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SUMMARY

Traffic congestion is one of the most important issues facing us today. We
examined how traditional supply side solutions have failed to solve the problem, and
why demand management strategies, such as ramp metering, are becoming more
popular.

We analyzed the deficiencies in the ramp metering system currently
employed by Washington State Department of Transportation (WSDOT), and
briefly examined some past approaches of real-time control at the on-ramps.

This research aimed to develop a pattern recognition model capable of
forecasting traffic conditions on the freeway 1 to 3 minutes ahead of time. Both
parametric and non-parametric approaches to pattern recognition were reviewed,
and a model based on the principies of statistical pattern recognition was developed.

The model was calibrated based on a.m. peak hour traffic data collected
from south-bound I-5 over three working days obtained from the Traffic Systems
Management System (TSMC) in Seattle, WA. Six statistical pattern recognition
forecasting algorithms were developed to forecast traffic conditions 1 to 3 minutes
ahead of time at the same section or at an upstream section.

The model was then tested on the same 3-day data obtained from the TSMC,
and false positive and false negative rates were determined for each of the six
aigorithms. The developed statistical pattern recognition model was also tested for
its efficacy in improving traffic performance on the freeway system by using

INTRAS in a simulation of a.m. peak period traffic conditions on southbound I-5.






CHAPTER 1

INTRODUCTION

Combating urban freeway congestion is one of the most challenging tasks of
our time. Congestion causes erratic stop-and-go driving, increased and
unpredictable travel times, and lower average-travel speeds. Congestion also
increases driver stress and results in higher rates of accidents and associated bodily
injury and property damage. Congestion on freeways, because of the design for high
traffic volumes at high speeds, also takes a tremendous toil in terms of lost travel
time. All of these issues, when translated into dollars, indicate that relieving
congestion on freeways would yield considerable monetary benefits.

Environmental damage, in terms of increased fuel consumption and a higher
degree of air pollution, cannot easily be translated into monetary loss. Traffic
congestion conflicts with our goal of providing a safe, efficient, reliable, and
environmentally sensitive means of highway transportation. Relieving it, then,

should be at the top of our agenda.

CONGESTION

When variations in roadway conditions, driver behavior, or traffic demand
create a short-term increase in demand above capacity, congestion ensues.
Congestion can be recurrent or non-recurrent. When variations are regular, which
occurs daily in many urban areas during the a.m. and p.m. peak periods, this is
called recurrent congestion. When the reduction in capacity is due to unusual
circumstances, such as accidents or other incidents affecting traffic conditions, this is
called non-recurrent congestion.

We are concerned, here, mainly with recurrent congestion, which is due to

high demand exceeding the limited capacity of freeways during the rush hours. As



delays increase exponentially at this high demand, it is desirable to keep the demand

below capacity for efficient operation of the freeway system.

DEMAND AND SUPPLY SIDE SOLUTIONS

Traditionally, solutions to relieve congestion have been focused more on the
supply side. High capacity additions, such as the construction of a new highway, or
the addition of lanes to an existing highway, are both aimed at increasing the
capacity in proportion to the demand.

However, results gained from past research indictate that though this
approach is the most effective in terms of reducing congestion, it is financially,
environmentally, and socially disruptive. It leads to continued low-density
development, and the resulting reliance on single occupant vehicles. This supply
side approach, in effect, exacerbates the problem by leading to increased traffic
demand.

In addition, the near completion of the interstate freeway system, the federal
government’s stance of fiscal frugality, and the increasing participation of
communities and environmental groups in transportation planning have made high-
capacity additions to the nation’s freeway system more difficult to accomplish.

Recent efforts have been focused on managing the demand side. The thrust
is to manage the demand more effectively, both temporally and spatially, so that the
freeway system operates more efficiently. This has focused our attention on
Transportation System Management (TSM) aiternatives directed at making
improvements with small-scale changes on existing conditions.

Entrance ramp control is one TSM alternative aimed at effectively managing

demand so that it does not exceed supply, thus, promoting efficient operation of the

freeway system.



PROBLEM STATEMENT

The objective of this research was to develop a model, based on pattern
recognition techniques, capable of forecasting traffic conditions on the freeway one
or more minutes ahead of time. This information could then be used to promote a
real-time, responsive ramp metering system that regulates demand at the on-ramps

in anticipation of congestion, and thereby, delay, if not prevent, congestion on the

main line.

OUTLINE

The remainder of this volume, in addition to discussing literature in the area
of pattern recognition and its application to freeway surveillance and control,
presents detailed methodology and results of the application of the Babla/Nihan
statistical pattern recognition model to forecast freeway traffic conditions. The
report then discusses the incorporation of this pattern recognition model in the
ramp metering system currently used by the Washington State Department of
Transportation (WSDOT) and the simulation of the integrated system using
Integrate Traffic Simulation Software (INTRAS).

Chapter Two briefly examines the ramp metering system WSDOT currently
uses, the problems associated with it, and past approaches toward developing a
more responsive, real-time ramp metering system.

Chapter Three presents the research methodology used in testing the
developed Babla/Nihan statistical pattern recognition model on a.m. peak-period
traffic data, obtained from the Traffic Systems Management Center (TSMC), over a
section of southbound I-5 in Seattle, Washington. It also describes the research
design for the testing of WSDOT's ramp metering approach, and the application of
the Davis/Nihan and Babla/Nihan models to WSDOT’s ramp metering system to

compare traffic performance by simulation of traffic using INTRAS.



Chapter Four discusses the degree to which the Babla/Nihan model predicts
traffic conditions accurately, compared to the previously developed Davis/Nihan
model. It also compares results from the simulation using INTRAS of WSDOT’s
approach, and application of the Davis/Nihan and Babla/Nihan models as
forecasting models to WSDOT’s approach.

Chapter Five analyzes the extent to which the objectives of the research
effort were realized, and makes recommendations for future research and
applications of the Babla/Nihan model of statistical pattern recognition.

Appendix A is a literature review of past applications of pattern recognition
in freeway surveillance and control. A brief review of the science of pattern

recognition is presented in Appendix B.



CHAPTER 2

WSDOT’s RAMP CONTROL SYSTEM

Since 1981, the Washington State Department of Transportation (WSDOT)
has been operating an integrated, traffic responsive on-ramp control system (Figure
1), to cope with the recurring traffic congestion problems on the Seattle region’s
portion of Interstate S running north of downtown Seattle. The ramp metering
system is a computer-based, distributed intelligence system that consists of field
located microprocessors and a centralized computer system. (1) It uses an on-line,
centrally controlled algorithm that calculates the metering rates based on system-
wide traffic conditions.

Loop detectors, located on the mainline and on the exit and entrance ramps
of the I-5 freeway, collect real-time volume and lane occupancy data. These data
are then input into a control algorithm on the TSMC central computers. Metering
rates and timing intervals for each of the controllers are determined every 20
seconds.

The algorithm is called integrated and traffic responsive because metering
rates are based on real-time, local, and system-wide capacity conditions. Thus, it not
only considers the queueing conditions at the on-ramps, but also the
interdependency of ramp operations in the calculation of the final metering rates.

The control algorithm computes two on-ramp entry rates, the local metering
rate (LMR), and the bottleneck metering rate (BMR).

The local metering algorithm uses historical volume-occupancy relationships
at the metered station to develop an occupancy-metering rate curve, so that the
selected metering rates make up the difference between the estimated capacity and
the real-time upstream volume. Then, based on the lane occupancy measurements

immediately upstream of the given metered ramp, the local metering rate (LMR), is



Loop detectors on I-5 collect
volume and occupancy data at
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Figure 1 : WSDOT's current ramp metering system
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according to a predetermined set of weighting factors

Metering rate (MR) = [on- ramp
volume at (t-1) min.] - IBMR

No

' ' B!
/BMR=5/ /BMR=MR/ /BMR=24/
© ©

Figure 1 (Continued) : WSDOT's current ramp metering system



calculated based on straight-line interpolation of the occupancy-metering rate curve.

However, once the demand on the section of the freeway exceeds its
capacity, causing queuing of vehicles, congestion occurs. The downstream detector
station declares the section to be operating above capacity when the occupancies
exceed an operator defined threshold of around 18 percent. The bottleneck
metering algorithm then takes over, and the system calculates the upstream ramp
reduction as the number of vehicles stored in the freeway section (storage rate, or
SR), in the past minute.

This total reduction in upstream ramp volumes is then distributed as the
reduction (IBMR), among all metered ramps that fall within the freeway section’s
area of influence, based on predetermined weighting factors. These weighting
factors are based on the proximity of the ramp to the bottleneck, and the normal
level of demand on the ramp.

When areas of influence for two or more sections overlap, and there is more
than one bottleneck metering rate (BMR), for a ramp, then the most restrictive one
is implemented. If the queues on the ramps reach beyond the queue and/or the
advance queue detector (not shown in Figures 1 to 7) for a specified length of time,
the metering rate is increased automatically to prevent any disruption in operation

on the arterials.

PROBLEMS WITH WSDOT’s APPROACH

WSDOTs approach to ramp control is responsive rather than anticipatory.
The system does not react until after the bottleneck has been formed, and by that
time restrictive conditions in the form of reductions in speed and traffic flow have
already occurred on the main line. Metering rates that are too restrictive often

result, and lead to the formation of excessive queues on the upstream ramps.
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The system senses the unacceptable queuing, and increases the metering rate
accordingly to clear the queue from the surface streets. This leads to further
increased congestion on the freeway section, and the cycle repeats itself.

Thus, the algorithm is oriented more toward responding to the disorders
rather than preventing them. An algorithm that would eliminate the congestion
cycle outlined above, and still be based on real-time traffic conditions, is desired. A
system that could forecast conditions on the freeway 1 or more minutes in advance

would help eliminate these congestion conditions.

PAST APPROACHES TOWARD REAL-TIME CONTROL

Past research on forecasting freeway traffic conditions has been in the
following four areas:

1. The traffic flow forecaster, based on the model presented by
Papageorgiou, estimates the traffic speed from measurements of volume and lane
occupancy, and then forecasts the volume at a downstream station given known
volumes at upstream on-ramps and main line stations. (10) As the model requires
an estimation of the Origin-Destination matrix, and cannot be used to forecast lane
occupancy, we rejected using this model.

2. Parametric regression methods, based on the Box-Jenkins method, fit
the time-series model to volume and lane-occupancy data, and then use the model
to forecast future values given the knowledge of past and present values. (11) It was
found that the forecast values tended to hover around the mean value of the time
series and ignore extreme resuits, in which we are especially interested.

i Nonparametric regression methods, or the nearest neighbor
approach, are procedures based on hydrological forecasting methods. (12) Davis
and Nihan developed a model that compares current measurements to an archive

of past measurements, and bases its forecast on past occurrences most similar to

11



present conditions. (13) The non-parametric methods gave results only slightly
superior to the parametric approach,

4. The statistical pattern recognition approach aims to develop a
method to classify traffic data in the form of input-output difference (or the storage
rate), and lane occupancy measurements at the main line station at different lags
into two categories, those which precede uncongested and congested conditions at

the same, or at an upstream section. (14)

STATISTICAL PATTERN RECOGNITION APPROACH

Using the Boxplot feature of Minitab, Davis and Nihan identified two sets of
variables, one for lightly- and one for heavily-congested traffic, as viable for
developing a decision rule. This decision rule was based on statistical pattern
recognition for discriminating between uncongested and congested traffic conditions
on the freeway. Next, they developed a forecasting model consisting of decision
rules based on thresholds assigned to the above lagged variables. (14)

Nihan and Davis calibrated and tested the above statistical pattern
recognition model on data from a section of the I-5 freeway north of Seattle. They
found that for the lightly congested data, the model correctly predicted 92 percent of
the intervals. The model falsely predicted congested conditions (false positive) 5
percent of the time, and was not able to forecast congestion (false negative) 36
percent of the time. However, for highly congested traffic, it correctly predicted
only 63 percent of the intervals, with a false positive rate of 7 percent, and a false
negative rate of 73 percent. They also discovered that there was a trade-off function
between the false positive and the false negative rates.

Jihong Kim described the implementation of the Davis/Nihan statistical
pattern recognition forecasting model in the existing metering system of the
Washington State Department of Transportation (Figure 2), and its application on a

section of the I-5 freeway between 195th & 205th Streets in Northeast Seattle. (15)

12



However, a minimum metering rate of 5 veh/min. and a maximum of 24 veh/min. is .
always implemented. (This is not shown in Figure 2)

Nihan and Davis expressed confidence in this preliminary approach of
applying statistical pattern recognition techniques to predict congestion for real-
time ramp metering, and recommended investigation into other, more detailed
pattern recognition approaches.

Our objective was to improve the false negative rate from its present value of
36 percent for lightly congested traffic and 73 percent for heavily congested traffic,

with no significant adverse effect on the false positive rates.

13
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Figure 2 : Application of Davis/Nihan model of statistical
pattern recognition to WSDOT's current ramp metering system
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Figure 2 (Continued) : Application of Davis/Nihan model
of statistical pattern recognition to WSDOT's current
ramp metering system.
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CHAPTER 3

RESEARCH METHODOLOGY

A model, based on one of the pattern recognition approaches described in
Chapter 2, was calibrated and tested on a.m. peak hour traffic data over a section of
southbound I-5 freeway north of Seattle. These data were obtained from the TSMC
in Seattle, Washington. The calibrated model was then incorporated in WSDOT’s
current ramp metering algorithm, and using INTRAS software, the system was
simulated to represent a.m. peak hour traffic conditions over southbound I-5
freeway.

The objective was two-fold: to determine the accuracy with which the
developed pattern recognition aigorithm would forecast both uncongested and
congested traffic conditions on the freeway, and to determine the improvement in
overall system performance achieved by incorporating the developed pattern
recognition algorithm into WSDOT’s current ramp metering system.

The researchers’ next step was to select traffic variables to represent traffic
conditions on the freeway. They also had to select a pattern recognition approach,
(several of which are described in Chapter 2), to be used to forecast uncongested
and congested traffic conditions on the freeway. The data obtained would then be

used in the ramp metering system.

SELECTION OF THE TRAFFIC VARIABLES

For calibration and testing of the pattern recognition algorithm, one-minute
traffic data from two adjoining sections of southbound I-5 (Figure 3) were collected
by the TSMC through loop detectors located over I-5, from 205t St. N.E. to 185th
St. N.E., north of Seattle. Congestion occurs daily over this section during the a.m.

peak periods when traffic flows south toward downtown Seattle. The data were

16



collected over the main line stations at 205th st N.E,, 195th gt N.E., and 185th St.
N.E., and over the HOV and normal lanes at the 2058 St. NE. on-ramp.

17
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Figure 3: Section of south-bound I-5 used for collecting
traffic data for calibration and testing of the Babla/Nihan
statistical pattern recognition model.

18



The traffic data collected are in the form of one-minute volume and
occupancy at the detector stations (TABLE 1). A total of four weekdays of traffic
data were collected from Tuesday, March 27 to Friday, March 30, 1990.

Since the traffic data of March 27 over the on-ramp at 205th St. NE. were
found to have errors, we were only able to use traffic data on March 28 and March
30, from 6:00 a.m. to 9:25 a.m., and on March 29, from 6:00 a.m. to 8:15 am. A
sample of the traffic data on March 28, from 7:11 to 7:40 a.m., is shown in Table 1.

As stated above, the data collected by the TSMC are in the form of one-
minute volume and occupancy at main line and on-ramp detector stations. Input-
output difference, which is also equal to the number of vehicles stored over a
section, was derived from the volumes at stations upstream and downstream of the
section and from volumes at on-ramps as follows:

Section Storage rate (SR) = (upstream mainline volume) +

(sum of volumes over all on-ramps feeding into section) -

(downstream mainline volume)

Also, average occupancy over a section was calculated as the average of the
occupancies over detector stations immediately upstream and downstream of the
main line section. A sample of the average occupancies and the storage rates of the
data in Table 1 is shown in Table 2.

When vehicles are stored in a section, that section is more likely to operate
under congested conditions. Because the objective was to classify the set of traffic
variables into those representing traffic conditions before both uncongested and
congested traffic conditions, a bivariate set, consisting of the storage rate (SR) and

average occupancy over a section, was selected to represent the freeway traffic

conditions.
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TABLE 1
SAMPLE OF AM PEAK PERIOD TRAFFIC DATA

TIME MAIN LINE MAIN LINE MAIN LINE ON-RAMP HOV ON-
(AM.) 185TH ST. N.E. 195TH ST. N.E. 205THST.N.E. @ 205TH RAMP @
VOL 0CC VOL OCC VYOL OCC VOLUME 205TH
VOLUME
711 95 133 98 19.1 96 24.5 7 10
7:12 106 133 102 29 90 257 6 9
7:13 103 13.0 101 19.2 94 226 5 3
7:14 39 17.9 108 18.3 92 247 o 0
7:15 60 328 107 20.2 31 25.2 3 0
7:16 91 214 95 29.6 104 20.2 6 0
.17 103 19.3 67 28.9 105 20.2 5 0
718 102 14.5 80 29.7 103 224 8 6
7:19 100 13.6 93 214 73 316 4 0
7:20 104 12.7 111 203 48 384 7 0
7:21 109 13.7 96 13.8 7! 289 6 ]
7:22 87 14.3 115 238 101 214 7 3
7:23 90 30.1 122 227 103 15.9 7 3
7:24 97 18.5 99 24.8 99 14.5 7 0
7:25 97 14.3 71 324 109 14.1 4 3
7:26 108 153 88 25.0 100 15.0 9 0
727 111 15.0 103 139 74 288 6 6
728 105 15.6 101 132 51 374 10 3
7:29 67 25.0 102 135 80 24.5 7 0
7:30 38 26.8 110 17.8 92 19.3 3 0
7:31 97 17.0 89 29.2 116 16.4 5 0
732 106 14.3 34 231 114 18.8 6 7
7:33 110 16.4 99 229 98 24.6 5 3
7:34 100 200 106 176 54 278 7 0
7:35 101 23.4 100 16.1 76 208 7 0
7:36 98 205 106 208 101 172 4 2
7:37 99 16.6 88 18.9 95 16.2 3 1
7:38 113 173 96 171 99 19.2 6 3
739 P 14.5 111 18.7 86 274 7 3
7:40 114 20.0 110 15.6 80 159 5 6

These traffic variables then form the input vector, which then enabled us to

forecast traffic on the freeway 1 or more minutes ahead of time.

20



TABLE 2
STORAGE RATE AND AVERAGE OCCUPANCY FOR AM PEAK PERIOD

TRAFFIC DATA
TIME MAINLINE SECTION MAINLINE SECTION CONGESTION
(AM.) BETWEEN 185 & 195 BETWEEN 195 & 205 INDICATOR
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY

711 3 16.20 15 21.80 2
7:12 -4 18.10 3 2430 2
713 -2 16.10 1 20.90 2
7:14 19 18.10 -10 21.50 1
T:15 47 26.50 -23 2270 1
7:16 4 25.50 15 24.90 2
717 -36 24.35 43 24.55 2
718 -22 2210 37 26.05 2
719 -7 17.50 -16 26.50 1
7:20 7 16.50 -56 2935 1
T:21 -13 16.25 -13 23.85 1
722 28 19.05 -4 22.60 1
723 32 26.40 9 19.30 1
724 2 21.65 7 19.65 2
725 -26 2335 45 23.25 2
7:26 -20 20.15 21 20.00 2
127 -8 16.95 -17 23.85 1
7:28 -4 14.40 -37 2530 1
7:29 35 19.25 -15 19.00 1
7:30 22 2230 -10 18.55 1
731 -8 23.10 32 22.80 2
7:32 -22 18.70 43 20.95 2
7.33 -11 19.65 7 23.75 2
7:34 6 18.80 -45 22,70 1
7:35 -1 19.75 -17 18.45 1
7:36 8 20.65 1 19.00 2
7:37 -11 17.75 16 17.55 1
7:38 -17 17.20 12 18.15 2
7:39 12 16.60 -15 23.05 1
7:40 -4 17.80 -19 15.75 1

NOTES: For congestion indicator,

1 represents uncongested traffic condition on section between 205th and 195th strects,
and

2 represents congested traffic condition on section between 205th and 195th streets.
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SELECTION OF THE PARAMETRIC / STATISTICAL APPROACH

The objective was to classify the bivariate set of the input-output difference
and occupancy over a section of the freeway into two classes: those preceding
uncongested traffic conditions and those preceding congested traffic conditions.

The researchers had the choice of employing either the parametric approach,
or any of the non-parametric approaches (including the statistical approach),
described in Chapter 3. Tou states that the statistical approach is often the yardstick
to which the performance of other pattern recognition algorithms is compared. (21).
He also states that non-parametric approaches are useful only when no assumptions
can be made about the underlying distribution or characterizing parameters. Sing-
Tze-Bow suggests using the parametric approach when the samples can be assumed
to arise from a multivariate normal gaussian distribution. (22)

If the set of bivariate traffic data are assumed to have arisen from a
multivariate normal gaussian distribution, the parametric approach should be used.

On the basis of the definition of congested freeway conditions used by
WSDOT in the implementation of the bottleneck metering algorithm, and in earlier
- research on the development of the statistical pattern recognition algorithm by
Davis (14), the researchers concluded that an occupancy equal to, or above, 18
percent along with a positive storage rate, represented congested conditions over a
freeway section. Any other traffic data, then, represented uncongesied traffic
conditions. The 1-minute bivariate set of traffic data, over the section between
205th St. N.E. and 1950 St. N.E., were thus identified as representing either
uncongested or congested traffic conditions (see Table 2).

We know from traffic theory that congestion in the form of a shock wave
always proceeds upstream from the affected main line section. Since our objective
was to forecast traffic conditions on the freeway 1 or more minutes in advance,
lagged observations from 1 to 3 minutes at the same section between 2058 St. N.E.

and 195th St. N.E., and at a downstream section between 195th St. N.E. and 185th
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St. N.E. were then sorted into classes representing conditions preceding congested

or uncongested conditions.

A sample of the data in Table 1 is shown in the form of two classes
representing traffic conditions preceding uncongested and congested traffic
conditions, respectively.

Table 3 presents traffic data at 1 minute preceding uncongested or congested traffic
conditions at the same section between 205th st. N.E. and 1950 St. NE.
(LG1), and

Table 4 presents traffic data at 2 minutes preceding uncongested or congested traffic

conditions at the same section (LG2).

TABLE 3

TRAFFIC DATA AT 1 MIN. PRECEDING UNCONGESTED AND CONGESTED
TRAFFIC AT SAME SECTION (LG1)

TRAFFIC AT 1 MIN. PRECEDING TRAFFIC AT 1 MIN. PRECEDING
UNCONGESTED TRAFFIC CONGESTED TRAFFIC
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
1 20.90 15 21.80
-10 21.50 3 24.30
37 26.05 23 22.70
-16 26.50 15 24.90
-56 29.35 43 24.55
-13 23.85 -9 19.30
-4 22.60 7 19.65
21 20.00 45 23.25
-17 23.85 -10 18.55
-37 25.30 32 22.80
-15 19.00 43 20.95
7 23.75 -17 18.45
-45 22.70 16 17.55
1 19.00 12 18.15
-15 23.05



TABLE 4

TRAFFIC DATA AT 2 MIN. PRECEDING UNCONGESTED AND CONGESTED
TRAFFIC AT SAME SECTION (LG2)

TRAFFIC AT 2 MIN. PRECEDING TRAFFIC AT 2 MIN. PRECEDING
UNCONGESTED TRAFFIC CONGESTED TRAFFIC
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
3 24.30 15 21.80
1 20.90 -10 21.50
43 24.55 -23 22,70
37 26.05 15 24.90
-16 26.50 -4 22.60
-56 29.35 9 19.30
-13 23.85 7 19.65
45 23.25 -15 19.00
21 20.00 -10 18.55
-17 23.85 32 22.80
-37 25.30 -45 22.70
43 20.95 1 19.00
7 23.75 -17 18.45
16 17.55
12 18.15

Table 5 presents traffic data at 3 minutes preceding uncongested or congested traffic
conditions at the same section, between 205! St. N.E. and 195! St. N.E.
(LG3),

Table 6 presents traffic data between 195th St. N.E. and 185! St. N.E. at 1 minute

preceding uncongested or congested traffic conditions at an upstream section

(LG1DS),
Table 7 presents traffic data between 195th St. N.E. and 185! St. N.E. at 2 minutes

preceding uncongested or congested traffic conditions at an upstream section

(LG2DS), and
Table 8 presents traffic data between 195th St. N.E. and 185! St. N.E. at 3 minutes

preceding uncongested or congested traffic conditions at an upstream section

(LG3DS).
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TABLE §
TRAFFIC DATA AT 3 MIN. PRECEDING UNCONGESTED AND CONGESTED

TRAFFIC AT SAME SECTION
TRAFFIC AT 3 MIN. PRECEDING TRAFFIC AT 3 MIN. PRECEDING
UNCONGESTED TRAFFIC CONGESTED TRAFFIC
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
i5 21.80 1 20.90
3 24.30 -10 21.50
15 24.90 -23 22,70
43 24.55 -13 23.85
37 26.05 -4 22.60
-16 26.50 -9 19.30
-56 29.35 -37 25.30
7 19.65 -15 19.00
45 23.25 -10 18.55
21 20.00 7 2375
-17 23.85 -17 1845
32 22.80 43 20.95
-45 22,70
1 19.00
16 17.55



TABLE 6

TRAFFIC DATA AT 1 MIN. PRECEDING UNCONGESTED AND
CONGESTED TRAFFIC AT AN U/S SECTION

TRAFFIC AT 1 MIN. PRECEDING TRAFFIC AT 1 MIN. PRECEDING
UNCONGESTED TRAFFIC U/S CONGESTED TRAFFIC U/S
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
-2 16.10 3 16.20
19 18.10 -4 18.10
-22 22.10 47 26.50
-7 17.50 4 25.50
7 16.50 -36 24.35
-13 16.25 32 26.40
28 19.05 2 21.65
-20 20.15 -26 23.35
-8 16.95 22 22.30
-4 14.40 -8 23.10
35 19.25 22 18.70
-11 19.65 -1 19.75
6 18.80 -11 17.75
8 20.65
-17 17.20
12 16.60
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TABLE 7
TRAFFIC DATA AT 2 MIN. PRECEDING UNCONGESTED AND CONGESTED

TRAFFIC AT AN U/S SECTION
TRAFFIC AT 2 MIN. PRECEDING TRAFFIC AT 2 MIN. PRECEDING
UNCONGESTED TRAFFIC U/S CONGESTED TRAFFIC U/S
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
-4 18.10 3 16.20
-2 16.10 19 18.10
-36 24.35 47 26.50
-22 22.10 4 2550
-7 17.50 28 19.05
7 16.50 32 26.40
-13 16.25 2 21.65
-26 23.35 35 19.25
-20 20.15 22 22.30
-8 16.95 -8 23.10
-4 14.40 6 18.80
22 18.70 8 20.65
-11 19.65
-1 19.75
-11 17.75
-17 17.20
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TABLE 8
TRAFFIC DATA AT 3 MIN, PRECEDING UNCONGESTED AND CONGESTED

TRAFFIC AT AN U/S SECTION
TRAFFIC AT 3 MIN. PRECEDING TRAFFIC AT 3 MIN. PRECEDING
UNCONGESTED TRAFFIC U/S CONGESTED TRAFFIC U/S
STORAGE AVERAGE STORAGE AVERAGE
RATE OCCUPANCY RATE OCCUPANCY
3 16.20 -2 16.10
-4 18.10 19 18.10
4 25.50 47 26.50
-36 24.35 -13 16.25
-22 22.10 28 19.05
-7 17.50 32 26.40
7 16.50 -4 14.40
2 21.65 35 19.25
-26 23.35 22 22.30
-20 20.15 -11 19.65
-8 16.95 -1 19.75
-8 23.10 -22 18.70
6 18.80
8 20.65
-11 17.75

28



TABLE 9
PROOF THAT THE BIVARIATE TRAFFIC DATA COMES FROM A BIVARIATE

NORMAL DISTRIBUTION
DAY PREDICTION TRAFFIC PATTERN % OF BIVARIATE
INTERVAL DATA FROM CLASS TRAFFIE VECTORS
SECTION WITH X“ < 5.99

MARCH 28 1 MIN. 1 1 92
2 96
2 1 95
2 88
2 MIN. 1 1 94
2 98
2 1 92
2 94
3 MIN. 1 1 96
2 92
2 1 95
2 94
MARCH?29 1MIN. 1 1 96
2 96
2 1 99
2 92
2 MIN. 1 1 94
2 96
2 1 97
2 96
3 MIN. 1 1 93
2 98
2 1 97
2 94
MARCH30 1MIN. 1 1 94
2 94
2 1 93
2 98
2 MIN. 1 1 95
2 95
2 1 94
2 92
3 MIN. 1 1 95
2 97
2 1 95
2 95

NOTES: Section 1 is mainline between 205th St. N.E. & 195th St. N.E.
Section 2 is mainline between 195th St. & 185th St. N.E.
Pattern classes 1 & 2 represent traffic data preceding uncongested and
congested traffic.
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It was then decided to adopt the parametric approach if these traffic data
could be assumed to arise from a bivariate normal gaussian distribution. For this,
the chi-square value was computed for each set of bivariate traffic data from the
expression

X2(1- oyt =[1/(1-p9)*

{{x-p1P /01?1 + [z -2 /02°)-

[2*p*(X1-p1)* (X2-#2) / 1 *02)]}

Thus, if 95 percent of the chi-squared values were less X20.95(2) = 5.99, then
the distribution can be assumed to be bivariate normal.

As shown in Table 9, approximately 95 percent of the X2 values were less
than 5.99 for each of the two pattern classes at lags of 1, 2, and 3 minutes for
forecasting traffic conditions at the same, and at an upstream sectiqn. Hence, the
patterns from each of the two pattern classes can be assumed to arise from a
bivariate normal gaussian distribution, and so the researchers selected the statistical
pattern recognition approach to forecast freeway traffic conditions 1 to 3 minutes
ahead of time.

On the basis of statistical considerations, it is then possible to derive a
decision rule that is optimal since, on an average basis, its use yvields the lowest

probability of committing classification errors.

TEST ON TSMC DATA

Based on the parametric approach developed in Chapter 3, we assume class
wy to represent traffic conditions 1 to 3 minutes preceding uncongested traffic
conditions, and class wy to represent traffic conditions 1 to 3 minutes preceding
congested traffic conditions upstream or at the same freeway section. Also, x
represents the bivariate vector consisting of traffic data in the form of storage rate
and average occupancy at the same section or at a section downstream of the section

at which we are attempting to forecast congested conditions.
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Then, from equations (8) and (9), developed in Chapter 3, we assign the
traffic condition as preceding uncongested traffic conditions if the risk of deciding
class wq_is less than the risk of deciding class wy, mathematically expressed as
{L11-L12) p(w1) exp[-1/2(x-m1)C1  3-m1)]/ (2 7)2/2 [Cy |1/2} +
{L21-L22) p(wp) exp[-1/2(x-mp)Cy L (x-mp)l/ (2 7)2/2 |G, 1]1/2} <0 (8)
and assign the traffic conditions as preceding congested traffic condition, if the risk
of deciding class wy is less than the risk of deciding class wy, mathematically
expressed as
{L11-L12) p(wy) exp[-1/2(-m1)C1 L em)]/@ 7)2/2|C1|1/2) +
{L21-L22) p(w) expl-1/2(x-mp)Ca a-m)1/(2 )22 C2| /2 >0 (9)

Based on traffic data over the a.m. peak period for the 3 days, the a priori
probability p(wj), and the mean and covariance matrices for each of the two pattern
classes were calculated. The a priori probability for the two classes was calculated
as follows:

p(w1) = N1 /(N7 + N2), and

p(w2) = N2 /(N1 + Np),
where N1 and N9 are the total number of bivariate vectors in classes one and two
respectively.

The aggregate "a priori” probability and the mean and covariance matrices
for each of the two pattern classes were then calculated from the 3-day bivariate
traffic data for 1-minute, 2-minute, and 3-minute lags to predict traffic conditions
upstream and at the same section. These values are summarized in Table 10.

Since the same data set was used for both the calibration of the statistical
pattern recognition model and testing the developed model, the researchers needed
to get a more extensive data set from the TSMC and divide that data set into two
parts. For example, if 1-minute traffic data for the test sections had been obtained

over 15 a.m. peak periods, then ten or more of these values could have been used
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exclusively for calibrating the model, and with the help of parameters obtained from
the calibration, the developed model could have been tested over the remaining
a.m. peak periods. The calibration and the test sets would then have been
completely independent. However, because of practical difficulties experienced in
getting such extensive traffic data from the TSMC, the researchers decided to limit
the testing to the same three data sets used for the calibration of the model.

The option, then, was to either calibrate the statistical pattern recognition
model on the basis of 2 of the 3 days from which data were obtained, and then test it
on the third day, or use the same three data sets for calibration as well as testing.

If the former approach had been chosen, the problem of having the same
data set for both calibration and testing could have been avoided. However,
estimates of the parameters obtained would not have been as efficient as they were
when all the three data sets were used for the calibration process.

This problem is not a serious one, since estimates of the statistical
parameters, in the form of the mean and covariance matrices of traffic data, were
obtained over three a.m. peak periods from an average of a (3*180/2) 270 bivariate
set of vectors containing traffic data. The parameters obtained during the
calibration process were then treated as "global averages" for uncongested and
congested traffic conditions over the test sections. Thus, the algorithms obtained
from these parameters could be tested on any data set (including the same three

data sets used for calibration of the model).
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TABLE 10

AGGREGATE VALUES OF PARAMETERS FOR EACH PATTERN CLASS FOR

EACH RUN
LAG  MAINLINE PATTERN  MEAN
(MIN.) SECTION CLASS VECTOR

1 1 1 2,10

17.84

2 5.74

22.80

2 1 0.42

16.42

2 0.22

21.63

2 1 1 2.62

17.97

2 327

22.40

2 1 -3.22

16.87

2 7.14

20.69

3 1 1 3.20

18.14

2 427

22.04

2 1 -2.19

17.13

2 5.09

20.15

INVERSE OF

COVARIAN ?E

MATRIX C
0.0046 0.0016
0.0016 0.0224
0.0032 -.0006
-.0006 0.0861
0.0075 0.0005
0.0005 0.0395
0.0045 0.0009
(0.0009 0.0682
0.0035 -.0011
-.0011 0.0214
0.0050 0.0069
(.0069 0.1032
0.0086 0.0056
0.0056 0.0359
0.0061 -.0028
-.0028 0.0867
0.0036 -.0013
-.0013 0.0216
0.0055 0.0078
0.0078 0.0903
0.0069 0.0034
0.0034 0.0326
0.0064 -.0059
-.0059 0.0906

NOTES: Section 1 is main line between 205th St. N.E. & 195th St. N.E.
Section 2 is main line between 195th St. N.E. & 185th St. N.E.
Pattern classes 1 & 2 represent traffic data preceding uncongested and

congested traffic.

Mean vector for each pattern class is a 2*1 matrix
Inverse of the covariance matrix, C"1, for each pattern class is a 2*2

matrix.

|C]

99.94
60.00
91.43
57.20
115.93
46.41
60.13
43.90
115.59
48.00
68.61
42.75

| C| is the determinant of the covariance matrix for each pattern class.
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The decision in equations (8) and (9) above, can be performed with
knowledge of the loss functions Ly;, L9, Ly1, and L. Then, L;; and L) represent
the loss of making a correct classification, and L; and Ly, represent the loss of
making an incorrect classification. Tou states that in most pattern recognition
systems, the loss is assigned as "nil" for both correct and erroneous decisions. (21)
Thus, the loss function for two classes is expressed as Ljj = 1 - d;,
where di = hjwheni =, (0 < hj < 1) and

dij = {) wheni = j.

Also, often a negative loss or positive gain can be assigned to correct
classifications, and zero loss can be assigned to misclassifications. Thus, in our case,
L11 and Ly, can vary between zero and -1, and L5 and L,; can vary between +1
and zero, respectively.

Then (L;; - Ljp) will be approximately -1, and (Lp; - Lpp) will be
approximately + 1. The recommended values for these loss functions are -1 and +1,
representing a zero loss of correct decisions and a unit loss misclassification (22).

But this would not have to be the case in our research. The loss might be
zero for forecasting an uncongested condition correctly, or the loss could be
negative - in other words, it could be a positive gain for correctly forecasting
congested conditions.

In addition, the loss resulting from misclassifying an uncongested condition
could be either greater or even less than the loss from misclassifying a congested
condition. Misclassifying a congested condition would adversely affect our
objective, to correctly predict congested conditions ahead of time, but misclassifying
an uncongested condition would hurt the credibility of the ramp metering system
that used the pattern recognition algorithm.

For this reason, (Lq1 - L1p) and (L, - Lyy) were tested over a range of vaiues

from -1 to +1 in increments of 0.1. Thus, a total of 21*21 = 441 combinations of
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these loss functions were explored for each of the six runs (Table 10). The
algorithm developed to test the developed statistical pattern recognition algorithm

over this range of loss functions can be found in Appendix C.

TEST BY SIMULATION USING INTRAS

INTRAS is a microscopic freeway simulation program that represents a "real
world" traffic network (24). Knowledge of freeway operations and surveillance
systems is incorporated into this detailed traffic simulation. INTRAS is used for
studying freeway incident detection and control strategies, including ramp metering
and diversion.

On the basis of the input, the simulated surveillance system produces output
analogous to that generated by an on-line system. Vehicles traversing the freeway
and ramp links move with respect to the cars they follow, lane changing, and the
vehicle generation component developed for INTRAS. Point processing procedures
process each individual detector's output to generate local estimates of traffic flow
parameters.

The algorithm's accuracy in predicting traffic conditions, uncongested or
congested, on the freeway was determined earlier by tests on the a.m. peak-hour
traffic data from the TSMC. The researchers then decided to use INTRAS to
simulate WSDOT's current ramp metering system, the statistical pattern recognition
model developed by Davis (14), and the statistical pattern recognition model
developed in this research (Babla/Nihan model).

The objective was to evaluate the performance of the statistical pattern
recognition forecasting approach (Babla/Nihan model) in reducing congestion and
improving traffic flow on the section of I-5, and compare it to the ramp metering

system currently used by WSDOT and the Davis/Nihan statistical pattern

recognition model.
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The section of I-5 freeway over which the performance of the statistical
approach was evaluated is shown in Figure 4. The network geometries of the
southbound I-5 freeway are represented in the form of links, which are
unidirectional roadway segments having identical geometric characteristics, such as
number of lanes, grade, width of lanes, and free-flow speed. Nodes are placed at
the intersections of geometric discontinuities and at the intersections of cross streets
and ramp links with the freeway.

In addition to the information in Figure 4, information on the mean desired
free-flow speeds on the main line (S5 mph.) and ramps (35 mph.), pavement type
(asphalt), the radius of curvature, and superelevation of freeway and ramps were
also input to INTRAS. It was also assumed that 20 percent of the traffic consisted
of high-performance passenger cars, 1 percent of inter-city buses, 6 percent of
trucks, and the remaining 73 percent were low-performance passenger cars. Also,
26 percent of the traffic was assigned to the rightmost lane, and 38 percent and 36
percent, to the second and third lanes, respectively. Accleration and auxiliary lanes
are not shown in Figure 4.

After the geometries of the section of I-5 southbound freeway have been
input (Figure 4), INTRAS requires equivalent hourly volumes for each time slice
over which the simulation is to be carried out.

The researchers decided to use INTRAS to simulate the traffic conditions
over the a.m. peak hour from 6:30 a.m. to 7:30 a.m. Equivalent hourly volumes in
15-minute time slices were input into INTRAS (Table 11) by averaging historical

weekday data over the same period obtained previously from the TSMC.
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Figure 4: Section of south-bound I-5 for testing WSDOT
approach, and the incorporation of Davis/Nihan and
Babla/Nihan statistical pattern recognition models in the
WSDOT approach, to ramp metering by simulation using INTRAS.
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TABLE 11
TEST VOLUMES INPUT FOR SIMULATION TO INTRAS

TIME MAIN LINE VOLUME ON VOLUME ON VOLUME ON
(AM.) VOLUME  236THON-  244THON-  205TH ON-
IN RAMP IN RAMP IN RAMP IN
VEH/HR  VEH/HR VEH/HR VEH/HR
6:30- 6:45 5000 400 375 375
6:45-7:00 4900 450 425 425
7:00-7:15 4800 475 450 450
7:15-7:30 4700 550 500 500

Three percent of the mainline volume flowing into an upstream section was

considered to be leaving through off-ramps.
Four simulation runs were executed using the data:

1. with WSDOT's current ramp metering system (Figure 5),

2. with the Davis/Nihan statistical pattern recognition model (Figure 6),
and
3. with the Babla/Nihan statistical pattern recognition approach

developed in this research (Figure 7).

A minimum metering rate of 5 veh/In and a maximum of 24 veh/In was
always implemented (not shown in figures).

INTRAS gave measures of effectiveness (MOEs) for each of the simulation
runs. The MOEs output by INTRAS included average speed, vehicle-miles of
travel, and vehicle-minutes of delay on the freeway and on ramps. It also gave
information on the fuel consumption, and the total number of vehicles served by the
mainline and by on-ramps.

These values were then compared to determine the effectiveness of the

forecasting algorithm in improving freeway traffic performance.
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Figure 5: Test of WSDOT's current approach to ramp
metering by simulation of traffic conditions on I-5 using

INTRAS
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Figure 5 (Continued) : Test of WSDOT's current approach to
ramp metering by simulation of traffic conditions on I-5S
using INTRAS.
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Figure 6: Test of Davis/Nihan model of statistical pattern

recognition by simulation of traffic conditions on I-5 using
INTRAS.
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CHAPTER 4

RESULTS

TEST ON TSMC DATA

The statistical pattern recognition model was tested on the a.m. peak period
traffic data. The Fortran program (Appendix C) was tested on preclassified traffic
data representing conditions prior to uncongested and congested traffic conditions
for accuracy in the prediction of traffic conditions. This test was performed at lags
of 1, 2, and 3 minutes (Tables 3 through 8) at the same section, and at a section
upstream.

The results were obtained in the form of false positive and false negative
rates for each pair of loss functions in the range from -1 to + 1, for each of the six
runs of the program. A sample output of 'LG3DS’ for the Fortran program shown in
Appendix C can be found in Appendix D.

A trade-off was observed between the false positive and false negative rates
for various pairs of loss functions. Hence, it was decided to keep the false positive
rates at an average of ten percent, and lower the false negative rates as much as
possible. This ensured that we would improve upon the existing conditions of zero
percent false positive and 100 percent false negative rates (as we were not
predicting congestion).

Thus, we would still improve upon the existing conditions by detecting
congested conditions ahead of time from zero percent to as high as possible, while
not increasing the faise negative rates to a level that would discredit the system,
The best results for each of the six runs are recorded in Table 12.

The accuracy of our predictions, in terms of lower false positive and false

negative rates, seemed to improve with an increase in the time of prediction. Also,
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the resuits at the same lag are better when the prediction is made for traffic

conditions at a section upstream than for traffic conditions at the same section.

TABLE 12
BEST RESULTS FOR TEST OF BABLA/NIHAN MODEL ON TSMC DATA

Run Loss Day 1 Day 2 Day 3
functions % %0 % %o % %o
False False False False False False
k1 k2 +ve -ve +ve -ve +ve -ve
LG1 -1.0 0.5 366 765 9.0 71.4 45 80.6
LG2 -0.8 0.5 144  68.0 12.5 521 9.3 60.0
LG3 -1.0 0.8 158 583 6.6 53.2 10.6 36.2
LG1DS -09 0.3 31.7  106.0 7.5 69.4 54 85.5
LG2DS -1.0 1.0 76  40.0 14.1 313 111 60.0
LG3DS -1.0 1.0 96 500 14.8 46.8 7.7 58.6

Notes:1.Run 'LG1' is for prediction of traffic condition at same section 1 minute
ahead of time

2.Run 'LG2' is for prediction of traffic condition at same section 2 minutes
ahead of time

3.Run 'LG3' is for prediction of traffic condition at same section 3 minutes
ahead of time

4.Run 'LG1DS' is for prediction of traffic condition at a section u/s 1 minute
ahead of time

5.Run 'LG2DS' is for prediction of traffic condition at a section u/s 2 minute
ahead of time

6.Run 'LG3DS' is for prediction of traffic condition at a section u/s 3 minute
ahead of time

Thus, prediction for traffic conditions at an upstream section 3 minutes
ahead of time (LG3DS) gave us the best results for the 3-day TSMC data. Also,
prediction of traffic conditions at an upstream section 1 minute in advance (LG 1DS)
for day one is even worse than the existing condition, with a false positive rate of 31

percent and a false negative rate of 100 percent. These results are compared with
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results reported by the application of the Davis/Nihan model in Table 13. The
percent correct rates were reported as an average of correct predictions over all 3
days.

Assuming that the a.m. peak hour data from SB I-5 freeway represented
highly congested data, the Babla/Nihan model of statistical pattern recognition has
given better results than the earlier approach by Davis and Nihan.

The Davis/Nihan and Babla/Nihan modeis (LG3DS) were then tested for
their efficacy in improving freeway traffic performance. The researchers
incorporated both models into WSDOT's current ramp-metering approach and a

simulation of traffic conditions on southbound I-5 using INTRAS software.

TEST BY SIMULATION USING INTRAS

The Davis/Nihan and Babla/Nihan statistical pattern recognition models
were then incorporated as forecasting algorithms into the ramp control logic
currently used by WSDOT, and the system simulated using INTRAS. The
simulation results were then compared with each other and with a simulation of the

same traffic conditions using WSDOT's current ramp-metering approach.

TABLE 13

RESULTS FROM APPLICATION OF DAVIS/NIHAN AND BABLA/NIHAN
MODELS ON TSMC DATA

TYPE OF DATA PERCENT PERCENT PERCENT
CORRECT FALSE FALSE
POSITIVES  NEGATIVES
Davis / Nihan model
applied to lightly congested data 92 5 36

Davis / Nihan model
applied to highly congested data 68 7 73

Babla / Nihan model (LG3DS)
applied to a.m. peak data of
southbound I-5 75 10 52
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The results from the three simulation runs are summarized in Table 14.
Figure 8 shows that the average speed on the main line freeway improves
considerably with the application of the Davis/Nihan model, but this is achieved at
the expense of considerable delay on the ramps and surface links (Figure 9). In
comparison, the Babla/Nihan model achieves a smaller increase in main line
freeway speed over the current WSDOT approach, but with only a very small
increase in delays at ramps and surface links.

This not only results in higher average speeds system-wide (Figure 8) and
reduced total delay system-wide (Figure 9) for the Babla/Nihan mode! than the
other two approaches, but also results in increased mileage in terms of miles
traveled per gallon of fuel consumed (Figure 10).

The main line freeway volume (Table 14) at 1,568 veh/In/hr for the
Davis/Nihan model is 39 veh/In/hr greater than the main line volumes resulting
from the application of the Babia/Nihan model. Only 866 vehicies at the three on-
ramps were allowed access during the test hour by application of Davis/Nihan
model, whereas 1,189 vehicles were allowed access by application of the
Babla/Nihan approach. Thus, the Babla/Nihan model allowed access to 323 more
vehicles at the on-ramps during the test period at the expense of decreasing the
mainflow by 39 veh/In/hr. Compared to the WSDOT approach, the Babla/Nihan
forecasting model increased the main line flow by 77 veh/In/hr by restricting access
to a total of only 75 vehicles at the three on-ramps during the test hour.

In contrast to the two other approaches, only the total vehicle-miles of travel
(Figure 12) on the freeway and the total vehicle miles of travel system-wide were
higher with the Davis/Nihan model. However, as can be seen in Figure 12, the
Babla/Nihan model achieves about 70 percent of the increase in vehicle-miles on

the freeway, and about 80 percent of the increase in the total vehicle-miles traveled

system-wide
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TABLE 14

RESULTS FROM APPLICATION OF DAVIS/NIHAN AND BABLA/NIHAN
MODELS BY SIMULATION USING INTRAS

WSDOT DAVIS/NIHAN BABLA/NIHAN
EXISTING ALGORITHM ALGORITHM
ALGORITHM

Average speed on

freeway in mph 238 28.0 25.3

Average speed

system-wide, mph 20.2 19.6 20.9

Total veh-miles

traveled on

freeway 7726 8340 8132

Total veh-miles

traveled

system-wide 8100 8604 8488

Veh-min. of delay

on freeway 10970 8757 10327

veh-min. of delay

system-wide 14985 16778 14854

Freeway volume

inveh/In/hr 1452 1568 1529

Total number of

vehicles output

from all on-ramps 1264 866 1189

Total gallons of

fuel consumed

system-wide 1678 1779 1722

Veh-miles traveled

per gallon of fuel

consumed system-wide 4.83 4.84 4.93
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of the improvement achieved by using the Davis/Nihan model. The WSDOT
approach is the least effective approach of the three.

These results should, however, be interpreted with caution, as the section of
I-5 over which the simulation was carried out is only a small part of the section of I-5
that runs through metropolitan Seattle. So any savings in main line vehicle delay
achieved by higher average mainline vehicle speeds has been under represented. In
addition, the number of vehicles delayed at the on-ramps would decrease if the
entire section of I-5 running through metropolitan Seattle were included because
these vehicles would be able to redistribute over the on-ramps not presently
included in the system, thereby reducing the queueing at on-ramps.

The application of the Davis/Nihan model gives a higher average main line
speed and more vehicles delayed at on-ramps. It appears that it compares
unfavorably with the Babla/Nihan model, but by not including the entire section of
I-5 running through metropolitan Seattle in this research, this comparison is
inconclusive.

Also, the volumes that were simulated with INTRAS were obtained from the
operation of the current WSDOT system (Table 11). These volumes are the result
of ramp controls through local and bottleneck metering rates, and do not reflect the
demand at the on-ramps. Thus, we were comparing the ability of the three
approaches (WSDOT's current approach, the Davis/Nihan model, and the
Babla/Nihan model) to forecast traffic conditions on the freeway by measuring
traffic that had already been affected by ramp controls. This lessens the validity of
our results.

However, preliminary results from these tests do indicate that the developed
Babla/Nihan model performs better than the existing system, and significantly

better than the Davis/Nihan forecasting model.
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CHAPTER 35

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The results of testing the forecasting capability of the model on preclassified
traffic data (Tables 3 through 8) indicated that the accuracy of the forecasts
improved as the "lag," or the time available for forecasting, increased from 1 to 3
minutes (Table 12). For the same "lag", forecasting for traffic conditions at an
upstream location gave better resuits than forecasting for traffic conditions at the
same Section.

Finally, of the six algorithms tested, an algorithm forecasting traffic
conditions 3 minutes ahead of time for an upstream section (LG3DS) gave the best
results for all three days. It correctly detected traffic conditions 75 percent of the
time, with a congestion detection rate of 52 percent and falsely predicted congestion
10 percent of the time.

Thus, from tests on the 3-day TSMC data, it appears that the Babla/Nihan
model has a better forecasting ability than the Davis/Nihan model.

The resuits of simulating the models using INTRAS indicated that the
Babla/Nihan model of statistical pattern recognition had the highest system-wide
average speed, the lowest system-wide total delay, and the highest gas mileage in
terms of vehicle-miles traveled per gallon consumed. Compared to the
Davis/Nihan model, it allowed 323 more vehicles at the on-ramps to flow into the
freeway during the test hour at the expense of restricting flow on the mainline by
only 39 veh/In/hr.

However, as was noted earlier, the simulation results should be interpreted

with caution since the section over which the simulation was carried out was a small
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area. In addition, we applied metering to volumes which were already the resuit of
ramp controls.

Our objective to develop a model based on pattern recognition techniques
that could forecast traffic conditions ahead of time, has been successful, as the
Babia/Nihan model was able to accurately predict traffic condition at an upstream
section 3 minutes ahead of time 75 percent of the time. Also, the false positive rate
of 10 percent is reasonable, considering that we were able to accurately predict
congestion 52 percent of the time (Table 13).

Preliminary results from the incorporation of the Babla/Nihan forecasting
model in WSDOT's current ramp metering system, and simulation of the system
under I-5 peak hour traffic conditions using INTRAS, indicated that incorporation
of the Babla/Nihan forecasting model resulted in considerable improvements in
freeway traffic performance.

These results indicate that future refining of the Babla/Nihan statistical

pattern recognition model is merited, as is incorporating it on-line at the TSMC

central computers.

RECOMMENDATIONS FOR FUTURE RESEARCH

The researchers recommend that the above results be viewed as preliminary.
Any application of the Babla/Nihan model to traffic surveillance systems shouid be
preceded by intensive data gathering and extensive validation of the parameters in
the model.

Peak hour traffic data over at least 15 to 20 days should be used for
calibration of the model to ensure that the estimated parameters are closer to their
real values. This should be followed by testing the model over an independent set
of peak hour traffic data to ensure proper validation. The parameters obtained
from this extensive research over 15 or 20 data sets could then be used as input for

simulation of the I-5 a.m. peak period conditions using INTRAS,
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The simulation run should also include the entire section of southbound I-5
running through metropolitan Seattle. The volumes input for simulation should
further be calibrated so that they reflect the actual demand at the on-ramps, and not
the volumes resulting from subsequent metering.

The results from this refined simulation run would then accurately indicate
the merit of incorporating the developed Babla/Nihan forecasting model on-line on
the TSMC central computers.

The results of this research, while promising, indicate that investigation into
other pattern recognition techniques is warranted - not only for forecasting traffic
conditions on the freeway, but for other situations in transportation engineering, like

incident detection, where the problem is to find more than one solution.
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APPENDIX A

LITERATURE REVIEW

RAMP METERING

Ramp metering has come a long way since the days when a policeman
stopped traffic at freeway entrances and released vehicles one at a time. (1) The
effectiveness of this technique was evaluated, and, consequently, the policeman was
replaced with automation. Today, all traffic on the freeway, including traffic
entering through on-ramps, is managed through a central surveillance center. An
evaluation of the use of microcomputers as traffic-responsive ramp controllers has
been done by B.C. Fong. (2)

In their study on peak period traffic volumes on the I-5 freeway in
metropolitan Seattle, Nihan and Davis reported decreased mainline volumes,
resulting from ramp controls acting to keep the freeway volumes at or below
capacity, decreased travel times, and a flattening of the morning and evening peaks,
due to the shifting of some trips to off-peak times. (3)

Ramp control methods include ramp closure, pre-timed or fixed-time
metering, locally actuated metering, centralized interconnected metering, and
system-wide ramp metering. (4) Fixed-time metering methods have preset fixed
metering rates according to the time of day, based on historical upstream demand,
and downstream capacity data. However, the repetitive nature of recurrent
congestion cannot be predicted, and requires real-time control through traffic
responsive ramp metering. Locally actuated, centralized interconnected, and

system-wide ramp metering techniques fall under the broad category of real-time,

traffic-responsive ramp metering.
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APPLICATIONS OF PATTERN RECOGNITION TO FREEWAY
SURVEILLANCE

Research analogous to this research inciudes the development and
evaluation of algorithms aimed at detecting traffic incidents from freeway
surveillance data. (5) The algorithms were based on data obtained from the Los
Angeles and Minneapolis freeway surveillance systems, and consisted of aggregated
1-minute occupancy rates and volumes on the freeway. The algorithms aimed to
identify an incident by the specific patterns they produced.

Payne classified the traffic conditions into three types: incident-free, incident
occurred, and incident continuing conditions. Thus, in addition to algorithms
signaling the occurrence of an incident, they also signaled its continuation and
termination. All of his algorithms are based upon occupancy data. Identification of
an incident involved binary decisions, comparing a feature value to threshold values
at each stage of a tree-structure. The thresholds were functions of occupancy; at the
section, and at upstream and downstream sections. They were determined through
extensive data-collection of traffic conditions during incident and incident-free
conditions.

The researchers concluded that the performance of any specific algorithm
differed among facilities, performing best when the calibration of the thresholds was
done on data from the implementing facility. Further, in choosing threshold values,
they observed a trade-off between the detection rate and the false alarm rate. Thus,
improvement in the detection rate could only be achieved with an increase in the
cost associated with false alarms. Calibration of thresholds was then used to achieve
acceptable values of the false alarm rates for a reasonable detection rate.

Tsai and Case applied a pattern recognition approach to an existing incident
detection system on the Queen Elizabeth Freeway in Ontario. (6) Their aim was to
improve the false alarm rates while maintaining acceptable detection rates. Thus,

once an incident was detected, the purpose of the pattern recognition algorithm was
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to distinguish between true and false alarms, based on their different duration rate
characteristics. Using the pattern recognition approach, they managed to reduce the
false alarm rate by 33 percent, from its previous value of 0.09 percent to 0.06
percent.

Collins applied a computer-based algorithm, PATREG, to identify the traffic
disturbances following an incident. (7) The PATREG algorithm monitored the
average traffic speed in each lane between a pair of upstream and downstream
detector stations, using a pattern recognition technique. It indicated the occurrence
of an incident when the calculated traffic speeds fell outside the predetermined
upper and lower threshold values of speed determined for those lanes.

Peter Bohnke and Elmar Pfannerstill have explored the idea of identifying
individual vehicles, or their platoons through the characteristic wave-form patterns
each vehicle produces when passing over an induction loop detector, for a more

efficient traffic management and route guidance system. (8)
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APPENDIX B

SCIENCE OF PATTERN RECOGNITION

Recognition is regarded as the basic attribute of human beings and all living
organisms, and pattern is the description of an object. A human being is superior,
partly, because of his/her superior pattern recognition abilities. We practice pattern
recognition at every instant in our daily lives in the form of recognition of concrete
items through our senses, and the recognition of abstract items through conceptual
pattern recognition.

Pattern recognition is used in many disciplines - medical diagnosis, language
translation, and statistics, to name a few. (16, 17) Interest in this area is still growing
at a rapid rate, with interdisciplinary study and research in such areas as
engineering, computer science, information science, statistics, physics, chemistry,
linguistics, psychology, biology, physiology, and medicine.

Chen defines pattern recognition "as a science in which we take advantage of
the large storage and processing abilities of the computer coupled with its ability to
work in high dimensions to perform highly complex recognition tasks which
heretofore have been performed primarily by humans.” (18)

The primary task in pattern recognition is pattern classification, which
consists primarily of classifying the data into two or more pattern classes. (19) The
pattern recognition problem consists mainly of representation of the input data
measured from the object to be recognized, extraction of features characteristic of
the input data, reduction in dimensionality of the input vectors, and finally, the
derivation of optimum decision functions to identify and classify the patterns.

Our problem, then, is to derive a decision function for classifying the traffic
data from loop detectors on the freeway into those preceding uncongested traffic

conditions and those preceding congested traffic conditions. The loop detector data
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are available in the form of volume and occupancy at main line, on-ramp, and off-
ramp detector stations. Thus, volume, occupancy, speed, and input-output
difference over a section of the freeway can be used as input vectors.

The three different approaches to pattern recognition can be classified as:
heuristic, syntactic, and mathematical methods. (20) Heuristic methods use ad-hoc
decision rules, as in character recognition, based on human experience and
intuition; syntactic methods use the relationships between sub-patterns, as in
chromosome identification and picture recognition; and mathematical methods
employ classification rules derived from a mathematical framework for the purpose
of classification of the data in pattern recognition.

Because of its utilization of the clustering concept to represent input data in
space, the mathematical approach was the obvious choice for this research project.

The mathematical approach to pattern recognition can be statistical
(parametric) or deterministic (non-parametric). The statistical approach defines the
discriminant function as a class of probability densities defined by a relatively small
number of parameters. (The parameters here refer to the mean and the covariance
matrices used to derive decision functions to separate the pattern classes.)

When no assumptions can be made about the underlying distribution or the
characterizing parameters, the non-parametric approach is used. Despite its label,
the non-parametric approach consists of parameters of a multivariate polynomial

decision function to separate the pattern classes.

PARAMETRIC / STATISTICAL APPROACH
The pattern classes are assumed to arise from a multivariate normal
Gaussian distribution, the parameters being the mean and the covariance matrix.
Tou uses the parametric approach to pattern recognition in his research. (21)
Assuming that two pattern classes exist, the a priori probabilities p(w1) and p(w7)
are calculated from the population of labeled samples. The a priori probabilities
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refer to our expectations based on past experience and have no relation to the
current data.

On the basis of the labeled samples of the means (m] and my) and the
covariance matrices {Cq and Cp) for the two pattern classes, the probability density
function of x that comes from class wj, p(x/wj), are estimated from the expression,

P(x/wy) = { exp[-1/2 (x- m) CyL (x-my)] } / { (27) 22/ C 4| /3, and

p(x/wa) = { exp[-1/2 (x - my) Cy'l (x-mp)] } / { (27) 22| C 41| /7,
where C is the covariance matrix givenbyC = ° C 1 C 1,

*CnCax
and m1 and m) are the mean vectors of classes wy and w.

If Lij represents the average loss of deciding that class wj is true when, in
fact, the sample pattern actually belongs to class wj, p(wj/x) represents the
probability that x comes from class wj, and R;(x) is the expected loss in assigning x
to class wj, then

R1(x) = L11 p(w1/x) + L21 p(w2/x), and (1)

Ra(x) = L12 p(w1/x) + L2 p(wp/x). (2)
Using Bayes formula, the probability of x coming from wj, also called the a
postertori probability,

P(wi/x) = [ p(wi) p(x/wi) 1/ p(x), ()
equations (1) and (2) become,

Ri(x) = L11 {[p(w1) p(x/w1) 1/ p(x) +

L21 { [ p(w2) p(x/w2) ]/ p(x), and 4)
R2(x) = L12 { [ p(w1) p&x/w1) ]/ p(x) +
L22 { [ p(w2) p(x/w2) 1 / p(x), (5)

Since [1/p(x)] is common in the determination of both R1(x) and R»(x), it is

dropped, and equations (4) and (5) become
Rj(x) = Li1 p(w1) p&/w1) + L2j p(w2) p(x/w2),  (6)
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Ro(x) = L12 p(w) plx/w1) + Lo p(w2) px/w2),  (7)

Now, x is to be assigned to the class where it has the minimum risk of being
misclassified. Thus, the decision rule for minimum probability of misclassification
of x becomes

assign x to class w1 if R1(x) < R2(),

assign x to class wp if R1(x) > Ra(x).

Substituting the probability density functions in the above equations,
the decision rule then becomes

assign x to class wy if

{Li1-L12) p(wy) exp[-1/2(-my)Cyi(x-my)}/ (2 )32 |Cy 11/2} +

{Lyy-Lan) p(w) exp(-1/2(x-mp)Cy lx-myp))/ (2 1)%/2 | C2 1|12}

<0 (8)
and assign x to class w7 if
{L13-L12) p(wy) expl-1/2(my)Cyi(x-my))/ (2022 C| /2 } +
{La1-Loo) p(wy) expl-1/2(x-mp)Cy ! (x-1m2)}/ (27 /2 Cy| Y2}
>0 (9)

NON-PARAMETRIC APPROACH

The deterministic (non-parametric) approach is based on mathematical
classification rules that do not explicitly employ the statistical properties of pattern
classes under consideration here.

Sing-Tze-Bow applies this non-parametric approach to two-dimensional data.
(22) The general decision function separating the sample vectors into two pattern
classes wq and w is of the form

d(x) = wy f1(x) + wafa(x) + w3 = 0.
where w = (wy,Wo,w3) represents the weight vector, and

= (xq,%,1) represents the augmented pattern vector.

70



The non-parametric approach of patitern classification can be determined by
several classification methods: the minimum-distance, piecewise linear, nearest
neighbor, or cluster analysis classification method.

Minimum Distance Classification Method

Tou discusses the minimum distance classification method using the concept
of proximity of the patterns in euclidean space, as a measure of similarity between
patterns. (21)

Considering two pattern classes w1 and w9, represented by prototypes z1 and
z), respectively, Tou defines the euclidean distance between the sample vector and
the prototype as

Di = °°x - zi°" = [ (x - z1)' (x - z1) 12

The decision rule, then, is to assign x to the class wj so that the distance

Dj = x'x - 2_[x'" z1 -1/2 z;' zi] isa minimum.

Since x’x is a constant for all pattern classes, the decision rule then changes in
assigning x to class wj, such that,

Dj = x'" 2z -1/2 24" zj isamaximum.

Piecewise Linear Decision Boundaries

When the pattern classes have different prototypes in different regions of the
feature space, piecewise linear discriminant functions may be used as an
approximation of the non-linear quadratic boundaries. They are linear over
subregions of the feature space, and the perpendicular bisector of a pair of
prototypes in two different pattern classes in a feature space form the piecewise
linear decision function between the two pattern classes over that feature space.

Nearest Neighbor Classification Method

The nearest neighbor (NN) approach classifies the sample vector into the

class to which its nearest neighbor belongs. Like the minimum distance

classification method, the NN approach also assumes that the distance between the
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sample vectors is an indication of the similarity between them. The K-nearest

neighbor goes a step further and classifies the sample vector by sampling its K

nearest neighbors.

Cluster Analysis

The cluster analysis approach inciudes the concept that patterns belonging to
the same class show a greater degree of natural association than do sample patterns
belonging to different pattern classes. This approach is especially useful when the
number and nature of the pattern classes is unknown, or when the labeled samples
for the pattern classes are not available.

Sing-Tze-Bow groups clustering algorithms (depending on whether or not a
criterion function is used in the clustering process), into indirect/optimization and
direct/constructive algorithms, respectively. (22) He also classifies them into
agglomerative/bottom-up and divisive/top-down approaches. The approach used
depends on whether the isolated patterns are coalesced or the individual pattern
classes are subdivided according to some optimizing function, respectively. Many
algorithms use a combination of these approaches.

Sing-Tze-Bow considers the minimization of the sum of squared distance.
Considering two pattern classes, the first two sample patterns, Xy and x,, are
assigned as cluster centers of two different pattern classes, wy and w». Based on
euclidean distance, every other sample pattern is assigned, to the class whose cluster
center it is nearest. The cluster centers are updated after a predetermined number
of additions. After all the sample patterns have been assigned, the new cluster
centers are computed, and the classification is performed once again. This process
is continued until the updated cluster patterns stay unchanged. The patterns then
belong to the classes they were assigned to in the final iteration, with the cluster

centers representing prototypes of the two pattern classes.
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TRAINING OF PATTERN CLASSIFIERS

The concept of training, in which the formulation of parameters of the
decision function is extended into the classification stage, can be applied to both the
parametric and the non-parametric approaches described above.

Sing-Tze-Bow designs the classifier by assuming the best possible values of
the parameters/weights from the labeled patterns, and then modifying them with
the information from the most recent data. (22) Thus, in the parametric approach
the mean and the covariance functions are updated, and in the non-parametric
parametric approach the weight vector is modified, after a predetermined number
of sample patterns are added to the pattern class.

This training of the decision function only takes place during the design and
updating processes. Once the algorithm yields acceptable results, the training is
discontinued, and the algorithm is applied toward performing the task of assigning
patterns to their respective classes. Training is used only when enough data are not

available or when the cost of data collection is high.
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APPENDIX C

FORTRAN PROGRAM FOR TEST OF MODEL ON TSMC DATA

VARIABLE IDENTIFICATION

COUNT1 - COUNTS NUMBER OF ROWS
COLUMN - COLUMN POINTER
ROWNUM - NUMBER OF ROWS IN INPUT FILE

IJK - LOOP COUNTERS

NEG - NUMBER OF NEGATIVES IN A COLUMN

COUNT2 - -10TO +10 COUNTER

COUNT3 - -1L0TO +1.0 COUNTER

K4 - SOLUTION TO MAIN EQUATION

M1 - MATRIX FORMED FROM INPUT FILE

M2 - [2X1] MATRIX INPUT BY USER

M3 - [2X1] MATRIX INPUT BY USER

P1,P2 _ VALUES FOR MAIN EQUATION INPUT BY USER
MTEMP - TRANSPOSE MATRIX OF M1- (M2 OR M3)

MTEMP1 - MATRIX OF M1- (M2 OR M3)

TEMP1 _1st ELEMENT OF M1 MINUS 1st ELEMENT OF M2 OR M3
TEMP2 - 2nd ELEMENT OF M1 MINUS 2nd ELEMENT OF M2 OR M3
DNEW _ 0.5 TIMES MATRIX CALCULATIONS RESULT (ist SET)
ENEW . 0.5 TIMES MATRIX CALCULATIONS RESULT (2nd SET)
C1INV - [2X2] INVERSE MATRIX INPUT BY USER

C2INV - [2X2) INVERSE MATRIX INPUT BY USER

CIDET - DETERMINANT OF MATRIX INPUT BY USER

C2DET - DETERMINANT OF MATRIX INPUT BY USER

C - RESULTANT MATRIX FROM MATRIX MULTIPLY CALL
D - RESULTANT MATRIX FROM MATRIX MULTIPLY CALL
E ~ RESULTANT MATRIX FROM MATRIX MULTIPLY CALL

C VARIABLE DECLARATION

INTEGER COUNTI], COLUMN, ROWNUM, {, J, M, NEG(441)

REAL COUNT?, COUNTS3, K4, NEGPER, POSPER,
\ M1(120,2), M2(2,1), M3(2,1), P1, P2,

\ MTEMP(1,2), MTEMP1(2,1),

\ TEMP1, TEMP2, DNEW, ENEW,

\ C1INV(2,2), C2INV(2,2), CIDET, C2DET,

\ C(1,2), D(1,1), E(1,1), RESULTS(120,441)

CHARACTER*12 FILENAME

EXTERNAL MRRRR
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C PROMPT FOR INPUT VARIABLES

PRINT *, "ENTER INPUT FILE NAME’
READ *, FILENAME

PRINT *,’ENTER NUMBER OF ROWS IN FILF’
READ * ROWNUM

PRINT *,"ENTER M2 MATRIX’
READ(*,800) M2(1,1), M2(2,1)
PRINT *, M2(1,1), M2(2,1)

PRINT *, "ENTER M3 MATRIX’
READ(*,800) M3(1,1), M3(2,1)
PRINT *, M3(1,1), M3(2,1)

PRINT *,"ENTER P1 & P2
READ * P1P2
PRINT*, P1,P2

PRINT *,’ENTER C1 INVERSE’

READ(*,810) C1INV(1,1), CIINV(1,2), CLINV(2,1), CIINV(2,2)
PRINT *, C1INV(1,1), C1INV(1,2), CIINV(2,1), C1IINV(2,2)
PRINT *,"ENTER C2 INVERSE’

READ(*,810) C2INV(1,1), C2INV(1,2), C2INV(2,1), C2INV(2,2)
PRINT*, C2INV(1,1), C2INV(1,2), C2INV(2,1), C2INV(2,2)
PRINT *,’ENTER C1 DET & C2 DET’

READ(*820) CIDET, C2DET
PRINT*, C1DET, C2DET

OPEN(1, FILE =FILENAMEACCESS="SEQUENTIAL’,
\ FORM =’FORMATTED"STATUS="OLD’)
C READS THE INPUT FILE
DO 30 =1,ROWNUM
READ(1,900,END =90) M1(I,1), M1(I,2)
PRINT *, M1(I,1), M1(L,2)
30 CONTINUE
C INITIALIZE COUNTER VARIABLES
90 COLUMN = 1
100 COUNT1 = 1
COUNT?2 = -1.00

COUNT3 = -1.00
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WRITE(6,850)
150 NEG(COLUMN) = 0

DO 200 M=1,ROWNUM
C MATRIX MANIPULATIONS
C MATRIX SUBTRACT

TEMP1 = M1(M,1) - M2(1,1)
TEMP2 = M1(M,2) - M2(2,1)

C MATRIX TRANSPOSE

MTEMP(1,1) = TEMP1
MTEMP(1,2) = TEMP2

C MATRIX NORMAL

MTEMP1(1,1} = TEMP1
MTEMP1(2,1) = TEMP2

C IMSL MATRIX LIBRARY CALLS
CALL MRRRR(1,2,MTEMP,1,.2,2,C1INV,2,1,2,C,1)
CALL MRRRR(1,2,C,1,2,1, MTEMP12.1,1,D,1)

DNEW = D(1,1)
DNEW = DNEW *-0.5

C MATRIX SUBTRACT

TEMP1 = M1(M,1) - M3(1,1)
TEMP2 = M1(M,2) - M3(2,1)

C MATRIX TRANSPOSE

MTEMP(1,1) = TEMP1
MTEMP(1,2) = TEMP2

C MATRIX NORMAL
MTEMPL(1,1) = TEMP1
MTEMP1(2,1) = TEMP2
CALL MRRRR(1,2,MTEMP,1,2,2,C2INV,2,1,2,C,1)
CALL MRRRR(1,2,C,1,2,1 MTEMP1,2,1,1,E, 1)

ENEW = E(1,1)
ENEW = ENEW * -0.5

C MAIN EQUATION
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K4 = ((COUNT2/(6.283*C1DET)) * EXP(DNEW)*P1) +
\ ((COUNT3/(6.283*C2DET)) * EXP(ENEW)*P2)

RESULTS(ROWNUM,COLUMN) = K4

IF (K4.LT.0) THEN
NEG(COLUMN) = NEG(COLUMN) + 1
END IF

C COUNTER TESTS

IF (COUNT1.LT.ROWNUM) THEN
COUNT1 = COUNTI + 1
GOTO 200

ELSE IF (COUNT3.LT.1.0) THEN
COUNT1 = 1
COUNT3 = COUNTS3 + 0.10
GOTO 175

ELSE IF (COUNT2.LE.10) THEN
COUNT1 =1
COUNT2 = COUNT2 + 0.10
COUNTS3 = -1.00
GOTO 175

ELSE
GOTO 200

END IF

175 NEGPER = (NEG(COLUMN)/REAL(ROWNUM)) * 100
POSPER = 100 - NEGPER

WRITE(6,875) COLUMN, COUNT2, COUNT3, NEGPER, POSPER
COLUMN = COLUMN + 1
GOTO 150

200 CONTINUE

800 FORMAT(F6.3,1X,F6.3)

810 FORMAT(F6.4,1X,F6.4,1X,F6.4,1X,F6.4)

820 FORMAT(F6.2,1X,F6.2)

850 FORMAT(’COLUMN’,()X,’K2’,6X,’K3’,6X,’NEG(%)’,6X,’POS(%)’)
875 FORMAT(2X,13,7X,F4.1,7X F4.1,7X,F5.1,7X,F5.1)

900 FORMAT(F4.0,3X,F5.2)

CLOSE(1)
END
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LOSS
FUNCTIONS
k2 k3
-1.0 -1.0
-1.0 -0.9
-1.0 -0.8
-1.0 -0.7
-1.0 -0.6
-1.0 -0.5
-1.0 -0.4
-1.0 -03
-1.0 -0.2
-1.0 -0.1
-1.0 0.0
-1.0 0.1
-1.0 0.2
-1.0 0.3
-1.0 0.4
-1.0 0.5
-1.0 0.6
-1.0 0.7
-1.0 0.8
-1.0 0.9

RESULTS OF FORTRAN PROGRAM TEST ON TSMC DATA

+ve

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.8
2.6
3.5
35
3.5
6.1
7.0
79

APPENDIX D

2DAY
FALSE

-ve

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
91.7
85.4
771
70.8
68.8
66.7
60.4
58.3
54.2

+VE

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.6
4.9
6.6
8.2
11.5
11.5
13.1
13.1

79

3DAY
FALSE

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
93.6
87.2
85.1
76.6
70.2
66.0
59.6
53.2

+VE

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.9
29
4.8
5.8

4DAY
FALSE

100.0
100.0
160.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
96.6
96.6
914
89.7
79.3
69.0
65.5
63.8



-1.0
-0.9
-0.9
0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9

1.0
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9.6
6.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.6
35
35
3.5
6.1
6.1
79

50.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

91.7

85.4

72.9

68.8

66.7

62.5

58.3

56.3

30

14.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.6
4.9
8.2
9.8

11.5

13.1

13.1

46.8
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

89.4

87.2

78.7

723

68.1

61.7

532

7.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
29
4.8
5.8

58.6
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

96.6

94.8

89.7

82.8

75.9

69.0

63.8



LOSS

FUNCTIONS
k2 k3
-0.9 0.9
-0.9 1.0
-0.8 -1.0
-0.8 -0.9
-0.8 -0.8
-0.8 -0.7
-0.8 -0.6
-0.8 -0.5
-0.8 -0.4
-0.8 -0.3
-0.8 -0.2
-0.8 -0.1
-0.8 0.0
-0.8 0.1
-0.8 0.2
-0.8 0.3
-0.8 0.4
-0.8 0.5
-0.8 0.6
-0.8 0.7
-0.8 0.8
-0.8 0.9
-0.8 1.0
-0.7 -1.0

2DAY
FALSE
+ve -ve
9.6 50.0
11.4 479
0.0 100.0
0.0 100.0
0.0 160.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 91.7
2.6 854
3.5 70.8
3.5 68.8
4.4 62.5
6.1 583
7.9 583
9.6 50.0
12.3 479
14.0 41.7
0.0 100.0

3DAY
FALSE
+VE -ve
14.8 46.8
213 447
0.0 100.0
0.0 100.0
6.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 97.9
1.6 89.4
6.6 87.2
8.2 76.6
11.5 68.1
13.1 63.8
13.1 53.2
14.8 46.8
213 4.7
24.6 42.6
0.0 100.0
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4DAY
FALSE
+VE -ve
7.7 58.6
10.6 50.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 100.0
0.0 96.6
1.0 93.1
1.0 89.7
1.9 75.9
4.8 69.0
5.8 63.8
7.7 58.6
10.6 50.0
15.4 48.3
0.0 100.0



-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.7
-0.6
-0.6

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-03
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0
-0.9

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.9
2.6
35
35
6.1
7.0
9.6
123
14.0
15.8
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
39.6
77.1
68.8
66.7
60.4
38.3
50.0
45.8
41.7
39.6
100.0
100.0
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4.9
6.6
9.8
11.5
13.1
14.8
21.3
24.6
311
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
97.9
87.2
83.0
70.2
66.0
59.6
46.8
447
42.6
383
100.0
100.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
38
4.8
7.7
11.5
154
20.2
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
96.6
96.6
91.4
82.8
69.0
63.8
58.6
50.0
46.6
39.7
100.0
100.0



LOSS 2DAY DAY 4DAY

FUNCTIONS FALSE FALSE FALSE

k2 k3 +ve -ve +VE -ve +VE -ve-1.0
-0.6 -0.8 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.7 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 0.6 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.5 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.4 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.3 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.2 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 -0.1 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 0.0 0.0 100.0 0.0 100.0 0.0 100.0
-0.6 0.1 1.8 85.4 0.0 95.7 0.0 96.6
-0.6 0.2 35 72.9 4.9 87.2 1.0 94.8
-0.6 03 3.5 68.8 8.2 76.6 1.0 89.7
-0.6 0.4 6.1 62.5 115 68.1 2.9 75.9
-0.6 0.5 7.0 583 13.1 59.6 4.8 63.8
0.6 0.6 9.6 50.0 14.8 46.8 7.7 58.6
-0.6 0.7 13.2 45.8 23.0 44,7 12.5 50.0
-0.6 0.8 14.0 41.7 279 404 18.3 43.1
-0.6 0.9 17.5 375 328 38.3 212 345
-0.6 1.0 20.2 375 37.7 36.2 26.0 29.3
-0.5 -1.0 0.0 100.0 0.0 100.0 0.0 100.0
-0.5 -0.9 0.0 100.0 0.0 100.0 0.0 100.0
-0.5 -0.8 0.0 100.0 0.0 100.0 0.0 100.0
-0.5 -0.7 0.0 100.0 0.0 100.0 0.0 100.0
-0.5 -0.6 0.0 100.0 0.0 100.0 0.0 100.0
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0.5
0.5
0.5
0.5
0.5
0.5
0.5
05
05
05
-0.5
05
0.5
-0.5
0.5
05
04
0.4
04
0.4
04
0.4

05
-0.4
-03
02
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.0
-09
0.8
0.7
-0.6
-0.5

0.0
0.0
0.0
0.0
0.0
0.0
1.8
3.5
3.5
7.0
9.6
132
158
18.4
237
254
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
85.4
70.8
66.7
583
50.0
43.8
41.7
375
292
229
100.0
100.0
160.0
100.0
100.0
100.0
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0.0
0.0
0.0
0.0
0.0
0.0
1.6
6.6
11.5
13.1
14.8
23.0
27.9
344
41.0
47.5
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
93.6
85.1
70.2
59.6
46.8
42.6
38.3
36.2
34.0
29.8
100.0
160.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.9
48
7.7
13.5
20.2
240
29.8
34.6
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
96.6
01.4
79.3
65.5
58.6
50.0
41.4
31.0
293
259
100.0
100.0
100.0
100.0
100.0
100.0



LOSS

FUNCTIONS
k2 k3

-0.4 -0.4
-0.4 -0.3
-0.4 -0.2
-0.4 -0.1
-0.4 0.0
-0.4 0.1
-0.4 0.2
-0.4 0.3
-0.4 0.4
-0.4 0.5
-04 0.6
-04 0.7
-0.4 0.8
-0.4 0.9
-0.4 1.0
-0.3 -1.0
-0.3 -0.9
-03 -0.8
-0.3 -0.7
-0.3 -0.6
-0.3 -0.5
-0.3 -0.4
-0.3 -0.3
-03 -0.2

+ve

0.0
0.0
0.0
0.0
0.0
2.6
3.5
6.1
9.6
14.0
175
23.7
25.4
325
333
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

2DAY
FALSE

100.0
100.0
100.0
100.0
100.0
854
68.8
58.3
50.0
41.7
375
35.4
22.9
20.8
14.6
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

+VE

0.0
6.0
0.0
0.0
0.0
1.6
8.2
13.1
14.8
24.6
32.8
39.3
475
50.8
63.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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3DAY
FALSE

100.0
100.0
100.0
100.0
100.0
89.4
76.6
63.8
46.8
42.6
38.3
34.0
29.8
213
19.1
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

+VE

0.0
0.0
0.0
0.0
0.0
0.0
1.0
4.8
7.7
154
21.2
27.9
34.6
385
394
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

4DAY
FALSE

-ve

100.0
100.0
100.0
100.0
100.0
96.6
89.7
69.0
58.6
48.3
34.5
29.3
25.9
259
19.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0



-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.3
-0.2
-0.2
-0.2
-0.2
-0.2
-0.2
-0.2
-0.2
-0.2
-0.2

-0.1
0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

-1.0

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0.0
0.0
3.5
6.1
9.6
14.0
20.2
254
333
36.8
39.5
43.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
72.9
62.5
50.0
41.7
37.5
229
18.8
12.5
8.3
6.3
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
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0.0
0.0
4.9
115
14.8
279
31.7
475
54.1
63.9
68.9
73.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
87.2
68.1
46.8
40.4
36.2
298
19.1
17.0
17.0
12.8
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
1.0
2.9
7.7
18.3
26.0
34.6
394
404
413
46.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
94.8
75.9
58.6
43.1
293
25.9
24.1
15.5
12.1
10.3
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0



LOSS 2DAY 3DAY 4DAY

FUNCTIONS FALSE FALSE FALSE

k2 k3 +ve -ve +VE -ve +VE -ve
-0.2 0.0 0.0 100.0 0.0 100.0 0.0 100.0
-0.2 0.1 35 68.8 8.2 76.6 1.0 89.7
-0.2 0.2 9.6 50.0 14.8 46.8 7.7 58.6
-0.2 0.3 17.5 375 328 38.3 212 345
-0.2 0.4 254 229 47.5 29.8 34.6 259
-0.2 0.5 333 14.6 63.9 19.1 39.4 19.0
-0.2 0.6 395 8.3 68.9 17.0 41.3 12.1
-0.2 0.7 45.6 6.3 73.8 8.5 46.2 8.6
-0.2 0.8 52.6 4.2 78.7 43 519 6.9
-0.2 0.9 579 2.1 82.0 4.3 54.8 52
-0.2 1.0 59.6 2.1 82.0 43 58.7 3.4
-0.1 -1.0 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 0.9 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.8 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.7 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.6 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.5 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.4 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.3 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.2 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 -0.1 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 0.0 0.0 100.0 0.0 100.0 0.0 100.0
-0.1 0.1 9.6 50.0 14.8 46.8 7.7 58.6
-0.1 0.2 254 229 47.5 29.8 34.6 259

87



-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0
-0.9
-0.8
0.7
0.6
-0.5
04
03
02
0.1
0.0
0.1
0.2
0.3

39.5
52.6
59.6
63.2
64.9
64.9
65.8
69.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
100.0
160.0

8.3
42
2.1
2.1
2.1
2.1
0.0
0.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
0.0
0.0
0.0
0.0

68.9
78.7
82.0
82.0
86.9
86.9
86.9
86.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
100.0
100.0

38

17.0
4.3
4.3
2.1
2.1
21
2.1
2.1
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0

0.0

0.0

0.0

41.3
51.9
58.7
62.5
64.4
67.3
70.2
71.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
100.0
100.0

12.1
6.9
34
34
34
0.0
0.0
0.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0

0.0

0.0

0.0



LOSS

FUNCTIONS
k2 k3

0.0 0.4
0.0 0.5
0.0 0.6
0.0 0.7
0.0 0.8
0.0 0.9
0.0 1.0
0.1 -1.0
0.1 -0.9
0.1 -0.8
0.1 -0.7
0.1 -0.6
0.1 -0.5
0.1 -0.4
0.1 -0.3
0.1 -0.2
0.1 -0.1
0.1 0.0
0.1 0.1
0.1 0.2
0.1 03
0.1 0.4
0.1 0.5
0.1 0.6

+ve

100.0
100.0
100.0
100.0
100.0
100.0
100.0
30.7
342
35.1
35.1
36.8
40.4
47.4
60.5
74.6
90.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0

2DAY
FALSE

-ve

0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
97.9
97.9
97.9
97.9
95.8
91.7
77.1
50.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

+VE

100.0
100.0
100.0
100.0
100.0
100.0
100.0
131
13.1
13.1
13.1
18.0
18.0
213
31.1
52.5
85.2
100.0
100.0
100.0
100.0
100.0
100.0
100.0

89

FALSE

-ve

0.0
0.0
0.0
0.0
0.0
0.0
0.0
97.9
97.9
97.9
97.9
97.9
95.7
95.7
83.0
70.2
53.2
0.0
0.0
0.0
0.0
0.0
0.0

0.0

+VE

100.0
100.0
100.0
100.0
100.0
100.0
100.0
28.8
29.8
32.7
356
375
413
48.1
58.7
65.4
92.3
100.0
100.0
100.0
100.0
100.0
100.0
100.0

4DAY
FALSE

0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
100.0
96.6
96.6
96.6
93.1
87.9
74.1
41.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0



0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.7
0.8
0.9
1.0
-1.0
0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

100.0
100.0
100.0
100.0
40.4
42.1
47.4
54.4
60.5
66.7
74.6
82.5
90.4
96.5
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
97.9
97.9
95.8
93.8
61.7
85.4
77.1
62.5
50.0
313
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
18.0
18.0
213
26.2
31.1
36.1
525
67.2
85.2
91.8
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

920

0.0
0.0
0.0
0.0
95.7
95.7
95.7
91.5
83.0
80.9
70.2
61.7
53.2
234
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
41.3
45.2
48.1
53.8
58.7
60.6
654
78.8
92.3
99.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
96.6
94.8
93.1
914
879
81.0
74.1
65.5
41.4
10.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



LOSS 2DAY 3DAY 4DAY

FUNCTIONS FALSE FALSE FALSE

k2 k3 +ve -ve +VE -ve +VE -ve-1.0
0.2 0.8 1000 0.0 100.0 0.0 100.0 0.0
0.2 0.9 100.0 0.0 100.0 0.0 100.0 0.0
0.2 1.0 100.0 0.0 100.0 0.0 100.0 0.0
0.3 -1.0 56.1 93.8 26.2 87.2 53.8 89.7
0.3 -0.9 60.5 91.7 31.1 83.0 58.7 87.9
0.3 0.8 63.2 87.5 36.1 83.0 59.6 84.5
0.3 -0.7 66.7 813 45.9 80.9 60.6 75.9
0.3 -0.6 74.6 77.1 52.5 70.2 65.4 74.1
0.3 -0.5 79.8 62.5 62.3 63.8 74.0 70.7
0.3 -0.4 86.0 58.3 72.1 59.6 81.7 56.9
0.3 -03 90.4 50.0 85.2 53.2 92.3 41.4
0.3 -0.2 93.9 37.5 88.5 31.9 97.1 24.1
0.3 -0.1 96.5 27.1 95.1 12.8 99.0 5.2
0.3 0.0 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.1 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.2 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.3 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.4 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.5 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.6 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.7 100.0 0.0 100.0 0.0 100.0 0.0
0.3 0.8 100.0 0.0 100.0 0.0 100.0 0.0
0.3 09 100.0 0.0 100.0 0.0 100.0 0.0
0.3 1.0 100.0 0.0 100.0 0.0 100.0 0.0
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04
0.4
0.4
0.4
0.4
0.4
04
04
04
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
04
0.4
0.5

1.0
-0.9
0.8
0.7
0.6
-0.5
04
03
02
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0

66.7
67.5
74.6
76.3
82.5
86.0
90.4
93.9
96.5
97.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
74.6

85.4
79.2
77.1
64.6
62.5
583
50.0
41.7
313
14.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
77.1

36.1
49.2
52.5
60.7
67.2
75.4
85.2
86.9
91.8
98.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
525
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80.9
78.7
70.2
66.0
61.7
574
532
36.2
234
10.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
70.2

60.6
61.5
65.4
72.1
78.8
84.6
92.3
95.2
99.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
65.4

81.0
74.1
74.1
70.7
65.5
517
414
31.0
10.3
34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
74.1



LOSS 2DAY DAY 4DAY

FUNCTIONS FALSE FALSE FALSE

k2 k3 +ve -ve +VE -ve +VE -ve-1.0

0.5 -0.9 76.3 70.8 59.0 66.0 70.2 70.7
0.5 -0.8 81.6 62.5 65.6 63.8 76.0 69.0
0.5 -0.7 84.2 58.3 72.1 61.7 79.8 58.6
0.5 -0.6 86.8 56.3 77.0 574 86.5 50.0
0.5 -0.5 90.4 50.0 85.2 532 92.3 41.4
0.5 -0.4 93.0 41.7 86.9 40.4 05.2 345
0.5 -03 96.5 333 88.5 29.8 98.1 20.7
0.5 -0.2 96.5 29.2 93.4 14.9 99.0 8.6
0.5 -0.1 98.2 14.6 98.4 6.4 100.0 34
0.5 0.0 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.1 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.2 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.3 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.4 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.5 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.6 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.7 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.8 100.0 0.0 100.0 0.0 100.0 0.0
0.5 0.9 100.0 0.0 100.0 0.0 100.0 0.0
0.5 1.0 100.0 0.0 100.0 0.0 100.0 0.0
0.6 -1.0 79.8 62.5 62.3 63.8 74.0 70.7
0.6 -0.9 82.5 62.5 67.2 61.7 78.8 65.5
0.6 -0.8 86.0 58.3 721 59.6 81.7 56.9
0.6 -0.7 86.8 54.2 770 553 87.5 50.0

93



0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.7

-0.6
0.5
-04
-03
02
-0.1
0.0
0.1
02
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0
0.9
0.8
0.7
-0.6

90.4
93.0
93.9
96.5
96.5
98.2
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
34.2
86.0
87.7
90.4
93.0

50.0
41.7
37.5
31.3
27.1
14.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
60.4
583
54.2
50.0
41.7

85.2
86.9
88.5
01.8
65.1
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
68.9
75.4
78.7
85.2
86.9

94

532
404
31.9
234
12.8
43
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
61.7
57.4
55.3
53.2
404

92.3
95.2
97.1
99.0
99.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
106.0
100.0
100.0
79.8
84.6
88.5
92.3
95.2

414
36.2
24.1
10.3
52
34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
60.3
534
50.0
414
36.2



LOSS 2DAY 3DAY 4DAY

FUNCTIONS FALSE FALSE ' FALSE

k2 k3 +ve -ve +VE -ve +VE -ve-1.0
0.7 -0.5 93.9 39.6 88.5 34.0 96.2 31.0
0.7 -0.4 96.5 333 90.2 29.8 99.0 172
0.7 -0.3 96.5 313 93.4 17.0 99.0 8.6
0.7 02 97.4 22.9 95.1 12.8 99.0 3.4
0.7 -0.1 99.1 10.4 100.0 2.1 100.0 3.4
0.7 0.0  100.0 0.0 100.0 0.0 100.0 0.0
0.7 0.1 100.0 0.0 100.0 0.0 100.0 0.0
0.7 02  100.0 0.0 100.0 0.0 100.0 0.0
0.7 0.3 100.0 0.0 100.0 0.0 100.0 0.0
0.7 04 1000 0.0 100.0 0.0 100.0 0.0
0.7 0.5 1000 0.0 100.0 0.0 100.0 0.0
0.7 0.6  100.0 0.0 100.0 0.0 100.0 0.0
0.7 0.7 1000 0.0 100.0 0.0 100.0 0.0
0.7 0.8  100.0 0.0 100.0 0.0 100.0 0.0
0.7 0.9  100.0 0.0 100.0 0.0 100.0 0.0
0.7 1.0 100.0 0.0 100.0 0.0 100.0 0.0
0.8 -1.0 86.0 583 75.4 574 84.6 51.7
0.8 -0.9 87.7 52.1 78.7 55.3 89.4 50.0
0.8 0.8 90.4 50.0 85.2 53.2 92.3 41.4
0.8 -0.7 92.1 41.7 86.9 46.8 94.2 36.2
0.8 -0.6 93.9 41.7 86.9 36.2 95.2 31.0
0.8 0.5 95.6 375 88.5 31.9 98.1 24.1
0.8 -0.4 96.5 313 91.8 234 99.0 103
0.8 -0.3 96.5 292 93.4 12.8 99.0 6.9
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0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
08
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

-0.2
-0.1
0.0
0.1
0.2
03
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2

97.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

88.6

90.4

92.1

93.9

03.9

96.5

96.5

96.5

974

14.6
8.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

52.1

50.0

43.8

41.7

37.5

33.3

31.3

27.1

14.6

58.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

78.7

85.2

86.9

86.9

88.5

90.2

91.8

95.1

98.4

96

10.6
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

553

53.2

46.8

383

319

21.7

21.3

12.8

10.6

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
89.4
92.3
04.2
05.2
97.1
99.0
99.0
99.0
100.0

34
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

50.0

414

36.2

31.0

24.1

172

103
52
34



LOSS

FUNCTIONS
k2 k3
0.9 -0.1
0.9 0.0
0.9 0.1
0.9 0.2
0.9 0.3
0.9 0.4
0.9 0.5
0.9 0.6
0.9 0.7
0.9 0.8
0.9 0.9
0.9 1.0
1.0 -1.0
1.0 -0.9
1.0 -0.8
1.0 -0.7
1.0 -0.6
1.0 -0.5
1.0 -0.4
1.0 -0.3
1.0 -0.2
1.0 -0.1
1.0 0.0
1.0 0.1

+ve

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
90.4
92.1
93.0
93.9
96.5
96.5
96.5
97.4
98.2
100.0
100.0
100.0

FALSE

-ve

8.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
50.0
45.8
41.7
39.6
33.3
313
29.2
22.9
14.6
8.3
0.0
0.0

+VE

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
85.2
86.9
86.9
88.5
88.5
91.8
93.4
95.1
98.4
100.0
100.0
100.0
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FALSE

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
53.2
46.8
40.4
340
29.8
234
14.9
12.8
6.4
0.0
0.0
0.0

+VE

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
92.3
94.2
05.2
97.1
98.1
99.0
99.0
99.0
100.0
100.0
100.0
100.0

FALSE
-ve-1.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

41.4

362

34.5

31.0

20.7

103
8.6
34
34
0.0
0.0
0.0



1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



