120

Tire Pressure (psi)

Figure 4.7 Fitted Regression Line for Example Data
(Tire Pressures versus ACP Stress)
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(d) Regression sum of squares (SSR)
SSR = (57-160)2 + (104-160)2 + (151-160)2 + (197-160)2 + (290-160)2
=10609 + 3,136 + 81 + 1369 + 16,900
= 32,095

()  Coefficient of determination (R2)

SSR  (32,095)

2. _\I&ViJ)
R = =570 = (37,000)

= 0.87 (or 87 percent)

® Mean square error (MSE) and root mean square €rror (RMSE)

SSE SSE
MSE=gr—=17

_ (4.775)

= 1,592
RMSE = v1592 = 39.9 psi
The RMSE is the standard deviation of the distribution of § for a

fixed x. If you wish to determine the interval estimate of § for a
given x, as illustrated in Figure 4.8(a), first calculate [after Ref.

4.6]:
s —RMSE[—I- + ﬁ‘—'—a-z—]m Eq. 4.8
9 n o y(x- ;)2 Q-
The interval estimate is then

§its9

This interval is the "narrowest" for x and gets larger as one moves

further away from x (either larger or smaller). For the example of
pavement stress versus tire pressures:

Standard

Data  Actualx Actualy Predicted y _ Deviation
Point (tire pressure)(pavement stress) (91 (P (= x? (390
1 70 50 57 49 484 29.0
2 80 100 104 16 144 21.8
3 90 200 151 2,401 4 18.0
4 100 150 197 2,209 64 19.7
5 120 300 290 100 784 34.1

4,775 1,480

* Use Eq. 4.8 and refer to Minitab calculated values in Figure 4.3(b).
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If you wish to place a 95% confidence interval estimate for the mean
values of ¥ for specific x values on the regression line, then

tiable = 3.182 for two-tail &< =5%,vV=n-2=5-2=3

Thus, the confidence intervals are as follows:

95% Confidence
Data Predis:\ted y Standard Deviation AInterval
RPoint (59) @ ts0)
1 57 29.0 -35, +149
2 104 21.8 +35, +173
3 151 18.0 +94, +208
4 197 19.7 +134, +260
5 290 34.1 +181, +399

This interval estimate is plotted in Figure 4.8(a). It illustrates the
uncertainty associated with the regression line, particularly as one

moves away from the y and x values.

The MSE (or RMSE) can also be used for testing whether the
regression coefficients (bg, by) are significantly different from zero.
This is illustrated for the pavement stress example.

Hp: bo = 0 (null)
Hypi:bp#0
bg -0

tealc = Sho

where

MSE 1 x2 1/2
oo T IR Eai- 02

- 1 922 \]1/2 }
= _1,592 ('5- + m)] =97.1 psi

-269 - 0
e tca]c —__'WT— = "2.77

If teale > table (1 - o, n - 2)» conclude Hj
teale = -2.77 < -3.182 = tiaple
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Since tcalc < trable, You can conclude that by is not different from
zero.

For b;:

Hp: by = 0 (null)
Hj: by +# 0 (alternative)

b1 -0
tf;::\lc='—]s"g_

where

If tealc > table (1 - o<, n - 2), conclude Hy
teale = 4.48 > 3.180 = tyaple

Since tcale > trable, you can conclude that by is different than zero.
Refer to the MINITAB printout (Figure 4.8(b)) to verify these
results.

The by value (the intercept) is not statistically significant (at & = 5%)
but the by (the slope) is. An inspection of the original data illustrates
why this can (and should) occur.

As a rough rule-of-thumb, the tcalc values automatically calculated
from statistical software (such as Minitab) for the regression b

values should equal or exceed the following (for < =5%):
Number of Data Points Lcalc (equal to or greater)

3 13
4 4
5-7 3
8-13 2.5
14 or more 2

(g)  The Minitab printout for this example is shown as Figure 4.8(b).
The results are slightly different because they have been rounded
off.
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Y = -269 + 4.662(x)
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Figure 4.8 (a). Confidence Interval for Regression Line
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MTB > BRIEF 5
MTB > REGR C1 1 C2

The regression equation is

Y = - 269 + 4.66 X
Predictor Coef Stdev t-ratio
Constant -268.92 97.63 -2.75
X 4,662 1.043 4.47
s = 40.13 R-sq = 86.9% R-sq(adj) = 82.6%
Analysis of Variance
SOURCE DF SS MS
Regression 1 32169 32169
Error 3 4831 1610
Total 4 37000
Obs. X Y Fit Stdev.Fit Residual St.Resid
1 70 50.0 57.4 29.1 -7.4 -0.27
2 80 100.0 104.1 21.9 -4.1 -0.12
3 90 200.0 150.7 18.1 49.3 1.38
4 100 150.0 197.3 19.8 -47.3 -1.35
5 120 300.0 290.5 34.3 9.5 0.45
MTB > PLOT Cl1 C2
320+
- *
Y -
240+
- *
160+
- *
- *
80+
- *
e ——— Fm———————— tmm—————— o ———— Fmm————— +
70 80 90 100 110 120

Figure 4.8(b). Minitab Printout of Regression Example



TRANSFORMATIONS

4.1

4.2

Transformation of variables
Variable transformations can be used for at least three reasons:

(a) to make data distributions more symmetric (or normal),

(b)  to simplify a regression equation that relates two or more
variables, and

© to create a regression equation form that is more
"theoretically'" correct.

The three most commonly used transformations are:

(@)  square root (e.g. Vx),

(b logarithm (e.g. logio (x)),

(c)  negative reciprocal (e.g. - 1/x).
The Minitab Handbook (p. 72) is an excellent information source.
Transformation of equations
Transformations of equations can be quite helpful. For example, a
commonly used relationship to describe the stress sensitivity of unstabilized
soils is

Er = K1 (0)X2 Eq. 4.8
(coarse-grained)

or

Eg = K3 (6% | Eq. 4.9
(fine-grained)

where
Er =resilient modulus (psi),

0 = bulk stress (psi),

o4 = deviator stress (psi), and

K1, K2, K3, K4 = regression constants.
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To obtain the regression constants, a transformation of the entire equation is
needed:

Er =K1 (0)%2
becomes
log ER = log K] + K3 (log 8)
and
Er = K3 (0a)®
becomes
log ER =log K§ + K4 (log 64)
To obtain a regression equation in the form of
y =bo + b1(x)
then y =logER

bp =log KI (or log K;)
by =Kz (or Kg)
x =log (or log 6q)

To convert out of log1g, convert from
log ER =log K'{ + Ka(log 0)
to
Er = 10K16K2 - K6K2

(letting 10K1 = Ky)

Clearly, a similar transformation is appropriate for Equation 4.9.
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As a reminder, helpful logg relationships include the following:

logxy =logx+logy
X

1og§- =logx - logy

log x® =nlogx

logrxl/—i =1—O§—§-

4.3  Types of regression models
@) Linear (refer to Figure 4.9(a))
y =bo + b1(x)
(b) Exponential (refer to Figure 4.9(b))
y = bo(b1)* (original)
log y = log bg + x log by (transformed)
© Power (refer to Figure 4.9(c))
y = bo(x)®1 (original)
log y = log bg + by log (x) (transformed)
(d) Hyperbolic (refer to Figure 4.9(d))

y =bg+b1 (-’lz) (original)

y = bg + by (x1) (transformed)

pe |

where x1 =

(e) Polynomial
y = bg + byx + bpx2 + .. + bxk (general form)
(1) First degree polynomial (straight line)
y = bo + bix (refer to Figure 4.10(a))
(i)  Second degree polynomial (parabola)

y = bg + byx + bax? (refer to Figure 4.10(b))
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(iii)  Third degree polynomial
y = bg + byx + bax2 + b3x3 (refer to Figure 4.10(c))

Note: always attempt to obtain the "best fit" with the lowest degree
polynomial equation.

USE OF REGRESSION EQUATIONS
Any regression equation is only as good as the data used to develop it. Further,

such equations should never be used beyond the range of the data from which they
were developed. This is particularly important for multiple regression equations.



y y
y= b ot b1 X X
y =bgby
bO I:)0
forby>1
—>
X X
(a) Linear (b) Exponential
# |
y y 1
y=bo+by ()
y= b oX b1
b b
0 for b1 >1 0
-
0 1 X X
(c) Power (d) Hyperbolic

Figure 4.9. Types of Regression Models [after Ref. 4.6]
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X

(a) First Degree (straight line)

y
y=by+b, x+b, x 2
—p
X
(b) Second Degree (parabola)
4
y

3

—>
X

y=by+b, x+b,x Z +by x

(c) Third Degree
Figure 4.10. Polynomial Regression Models [after Ref. 4.6]
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APPENDIX

A BRIEF EXPLANATION OF THE
"ANALYSIS OF VARIANCE" SECTION
FOR REGRESSION ANALYSIS






APPENDIX

The following numbered sections correspond to the illustration shown as Figure A-1.
This figure is part of the Minitab printout for the following regression equation:

GRADE = 7.59 - 0.195(AREA) - 1.30(CORN) + 0.912(WHEEL) -
0.456(SHAPE) + 25.9 (RATIO)

Definitions of the independent variables are not important for the purposes of this example.

1. The measure of total variation.

total sum of squares = SSTO = Z (y;j - )7)2

where: yj = individual data points, and

y = mean of all data points.
2. The measure of uncertainity or error sum of squares.
SSE = £ (yi - §)?

where:  yj = individual data points, and
y; = fitted data points from the regression equation.

3. Explained variation or regression sum of squares
SSR =2 (§i- ¥)?

This is the sum of squares of the differences between the fitted values (¥7) and the
mean of the values ( y).

4. Sum of squares

2 (yi- Y2=2i- y)2+Z(yi- §?

SSTO = SSR + SSE
5. Coefficient of determination (R2)
R2 — regression sum of squares SSR

total sum of squares _ _ SSTO

The R2 value explains how much of the total variation in the data is explained by the



10.

Regression degrees of freedom
The regression sum of squares has the nunber of independent variables (x's) minus

one degree of freedom. For example, in Figure A-1 the equation has the general
form

¥ = bg + b1xq + box2 + b3x3 + bax4 + bsxs

This "model" has six estimated parameters (b's), so the degrees of freedom
=6-1=5.

Total degrees of freedom

The total sum of squares has the total number of data points minus one degree of
freedom. For the regression equation in Figure A-1, the total number of data points
used to develop the equation was 170.

Error degrees of freedom

The error sum of squares is the difference between total and regression degrees of
freedom, since degrees of freedom are additive. For our example, the error degrees
of freedom = 169 - 5 = 164.

Mean square error (MSE) and root mean square error (RMSE)

The mean square error is calculated as follows:

MSE=3%

The MSE is an estimate of 62 for the regression model or
E (MSE) = 62 = variance
The above equation reads as follows: the expected value of MSE is equal to o2.

The root mean square error (RMSE) = VMSE. This term is the standard deviation
of the regression model, i.e., it is the standard deviation of y (dependent variable)
for any x (independent variable).

Additionally, the "error” terms are sometimes called "residuals.”

F value

This value can be calculated for the example as follows:

MSR  94.218
Feale =MSE = 7008 -~ 229

This calculation is testing whether there is a relation between the dependent
variable, y, and the set of independent variables, xj, ..., Xp-1, that is, which of the
following alternatives to choose:

A-2



11.

Ho: B1=PB2=..=Bp1=0 (null hypothesis)
Hj: notall By k=1,..,p-1)equal 0 (alternative hypothesis)

where p-1 = number of independent variables

The decision rule to control the Type I error (rejecting a true hypothesis) at o is as
follows:

If Feale SF (1 - a, p - 1, n -p), conclude Hy
If Feale > F (1 - o, p - 1, n - p), conclude Hy

Note: The existence of a regression relation, by itself, does not assure that useful
predictions can be made by using it.

t-statistic

The t-statistic is used for testing whether the corresponding beta (regression
coefficients) are zero. For example

_ Bk -0.19549 _
teale = §b,y = 0.04418

-4.43 (refer to "AREA" coefficient)

where s(bk) = 3

o2 - B2

n
The t-statistic tests the following hypotheses:

Hp: Bg=0 (null)
Hi: Bk #0 (alternative)

If tealc < trable(1 - o2, n - p)» conclude Ho

If tealc > teable(1 - 0/2, n - p), conclude Hj
For example, use "AREA" coefficient:

teale = - 4.43

and if we set a = 0.05, p = 6 (total B's including intercept), n = 170, .. n -
p=164

- tiable(1 - 0.05/2,164) = 1.96

Since teale > tiable, you can conclude that the "AREA" is a viable variable. Any tcalc
less than ~ 2.0 is probably "weak."
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Figure A-1. Minitab Prinout
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