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ABSTRACT

EVALUATION OF A PREDICTIVE ALGORITHM FOR A REAL-TIME RAMP
CONTROL SYSTEM

by Iris Cabrera-Gonzalez

This report evaluates a statistical pattern recognition-based predictive
algorithm that was tested on-line with the ramp metering computer system of the
Washington State Department of Transportation in Spring, 1990. The purpose of
this algorithm was to forecast bottleneck formation 1 or 2 minutes in advance of its
occurrence, and to adjust ramp metering rates in order to avoid or decrease
bottleneck formation. The evaluation of this algorithm was conducted by applying
multiple linear regression techniques to traffic volumes and occupancy time series
data collected by the Washington State Department of Transportation's
Transportation System Management Center (TSMC). In addition to the statistical
analysis, the accuracy of the algorithm's predicting ability was evaluated using the
computer generated prediction messages printed during the study period. The
results show that the predictive algorithm was able to correctly predict traffic
conditions 80 percent of the time, with a congestion detection rate of 58.6 percent.
While the impact of the predictive algorithm was not significant during heavily-
congested traffic periods, it had a positive impact on the traffic conditions during

those periods when occupancy on the mainline reached values of up to 18 percent.
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1. INTRODUCTION

PROBLEM STATEMENT

The Washington State Department of Transportation (WSDOT) operates a
traffic responsive ramp control system on a section of Interstate-S north of Seattle to
cope with recurrent freeway traffic congestion. The system, which is described in
detail in the last section of this chapter, operates effectively as long as congestion on
the metered freeway section is not excessive. When this freeway section is excessively
congested, the only option within this system is to introduce more restrictive metering
rates. The system is, thus, reactive rather than anticipatory, which means it is only
able to respond to existing traffic conditions rather than anticipate them. To enhance
the performance of the WSDOT ramp metering system, predicting capabilities need
to be added to the existing real-time control strategy.

At the University of Washington the short term prediction of traffic flow
variables for application to the development of predictive algorithms has been the
subject of continuous research. Among different approaches tried, pattern
recognition techniques have been successfully applied to the development of
predictive algorithms. (1,2,3) On the basis of these techniques, an algorithm was
developed that forecasts freeway traffic congestion 1 or more minutes in advance of
its occurrence. During the spring and summer of 1989, this algorithm was tested on-
line at the ramp metering computer system of the WSDOT’s Transportation System
Management Center (TSMC). In contrast to the controlled conditions of simulated
testing, the on-line testing provided an opportunity for the algorithm to perform

under real life conditions.



The locations of the study area and freeway section where the algorithm was
tested and evaluated are illustrated in Figure 1.1 and Figure 1.2, respectively. The
test section consisted of approximately 1.5 miles of Interstate-5 northbound. Within
this freeway section, the subsection immediately downstream of the NE 205th St.
Station, shown in Figure 1.2, routinely experiences traffic congestion during morning
peak periods.

In addition to forecasting traffic congestion, the algorithm adjusted ramp
metering rates at the on-ramps upstream of the bottleneck section in order to prevent
or decrease the severity of congestion build-up. The forecasting routine and
subsequent ramp metering adjustment procedure are shown in Figure 1.3.

The impact of the algorithm’s intervention was evaluated using the "time series
intervention analysis" technique (4,5), where "intervention" refers to the adjustment of
ramp metering rates made by the algorithm during certain days within the study
period. Time series intervention analysis has been described in several technical
reports, and is discussed further in Chapter 3.

The results of the predictive algorithm’s intervention showed that some
improvement of traffic conditions was obtained. The validity of these results may
have been affected, however, by three factors:

« the type of time series intervention design,

» the time frame of the data collection effort, and

» the relatively small size of the "after” data set,
These factors are discussed further in Chapter 2.

In summary, even though the predictive algorithm’s intervention seemed to
have had a significant impact on the traffic conditions, the factors mentioned above
may have affected the results. Therefore, additional research to address those

problems was done.
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The first stage of the research consisted of on-line testing of the algorithm and
data collection. This was implemented by TSMC in Spring 1990. The second stage
consisted of evaluation of the impact associated with the algorithm’s intervention
using the data collected by TSMC. This research report presents the procedure and

findings of that second stage.

RESEARCH OBJECTIVE

The main objective of this report was to reevaluate the predictive algorithm’s
performance. Two aspects of these performances were evaluated:

the accuracy of the algorithm’s predicting ability, and
the type and significance of the algorithm’s impact on the traffic
conditions of the study section.

Although each of these analyses was estimated separately, they were analyzed
together because of the interdependent refationship of the data. For instance, traffic
conditions affect the ability of the algorithm to make predictions. In turn, the
algorithm’s intervention affects traffic conditions.

In summary, the main objective of this research was to determine how
effectively the algorithm anticipated traffic congestion, and what improvements in the
traffic conditions were obtained as a result of the adjustments of ramp metering rates,
Some expected improved traffic conditions, for instance, could be maximization of
capacity (an increase in vehicle volumes), improvement in level of service (LOS), or,
simply, the attainment (or maintenance) of stable traffic conditions throughout the

freeway section.

BACKGROUND
The urban activity system, that is, the spatial distribution of people and
activities within an urban area, is shaped by a variety of social and economic

conditions. These conditions can result in population growth and the addition and



relocation of businesses. As a result, complex travel patterns are generated. The
problem is, that while the urban area steadily evolves, the transportation system that
serves it has only been marginally adjusted. For instance, areas that were once
bedroom communities scattered throughout metropolitan areas, have become high-
density suburban centers that support a variety of economic activities. Existing
transportation systems, were designed and buiit based on the conditions that existed
at the time of their construction, that is, they were meant to serve the travel pattern
generated between the metropolitan area and the suburbs. The current urban
situation generates increased and complex traffic demands. (6) Freeways are forced
to accommodate, for example, an increasing number of short trips people make
between the suburbs and metropolitan areas, as opposed to a moderate amount of
long trips. This imbalance of increased and constant demand and limited supply,
results in either complete stoppage of traffic flow or in restriction or interference of
normal traffic flow.

Depending on its degree of predictability, freeway traffic congestion has been
classified into two types: recurrent and non-recurrent. (7) Recurrent freeway
congestion occurs routinely during specific time periods and locations, such as
morning and afternoon peak periods; at freeway locations that provide access from or
to employment areas; the Central Business District, etc. Recurrent congestion is
typical in locations where geometric deficiencies decrease the freeway’s operational
capacity, causing bottleneck formation during peak periods. Non-recurrent
congestion, on the other hand, occurs randomly, with regard to location and time. It
is unpredictable; it can happen anywhere, at any time. Frequent causes of non-
recurrent congestion are traffic incidents, accidents, and bad weather. The worst
traffic congestion is the result of all three conditions happening concurrently, for
example, a traffic accident in bad weather occurring during peak hours. Regardless

of the type, freeway traffic congestion has serious consequences in terms of economic



losses, environmental pollution, accident risks, delay, and driver frustration and
discomfort. For freeway users, commuters especially, traffic congestion is a problem
that frequently occurs. The amount of traffic congestion commuters are wiiling to put
up with is related to the length of their trip. (8) For instance, commuters making
short freeway trips, though not pleased with complete stoppage or stop and go
conditions are willing to sacrifice some travel time. On the other hand, the longer the
trip, the more impatient drivers become regarding extended travel time. In addition,
longer freeway trips made in highly congested freeways, (where density is greater than
42 vehicles per mile) cause increased tension that most drivers are unwilling to
tolerate. Therefore, for all the reasons mentioned above, freeway congestion is a
problem that must be faced.

The traditional approach to the freeway congestion problem prior to the early
1970s was to increase capacity. As people began to experience the negative side
effects of freeway construction in terms of social, economic, and environmental
impact, and as governmental budget restraints limited the resources allocated to new
freeway construction, a new philosophy began to emerge. Incorporated in the
transportation system management’s (TSM) approach to the traffic congestion
problem, the basic principle of this approach is to maximize the efficiency of the
existing transportation system. Within TSM, two broad areas have been developed:
demand management and supply management. Demand management is mainly
concerned with the reduction of peak-period vehicular demand. This is achieved by
redistributing vehicular demand over time so that the concentration of traffic during
peak periods is reduced. Examples of demand management techniques are peak-
period dispersion, ridesharing, and transit System improvements. Supply
management is concerned with effective redistribution of travel demand within the

existing facilities. Examples of supply management techniques are:



entrance ramp control,
mainline control,

corridor control, and

priority control. (9)

Both demand and supply management techniques have been applied with
varying degrees of success in the United States. In the Seattle metropolitan area,
traffic congestion will continue to increase due to a projected population increase of
up to 29 percent by the year 2000. (4) WSDOT has developed a TSM program to
cope with Seattle’s freeway congestion. The Freeway and Arterial Management
Effort (FAME), implemented in 1987, is an example of WSDOT’s strategy to
maximize the operational efficiency of the freeway and arterial system. (10) Since
then, a number of procedures for improving and comparing traffic management
systems have been planned, designed, and implemented.

Ramp metering is another key element of WSDOTs TSM program.
WSDOT’s Transportation System Management Center operates an integrated traffic-
responsive on-ramp control system in a section of Interstate-5 north of Seattle. This
ramp metering system uses real-time volumes and occupancy data measured by loop
detectors that are placed along the mainline freeway and at exit and entrance ramps.
These data are used by an on-line algorithm at The TSMC’s central computer system
to estimate on-ramp metering rates. The algorithm’s local metering routine
determines on-entry rates based on the measurement of lane occupancy at the section
immediately upstream of the metered ramp. When the demand for use of a section
of freeway exceeds its capacity, bottlenecks form and a "bottleneck” routine is
implemented. The "bottleneck” routine first estimates on-entry rates (the bottleneck
metering rate, BMR) by distributing the storage rate (the number of vehicles "stored"
on that freeway section in the past minute), among all metered ramps within its area

of influence according to predetermined weighting factors, and then subtracts this

10



value from the on-ramp volume. This bottleneck metering rate (BMR) is then
compared to the local metering rate (LMR), and the most restrictive one is applied
during the next control interval. Too restrictive metering rates can cause queuing at
on-ramps to spill over onto the arterial system. To prevent this from occurring, when
Queuing at on-ramps goes beyond the advance queue detector, metering rates are
automatically increased. The resulting metering rates, however, can never exceed 24
veh/min or be less than 5 veh/min.

The most significant problem of the WSDOT’s on-ramp control system is that
it is unable to anticipate or prevent system overloads. That is, once traffic congestion
occurs, the only option is to restrict even more access at vehicle on-ramps; however,
at that point, the reduction in speed and instability has already affected the mainline
traffic system.

One way to optimize the WSDOT's on-ramp control system is to include a
forecasting routine that would allow for the anticipation of bottleneck formation. At
the University of Washington the application of statistical pattern recognition
principles to the development of an algorithm that forecasts bottleneck formation has
shown encouraging resuits. This research evaluates the performance of the predictive
algorithm. The implementation of an effective predicting type algorithm at the
WSDOT’s ramp control system would greatly enhance the ability of this system to

cope with recurring freeway traffic congestion.
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APPENDIX A

RAMP CONTROL SYSTEMS

During the last twenty years ramp control systems have become an important
element of urban freeway management programs throughout the world. The main
purpose of such systems is to improve overall freeway operation by limiting the rate
at which vehicles enter the freeways. Some of the benefits associated with the
implementation of ramp control systems are reduced accident risks, minimization of
freeway travel time, reduction in vehicle operating costs, reduced fuel consumption,
and less pollution. Ramp control systems include ramp closures, merge controls,
priority-entry controls and ramp metering. (9)

Ramp closure has been recommended in cases where there is not enough
storage capacity at on-ramps to accommodate vehicles waiting to enter the freeway,
or when the freeway section upstream of the on-ramp operates at capacity. Although
successfully implemented in Japan, Europe and the United States, ramp closure
attracts strong public opposition. Therefore, its application has been somewhat
limited. Ramp metering is the most frequently implemented ramp control system. It
has been improved by application of automatic control theory and advanced
computer technology. This is reflected by the evolution of control modes and control

strategies, which have increased in sophistication.

The control mode is used in ramp metering systems to determine ramp signal
cycle and metering rates. Ramp metering systems fall into three basic control mode
categories: pre-timed, local traffic responsive, and integrated traffic responsive. (11)
With the pre-timed control mode, ramp metering rates are only governed by the time-
of-day, day-of-week, and occurrence of special events. A metering plan is established

based on studies of the historic traffic conditions corresponding to the freeway
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mainline at the vicinity of the controlled ramp. Payne/Thompson used optimization
techniques to establish a fixed ramp metering plan aimed at achieving optimum
corridor traffic conditions in their research. (12) The problem with the model
developed was the assumption of fixed traffic demand over both the short run and the
long run. In real situations, demand is not constant over time, it fluctuates around
mean values. Papageorgiou developed a dynamic freeway traffic optimization model
to derive a time-of-day control strategy that takes into account not only the evolution
of traffic flow over a given time period, but also the time delay associated with
changes in volume at on-ramps and their corresponding disturbances at downstream
freeway sections. {13)

With the local traffic responsive control mode ramp signal cycle and ramp
metering, rates are directly affected by the traffic conditions occurring in the
immediate vicinity of the controlled ramp. Because metering rates are based on real-
time measurements of traffic flow variables, the system is able to respond to short-
term fluctuations in demand. Resulting metering rates are, thus, related to the
characteristics of freeway traffic flow.

The integrated traffic responsive control mode controls a series of ramps as a
single system. For each control interval, a metering strategy is calculated at a central
computer based on real-time system-wide traffic conditions. The results are then
used to determine the metering strategy for the next control interval, and the process
repeats continuously. In this way, metering rates are adjusted in response to real-time
system-wide traffic conditions.

Though guidelines have been developed for the analysis, design, and
implementation of ramp metering systems, adequate procedures for the evaluation of
their effectiveness have not been proposed. The literature offers relatively few
studies of ramp metering systems of which the effectiveness has been thoroughly

evaluated. Despite the problem caused by the absence of adequate evaluation
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procedures that would allow comparison between different ramp metering systems,
some projects have been successful in achieving some of the benefits mentioned at
the beginning of this chapter. For instance, the ramp metering system implemented
at Harbor Freeway in Los Angeles, California achieved considerable operational
gains. (14) The comparison between before and after conditions showed a significant
reduction in freeway delay, while not affecting the traffic conditions at the parallel
street system. Ahmed, in his overview of urban freeway management technology,
discussed other successful ramp metering systems implemented throughout the
United States, Europe, and Japan. In the Chicago area, impressive operational gains
were obtained as a result of ramp metering. A reduction of up to 60 percent of peak-
period congestion and a reduction of up to 18 percent of accidents were attained. In
the Seattle portion of Interstate-5, an evaluation of ramp metering impacts and traffic
volumes conducted using time series analysis techniques showed that decreased
traffic volume occurred as a result of ramp metering implementation. (15) Ramp
metering kept mainline traffic volumes under capacity.

Successful existing ramp metering systems have addressed a previously severe
degree of traffic congestion and included a parallel street system with the ability to
absorb traffic diverted by the ramp meters.

SHORT-TERM PREDICTIVE ALGORITHMS FOR IMPROVEMENT OF

REAL-TIME CONTROL STRATEGIES

The motivation behind modeling short-term freeway traffic forecasting is that
by adding forecasting capability to traffic-responsive ramp metering systems,
improvement in freeway traffic conditions is more feasible via optimized surveillance
and control methods. Considerable research has been done in the development of
short-term traffic forecasting models to enhance the performance of freeway controls.
This research has not been entirely successful. Freeway traffic flow is a very complex

phenomenon, characterized by non-linearity and non-stationarity, which greatly
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complicates the freeway traffic modeling process. Payne discussed the discontinuity
that characterizes the volume/density curve at the transition from an uncongested to
congested traffic flow regimen. (16) Based on the results of that research, Davis and
Nihan corroborated the need for an anticipatory, rather than reactive, ramp metering
strategy, given the two-regimen nature of freeway traffic flow and the transitional
nonequilibrium stage that occurs between the two regimens.(17) Short-term traffic
forecasting models generally belong to two broad categories: ad-hoc models and

point-process models.

AD-HOC MODELS

Ad-hoc models, also referred to as descriptive or correlative models, are not
based on causal analysis, but rather on arbitrary weighing schemes assigned to current
or previous observations of traffic flow variables under consideration. Models, such
as second and third generation urban traffic control systems (UTCS-2 and UTCS-3),
moving average, exponential smoothing, and adaptive exponential smoothing are
examples of ad-hoc models. Comparative analysis of the performance of four ad-hoc
short-term traffic predicting models, conducted by Stephanedes, showed that UTCS-2
performed consistently better than UTCS-3, but not significantly better than moving
average models. (18) Kreer pointed out that one possible reason for an only slight
gain in performance was that the vehicles measured by the detectors were not the
ones to which resulting changes in control strategy were applied. (19) The most
serious criticism of ad-hoc traffic predicting models is that the averaging and
aggregating that take place within these models destroy their ability to forecast the

short-term fluctuations that are typical of traffic flow processes.

POINT PROCESS TRAFFIC PREDICTING MODELS
The second category of short-term traffic models, point-process models, are

categorized on the basis of the properties of the observations and the characteristics
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of the underlying processes that generate those observations. In other words, these
models take into account the stochastic nature of the processes under consideration.
The time-series forecasting models, based on Box-Jenkins analysis techniques,
Kalman filtering theory, spectral analysis, and cross-spectral analysis are typified in
this category.

Box-Jenkins analysis techniques have been successfully applied to freeway
traffic data, not only for prediction purposes, but also for incident detection analysis,
(20) and estimation of changes in level of service. (21) By using these techniques,
Ahmed and Cook developed a short-term freeway forecasting model based on traffic
volumes and occupancy time-series data collected at three freeway surveillance
system locations in Los Angeles, Minneapolis, and Chicago. (22) By following the
general Box-Jenkins procedure, which involves preliminary identification, estimation,
and diagnosis checks, an ARIMA model (0,1,3) was fitted to the time-series data.
When compared to the performance of moving average, double exponential, and
adaptive exponential smoothing models, the performance of this model was
considered superior. Levin and Tsao also fitted ARIMA (p,d,q) models to freeway
traffic volumes and occupancy data collected at two freeway locations of the Dan
Ryan Expressway in Chicago, [linois.(23)

Among the several ARIMA models investigated, the ARIMA performed up to
50 percent better. In addition, the research concluded that 60 seconds was the
optimum interval, and that traffic volumes were more stable predictors than
occupancy data.

In general, the benefits associated with ARIMA models included ease of
application, flexibility, and accuracy. One significant weakness of these models was
their inability to forecast extreme values; that is, the predicted values tended to hover

around or follow the mean values. (2)
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Spectral analysis is another type of time-series modeling technique that has
been applied to the development of short-term traffic forecasting models. This
technique is especially suitable for the prediction of time-series processes that exhibit
cyclical and long-term trends. It involves the series expansion of a set of model
functions (periodic behavior), and previously measured data that takes the form of a
covariance matrix. The series expansion represents the broad class of non-stationary
random processes. Nicholson and Swann applied this method to traffic volumes of
four lanes of the Messey tunnel in England. (24) The quality of the prediction
obtained was relatively high, with resulting prediction errors of 8 percent for morning
peak data and 11 percent for afternoon peak data. This method was determined to
be satisfactory for on-line implementation in traffic control.

The last point-process forecasting model reviewed was the model based on the
Kalman filtering theory. Okutani and Stephanedes successfully applied the Kalman
filtering approach in predicting 15-minute traffic volumes. (25) A comparison of this
model and UTCS-2 showed the Kalman filtering theory to be superior. Additional
benefits were its ability to predict traffic volumes based on data from connecting links

and its reasonable computation time requirements.

PATTERN RECOGNITION MODELS

In addition to point-process and ad-hoc models, recent approaches to short-
term traffic modeling include the application of pattern recognition principles.
Statistical and non-parametric pattern recognition models have been developed by
Davis and Nihan (2), and Babla and Nihan. (3) Davis and Nihan applied a non-
parametric pattern recognition model, the K-nn (or nearest neighbor model), to
freeway traffic data measured at a section of Interstate-5 in the state of Washington.
(17) The general modeling procedure involved the construction of a learning sample

of input and output pairs. From this learning sample, inputs were classified according
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to their distance to a specific input value x(t), from which an output value y(t) was
forecast. The forecast value is the average output corresponding to the nearest
neighbor of the input value x(t). The K-nn model did not perform significantly better
than the forecasting models based on Box-Jenkins techniques.

The main purpose of applying statistical pattern recognition to the
development of short-term freeway prediction models was to develop decision rules
for classifying traffic data (input vectors) into those preceding congested traffic
conditions and those preceding uncongested traffic conditions. The discriminating or
decision function is identified by class of probability densities defined by parameters,
such as the mean and covariance, used to derive the decision function.

Nihan and Davis developed a short-term freeway forecasting model for
specific application to real-time ramp metering control strategy. (2) One-minute
occupancy, and input and output difference (I/O) data measured at a routinely
congested section of Interstate-5 north of Seattle, were classified into those meeting
bottleneck conditions (I/O>0, and occupancy >18 percent), and those preceding
uncongested traffic conditions. The next Step was to sort the lagged measurement of
the other variables (I/O and occupancy data measured downstream and upstream of
the bottleneck section) into those preceding bottleneck formations and those
preceding uncongested traffic conditions. The box plot feature of Minitab was used
to evaluate the lagged variables’ ability to discriminate between bottleneck
(congested) and non-bottleneck (uncongested) intervals. The best candidates
obtained were the occupancy of the bottleneck section lagged 1-minute and I/O
difference of the downstream section lagged 2-minutes. This model has been tested
on-line and evaluated, and the results, although satisfactory, warrant additional
research. The Babla/Nihan model was developed in order to improve the accuracy
level obtained with the Nihan/Davis model. A comparison of these models via

simulation testing using INTRAS software showed that although the Babla/Nihan
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model achieved higher system-wide average speed and lower system-wide total delay,
the accuracy of its predicting capability was not better than that of the Davis/Nihan

model.



2. RESEARCH DESIGN

INTRODUCTION

During the spring of 1990, a new on-line testing of the predictive algorithm
was performed by integrating it into WSDOTs ramp metering system at TSMC. The
predictive algorithm was implemented into the existing on-line control strategy
according to the procedure shown in Figure 1.3. The predicting process and
subsequent ramp metering rates adjustment that occurred during the on-line testing
are referred to as the predictive algorithm’s intervention. During the study periods,
that intervention was in effect at three Separate intervals. In between those intervals,
the on-line testing was temporarily interrupted to allow conditions to return to
normal.

Data on traffic volumes and occupancy, measured by loop detectors placed at
the station shown on Figure 1.2., were collected by TSMC, and used to evaluate the
impact of the predictive algorithm’s intervention on the traffic conditions of the study
section. The evaluation was performed by applying multiple linear regression
techniques to the traffic volumes and occupancy data aggregated in S-minute periods
from 6:00 am to 8:00 am. Two statistical packages, MINITAB and SST, were used to
perform the statistical analysis.

In addition to the statistical analysis, the accuracy of the algorithm’s predicting
ability was estimated using the prediction messages printed during the on-line testing
and during the time intervals the intervention was not in effect.

PREDICTIVE ALGORITHM ON-LINE TESTING AN D DATA

COLLECTION EFFORTS

Three factors seemed to have clouded the results of a previous evaluation of
the predictive algorithm’s intervention; the type of intervention design, the time

frame of the data collection effort, and the size of the after data set. (4) The data for
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the evaluation were collected over a time frame that included two seasons,
eliminating seasonal effects that could have been confused with intervention effects.
In addition, the intervention took place during a single time interval that included
only 18 days. The size of the after data set was, thus, relatively small.

At TSMC the new on-line test and data collection effort was then designed
and implemented with the purpose of overcoming the above-mentioned problems.
The rest of this section describes in detail how these problems were addressed.

The predictive algorithm’s intervention took place at three separate periods as
opposed to a single intervention period. The first period began on February 28, 1990,
and lasted for 13 days. The second intervention period began April 10, 1990, and
lasted for 12 days. The last intervention period was from May 17, 1990 to June 11,
1990, a total of 17 days.

Only weekdays were included in the analysis since ramp metering is not used
on weekends. The data were collected over a period of 3 months during the spring of
1990. By collecting the data during just one season and alternating between on-line
and off-line periods within this 3-month interval, it was expected that the seasonal
variation in the time series would be minimized. Of the 69 data samples provided by
TSMC, 65 were included in the analysis. Some extraneous factors may have affected
traffic conditions on the days some of the samples were collected since their values
were either too low or too high. Of the 65 data samples used in the statistical
analysis, 42 corresponded to the days the predictive algorithm intervention took
place. The remaining 23 data samples were collected on days the predictive algorithm
made predictions, but did not alter ramp metering rates. Therefore, for the present
evaluation, the size of the after data set was 42 data samples collected during three
separate periods. The size of the before data sets was 22 data samples collected at

two different intervals during the study period.
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The size of the data set for the prediction accuracy’s estimates corresponding
to the intervention period was 26 data samples. Thirty-two data samples were
available to estimate the accuracy of the algorithm’s predicting ability when only
prediction was allowed. As mentioned at the beginning of this chapter, the data for
the accuracy estimation consisted of the prediction messages printed during the on-

line and off-line intervals,

TRAFFIC VOLUMES AND LANE OCCUPANCY TIME SERIES

Traffic volumes and occupancy data are collected at TSMC on a continuous
basis. Twenty seconds of traffic volumes and lane occupancy averages measured from
loop detectors were aggregated in 5-minute intervals from 6:00 am to 8:00 am, which
is the time period used for the evaluation of the predictive algorithm’s intervention.
Thus, for each of the four stations in the study section, two data sets were assembled.
The first data set corresponded to the period from 6:00 am to 7:00 am and contained
time series of traffic volumes and occupancy for each 5-minute period. The second
data set consisted of the same type of data, but was collected from 7:00 am to 8:00
am. The traffic conditions during the period from 6:00 am to 7:00 am can be
categorized as lightly congested traffic conditions, while the period from 7:00 am to
8:00 am can be categorized as more congested traffic conditions.

The S-minute aggregation period was preferred, in this research, to the 15-
minute aggregation period used in the past evaluation. In conducting the statistical
analysis, the S-minute aggregation period performed better than the 15-minute
aggregation period, at illustrating the impacts of the algorithm’s intervention. Five-
minute aggregation periods are large enough to smooth out random fluctuations, and
yet small enough to show the changes taking place within the AM peak period.

Once the data sets were assembled, the data were screened to account for any

unusual observations. Unusual observations, called outliers, are sometimes very
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useful in providing information about unusual circumstances. In this case, extreme
values either too low or too high were considered missing values. Unlike SST,
MINITAB has no difficulty dealing with data sets containing missing values.

The time series of traffic volumes and occupancy were plotted prior to the
statistical analysis. The time series plots, shown in Appendix B, were analyzed in a
preliminary step to determine if the effects of seasonal trends or cyclical variations
were present in the time series that could otherwise be confused with the intervention
effect. The true characteristics of a given time series can only be confirmed through
analysis. Different modeling techniques are used, depending on the type of time
series. Past research has shown that traffic volumes and occupancy time series can be
characterized as random stationary processes when aggregated in periods greater
than 5§ minutes. (26) A stationary process, defined from an intuitive point of view, is
one that does not experience systematic changes in the mean and variance; that is,
there is no long term change in the mean or the variance. In mathematical terms,
stationarity is demonstrated if the joint distribution of any consecutive group of points
of the time series is constant with respect to displacement in time.

To prove the stationarity and randomness of the time series, which in turn
would prove the absence of seasonal or trend effects in the time series, two diagnostic
checks were conducted: the run test and autocorrelation function.

The object of the run test is to determine the expected and actual number of
runs corresponding to a time series. A run is a set of consecutive data points in the
time series either all greater, or smaller, than the mean. For a time series to be
considered random, it must have a moderate number of runs with regard to the total
number of data points contained in the time series. The expected number of runs as
a function of the number of observations was estimated using the following formula:
27)

Uk=E(k}=[(2p(n-p)/n) +1] (1)



where k is the number of runs in the time series, and n is the total number of data
points above the mean in the sample. Since the traffic volumes and occupancy time
series passed the run test, it was assumed that the condition for randomness was
satisfied (see Appendix C).

The condition of stationarity was approved by using the autocorrelation
function. The graphic representation of the autocorrelation function, which is cailed
the correlogram, characterizes the structure of the time series (28,29,30). In this case,
since the correlograms did not show any long-lasting persistent pattern, and since
approximately only one value of the autocorrelation coefficient lay outside the limits

of +/- 2/V/N, the time series was considered random and stationary (see Figure 2.1).

TIME SERIES INTERVENTION ANALYSIS

The purpose of the time series intervention was to determine the effect of the
predictive algorithm’s intervention on the traffic volumes and occupancy time series
collected at the study section. As a result of the predictive algorithm intervention, it
was expected that smoother traffic conditions would occur, specifically an increase in
traffic volumes and a decrease in occupancy.

Given the characteristics of the time series, multiple linear regression models
were fitted. The parameters of the models were estimated using ordinary least

square methods. The stationarity and randomness of the time series eliminated the
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need for using more complicated models, such as spectral analysis or ARIMA

models. There was also no need to include covariates as independent variables in the

regression equation since the seasonal variation was not significant.

The following multiple regression models were fitted to the time series data

to determine the statistical significance of the predictive algorithm’s impacts:

Vi = ag + ajly + ag Vg + ... + ag Veoy + ag O +

+ ag Of—1 + ...+ aglO¢_3 + ey (2)

O = bg + byl + by Vg + ... + bg Vi_3 + bg Op_; +

+ bg Ot—3 + er¢ (3)

where:

Vi, O : Traffic Volumes and Lane Occupancy for a given S-minute
period, t.

ag,bg: Intercepts of the regression equation.

ap,by: Estimable coefficients of the intervention variable. It represents
the expected unit variability of the dependent variable accounted for by
the intervention variable; that is, the predictive algorithm’s
intervention.

I A variable that represents the predictive algorithm’s
intervention. It is called an indicator or qualitative variable. It took
values of either one or zero. (One on days the intervention took place,
and zero when it did not).

ay,.....a8

bs,.....bg: Estimable coefficients of the independent variables.

€€t Regression residual,
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The regression model was specified mainly to determine the effect of the
predictive algorithm’s intervention on the traffic flow variables. It expresses the
inherent relationship between the level of traffic flow variables corresponding to a
specific highway location at consecutive S-minute periods during the AM peak period.
In this sense, the model established a functional relationship based on the continuity
of the traffic flow variables within the AM peak period, but, at the same time, it took
into account short term fluctuations in traffic flow.

In addition to the coefficient of determination, residual analysis was conducted
to check the adequacy of the regression model. Standard residuals were computed
and plotted to determine if 95 percent of them fell within the interval between -2 and
+2. Since approximately 95 percent of the standardized residuals did fall within this
interval range, the assumption regarding the normality of the errors term was
validated.

Two problems were encountered in using the regression models specified.
One was related to the multicolinearity problem often found when using multiple
linear regression. The othere was related to the inclusion of endogenous variables in
the regression model.

Multicolinearity is present when the independent or regressor variables are
highly correlated; that is, when the absolute value of the coefficient of correlation
between the regressor variables equals one. In this situation, the variance and
covariance of the regression coefficients become very large, and as a result they are
poorly estimated.

In this analysis when multicolinearity was found, some regressor variables
were deleted from the model, as recommended in the literature. (31) Given the
nature of the data, dropping one or two variables from the basic regression model was

the most effective way to deal with this problem.



The inclusion of endogenous variables in the regression model was the second
area of concern. Traffic volumes and occupancy for a given time period are
interdependent. If both are present in the regression equation, either as the
dependent or the independent variable, a method other than the ordinary least
square technique should be used to estimate the parameters of the regression
equation. (32,33) It is recommended that single equation methods, such as the two-
stage least squares method, be used in these cases. However, this requires the
creation of instrumental variables, for which no data were available for this study.

The computational method during the model building stage involved a direct
search on t. That is, the variable selection procedure started with the full model,
which contained eight regressor variables and then, based on each variable’s
individual contribution to the regression sum of squares, variables were dropped if
their t statistics were low. In a significant number of cases, the endogenous variables
were dropped from the basic regression model. Therefore, this eliminated the need
to use methods other than the ordinary least Square technique. The results of the
statistical analysis are summarized in Tables D.1 through D.4 in Appendix D. The

analysis and interpretation of the results are presented in Chapter 3.

29






3. ANALYSIS AND INTERPRETATION OF RESULTS

INTRODUCTION
The analysis of the predictive algorithm’s intervention involves two aspects;
estimation of the accuracy of the algorithm’s predicting ability, and
determination of the statistical significance of the predictive algorithm’s
impacts.

The results of the statistical analysis are presented in the Tables D.1 through
D.4 in Appendix D. Table D.1 contains the results of data collected at the NE 205th
St. station, which is the location where traffic congestion usually occurred during the
AM peak period. The remaining tables contain the results of data collected at the
NE 195 st, NE 185th St ang NE 175th g stations, all of which are located
downstream of the bottleneck section.

The accuracy of the algorithm’s predicting ability was estimated based on the
prediction message printed during the on-line testing period. Table 3.1 shows the
results for the period during which the algorithm was allowed to make predictions
without any adjustment of the ramp metering rates. Table 3.2 shows the results
obtained during the period when the predictive algorithm’s intervention was in effect;
that is, when predictions were made and ramp metering rates were adjusted. In this

case, the prediction indicators were estimated for every 5 minutes from 6:00 a.m. to

8:00 a.m.

PREDICTIVE ALGORITHM’S ACCURACY
In order to determine the accuracy of the predictions made by the algorithms,
three indicators were estimated:
percent correct,

false positive rate, and
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false negative rate.

Percent correct is an indicator of the overall ability of the predictive algorithm
to correctly predict both congested and uncongested intervals. It is a measure of the
predictive algorithm’s reliability. This indicator was calculated by adding the number
of times a congested interval was predicted and occurred, plus the number of times a
congested interval was not predicted and, subsequently, did not occur. This total was
divided by the number of 20-second intervals contained in the analysis period.

False positive rate is an indicator that represents the probability of having
uncongested intervals falsely predicted as congested intervals. The false positive rate
was estimated by adding the number of times congested intervals were predicted and
did not happen, and dividing this total by the total number of uncongested intervals
there were during the analysis period.

The false negative rate is simply the percentage of congested intervals that the
algorithm was not able to anticipate. This indicator was obtained by adding the
number of times congestion was not predicted but did occur, and dividing this total by

the number of congested intervals that occurred during the analysis period.

TABLE 3.1: ACCURACY OF PREDICTIVE ALGORITHM
COMPARISON OF PREDICTION INDICATORS

(Intervention OFF)
FALSE FALSE 7% OF CORRECT
POSITIVE NEGATIVE  PREDICTIONS
Cabrera’s 15.0 414 80.8
Evaluation
Berg’s 7.1 40.8 79.6
Evaluation
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The results shown in Table 3.1, which also includes those corresponding to the
past evaluation, (4) were based on a combination of lightly- and heavily-congested
periods. The only significant difference between the two research groups’ results
were related to the false positive rates. The false positive rates obtained in this
analysis were significantly higher than the ones obtained in the past evaluation, even
though the faise negative rate and percent correct were similar, One reason for this
difference may be attributed to the fact that different data sets have a different
proportion of lightly- and highly-congested intervals. The reference here is to highly-
congested intervals as those intervals in which traffic congestion actually occurred. In
general, from analysis of the prediction messages, one may conclude that a high
number of false positive predictions is associated with data sets that contained a
relatively high number of lightly-congested intervals. On the other hand, a low
number of false positive predictions seemed to be typical of data sets that contained a
high number of heavily-congested intervals. In summary, the occurrence of congested
and uncongested intervals was correctly predicted 80.8 percent of the time. This is
roughly the same percentage obtained in the past evaluation. 41.4 percent of the
congested intervals were not anticipated, and 15 percent of the uncongested intervals
were incorrectly predicted as congested intervals. The high false positive rate is
discouraging; however, it could be an indication of a predominance of lightly-
congested intervals, i, that the data set used to estimate these indicators.

Table 3.2 illustrates the prediction indicators obtained for each S-minute
period from 6:00 a.m. to 8:00 a.m., based on the data sets corresponding to the period
when the intervention was in effect. Unfortunately, data for only 26 days were
available to estimate the prediction indicators. Therefore, it was not possible to

obtain a complete picture of the situation.
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TABLE 3.2 INTERVENTION ANALYSIS
ACCURACY OF THE PREDICTION INDICATORS
(Intervention ON)

PERIOD PERCENT PERCENT PERCENT
FALSE POSITIVE FALSE NEGATIVE CORRECT

6:10-6:15 18.91 43.60 76.1
6:15-6:20 13.22 56.20 77.9
6:20-6;25 10.86 36.76 84.6
6:25-6:30 15.85 45.16 79.5
6:30-6:35 13.43 54.28 78.5
6:35-6:40 14.23 48.86 77.9
6:40-6:45 13.14 64.10 76.7
6:45-6:50 13.08 55.07 79.5
6:50-6:55 15.16 52.07 772
6:55-7:00 11.18 41.17 83.6
7:00-7:05 10.80 56.17 81.5
7:05-7:10 16.15 53.22 77.9
7:10-7:15 14.95 44.92 79.7
7:15-7:20 14.95 40.44 78.2
7:20-7;25 15.27 39.21 78.5
7:25-7:30 9.80 4133 84.1
7:30-7:35 10.43 47.32 78.9
7:35-7:40 11.03 55.00 71.7
7:40-7:45 11.26 50.51 78.9
7:45-7:50 11.98 38.72 82.8
7:50-7:55 9.36 31.86 85.4
7:55-8:00 10.31 35.71 85.1
AVERAGE 13.10 46,90 80.10

The 80.1 average percent correct coincides with the value shown on Table 3.1.
The false positive rate (13.1 percent) was not significantly different. It includes the
effect of the algorithm’s intervention, that is, the number of congested intervals that
were anticipated and successfully avoided. The false negative rate (46.8 percent) is
somewhat discouraging. One may still contend, however, that the ramp metering
system is ot worse off than before the predictive algorithm’s intervention, since more

that 50 percent of the congested intervals were correctly predicted.



The results from Table 3.2 were also useful in explaining or corroborating
some of the results of the statistical anaiysis. In this respect, the most meaningful
indicators were the false positive rate and the percentage of congested intervals
correctly predicted. Comparing both the false positive rate, shown in Table 3.1
(which was estimated for the entire period of analysis that did not include the effect
of the intervention), with the false negative rate for each 5-minute period in Table 3.2
that did include the effect of the intervention, one might assume that the difference
represents the actual intended effect of the predictive algorithm, that is, a measure of
its ability to avoid traffic congestion. On the other hand, the percentage of congested
intervals correctly predicted gives an indication of the number of congested intervals
for which the severity was reduced due to the predictive algorithm’s intervention. The

prediction indicators will be discussed in the next section in the results’ analysis.

RESULTS AND INTERPRETATION OF STATISTICAL ANALYSIS

The results of the statistical analysis corresponding to the period from 6:00
a.m. to 6:10 a.m were not included in the analysis and interpretation of results
because ramp metering at on-ramps upstream of the bottleneck section usually starts
after 6:10 am. Therefore, even though predictions were made, ramp metering
adjustments did not take place during this period. A summary of the predictive
algorithm’s significant impacts are shown in Table 3.3. In this table, the numbers in

brackets are the coefficients of the intervention variable.

35



TABLE 3.3 INTERVENTION ANALYSIS

SUMMARY OF SIGNIFICANT STATISTICAL IMPACTS

PERIODS h STATIONS h
NE 2050 st NE 1950 st
6:10-6:15 vol1 p<.10 [35.49] volt p<.05[39.52]
occl ins 0cc | ins
6:30-6:35 volt p<.10[12.43] vol ins
occ | ins occ ins
6:40-6:45 vol ins vol ins
occ) p<.10{-1.43] occ ins
6:45-6:50 vol ins volt ins
occ ins occ| p<.10[-1.46]
6:55-7:00 vol ins vol 1 p<.05[20.03]
occt p<.05[2.33] occ ins
7:05-7:10 vol ins vol ins
oce| p<.05[1.82] occ ins
7:20-7:25 vol ins vol| p<.01 [-34.89]
occ ins occ ins
7:30-7:35 vol ins vol ins
occ| p<.10[-1.65] occ ins
7:35-7:40 vol ins vol ins
occt p<.10{3.29] occins



TABLE 3.3 (Continuation)

PERIODS STATIONS h

NE 185th g¢, NE 175th g4,
6:10-6:15 vol ins vol ins

occ ins occt p<.10[.98]

6:15-6:20

6:25-6:30

6:30-6:35

6:50-6:55

6:55-7:00

7:00-7:05

7:05-7:10

7:15-7:20

7:35-7:40

7:40-7:45

7:45-7:50

7:55-8:00

vol| p<.10[-13.49]
occ ins

vol ins
occ| p<.10[-.8361]

vol ins
occ ins

vol ins
occ ins

volt p.<01[24.6]
occ ins

vol ins
occ ins

vol| p<.1[-13.3]
occ ins

vol ins
occ ins

vol ins
ocCC Ins

vol ins
occt p<.10[1.58]

vol ins
occt p<.10[15.65]

volt p<.10]15.65] wvol ins

Occ 1ns

37

vol ins
occ ins

vol ins
occ ins

vol T p<.05[12.7]
occ ins

vol ins
occt p<.05[1.63]

vol ins
occ ins

vol ins
occt p.<05[1.63]

vol ins
occt p<.05[1.91]

vol ins
occt p=.10[1.61]

vol ins
volt p<.05[-29.9]

vol] p<.05[-20.9]
occt p<.05 [2.39]

vol ins
vol ins

occ ins



RESULTS FROM 6:10 AM. TO 6:15 A.M.

In the following analysis, the researchers refer to the average traffic conditions
occurring during each period, illustrated in Figures 3.1 and 3.2,

During the period from 6:10 a.m. to 6:15 a.m., the expected impacts of the
predictive algorithms’s intervention were clearly noticeable. On the average, traffic
flow variables at the bottleneck section corresponded to the level of service D,
probably approaching level of service E, with an average traffic volume of 1900 vph
and average occupancy of 17.35 percent. These are considered lightly-congested
conditions, and are representative of the conditions under which the algorithm was
calibrated.

The statistical analysis presented in Table 3.3 shows a significant increase in
traffic volumes due to the algorithm’s intervention; this was noticeable, not only at the
bottleneck section, but also at the downstream station at NE 1951, There were
significant increases in the number of vehicles at the bottleneck section, and at the
downstream section due to intervention. The impact of the intervention on
occupancy was not significant. The average values of occupancy were lower than
critical at all sections (with the exception of NE 195th St.). They were lower than 18
percent, which is the threshold value for traffic congestion. The analysis of prediction
indicators, shown in Table 3.2, corroborates the results of the statistical analysis with
regard to the effectiveness of the predictive algorithm’s intervention during this
period.

The false positive rate of 18.9 percent was clearly greater than the 13.1 percent
average for all of the periods, as seen in Table 3.2. The indicators shown in this table
were estimated with the data that included the effects of the algorithm’s intervention
and the false positive rate of 18.9 percent was also greater than the false positive rates
shown in Table 3.1., which was estimated with data that did not include the effect of

the prediction algorithm’s intervention. Therefore, during this period, there was a



significant percentage of contested intervals that were successfully avoided by the
prediction algorithm’s intervention. By doing this, occupancy at the mainline was
maintained under critical values, increasing vehicle throughput at the section. The
false negative rate was lower than the average for all periods (see Table 3.2), but still
a bit higher than the false negative rate shown in Table 3.1. In summary, lightly-
congested traffic conditions that characterized this period facilitated the predictive
algorithm’s intervention, causing the intervention to be effective.

The NE 1750 s¢. station, which is farthest downstream, was not significantly
affected by the intervention during this period. The main reason for this seemed to
be the one mile distance between this section and the bottleneck section. It was not
possible to evaluate the impact of the intervention at the 236th St. SW station,
located upstream of the bottleneck section, due to the lack of data. The inclusion of
the traffic flow variables corresponding to this section could have been very useful in
illustrating the effect of the avoidance of traffic congestion at the upstream section.
When traffic congestion occurs, the traffic stream traversing the upstream station
cxperiences a reduction in speed as it approaches the bottleneck section. The speed
of the wave carrying this traffic stream is higher than the wave carrying the traffic at
the bottleneck section. Therefore, a shock wave is produced. The effect of this shock
wave is mainly a reduction in traffic stream speed, which is subsequently reflected
upstream. (34) If traffic congestion is avoided, vehicle speed is maintained
throughout the entire section; therefore, traffic flow stability is attained.

During this period, the predictive algorithm successfully achieved its objective,
as shown by the significant increases in traffic volumes at the NE 195th st and NE
1850 St stations. Similar impacts probably occurred at the 2360 St. SW station as a

result of the intervention; however, there were no data to validate this.
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RESULTS FROM 6:15 A.M. to 6:20 A M. and
FROM 6:20 A.M. to 6:25 A.M.

The statistical analysis of these periods shows similar results, which are
insignificant for the most part. Analyzing the traffic variables corresponding to the
NE 2050 st. station , it is seen that, even though traffic volume was maintained at the
same level during the previous period, there was a significant increase in the
occupancy during the period from 6:15 a.m. to 6:20 a.m. that continued in the next
period, reaching a peak occupancy of 20.2 percent. Similar situations occurred at the
downstream sections.

At these downstream sections, however, there were increases in traffic
volumes up to or exceeding capacity. During these two periods, traffic conditions
became more congested along the mainline. In this situation, the predictive
algorithm could only have had a marginal effect on occupancy reductions and level of
service improvements. One of the most important effects of the predictative
algorithm was avoiding breakdown conditions that may have had a negative impact
on traffic flow stability.

The analysis of the prediction indicators was inconclusive. The false positive
rate corresponding to the 6:15 a.m. to 6:20 a.m. period was similar to the average rate
for all periods, whereas the false negative rate was considerably higher than the
average rate for all periods (see Table 4.2). They may account for the low
significance of the results of the statistical analysis, since more than half of the
congested intervals were missed; it is possible that only a very low percentage of the
congested intervals were avoided. During the period from 6:20 to 6:25 a.m. the false
positive rate was even higher than average, but there was also a very low false
negative rate, which may indicate the effectiveness of the algorithm regarding the
reduction of the severity of the correctly predicted congested intervals. But, this did

not have a very significant impact on the traffic flow. The effectiveness of the
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predictive algorithm’s effort toward reducing the severity of traffic congestion
probably does not translate into a significant impact.

In summary, during these two periods, 6:15 a.m. to 6:20 a.m. and 6:20 a.m. to
6:25 a.m., traffic congestion at the study section increased, as shown by increases in
the average value of occupancy at all stations. Traffic volumes increased at all
stations, with the exception of the NE 205th St. station, where traffic volumes
remained at the level of the earlier period (6:15 to 6:20). As traffic conditions
approached capacity, the main effect of the predictive algorithm was to avoid
breakdown conditions.

RESULTS FROM 6:25 A.M. TO 6:30 A.M. AND

FROM 6:30 A.M. TO 6:35 A.M.

Traffic conditions were similar during these two periods. It appears that a
trend toward a slight decrease in the average value of occupancy started at the NE
205t St and NE 195th st stations, while no changes occurred at the next
downstream sections. Again, no changes in the average traffic volumes occurred at
the bottleneck section. Traffic kept flowing at the bottleneck section at the same
previous levels. A decrease in traffic volume occurred, however, at the NE 195th g,
and NE 185th St. stations, and no changes at all were observed at the NE 175th St.
station. Although similar traffic conditions occurred during both periods, the results
of the statistical analysis were somewhat different; from 6:25 a.m. to 6:30 a.m., traffic
volume increased due to the intervention, but not significantly. With regard to
occupancy the only significant impact occurred at the NE 185th St. station . At the
other stations, the impact was insignificant. From 6:30 a.m. to 6:35 a.m., the
statistical analysis results show that a significant increase in traffic volumes occurred
at the NE 205t St. and NE 175t St. stations. These increases were accompanied by
insignificant decreases in occupancy at all stations, with the exception of the NE

195th st station, where the impact was negative, but fortunately, insignificant. The

43



analysis of the prediction indicators for these periods was inconciusive. It appears
that the period from 6:25 a.m. to 6:30 a.m., given its higher-than-average false
positive rate, should have shown more significant changes than the period from 6:30
am. 1o 6:35 am. This period had a considerably higher false negative rate, which
was expected to affect the significance of the results, but did not. In fact, there were
more significant changes during this period than the previous period. One possible
explanation of the difference in the significance of the impacts was found by analyzing
the histograms of occupancy for these two periods. Even though average values of
occupancy were almost the same (see Figure 3.1), the median values were different,
and with a higher number of lightly-congested values during the period from 6:30 a.m.
to 6:35 a.m. than during the period from 6:25 a.m. to 6:30 a.m. Therefore, one may
assume that, even though on the average, traffic conditions were similar during these
two periods (as shown in Figures 3.1 and Figure 3.2), light congestion predominated
from 6:30 am. to 6:35 am. thereby facilitating the predictive algorithm’s
intervention, making it more effective.

In summary, during these periods, a slight decrease in occupancy at the
bottleneck section and at the NE 195t st station probably contributed to
improvements in the level of service. No changes in traffic volumes took place at the
NE 205th St. and NE 175th St. stations, but a decrease in traffic volumes occurred at
the NE 1951 St. and NE 1850 St. stations. The entire section seemed to have
operated at, or near, capacity levels. The prediction algorithm’s intervention had a
significant impact on traffic volumes during the period from 6:30 am. to 6:35 a.m.,
and a marginal impact on occupancy. It seems that in this situation, even a marginal
impact on occupancy at the bottleneck section had a positive effect at maintaining

traffic stability throughout the entire section.



RESULTS FROM 6:35 A.M. TO 6:45 A.M.

On average, occupancy continued to decrease at the bottleneck section during
this period, while traffic volumes continued to flow at the same levels as during the
previous two periods. At the rest of the stations traffic flow variables did not
experience significant changes. One may interpret this situation as an improvement
in the level of service at the bottleneck section. This improvement, however, did not
recur at the next two downstream sections, as no changes were observed at the
occupancy level. The intervention of the predictive algorithm had no significant
impact from 6:35 am. to 6:40 am. This was corroborated by the analysis of
prediction indicators, which showed close to average values of false positive and false
negative rates (see Table 3.2). Similarly, insignificant results were obtained for the
period from 6:40 a.m. to 6:45 a.m. with regard to statistical analysis. The only
exception was the significant decrease in occupancy obtained at the NE 205th st.
station. This decrease in occupancy was accompanied by insignificant decreases in
traffic volumes at the NE 19512 St. station. The prediction indicators for this period

were very discouraging, especially the false negative rate, which was extremely high.

RESULTS FROM 6:45 AM. TO 7:05 A.M.

During these periods, there was a trend at the bottleneck section toward a
decrease in traffic volumes and occupancy. This provided the researchers an
opportunity to evaluate the effectiveness of the predictive algorithm in a situation
where, due to an existing commuter pattern at the bottleneck section, there was a
shift backward in the volume/density curve toward significantly less-congested
conditions. These conditions were found at other stations., The changes, however,
were less prominent at the NE 195th st station, where traffic volumes did not change
significantly and maintained operating at capacity. The same conditions applied to
the NE 1852 St. station. One may assume that commuters arriving at their work

places at 7:00 a.m. probably traverse the bottleneck section at periods between 6:15
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a.m. and 6:35 a.m., while those arriving at about 8:00 a.m. do not usually traverse the
section until after 7:10 a.m. This may explain the decrease in occupancy and traffic
volumes at most of the stations in the study section. The results of the statistical
analysis were varied, with significant impact on traffic volumes at some times, and
significant increases in occupancy. In a situation (characterized by a backward shift in
the volume/density curve), when a decrease in volume was accompanied by a
decrease in occupancy, the predictive algorithm’s intervention seemed to decrease the
level of service by u_nnecessarily increasing the occupancy at the NE 175th St. station.
These significant increases in occupancy mainly occurred from 6:50 a.m. to 6:55 a.m.
and from 7:00 a.m. to 7:05 am. During the period from 6:55 a.m. to 7:00 am., a
significant impact occurred due to the intervention. In general, an increase in traffic
volumes occurred along the entire section. The next period, however, did not show
evidence of a significant impact due to the intervention. The prediction indicators
were not encouraging, either: a false negative rate of 56 percent undoubtedly
affected the significance of these results (see Table 3.2). The only period in which the
false negative rate was lower than the average for all the periods was the period from
6:55 a.m. to 7:00 am. During this period, a significant impact on traffic volumes
occurred at the NE 1951 St. and NE 185t St. stations.

It is not easy to clarify what could be expected of the predictive algorithm’s
intervention on a situation like the one characterized by a shift toward less congested
conditions, provided this shift was caused by or due 10 a normal shift in commuter

patterns within the A.M. peak period.

RESULTS FROM 7:05 A.M. TO 8:00 A.M.

Beginning at 7:05 a.m., the average occupancy at all stations began to increase

until it reached a peak during the period from 7:30 a.m. to 7:35 a.m. These changes



in occupancy were accompanied by a decrease in traffic volumes. After 7:35 a.m.,,
occupancy started to decrease again; however, traffic volumes did not increase.

The results of the statistical analysis corresponding to these periods were
generally similar to those obtained in the past evaluation of the predictive algorithm’s
intervention. (4) Even if the predictive algorithm correctly predicted traffic
congestion during highly-congested periods, such as those from 7:10 a.m to 7:35 a.m,,
it was expected that the effect of the intervention would not be significant. The traffic
congestion in these circumstances was not caused by vehicles entering the section at
on-ramps, but by those coming from the upstream sections of the bottleneck section.
Therefore, the intervention of the predictive algorithm alone, did not decrease
occupancy at the bottleneck section significantly enough to increase traffic volumes at
the downstream sections.

The effectiveness of the predictive algorithm’s intervention seemed to
decrease as the level of congestion increased, even though during some of the

periods, especially from 7:10 am. to 7:25 a.m., the prediction indicators were very

encouraging,
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4. CONCLUSIONS AND RECOMMENDATIONS

SUMMARY

Following recommendations made in past research regarding predictive
algorithm intervention, the researchers tested the predictive algorithm on-line by
incorporating it into the WSDOT’s ramp metering computer system at the Traffic
System Management Center. By conducting the on-line testing during a time frame
of one seasen only, (the spring of 1990), and by following the "operant” design time
series intervention approach (5), they expected the effect of the predictive algorithm’s
intervention to be more clear. The algorithm made predictions during the entire
study period, but was allowed to intervene, by adjusting ramp metering rates, only at
three separate intervals. In between these intervention intervals, conditions were
expected to return to normal.

During the study period, data were collected on traffic volumes and occupancy
at four stations located in the study section. In addition to data on traffic volumes
and occupancy, the computer’s prediction messages generated during the on-line
testing were saved in order to estimate the accuracy of the algorithm’s predicting
ability. The time series of traffic volumes and occupancy did not show any significant
trends or seasonal effects. Once it was demonstrated that they were random and
stationary, multiple linear regression techniques were applied to determine the

impact of the predictive algorithm’s intervention on the traffic conditions at the study

section.
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Conclusions

Prediction Accuracy

. The predictive algorithm correctly anticipated traffic conditions 80.8
percent of the time. There were no significant differences between the values
estimated with the data that included the intervention effects and the values obtained
during the past evaluation.

. The predictive algorithm predicted congestion 58.6 percent of the time.
It did not predict congestion 41.4 percent of the time. The ramp metering system was
less effective than before the predictive algorithm was used since the percentage of
congested intervals predicted was higher than the percentage of missed congested
intervals.

. The predictive algorithm falsely predicted congestion 15.0 percent of
the time. This rate is higher than the rate obtained during the past evaluation. This
may be attributed to the different proportions of lightly- and highly-congested
intervals in the data sets that were used to estimate this indicator.

. In summary, the results of the research confirm that the predictive
algorithm is able to predict traffic conditions with some degree of accuracy.
However, since the percentage of correct predictions is only useful as an overall
predictor of the ability of the algorithm to correctly anticipate traffic conditions
(congested and uncongested intervals), it is the false positive and false negative rates
that are important to consider in assessing the accuracy of the predictions. In this

sense, the false positive rates were not very encouraging.

Impact on Traffic Volumes and Occupancy
Some effective results did occur because of the predictive algorithm’s
intervention. During certain time periods, the intervention seemed to have improved

traffic conditions at some locations of the study section. There were more increases
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in traffic volumes than significant decreases in occupancy. The main effect, however,
seemed to be toward achieving or maintaining traffic flow stability during those
periods when operation was at capacity.

Some specific observations were:

. Significant changes in traffic volumes occurred, mainly at the
bottleneck section and at the next downstream section during periods when the
average occupancy at the bottleneck section was under the critical value (18.0 %).

. Decreases in occupancy were achieved in some cases, but significant
decreases occurred only in very few cases, and mainly at the bottleneck and at the
next downstream section.

. The traffic conditions within the a.m. peak period experienced short-
term fluctuations that affected the effectiveness of the algorithm’s intervention even if
the predicting ability of the aigorithm was not significantly affected.

. The predictive algorithm seemed to be more effective in the periods
when occupancy along the mainline was under the critical value (18.0 %). During
these periods, only by maintaining occupancy under this value, did the intervention
have a significant impact on traffic volumes. In the traditional volume/density curve,
this corresponds to the left side of the curve, within the region of stable flow, in the
area representing level of service D, approaching level of service E.

. As congestion increased and occupancy reached values greater than
18.0%, the effectiveness of the intervention decreased, and its effects became
marginal. Increases in traffic volumes and decreases in occupancy were not expected
in these circumstances. Ounly by avoiding breakdown conditions, did the predictive
algorithm achieve advantageous results.

. When given the particularity of the traffic pattern at the study section, a

shift toward a less-congested condition was observed (occupancy went back to values
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closer or lower than 18%), the predictive algorithm’s intervention produced some
significant increases in vehicle throughput.

. After 7:05 a.m., as highly-congested conditions predominated, the
effects of the intervention became insignificant, as was expected. However, accuracy
indicators were encouraging at certain periods.

In summary, the predictive algorithm achieved its main objective with regard
to the correct anticipation of traffic conditions. The impact of the intervention was
noticed during those periods in which lightly-congested conditions predominated.
This was especially noted with occupancy lower than 18%. Once the value of
occupancy at the bottieneck section reached values higher than 18%, the effect of the

intervention became insignificant.

Recommendations

It is obviously more beneficial to be able to anticipate congestion than to
contend with the consequences after it has already occurred. Therefore, a predicting
type algorithm, one that anticipates traffic congestion and intervenes before it
actually occurs, by adjusting ramp metering rates, is clearly needed.

The predictive algorithm evaluated in this report represents a step toward the
management of recurrent congestion at specific freeway locations. However, this
predictive algorithm still needs improvement so that it is able to anticipate congestion
with a higher degree of accuracy and achieve more significant impact in the traffic
conditions. That is, a higher degree of predictive accuracy and adjustments to the
metering process are necessary to make the predictive algorithm’s intervention more
effective. |

. Additional research is needed to refine the predictive algorithm. The
statistical pattern recognition approach has already shown promising results.

Therefore, it should continue to be used to test other combinations of variables, such
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as storage rate and occupancy at the upstream section, using different lags. Two
models should be developed, one to be applied during lightly-congested traffic
conditions and the other to be used during heavily-congested traffic conditions.

. The "operant” design approach should continue to be followed in future
interventions. When possible, however, intervention and non-intervention periods
should be allocated the same number of days. In this way, an imbalance that could
affect the results would be avoided.

. The predicting messages printed during future on-line testing should be
saved for the entire study period. These messages constitute a useful source of
information not only to estimate the accuracy of the predictions indictors for both
intervention and non-intervention intervals, but also to indicate possible potential
improvements that could be made to the predictive algorithm.

. The traffic flow variables corresponding to the location where recurrent
bottleneck formation takes place should be analyzed. The more that is known about
the behavior of traffic variables at those specific locations, the more apparent the
effects of an intervention should be. For instance, analysis of the short-term
fluctuations that normally take place at the bottleneck section, and how these
fluctuations affect the entire study section could be useful. In addition, it would be
possible to identify those periods that, although very short in duration, are stable
enough to show specific characteristics such as extremely high volumes, or highly-
congested conditions. The identification of these periods within the a.m. peak period
would heip determine when the predictive algorithm’s intervention would be more
effective, when only marginal impacts could be expected, and finally, when other
options such as ramp closure (for only short periods of time) should be implemented
in order to compensate for the deficiencies of the existing system. In order to
implement the above-mentioned analysis, the data collection effort presently

implemented for driver information system-related projects should be used to obtain
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the required data. In addition, these data couid be used for the simulation testing of
predictive algorithms developed in the future.

. One simple way to evaluate the impact of any future or present
predictive algorithm could be to estimate the number of bottleneck occurrences that
take place during each period (5, 10, 15 minutes) for both intervention and non-
intervention situations. Once this has been determined, hypotheses about the mean
and variance of both data sets could be tested. One would have to assume, however,
that any change in the average number of bottleneck occurrences during a given time
interval was due to the intervention.

If multiple linear regression models including endogenous variables are used
to estimate the statistical significance of the predictive algorithm’s intervention, it is
recommended that an additional estimation of the parameters of the model be done
using single equation methods. Though these methods require the creation of
instrumental variables, for which additional data are needed, this effort could

provide more sound results.
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TABLE C.1 SUMMARY OF RUN TEST RESULTS

APPENDIX C

Station NE 205 Station NE 195

Period 9] E 0 E O E @) E
1 20 27 27 28 26 32 27 32
2 29 27 29 33 26 31 34 32
3 24 29 31 32 20 32 29 32
4 30 30 35 33 24 23 28 31
5 30 32 25 35 32 32 27 30
6 32 33 29 32 29 31 24 32
7 29 32 25 33 29 31 37 33
8 31 33 32 30 28 32 25 33
9 33 31 24 31 22 29 27 33
10 31 32 23 30 31 33 31 33
11 30 31 26 32 25 31 23 31
12 31 33 33 33 30 32 24 33
13 27 31 29 33 26 29 29 32
14 35 33 29 32 30 32 22 33
15 27 31 24 33 28 31 30 33
16 29 31 27 31 31 32 21 33
17 27 31 23 33 25 31 30 33
18 30 33 23 32 27 31 25 33
19 27 32 30 33 27 33 28 33

20 33 31 28 23 25 31 - -

21 28 30 26 33 35 32 - -

22 33 23 30 33 25 30 - -

23 33 31 25 32 31 32 - -

O: Observed number of runs in the time series.

E: Expected number of runs in the time series.
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APPENDIX D

RESULTS OF STATISTICAL ANALYSIS

TABLE D.1 INTERVENTION ANALYSIS RESULTS
STATION: NE 205TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables

Variable of Intervention
Variable

6:00 - 6:05 Occupancy 63 94 INS v
Volume -15.49 -1.50 INS IV,Oc (1)

6:05 - 6:10 Occupancy A8 0 INS IV,0¢ (t-1),V(t-1),V(1)
Volume -16.45 -95 INS IV,O¢ (1-1),V{(t-1),0(t)

6:10 - 6:15 Qccupancy -1.58 -1.22 INS IV,Oc (t-1)
Volume 35.49 17 P<.10 IV,0(t-1),V(t-1)

6:15 - 6:20 Occupancy -47 -42 INS IV,0(1t-1),V(t-1), V(1)
Volume -9.93 -1.13 INS IV,V(t-1),0, (t)

6:20 - 6:25 Occupancy 1.35 128 INS 1V,0, (t-1),V(t-2)
Volume -7.016 -90 INS IV, V(t-3),0(1-2),V(t-1),0(t)

6:25 - 6:30 Occupancy -9 -1.19 INS IV,0(t-1),0(1-2}, V(1)
Volume 9.52 131 INS IV,V(1-1),V(t-2)

6:30 - 6:35 Occupancy -31 -35 INS IV,Oc (t-1), V(1)
Volume 12.43 1.84 P<.10 IV, V({t-3),0(t-1),0(t)

6:35 - 6:40 Occupancy -11 -.14 INS IV,0(t-1),0(t-2)
Volume -4.04 -35 INS IV,V(t-2),V(i-1),0(t)

6:40 - 6:45 Occupancy -1.43 -1.84 P<.10 IV,0(t-3),0(t-1),V(t)
Volume -9.60 -1.78 INS IV, V(t-3)},V(t-2)

6:45 - 6:50 Occupancy 0 0.93 INS 1IV,0(1-2),0(t-1), V(t)
Volume 9.54 116  INS IV, V(t-1),0(t)
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TABLE D.1 (Continued)
STATION: NE 205TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables
Variable of Intervention
Variable
6:50 - 6:55  Occupancy 122 144 INS IV,0(t-2),0(t-1),V(t)
Volume 1237 091 INS IV, V(t-2},0(t)
6:55-7:00 Occupancy 233 2.29 P<05 IV,0(t-3),0(t-1),V(1-2),V(t-1)
Volume 1222 1.62 INS IV, V(t-2),0(t-1), V(t-1),0(t)
7:00- 705  Occupancy -007 -01 INS IV,0(1-2),0(t-1),V(t-2),V(t)
Volume -33 -43 INS IV,V(t-2),0(t-2), V(t-1),0(t)
7:05-7:10  Occupancy -1.82 215 P<05  IV,0{t-1),V(t)
Volume -11.27 -1.56 INS 1V, V(1-2),V(t-1),0(t-1),0(t)
7:10- 7115  Occupancy -1.00 -89 INS IV,0(t-1), V(1)
Volume -6.94 -99 INS IV,V(t-2),0(t)
7:15-7:20 Occupancy 1.17 1.10 INS IV,0(t-3), V(1-3),0(t-1),V(1-1),VO(1)
Volume -9.10 -57 INS IV,0(t-3),V(t-3),0(t-2),0(t-1)
7:20 - 725 Qccupancy A1 09 INS IV,0(t-2),V(t-2), V(1)
Volume -16.73 -1.61 INS o(t-2),V(t-2),0(1), 1V
7:25-730  Occupancy 0.56 62 INS IV,0(1-2),0(t-1),V(t-1), V(1)
Volume 6.45 0.78 INS IV, V(t-3),V(t-1),0(t-2),0(t)
730 -7:35  Occupancy -1.65 171 P<.101 IV,V(t-3),V(t-1),0(t-1), V(1)
Volume -14.00 -1.52 INS IV, V(1-3),V(t-1),0(t-2),0(t)
7:35-7:40 Occupancy 329 179 P<.10  IV,0(t-2),0(t-1),V(t-1),V(t)
Volume -57 -03 INS IV,0(t-2),V(t-2),0(t-1),0(t)
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TABLE D.1 (Continued)
STATION: NE 205TH

Period Dependent Coefficient T-Ratio  Sig. Independent Variables
Variable of Intervention
Variables
7:40 - 7:45  Occupancy 81 68 INS IV,0(t-2),V(t-2),0(t-1),V(t-1),V(t)
Volume 1.63 18 INS IV,0(t-2),V(t-2),0(t-1),V(t-1),0(t)
7:45- 750 Occupancy 134 1.24 INS IV,0(t-3),V(t-3),0(t-1), V(1)
Volume -1.26 -.16 INS IV,0(t-3),V(t-3),V(t-1),0(1)
7:50-755  Occupancy 1.34 113 INS 1V,0{t-2),0(t-1),V(t)
Volume -2.63 -23 INS IV.0O(t-2),V(1-2),0(t)
7:55-8:00 Occupancy -64 51 INS IV,0(t-3),0(t-1), V(t-1),V(t)
Volume -13.18 1.47 INS IV, O(t-3),V(t-2),0(t-1),V(t-1)
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TABLE D.2 INTERVENTION ANALYSIS RESULTS
STATION: NE 195TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables

Variable of Intervention
Variable

6:00 - 6:05 Occupancy 139 1.87 P<.10 v
Volume -24.65 -1.76 P<.10 IV, O(t)

6:05 - 6:10 QOccupancy -51 -67 INS IV,O(t-1),V(t-1), V(1)
Volume 222 -12 INS IV,O{t-1),V(t-1),0(1)

6:10 - 6:15 Occupancy -1.16 -1.24 INS IV,0(t-1),V(t-1)
Volume 39.52 203 P<.035 IV, 0(1-1),V{t-1),0(1)

6:15 - 6:20 Occupancy =942 -1.07 INS IV,0(t-1),V(t-1),V(t)
Volume -12.00 -1.41 INS IV,0(t-1),V(t-1),0(t)

6:20 - 6:25 Occupancy -.63 -.88 INS IV, 0(t-2),0(t-1),V(t-2), V(1)
Volume -14.02 -1.35 INS IV,0(1-1),0(t)

6:25 - 6:30 Occupancy 19 0.28 INS IV,0(1-2),0(t-1),V(t)
Volume 11.38 1.48 INS IV, V(1-2),V(1-1),0(t)

6:30 - 6:35 Occupancy 31 54 INS IV,0(t-1},0(t-2)
Volume -1.17 -15 INS IV,0(t-1),V(t-2),0(t-2)

6:35 - 6:40 Occupancy .19 -28 INS IV,O(t-1),V(t)
Volume -10 -02 INS IV, V{1-2),0(t)

6:40 - 6:45 Occupancy -74 -1.10 INS IV,0(t-1),V(t)
Volume -10.41 -1.44 INS IV, V(1-1),0(t)

6:45 - 6:50 Occupancy -1.46 -1.79 P<.10 IV, V(t-1),0(t)
Volume 13.68 1.75 P<.10 IV, V(t-1),V(t-2),0(t)
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TABLE D.2 (Continued)
STATION: NE 195TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables

Variable of Intervention
Variable

6:50 - 6:55 Occupancy 92 1.14 INS IV,0(t-1),0(t-2),V(t)
Volume 10.27 0.75 INS IV, V(1-2),0(t)

6:55 - 7:00 Occupancy 1.14 111 INS IV,0(t-1),V(t-1),V(t)
Volume 2003 2.03 P<.05 IV,V(t-2),0(t-2),V(t-1),0(t-1)

7:00 - 7:05 COccupancy -1.20 -83 INS IV, V({t-D,0(t-1),V(t)
Volume -6.01 -.50 INS IV, V(t-1),0(t-1),0(t)

7:05 - 7:10 Occupancy -.64 -87 INS IV,0(t-1),V(t-1),V(t)
Volume =177 -1.09 INS IV, V(t-1),0(t-1),0(t)

710 - 7:15 Occupancy 0.69 &3 INS IV, V(t-2),0(t-1),V(t)
Volume -9.21 -1.25 INS IV,V(1-2),V(t-1),0(1)

T:15-7:20 Occupancy 0.56 0.42 INS IV,0(t-1),V(t)
Volume 6.65 0.34 INS IV, V(t-1),0(t)

7:20 - 7:25 Occupancy 0.9 0.70 INS IV, V(1-1),0(t-1)
Volume -34.89 -3.07 P<01 IV, V(t-1),V(t-2)

7:25 - 730 Occupancy -24 -26 INS IV,0(t-1),V(t-1), V(t)
Volume -.055 -01 INS IV, V(1-2),V(1-1),0(1t)

730 - 7:35 Occupancy 1.42 1.52 INS IV,0(t-1),V(t-1),V(t)
Volume -.55 -.06 INS IV,0(t-1),V(t-1),0(t)

7:35- 740 Occupancy -.06 -.05 INS IV,O(t-1),V(t)
Volume 2238 1.40 INS IV,0(1-2),V(t-1)
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TABLE D.2 (Continued)
STATION: NE 195TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables

Variable of Intervention
Variable

7:40 - 7:45 Occupancy -07 -.06 INS IV,0(1-2),0(t-1), V(1)
Volume -2.44 -24 INS IV, V(t-1),0(t)

7:45 - 7:50 Occupancy 1.54 1.51 INS IV,O(t-1),0(t-2}, V(1)
Volume -17.75 -1.58 INS IV, V(t-2),0(t)

7:50 - 7:55 QOccupancy 111 0.86 INS IV,0(t-1),V(t)
Volume 1.04 0.08 INS IV, V(t-2),0(1)

7:55 - 8:00 Occupancy 0.25 0.22 INS IV,0(t-1),0(t-2),V(t)
Volume 6.47 0.72 INS IV, V(1-2),0(1)
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TABLE D.3 INTERVENTION ANALYSIS RESULTS

STATION: NE 185TH

Period Dependent Coefficient  T-Ratio  Sig. Independent Variables

Variable of Intervention
Variable

6:00 - 6:05 Occupancy .80 1.27 INS v
Volume -936 -83 INS IV,0(t)

6:05-6:10 Occupancy -1.27 -1.99 05 IV, V(1-1),0(t-1),V(t)
Volume 1n 09 INS IV,0(t-1),V(1-1),0(t)

6:10-6:15 Occupancy -21 -37 INS IV,0(t-1),V(t-1),V(1)
Volume 19.72 1.28 INS IV,0(t-1),V(t-1,0(t)

6:15-6:20 Occupancy .40 15 INS IV,0(i-1),V(t-1),V(t)
Volume  -13.49 -1.75 INS IV,V(t-1),0(t-1),0(t)

6:20 - 6:25 Occupancy -41 -90 INS IV,0(1-1),V(t-1),V(t-2),V(t)
Volume -02 -.06 INS IV, V(t-3),V(t-1),0(t)

6:25-6:30 Occupancy -.83 -1.78 P<.10 IV,0(t-3),V(t-3),0(t-1)
Volume 9.86 .70 INS IV,V(t-3),V(t-2),V(i-1)

6:30-6:35 Occupancy  -57 -9 INS IV, V(t-2),V{t-1),0(t-1)
Volume 423 65 INS IV, V(t-1),V(t-2),V(1-3),0(t-1)

6:35-6:40  Occupancy -48 -1.05 INS IV,0(t-2),0(t-1),V(t-1),V(t)
Volume 4.46 0.88 INS IV, V(t-2),0(t-2),V(t-1),0(t)

6:40 - 6:45 Occupancy -.64 -93 INS O(t-2),V(t-2),0(t-1),V(t-1),0(t),IV
Volume  -13.48 -1.60 INS IV,0(t-3),V(i-1)

6:45-6:50 Occupancy .22 A3 INS IV,0(t-3),V(1-2),0(t-1), V(1)
Volume 7.63 1.01 INS IV,0(t-3),0(t-1),V(t-1)
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TABLE D.3 (Continued)
STATION: NE 185TH

Period Dependent Coefficient  T-Ratio Sig. Independent Variables
Variable of Intervention
Variable
6:50 - 6:55  Occupancy .77 1.25 INS IV,0(t-3),V(t-3),0(t-1),V(t)
Volume  -10.65 -88 INS IV, V(t-3),0(t-3),V(t-1),0(t-1),0(t)
6:55-7:00 Occupancy -.58 =77 INS IV, V(t-3),0¢ (t-1)

Volume 24.68 267 P<i1 IV,0(t-2),V(t-1)

7:00-7:05 Occupancy -121 -1.37 INS IV,0(t-2)
Volume  -11.43 -.58 INS IV,0(t-2),V(t-1)
7:05- 710  Occupancy 52 81 INS IV,0O(t-1)
Volume  -1330 173 P<.10  IV,V(1-1),V(t-2),0(t-1)
7:10-7:15  Occupancy -25 -37 INS IV,0(1-2),V(t-1)
Volume -6.57 -.80 INS IV, V(t-2),V(t-1)
7:15-7:20  Occupancy 1.5 1.16 INS IV, V(t-1),V(t-2)
Volume -192 -10 INS IV,V(t-1)
7:20-7:25  Qccupancy .29 29 INS IV,0O(1-1),V(t-1),V(t)
Volume -5.31 -.50 INS IV, O(t-1),V(t-1),0(t)
7:25-730 Occupancy .06 a7 INS IV, V(t-3),0(t-1),V(t)
Volume -4.93 =54 INS IV, V(t-2),0(1)
7:30-735 Occupancy -51 -53 INS IV, V(1-3),V(t-2),V(1),0(t-1)
Volume -16 -02 INS TV, V(1-3),0()
735-740 Occupancy 0.56 042 INS IV, V(1-3),V(t-2),0(t-2),V(t-1)
Volume 1.08 0.07 INS IV,0(t-1),0(1-2),V(t-2),V(t-1)
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TABLE D.3 (Continued)

STATION: NE 185TH

Period Dependent Coefficient  T-Ratio Sig. Independent Variables
Variable of Intervention
Variable
7:40 - 7:45  Occupancy 1.58 1.76 P<.10 IV,0(t-3),0(t-1),V(t-1),V(t-2)
Volume  -11.97 -1.37 INS IV,0(1-2),V(t-2),0(t-1),V(t-1)
7:45-7:50 Occupancy 2.48 184 P<.10 IV,0(t-3),0(t-2),V(t)
Volume  -17.83 -1.55 INS IV,V(t-1),V(t-2)
7:50 - 7:55 Occupancy 127 1.15 INS IV,0(t-3),0(t-1)
Volume -5.31 -44 INS IV,0(t-2),V(t-2),0(t-1)
7.55-8:00 Occupancy -1.05 -97 INS IV,0(1-1),0(t-3)
Volume 15.711 1.98 P<.10 IV,V(t-1),V(t-2), V(t-3),0(1-3),0(t)

85



TABLE D.4 INTERVENTION ANALYSIS RESULTS
STATION: NE 175TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables
Variable of Intervention
Variable
6:00 - 6:05 Occupancy -.02 -.04 INS v
Volume 2.65 0.21 INS V,0(t-1)
6:05- 6:10  Occupancy -937 -1.72 P<.10 IV,V(t-1),0(t-1)
Volume  -11.18 -.60 INS IV,V(t-1),0(t-1)
6:10 - 6:15  Occupancy (.98 170 INS IV, V(t-2),V(t-1),0(t-1)
Volume 2268 143 INS IV, V(i-1),V(t-2),0(t)
6:15-6:20 Occupancy 08 35 INS IV,0(t-2),V(t-2),V(t-1),0t-1), V(1)
Volume -7.50 -1.11 INS IV,V(t-2),0(1-2),V(t-1),0(t-1),0(1)
6:20 - 6:25  Occupancy 031 1.02 INS IV, V(t-3),0(t-1)
Volume -7.24 -90 INS IV, O(t-3},V(t-2),V(t-1),0(t)
6:25-6:30 Occupancy -.78 -1.50 INS IV,0(t-3),0(t-1)
Volume 4.65 .76 INS IV.V(t-2)
6:30- 6:35  Occupancy -47 -1.30 INS IV,O(t-1),V(t-1),V(t)
Volume 12.66 1.98 P<.10 IV, V(t-3},V(t-1)
6:35-6:40  Occupancy 22 A48 INS IV,0(1-3),0(t-2),0(t-1)
Volume 3.22 0.54 INS IV V(t-1),V({t-2)
6:40 - 6:45  Qccupancy -.51 -143 INS IV,0(t-1),0(t-2),V(t-2),V(t)
Volume -3.34 -.56 INS IV,0(1-2),V(1-2),V(t-1), V(1)
6:45-6:50 Occupancy +.94 1.69 INS IV,0(t-2),0(t-1)
Volume -3.95 -57 INS IV,0(t-3),0(t-1), V(t-1)
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TABLE D.4 (Continued)
STATION: NE 175TH

Period Dependent Coefficient  T-Ratio  Sig. Independent Variables
Variable of Intervention
Variable
6:50 - 6:55 Occupancy 226 227 P<.05 IV,0(t-1),0(t-3)
Volume 11.83 0.87 INS IV, V(t-1),V(t-2)
6:55 - 7:00  Occupancy 33 0.46 INS IV,0(t-1),0(t-2),0(1-3)
Volume 1094 112 INS 1V,0(t-1),V(t-1)
7:00-705 Occupancy 1.63 2.05 P<.05 IV,0(t-1},0(t-3)
Volume 1.20 0.14 INS IV,V(t-2),V(t-3)
7:05-710 Occupancy 191 1.99 P=0.05 IV,0(1-2),0(t-1),V(t)
Volume  -1041 -1.15 INS IV,0(t-3),0(t-2),0(t-1), V(1-2),
V(t-1)
7:10-7:15  Occupancy -70 -64 INS IV, V(t-2),V(t-1),V(t),0(t-1)
Volume -4.67 -.35 INS IV,V(t-2),0(t)
7:15-720 Occupancy 161 1.66 P=0.10 IV,V(1-2),0(t-1),V(t-1),V(1)
Volume  -22.92 -1.40 INS IV, V(1-3),V(-1)
7:20-7:25  Qccupancy 0.80 0.73 INS IV,0(t-1),V(t-1), V(1)
Volume 15.49 152 INS IV, V(t-1),80
7:25-7:30 Occupancy 091 0.74 INS IV,0(t-3),V(t-2),0(t-1)
Volume -4.00 -55 INS IV,0(t-3),V(1-3), V(t-2),0(t)
730-735 Occupancy -.19 -15 INS IV,0(t-3),0(t-1)
Volume 1398 145 INS IV,0(t-3), V(t-3),0(1-2),v(t-1),0(1)
735-740 Occupancy 2359 1.74 P<.10 IV,0(t-3),V(t-3),0(t-1),V(t-1)
Volume -162 -110 INS IV, V(t-1)
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TABLE D.4 (Continued)
STATION: NE 175TH

Period Dependent Coefficient T-Ratio Sig. Independent Variables
Variable of Intervention
Variable
7:40 - 7:45  Occupancy 239 2.00 P=0.05 1V,0(t-2),0(t-1},V(t)
Volume  -29.92 -2.94 P<.01 IV,0(t-3),V(t-2),V(t-1)
7:45-7:50 Occupancy .33 022 INS IV,0(t-3),0(t-1), V(t-1), V(1)
Volume  -13.96 -74 INS IV, V(t-1)
7:50-7:55 Occupancy 1.64 1.11 INS IV,0(t-3},0(t-1),V(t-1)
Volume -5.12 -47 INS IV,V(t-2),0(t-3)
7:55-8:00 Occupancy 129 0.13 INS IV, V(1-1),V(t-2)
Volume -3.04 -33 INS IV,0(t-2),V(t-2),V(t-1)
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