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CHAPTER ONE: SUMMARY

Introduction

In operating a real-time, traffic-responsive control system, such as a freeway ramp
control system, most of the decisions made by the system will depend on its prediction of
traffic during upcoming short-term periods. Regardless of its type, the prediction of such
a system must be as accurate as possible to be effective, and to allow the traffic-responsive
control system to handle the prediction logic in a satisfactory manner. If traffic congestion
on the freeway can be foreseen, then congestion can be avoided in one of several ways.
For example, consider a short section of freeway with on-ramps and off-ramps, a lane
occupancy at the section's downstream boundary greater than 18 percent, and a positive
difference between inflowing and outflowing traffic (these criteria are from the Guidelines
of the Traffic Systems Management Center of WSDOT), indicating that traffic flow is at
or above capacity. The controller concludes that a "bottleneck” has formed and reduces
the entry rates at on-ramps upstream from the section's downstream boundary. In this
way, potentially heavy congestion can be avoided and operation of the freeway improved.
Thus, optimal freeway traffic control can be obtained if future volume and occupancy is
predictable with reasonable accuracy.

Basically, there are two classes of predictors: parametric and nonparametric. Most
predictors are parametric; in urban traffic control systems, these can also be classified as
second generation and third generation predictors (1-5). Recent studies have used Box-
Jenkins type analyses of time series data (7,8,9,10,11,12), spectral analysis (13), Kalman
filtering (14,15,16,17), automatic control concepts (18), and adaptive prediction system
analysis (19), to forecast freeway traffic flow. Other researchers have used nonparametric
methods to forecast freeway traffic volume (23).

This research paper deals with the prediction of freeway traffic volumes and

occupancies using parametric methods, including the following steps:



1)

2)

3)

4)

Four existing parametric methods will be used to forecast volumes and
occupancies. These models include the adaptive prediction system, the
double exponential smoothing method, the exponential smoothing with
adaptive response method, and the Box-Jenkins method. Each of these
four models uses just one time series to forecast its own future.

A new model will be developed using Fourier's transformation or cross
spectrum to forecast the downstream volumes (29). This model can
analyze the lags between upstream or on-ramp volume time series and
downstream volume series. Based on these lags, a model can be
constructed which uses the upstream volumes to forecast the downstream
volumes; its parameters can be obtained by the ordinary least square
method and recursive method.

A detailed comparison of both volume and occupancy forecasting results
using these different models will be made, and the interpretation of the
results and the drawbacks of each model will be discussed.

A conclusion will be drawn from our research and recommendations

presented.



CHAPTER TWO

Research Design

To analyze and forecast volumes in this paper, a segment between the NE 185th St.section
and the NE 162nd St. section on Interstate 5 in northeastern Seattle was chosen as a study
site. This segment has an off-ramp and an on-ramp at NE 175th St. The distance from
the upstream section to the on-ramp is 0.777 miles, and the distance from the on-ramp to

the downstream section is 0.426 miles.

Figure 2.1 - Study Site

Upstream > Downstream
{section NE 185) > (section NE 162)
>
>
NE 175 NE 175
Off-ramp On-ramp
L |
r 0.777 mile 0.426 mile l

The volume time series for these sections at both the off-ramp and the on-ramp
were collected on February 23, 1989, between 6:00 a.m. and 8:00 a.m. For the NE 185th
St. section and the NE 162nd St. section, the volumes were aggregated over all four lanes,
the data interval being one minute. There are 122 data points for each volume time series.
The study data are detailed in Appendix C.

To analyze and forecast lane occupancies, a study data set, or occupancy time
series, was also collected at NE 185th St. section during the same time. These 122 data

points are also presented in Appendix C.



Both volume time series and occupancy time series were broken into two parts; 1)
102 data points, and 2) 20 data points. In this report, the first 102 data points will be used
to build four existing models (introduced late), and the last 20 data points will be used to
update the forecasting and to calculate the three criteria (introduced late) for each model.

To build the model developed in this paper for forecasting downstream volumes,
the first 102 data points of the upstream time series, on-ramp volume time series, and the
downstream volume time series were used; the last 20 data points of upstream and on-
ramp volume time series were used to forecast the last 20 downstream volumes. These
forecast and actual downstream volumes will serve to calculate the three criteria.

The four existing models used to forecast volumes and occupancies included: 1)
the Box-Jenkins model, a well-known and successfully model used in traffic forecasting
(26), 2) a double exponential smoothing model (27), 3) an exponential smoothing with
adaptive response (28), and 4) an adaptive prediction system model introduced by Lu
(19). The Box-Jenkins model and double exponential smoothing model are often used in
business forecasting. Each of these models uses one or more current data points of one
time series to forecast its own future. The assumption made about these models is that
there exists a correlation between current and future data, and so the current data can be
used to forecast its future. However, if this assumed correlation does not exist, and the
future data does not occur as expected, then the prediction of these models would be
incorrect.

In our study section, we know what the downstream volumes are from the
upstream volumes, and the volumes at the NE 162nd St. section are from the NE 185th
St. and NE 175th St. on-ramp volumes. Therefore, another forecasting model could be
built by analyzing the relationship between these upstream volumes and the downstream
volumes so that this model can use the upstream volumes to forecast the downstream
volumes. Our objective was to forecast the future downstream volumes based on the

current upstream volumes; therefore, we chose upstream sections or stations with the



thought that the current traffic volumes at these sections or stations at interval ¢ would
arrive at the downstream section no earlier than #+1. If the time interval is shorter, the
upstream volume cannot forecast the downstream volume, as they would appear to be
simultaneous. Therefore, we should analyze the vehicle travel time from the NE 185th St.
section and the on-ramp NE at 175th St. to the downstream NE 162nd St. section. Since
vehicles travel at varying speeds, the travel time from the upstream section to the
downstream section will also vary.

A new model, which uses the Fourier's transformation to analyze the travel time or
lags is developed in this report (29). After the lags are obtained, the model can be
constructed, and the ordinary least square method and the recursive method will be used
to obtain the parameters of the obtained model. Then, the downstream volume forecast
by this model, and the three criteria listed below, can be calculated. Because of the
difficulty in expressing downstream occupancies as a function of upstream occupancies,
only the four existing models will be used here to forecast occupancies.

In order to compare both volume and occupancy forecasting results obtained by
the different models, three criteria will be used: 1) mean relative absolute error, which
indicates the error as a fraction of the measurement, 2) relative square root absolute error,
which penalizes large prediction errors, and 3) maximum relative absolute error. The
detailed formula is given in Chapter Five.

The computer software used to build these models includes BMDP (30) in the
MAX system, which was used to build the model developed in this paper, IDA (31) in the
MAX system to build time series models based on the Box-Jenkins time series analysis
approach, and MINITAB in the CYBER system to calculate the three criteria and make
some general calculations.

FORTRAN programs in the CYBER system were used to estimate the adaptive
prediction system model, double exponential smoothing model and exponential smoothing

with adaptive response model.



CHAPTER THREE

Existing Models

CHAPTER REVIEW

Four existing forecasting models will be introduced in this chapter, these are:

1. the adaptive prediction system model,
2. the double exponential smoothing model,
3. the exponential smoothing with adaptive response model, and

4, the Box-Jenkins model.
All of these models use univariate time series to forecast its own future. These

models will be discussed in the following section.

ADAPTIVE PREDICTION SYSTEM MODEL

The adaptive prediction system model, introduced by Lu, can be considered a
dynamic parameter estimation model; i.e., the traffic conditions predicted at time step &
are the function of both past traffic conditions at time step k-1, &-2, ..., k&-M (where M<k,
and M and k are positive integers) and a set of parameters are estimated by the adaptive
prediction model (19). If this adaptive prediction model is viewed as a system, then its
structure is alterable in such a way that its behavior or performance improves through
contact with its environment. In fact, this model is-the steepest type of adaptive algorithm
(24).

Assuming that the predicted future value at step £, I}(k), will be the linear
weighted combination of » previous values, we have

I?(k)=ink><V(k—s—j) where (k=s+1, s+2, ...)
i=0
or

V(k)=V.W, (3.1



where

V(k) is a predicted value at time £,

Wy, Wi oo Wy, ..., W, are weights,

V(k—s), V(k—s—l), V(k—s-j), s V(k—s—n) are the previous

values, and where

W, =[Wo, W oos Wy s w,] , and

V,_, =[V(k —s), V(k—s—l), V(k—s—j), V(k—s—n)]T, where

k is the time step.
After some mathematical derivation, and assuming that this time series is stationary (19),
we have

W, =W, +2ue(k)V,_, (3.2)
where

e(k)=V(k)-V(k), and

u is the step size from kto £+ 1.

Generally, a small p and 7 result in good stability but slow convergence speed, s0

there is a trade-off between stability and response performance (19). In our study, #=10

was chosen, so that the forecasting relative mean absolute error would be minimal.

DOUBLE EXPONENTIAL SMOOTHING MODEL

The double exponential smoothing forecast can follow a linear trend. Brown has
demonstrated that the steady-state response of exponential smoothing to a linear trend has
a constant lag of {1 @)/ a (12). This model can be expressed as

V(t+k)=a, +b(k+1) (3.3)

where

k is the time step,



71" is single exponential smoothing, which is given by
"= ar(t-1)+(1- )T}

71! is double exponential smoothing, which is given by
I = ol +(1-a)71).

o 1s a constant, which we evaluated from 0.1 to 0.9 in increments of 0.1.

EXPONENTIAL SMOOTHING WITH ADAPTIVE RESPONSE

In single exponential smoothing and double exponential smoothing models, the
parameter o is always a constant, so using the adaptive approach has been suggested by
Trigg and Leach to adjust this smoothing constant « (28). The following is the adaptive

approach proposed by Trigg and Leach:
P(0)=r(t-1)+alt-D(t-1)-P(e-1)] (3.4)

where

O<a<i,

= 7, +(1- 7)SE(¢ - 1),

t) = de,|+(1- 7)SAE(z - 1),
e = V(¢)-¥(¢), and

T is a constant.

Both t and the initial oo were evaluated from 0.1 to 0.9 in increments of 0.1 in our

research.

BOX-JENKINS UNIVARIATE TIME SERIES MODEL

The Box-Jenkins univariate time series method (26) has been used very
successfully in many fields, and has been proven very accurate in traffic forecasting (7, 8,
9,10,11,12).

Many real-time series, unless they are seasonal, can be represented by the general

class of linear models shown below. Actually, many types of time series in traffic

8



engineering are seasonal, i.e., monthly or weekly freeway volumes. In this study, since
only short-interval and short-term forecasts and volumes covering just one or two hours
are being considered, this kind of time series is not considered seasonal.

@,B(1-B)’[V(t)- u]=0©,Ba, (3.5)
where

p, d, q are nonnegative integers,

p is the mean of the series,

®_B isthe autoregressive operator of order p or

1-®,B-®,B* - —® B,

©_B is the moving average operator of order g or

1-0,B-0,B* —--—0_B*, and

a, is random disturbance, assumed to be independently distributed as

N(0,62).
The model in equation (3.5) is the autoregressive integrated moving average (ARIMA)
model of order (p, d, q).

ARIMA models are fitted to a particular data set mainly by a three-stage iterative
procedure: plots and identification, estimation, and diagnostic check. From the plots in
the first stage, we can find whether the time series is nonstationary with respect to
variance, or mean, or both.

If the time series is nonstationary with respect to the variance, one should use
some transformation, such as log, square, square root, eic., to reduce the
heteroskedascity. If the time series is nonstationary with respect to mean, then generally
performing first differencing or second differencing may be enough to change the series
into a stationary series. If the time series is nonstationary with respect to both variance
and mean, then both transformation and differencing will need to be done to change the
time series into a stationary series. After transformation and differencing, the

autocorrelations and partial autocorrelations must be calculated, to identify p, d, and g by



comparing these autocorrelations and partial autocorrelations with those of a basic

stochastic process. The sample autocorrelation function is given by

n-k

SO -Myvit+k)-my]
R, =+ n , (3.6)
> -mv]
=0
where R, is the autocorrelation coefficient at lag £,

MYV is the sample mean, and

n is the number of observations.
The autocorrelation function R, implies how the volume at time 7 is correlated with the
volume at time /-k; that is, how long a volume in the time series affects the state of that
ttme series in the future.

Generally, the autocorrelation function of a moving average process of order ¢ has
a cutoff after lag g, but a partial autocorrelation function that tails off Conversely, the
partial autocorrelation function of order p will have a cutoff after lag p, but an
autocorrelation function that tails off. For a mixed process, both autocorrelation function
and partial autocorrelation function will tail off. Failure of the autocorrelation function to
tail off rapidly suggests that differencing is necessary.

After determining p, d, and g, the parameters are estimated by nonlinear least
square techniques; the last step is to check the model's goodness of fit. If the model is
satisfactory, then the residuals should be white noise, or they are not correlated. The
adjusted Box-Pierce test, which can be used to test whether the residuals are white noise,

can be expressed as follows:

0. =rn+2) 3[R (@) n- )] G.7)

where

n 1s the number of observations

10



R, (a) is the residual autocorrelation for lag j, and

m is the number of calculated residual autocorrelation coefficients, about

n/4.
Q,, s distributed as a chi-square variable with (k-p-q) degrees of freedom; therefore, if
this (0, is less than the tabulated chi-square value with (k-p-q) degrees of freedom at a 95
percent confidence interval, then the residuals are white noise, and the obtained model is
satisfactory. If this is not the case,, we should estimate the model again, using the same
three-stage iterative procedure.

To forecast occupancies, all of the above models can be used, we just need to
change V(¢) and V(t) into @(t) and O(z), where O(¢) is a predicted occupancy at time ¢,
and 0(:) is an actual occupancy at the same time.

In Chapter Five, Results, these four models are assessed using the actual volume

and occupancy data, and the results and comparisons presented.

11



CHAPTER FOUR

New Model Development

CHAPTER REVIEW

In this chapter, Fourier's transformation of the cross correlation between upstream,
or on-ramp, volumes and the downstream volumes are used to analyze the relationships
(lags) between origins (O), upstream and on-ramp volumes, destinations (D), and
downstream and off-ramp volumes. (29) The recursive ordinary least square method is
introduced to build the eventual forecasting model. The data interval requirement is also

discussed this chapter.

TIME DOMAIN MODEL

First, let us look at the site example in figure 4.1.

Figure 4.1 - Site Example

Upstream Downstream

VoV vV

1 |

On-ramp Off-ramp

Traffic flow from upstream travels straight to the downstream, or exits at the off-
ramp. Similarly, traffic flow from the on-ramp travels to the downstream, or exits at the
off-ramp. If no congestion exists between the upstream and the downstream sections, the
inflowing volumes from the upstream and from the on-ramp should equal total outflowing
volumes, which will travel through the downstream section or exit at the off-ramp. We
should note that, since vehicles travel at varying speeds, the travel time from the on-ramp

or upstream to the off-ramps or downstream will not be constant. Our procedure was 1)

12



to develop the time domain model, 2) to transform the time domain model into frequency

domain model, or cross spectrum model, and 3) to analyze the downstream volume. This

same procedure can also be applied to analyzing the off-ramp volume.

GENERAL ASSUMPTIONS

(D

@

3)
(4)

To derive the time domain model, we assumed that

the time for all vehicles to travel from upstream to downstream is the same,
71 minutes,

the time for all vehicles to travel from the on-ramp to downstream is also
the same, 72 minutes,

the portion of vehicles from upstream to downstream is bl(T 1), and

the portion of vehicles from the on-ramp to downstream is bz(T 2).

If the volume of upstream is V,,P(t), and the volume of on-ramp is ¥, (¢), then the volume

of the downstream is

where

v, () =8,(TIW,, (1 - T)+b,(T2)V,,(t - T2)

v, (9 is the volume of the downstream at time ,

V,,P(t— T1) is the volume of the upstream at time ¢—1T1, because of the
travel time 71, and

Vo"(t— T2) is the volume of the on-ramp at time ¢—72, because of the

travel time T2.

Obviously, since vehicles travel at different speeds, the travel time for all vehicles

will not be the same, as is assumed in the above models. Suppose the travel time from

upstream to downstream is from a minimum T, ,, minutes to a maximum T1_ minutes,

and the travel time from the on-ramp to downstream is from T2, minutes to T2,

minutes. Suppose, also, that the number of vehicles from upstream is b(T'1), where T'1is

from T1__ to T1, , and the portion of vehicles from the on-ramp is b (T'2), where T2 is

13



from T2 to T2, In addition, if measurement errors exist, an error term, Z(f), should

be added to v, (8. Hence, we can obtain the following formula:

Zb (71w, (¢ - TD+ Zb (T2y (t-12)+ Z(2)

T1=Flmin T2=T2mn

For convenience, we can assume further that

b T, <T1<T1
bl(T1)={ (), ma =17 e ang
\ otherwise
b, (T2 2. <T2<7T2
bz(TZ):{ :(72), ma <72
0, otherwise
Therefore, we have the following general model:
Zb Ty, (t-T+ Zb (T2W,,(t-T2) + Z(2). 4.1)

Tiow 2=

Since ¥,(¢), V,,(¢—T1), ¥,,(¢t—T2), b(T1), and 5,(T2) are the functions of time,
f, that is this model is in the time domain, so it can be called the "time domain model."

From the above time domain model, we can see that if the ranges of 71 and 72,
and the functions &,(71) and 4,(T2) can be determined, then we can use this time domain
model to predict the downstream volume, assuming the expected mean of error is zero,
that is

E[z(r)] = 0.

Two problems arise here: 1) how to obtain the lags (the travel time difference
from the upstream section or on-ramp to the downstream section), and 2) how to get
coefficients b, and b, (defined in 4.4) at these different lags. From this time domain
model, however, we cannot obtain any useful information about b](T 1) and bz(T 2). In

the following sections, these two problems are analyzed and solved individually.
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LAG ANALYSIS AND FREQUENCY DOMAIN MODETL

From the modern time series theory, we know that the cross correlation function is
a very important factor in determining the multivariate time series model. The cross

correlation function can be written as follows:

"jj[)n(t) - MY 1] X2(t + T1) - MX 2]
Cp = (33) (4.2)

Jxr(x2)

where
C,, is the cross correlation function between X1 and X2 at lag T1,
T1 is the lag, which is a positive integer or zero,
X1(%) is a time series,
X2(?) is also a time series,
MX1 and F(X1) are the expected mean and variance of X1, and
MX2 and V(X2) are the expected mean and variance of X2.

If C,, is statistically significantly different from O, then this means X1 and X2 are
correlated at the lag 71. Here, "statistically significantly greater than 0" means that the -
ratio of this cross correlation should be significantly greater than 0 at a certain confidence
level, say 95 percent. If there is more than one 71, at which the ¢,'s are statistically
significantly different from 0, then it means that X1 and X2 are correlated at all of these
lags. If there are more than two time series, the same procedures can be applied to
analyze the lags between any two time series. After the determination of the lag 71, the
multivariate time series model can be built. Our problem, determining the lags 71 and 72,
is similar. If we calculate the cross correlation functions of the upstream, or on-ramp
volumes, and the downstream volumes, we can determine the lags at which the cross
correlation coefficients are statistically significantly greater than 0. Here, these lags mean
the travel time from the upstream section, or the on-ramp, to the downstream section. If
there is more than one lag at which the cross correlation coefficients differ from 0, this

implies that the travel time for different vehicles is different; these non-zero cross

I35



correlation coefficients mean that at these lags not one, the upstream volumes are
correlated with the downstream volumes.

Generally, however, the cross correlation coefficients at adjacent lags are
correlated, which will spread the cross correlations to a wide range of lags (22). But, in
fact, we have high correlations at only a few lags. If we use these obtained lags to build
the forecasting model, we cannot expect the predicted resuits to be very accurate.

Another alternative method of analyzing the lags is to use the Fourier's
transformation of the cross covariance to determine the lags, or phase delays, between two
time series at every frequency (33). Because Fourier's transformations are not correlated
at different frequencies, this transformation is used in this report to analyze the lags (29).

Fourier's transformation of the covariance can be expressed as

F(f)=["c(me*Mdn (4.3)

—x

where i is a complex notation, i* = ~1, and
e 7T = cos(27f - T1) —sin(27f - T1).
Because F{f) is the complex function of f, F{f) can be expressed in polar form as follows:
F(f)=|F(f)[xe"” (4.4)
the real non-negative function [F (r )| is called the gain, and the real function W) is called

the phase-shift. If we look at the inverse Fourier's transform given by

c(11) = f:F( e 2T Tgr (4.5)
We can see that C(7'1) may be considered to be a continuous sum of periodic components
exp(i2af - T1) (For a detailed proof of this equation refer to the text by Don Percival.
(29)). Replacing F{y) in equation (4.5) by equation (4.4), we have

(1) = [TIF(f)e g (4.6)

Thus, we can see that

|F(f)| af
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represents the amplification of all periodic components that are inside the band (7, ftdf)

and have common phase-shift W(f) at time 71=0.
Accordingly, the phase-delay, ¢, is determined by

g AT _

or

W(f)+2af-T1=0
which gives
where

—w< f <+w, f#£0. (34)

Because ((71) is real, from the equation (4.6) we have

(1) = [F(f)|cos(22f - T1)df +i[|F(f)|sin(27f - T1)df

SO

[F()sin2a - 10 =0

therefore

(1) =[)F(f)|cos(2f - T1)df

From the above equation, we know that only if

W(f)+2af-T1=0 or 2zk, where k=+1, 2, ., +N

that is
Tl= —-M or ——ZM_W(f) ,
24 2xf
|F(f)|cos2f - T1) =|F ()
Otherwise,

[F(f)|cos22f - T1) <|F(f).

17
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Therefore, from equation (4.8), we can see that if for any £, 7, = ~W(f)/2af, is constant
or W(f) = ax f, where a is constant, then obviously C(71) will reach its maximum, this
means the lag or delay between these two time series is just ¢;. If the range of ¢ is small,

then we can see that because

that is
2af 4, +W(f) =0
then
lcos(2f -1, +W( =1
IF()|sos2 k1) =|F ()
so C(T1) will still be large during this range. This means the correlation between the two
time series is large during this range or lag interval.
From the above discussion, it is clear that the F{y)'s are not correlated at these
different frequencies; therefore, the phase-delay or ¢, will be used to determine the lags in

this paper.

MODEL DEVELOPMENT

So far, we have solved the first problem of determining the lags. Next, we will
address the second problem, how to get coefficients &; and b;at the different lags.
From the general assumption made in the beginning of this chapter, we know
Tl T2
V)= Db (TW, (e-T)+ Y b(T2W, (¢~ T2)+Z(¢t).
TI=Tl, 2T 20
If we arrange the above equation into the following form,
v,(6)=V(t) B+ Z(z) (4.9)
where
B=[5(T1)s s 8(Tho)s 5,(T2,), - 5,(T2,)] =(b, b,),

b, = [bl(T]'min)’ vees bl(Tlmax)]:
18



b, =[5,(T2,,), ... b (sz)],
V() = [V (- T, oo Vit = Th), Vo (6= T2,0), oy V-T2, )]
T1,,, 71

min ? max *

know the lags, 71, 71

T2_.,and T2, are as defined in section 4.2, then we can find that if we

72_.,and T2 the above equation is just a linear

max ? max ¥

equation, and B is a coefficient vector, so we can use the ordinary least square method to

obtain these coefficients, B, and 132; that 1s,

[ZV (v'(r) ][ZV V(1) ]_E (4.10)

where

[Z VT(I)V(I)]-I is the inverse matrix of [Z VT(t)V(t)].

In the above derivation of the model, we use the ordinary least square method to
obtain the coefficients, 51 and f),_. However, it is time-consuming to calculate the inverse
of the matrix; therefore, we can use an adaptive method to calculate these coefficients. If

we let

k
=Y Vi(O)v(r)
-1
then we can rewrite equation (4.10) as follows:

by (k) =b,(k 1)+ A" (R)VT(R)[V, (k) - V(#)b, (k- D],

If we let
K(k)= A7 () V7(k)
Q(k)=A"'(k)
then
b, (k) = b, (k- 1)+ K(k)[V, (k) - V(k)b, (k1) (4.11)
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(4.12)

) Q(k-1)V (k) V(k)Q(k 1)
1+ V(k)Q(k - 1) V(k)

(4.13)

The derivational details can be seen in Appendix B.

Since for every £, b (k) can be updated, the equatic. (4.11)-(4.13) are called
recursive least square estimates.

The recursive estimators (4.11)-(4.13) require values Q(0) and b P (0) to start

recursion; therefore, if we have previous data, we can calculate the initial values Q(0) and

b,(0).

DATA INTERVAL ANALYSIS

The researchers' objective here is to use the upstream and on-ramp volumes to
forecast the downstream volume, i.¢., using the current upstream and on-ramp volumes to
forecast the downstream volume at the next interval. We will assign 7 to the data interval,
T1,,, (as defined before) to the minimum travel time from the upstream section to the
downstream section, and 72 . (as defined before) to the minimum travel time from the
on-ramp to the downstream section. Vehicles crossing the upstream section during the
time interval (¢, +7) will begin to arrive at the downstream section at t++71___; likewise,
vehicles entering from the on-ramp will begin to arrive at the downstream +section at
172 .. If we want to forecast the downstream volumes as accurately as possible, we
should choose an interval 7 when current upstream and on-ramp volumes just begin to
arrive at the downstream section at the next interval or later, tha: s,

<1, and T<72
ie, T'< minimum (71,72 ). (4.14)
Therefore, the data interval should be less than or equal to the minimum travel time from

the upstream section and on-ramp.
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If the interval is too small, the variation of volumes will be large, and the number

of lags will be large, and it will still be difficult to forecast the downstream volumes.

Therefore, we should choose the interval

T = min{ 71, T2 . ). (4.15)
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CHAPTER FIVE

Results

In this chapter, volume and occupancy study data are described, and the volume
forecasting results from the five models introduced and developed in the previous two
chapters are presented. These results are compared to the three criteria stated
subsequently. The interpretation of these results are then discussed. Finally, the
occupancy forecasting results from the four existing models are given, and a comparison

will be made against these three criteria.

DATA DESCRIPTION
For the purpose of this study, the traffic volume data used were collected by

detectors from one I-5 freeway segment at several sections between 185th St. NE and
162nd St. NE in Seattle, between 6:00 and 8:00 a.m., on February 23, 1989. The interval
of the data is 1 minute, with a total of 122 data points for each section.

The data set of 122 data points at the NE 162nd section was used in this study, the
first 102 data points were used to build the four models introduced in Chapter Three, and
the last 20 data points were used to update forecasting. (For the model developed in
Chapter Four, the upstream and/or on-ramp volumes are needed.)

The study occupancy data were also collected at the NE 185th St. section during
the same period. These 122 data points were divided as follows: the first 102 data points
to build the four models, and the last 20 to update forecasting.

The adaptive prediction system model uses the previous ten to twenty data points
to forecast the model's future. These previous data points to be used for forecasting are
evaluated and obtained so that the forecasting relative mean error are minimal. If this
number equaled ten, then the previous ten data points were used to forecast the next one,
that is, ten data points from 93rd to 102nd forecast the 103rd value. The coefficients (W ,)

were then updated, and these updated parameters and the ten data points from the 94th to
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the 103rd were used to forecast the 104th value. The last 20 values are treated in a similar
manner.

Using the double exponential smoothing model and the exponential smoothing
with adaptive response model, the first 102 data points were used to select the point at
which these two models should begin forecasting, so that the forecasting errors of the last
twenty points (from 103 to 122) were at a minimum. To build the Box-Jenkins univariate
time series model, the first 102 data points were analyzed, and the last twenty data points
were used to update the forecasting.

As discussed in Chapter Four, the upstream volume is required to forecast the
downstream volume. In order to compare the volume forecasting results of the above
four models with those of the model developed in Chapter Four, the same volume data set
at the NE 162nd St. section was chosen as the downstream volume. The upstream
volume at the NE 185th St. section and the on-ramp volume at NE 175th St. were used as
the upstream volume and the on-ramp volume (see Figure 5.1). The first 102 data points
of upstream, on-ramp and downstream volumes were used to build the model; that is, the
first 102 data points were used to analyze the lags and to obtain the beginning coefficients
so as to forecast the last 20 data points recursively. The data interval is 1 minute, as
discussed in Chapter Four; if an interval of less than 1 minute is needed, then some
forecasting errors can be expected.

Appendix C shows these data sets, including upstream volumes, on-ramp volumes,

downstream volumes and occupancies, and their plots.
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Figure 5.1 - Study Site

Upstream > Downstream
(section NE 185) > (section NE 162)
>
_—
NE 175 NE 175
Off-ramp On-ramp
l | |
| 0.777 mile l 0.426 mile l
CRITERIA

To evaluate both the volume and occupancy forecasting results of the above
models, the following three criteria were used: (1) mean relative absolute error, which
indicates the error as a fraction of the measurement, (2) relative square root absolute
error, which penalizes large prediction errors, and (3) maximum relative absolute error.

The corollary equations are as follows:
2y, (1) -V{)
1) E,, =2 -~*
0 =555

t=10

+20 (5.1)

Z ’) V() +20 (5.2)
(3) E_, =Max K—(t—rf)# (5.3)

where V, (¢) is the actual volume at time ¢, and V(1) is the predicted volume at the same
time 1.
To evaluate occupancy results, I?(t) and Vd(t) should be changed into @(t) and

O(t), where O(f) and O(¢) are predicted and actual occupancies, respectively.
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For a method to be superior to another, it should have at least two criteria better

than those of the other method.

VOLUME FORECASTING RESULTS AND THEIR COMPARISON

In this section, the volume forecasting results of every model are described, then
the results from the five models are compared.

To estimate the adaptive prediction system model, some preliminary runs were
made, and it was found that #=10 and u=4xE(—7), which resulted in the lowest
forecasting error. The initial weight vector W, =(0.1, 0.1, ---, 0.1) was chosen; that
is, the first value forecast is the average of the previous ten data. The obtained three
criteria are

1) £, =9.4 percent,
2)E_=03,
3) E_,, =43 percent.

The detailed forecasting results can be found in Appendix D.

The optimal beginning point resulting in the minimum forecasting error for the
double exponential smoothing model is the 85th data point, the optimal a = 0.1. The
three criteria are

1) E_ =10.5 percent,

2)E_ =03,

3) E__ =43 percent.
If we begin to forecast at point 100, it is found that the optimal o is still 0.1 and the three
criteria are

1} £, =10.7 percent,

2)E_=031,

3) £, =43.8 percent.
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This indicates that the two sets of criteria are almost the same; therefore, 1t is not
necessary to store the data from point 85 to begin the forecast; only the last three data
points need to be stored. Detailed results of this model can be found in Appendix E.

For the exponential smoothing with adaptive response model, the optimal
beginning point for the forecast is 95, the optimal © = 0.1, and the optimal a = 0.3. The
three criteria are

1) E,, =9.8 percent,

2) £, =0.28, and

3) E_,. =39 percent.
When we begin to forecast at point 100, the optimal T = 0.4, and the optimal o = 0.4. The
three criteria are

1) £, =12.3 percent,

2) E, =0.325,

3) £, =41.6 percent.
From the above two sets of criteria it is clear that the first one is better than the second
one. Hence, we need to store more data to forecast the last 20 data points better (for a
comparison of these sets of criteria, see Appendix F).

To develop the Box-Jenkins model, as was discussed above, we should use the
three-stage iterative procedure. From the plot (see Appendix C) it can be seen that the
first 102 data series is stationary with respect to the variance; therefore, we need not
iransform the data. We can also see that the time series does not need to be differenced
because it is stationary with respect to the mean. From the autocorrelation function (see
Appendix G), it can be seen that this time series is random because the autocorrelation
coefficients are all very small, and p=d=¢= 0. Therefore the model should be

V(t)= MV +a,, (5.4)
where

MV is the volume sample mean, and
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a, 1s the disturbance at time ¢,
which shows that the model is a random model and forecasts only the sample mean.

In the second stage, we need to estimate the coefficients of the model. Sinceitisa
random model, we only need to estimate the sample mean, which is 109.36.

In order to accomplish the last step, the software IDA on the MAX was used to
test whether the residuals were white noise or not. From the result, we found that the
adjusted Box-Pierce test O, is 14.18 when the degree of freedom is 19. Obviously, the
test O, is less than the tabulated chi-square with 19 degrees of freedom at a 95 percent
confidence interval, because ()., < 19. This indicates that the residuals are white noise.

Therefore, the obtained model

VA'(I) =MV +a,
was sufficient. We can use this model to forecast the last 20 values. The three calculated
criteria are

1) £, =17 percent,

2) E_ =038,

3) E_,. =58.6 percent.
(The detailed results can be found in Appendix G.)

To build the last model, the lags must first be analyzed. For this purpose the
software BMDP with the MAX system was used to calculate the phase, #{(f), of Fourier's
transformation of cross correlation between downstream volume and upstream or on-ramp
volume (see Chapter Four). Using the lag analysis method introduced in Chapter Four,
we calculated the lags between the upstream and the downstream volumes, and the lags
between the on-ramp and downstream volumes. The lags between the upstream and
downstream volumes (see Appendix H) are 1 minute and 2 minutes because the interval of
these data points is 1 minute. The results indicate that the travel time from the upstream
section (NE 185th St.) to the downstream section (NE 162nd St.) is 1 minute or 2

minutes. Lags between the on-ramp (NE 175th St.) and the downstream section (NE
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162nd St) are O and 1 minute, indicating that travel time from the on-ramp to the
downstream section is less than 1 minute since the interval is known to be 1 minute for
upstream volume T1_, =1, 71, =2, for the on-ramp volume 72, =0, T2, =1.

From the calculation and the discussion in section 4.5, we know that the optimal
interval is less than 1 minute; however, the interval of the actual data is 1 minute, thus we
can expect some error in forecasting, because we can not use v, (2) to forecast the
simultaneous downstream volume Vd(t). A comparison of the on-ramp volume to the
upstream volume shows that the former is much less than the latter, so we can expect
some forecasting error here as well. This error is small; therefore, we can still use these
data sets to forecast the downstream volume.

Thus, the forecasting model is

V() =500, (e - 1) + 8,2, (¢ -2) + 5,1, (1) (5.5)
Using the ordinary least square method, we can obtain the initial coefficients:

b(1)=0.42

5(2)=06

b,(1)=0.25.

t-ratios for these three coefficients are 5.72, 7.99 and 0.77 respectively. The r-ratio of
b,(1) is so low because most lags between on-ramp and downstream volumes are less than
0.5, but since we used 1 as the lag, this coefficient is not statistically significant from 0.
Because the downstream volumes are derived from the upstream as well as from the on-
ramp, this term is kept for easy interpretation.

The obtained initial matrix A™'(0) is

0.00008117 —0.00007646 —0.00006755
A7'(0)=|-0.00007646  0.00007941 —0.00003539
-0.00006755 —0.00003539 0.00157328

Using the recursive forecasting model, we have the three criteria:

1) E, =8 percent,

28



2) E_=0.26,
3) £, =278 percent.
The detailed results can be found in Appendix H.

The above results are individual ones; next all these results will be compared with

each other.
The following table contains the three criteria for all of these models (see Figure

3.2, Cnterion Comparison of Forecast Volumes by Different Models).

Table 5.1 - Criterion Comparison of Volume Forecasting Results

Criterion
Model E,, E, E..
1 9.4 percent 0.30 43.0 percent
2 10.5 percent 0.30 43.0 percent
3 9.8 percent 0.28 39.0 percent
4 17.0 percent 0.38 58.6 percent
5 8.0 percent 0.26 27.8 percent

where

Model 1 = adaptive prediction system model,

Model 2 = double exponential smoothing model,

Model 3 = exponential smoothing with adaptive response model,

Model 4 = Box-Jenkins univariate time series model, and

Model 5 = upstream model, which was developed in Chapter Four.

From the above table it can be seen that Model 5, which uses upstream and on-
ramp volumes to forecast the downstream volumes, is superior to the other models with
respect to the three criteria. Its relative mean absolute error is 8 percent, the maximum
relative absolute error is 27.8 percent, and the relative mean square root absolute error is
0.26. The next best results were obtained with Model 3, in which two criteria, 2 and
3,were better than those of Model 1, which obtained the third best results. The relative

mean absolute error of Model 1 is better than that of Model 2, which obtained the fourth
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best tesults. The worst results were obtained with Model 4, which has the highest relative
mean absolute error of 17 percent, the highest maximum relative absolute error of 58.6
percent and the highest relative square root absolute error of 0.38. If we compare the
results of Models 3 and 2, we can see that using the adaptive response a (Model 3) will
improve the forecast.

If we compare the three criteria obtained from Model 5 with those from the other
four models by calculating the ratios of these three criteria from Model 5 and the

corresponding criteria from the other four models, then we derive the following table:

Table 5.2 - Criterion Comparison of Model 5 With Other Models

Criterion
Model 1 2 3
1 1.175 1.15 1.547
2 1.313 1.15 1.547
3 1.225 1.077 1.403
4 2.125 1.462 2.108

Even Model 3, the best among the four models, has a relative mean absolute error
22.5 percent higher than the corresponding errors of Model 5, a, relative mean square root
absolute error 7.7 percent higher, and maximum relative absolute error 40.3 percent
higher than the corresponding errors of Model 5. Models 1 and 2 have the second
criterion 15 percent higher and the third criterion 54.7 percent higher than those of the
same error terms, but in Model 2, criterion 1 is 31.3 percent higher than in Model 5, and
and in Model 1 it is 17.5 percent higher than that of Model 5. The ratios were obtained
with Model 4, the Box-Jenkins univariate time series, which has the first error 112.5
percent higher, the second error 46.2 percent and the last error 110.8 percent higher than
Model 5.

From a comparison of the figures of the 20 forecast volumes vs. the actual
volumes (see Figures 5.3 - 5.6), we can see that Models 1 through 3 (Figures 5.3 and 5.4)

follow the trend; the forecasting performance of these three models is almost the same,
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although Table 1 shows slight differences among the three criteria. Model 4 (Figure 5.4)
is only able to predict the previous sample mean; when the mean changes with time it can
not follow the trend. The predicted values of Model 5 (Figure 5.5) can follow the actual
traffic volumes. Comparing actual volumes and the forecast volumes of Model 5 and
actual the volumes and forecast volumes of Models 1 and 3 (Figures 5.5 and 5.6), it is

clear that Model 5 is the best model for forecasting downstream volume.

INTERPRETATION OF THE VOLUME FORECASTING RESULTS

From the above results, Model 5 is:

P(e) =60, (r-1)+5,(2)7,, (¢ - 2) + 5,(1)7,(¢-1) (5.6)
which shows that 1) the downstream volumes are derived from the upstream volumes and
the on-ramp volumes; 2) vehicle travel time from the upstream to the downstream section
is about 1 to 2 minutes, which can be compared with the time calculated by using the

deterministic formula

[ distance
time

(5.7

If we calculate the speed of 46 mph (corresponding to the speed at freeway level of
service D (35)), the distance is 1.203 miles and the time is 1.6 minutes. At a speed of 55
mph (speed limit), the time is 1.3 minutes. (Generally, the travel time is between 1.3 and
1.6 minutes.) These travel times are between the obtained lags 1 and 2; 3) lag 1 and 2
imply that the diverse speeds of each lane result in varying travel times; and 4) because the
distance from on-ramp to the downstream section is very short, 0.426 mile, the travel time
is also short. Using 50 mi/hour as the speed, produces a travel time of 0.51 minute;
therefore this time is between the obtained lags 0 and 1.
From the initial estimated parameters by ordinary least square (OLS), we obtain:

b(1)=0.42

b(2)=06

b,(1)=0.25.
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b,(l) — 0.42 indicates that on average 42 percent vehicles will travel about 1 minute to the
downstream section. In the same way, b1(2) = 0.6 indicates that an average of 60 percent
of the vehicles will travel about 2 minutes from the upstream section to the downstream
section. The sum of these two coefficients is 1.024, indicating that all vehicles will travel
to the downstream section (if the travel time of all vehicles to the downstream section
were exactly between 1 to 2 minutes, the sum of the two coefficients should be exactly 1).
However, from Figure 5.1, we note that some vehicles exit at the NE 175th St. off-ramp.
Compared with the volume at the NE 162nd St. section, this volume is small; therefore,
the sum of these two coefficients should be less than 1. The reason that the sum is greater
than 1 is due either to an error in measurement or to an inherent problem in the model that
prevents the use of the simultaneous volumes to forecast downstream volumes.
b,(1) = 0.25 indicates that about 25 percent of the vehicles will travel to the downstream
section within about 1 minute, while others will arrive at the downstream section in less
than that. With a -ratio = 0.7, we can see that this coefficient is not reliable, since it is not
significant from 0. In Appendix C we see that 25 percent of this volume is about 2
vehicles, which is much lower, compared with the mean of the downstream volume of 109
vehicles. Omitting the third term in equation 5.6, that is, using only the upstream volumes
to forecast the downstream volumes, produces the following three critena:

1. £, =8.2 percent,

2. E_ =0.265,

3. E_,, =26 percent.
Comparing these three criteria with 8 percent, 0.26 and 27.8 percent, we see that they are
almost the same.

We can conclude that if the distance between the on-ramp to the downstream

section is very short and on-ramp volume is very low compared with the downstream
volume, we can ignore the on-ramp volume and consider only the upstream volume when

we build a model to forecast the downstream volume.
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The above results of Model 5 were obtained by the recursive method. However, if
we use the initial coefficients, to forecast the last 20 volumes; that is, if the forecasting is
off-line, then we have the three criteria;

1. E_, =8 percent,

2. E, =026

3. E,,, =274 percent.
Comparing these three criteria with 8 percent, 0.26 and 27.8 percent, the results obtained
by Model 5, we can see that £, of this off-line forecasting is even better than that of the
recursive method. When most upstream volumes travel downstream, and the speeds in
different lanes do not change greatly, the main parameters &, b, will not change greatly,
and the percentage of vehicles in a certain interval traveling downstream will not change
greatly. (The detailed results are given in Appendix H.)

The Box-Jenkins method assumes that autocorrelation and partial autocorrelation
functions of a time series will not change; that is, the form and parameters of the
developed model will not change. In our situation, this is similar to the assumption that
the pattern of the previous 102 data points will not change with time. Obviously, when
the pattern of the time series does change (e.g., declines), this univariate time series
method will fail . From Figure G.1 in Appendix G, we can see that the mean of the first
102 data points is almost the same, and these points hover around this mean; therefore, we
used the Box-Jenkins and obtained the model, which can only forecast the mean. From
Figure G.2 we can see that the time series declines; that is, the previous pattern changes.
Model 4, the univariate time series model, is therefore the worst of the five models, as it
cannot even follow the trend of the time series.

The objectives of the other three models are the same: they follow the trend of a
time series. The adaptive prediction system model (Model 1), assumes that the next
volume is the sum of several previous weighted volumes if the difference between this

predicted volume and the actual volume is zero (that is, the predicted volume is the same
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as the actual volume), then these weights remain the same. If the difference is not zero,
then these weights will change so that the predicted volumes can follow that trend of the
time series. The detailed formula can be found in Chapter Three.

The double exponential smoothing model (Model 2), can follow the linear trend.
Brown has demonstrated that the steady-state response of exponential smoothing to a
linear trend has a constant lag of (1- a)/at (27). Therefore, in our case, this model can
follow the trend of the time series.

The exponential smoothing model with adaptive response (Model 3), assumes that
the next volume depends on the current volume and the weighted current forecasting
error, and the weight, o, will also change depending on the current forecasting error and
another parameter, T. In this way, Model 3 can follow the trend of the time series. The

detailed formula can be found in Chapter Three.

OCCUPANCY FORECASTING RESULTS AND THEIR COMPARISON

In this section, the results achieved by every model will be described, then all these
results compared.

To evaluate the adaptive prediction system model some preliminary runs have been
made, and the researchers found that n=10 and p=4x E(—4), which resulted in the
lowest forecasting error. The initial weight vector W, = (0.1, 01, - O 1) was
chosen; that is, the first forecasted occupancy is the average of previous ten occupancies.
The obtained three criteria are

1) E_, =11.7 percent,

2) E_=0.29,

3) E_,, =46 percent.
The detailed forecasting results can be found in Appendix D.
The optimal beginning point resuiting in the minimum forecasting error is the 82nd data
point, the optimal s = 0.1 for the double exponential smoothing model. The three criteria

are
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1) E,, =12 percent,

2)E_=031,

3) E,,,. =40 percent.
If we begin to forecast at point 100, then the optimal o is 0.15 and the three calculated
criteria are

1) E,, =12.9 percent,

2) E_ =0.33,

3) E_.. =42.7 percent.

These three criteria indicate that the former sets of the criteria are better than the
latter, so we need to store some data to forecast the future. (The detailed comparison can
be found in Appendix D.)

For the exponential smoothing with adaptive response model, the optimal
beginning point for the forecast is point 99, the optimal t=0.3 and the optimal a=0.9. The
three criteria are

1) E__ =12 percent,

2) E, =0.29,

3) £, =53 percent.
When we begin to forecast at point 100, the optimal t=0.9 and the optimal a=0.8, the
three criteria are

1) E,, =15.7 percent,

2) E_ =0.356,

3) E_,, =63.9 percent.

In reviewing the above two sets of criteria it is obvious that the first one is better
than the second, so we need to store more data to better forecast the last 20 data points.
(See Appendix F for the comparison.)

The Box-Jenkins model's volume time series plot shows that the first 102 data

series is stationary with respect to the variance, so we need not transform the data (see
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Appendix C). We can also see that the time series does not need to be differenced
because this time series is stationary with respect to the mean. The autocorrelation and
the partial autocorrelation of occupancy (see Appendix G) time series looks like the AR(1)
time series, in that the first lag partial autocorrelation coefficient is significant from 0, but
other partial autocorrelation coefficients are not significant from 0, so p=1, &=0, ¢=0.
Therefore the model should be:

Ot) = A, + A0(t-1) +aq, (5.8)
where

O(t) is a predicted occupancy at time ¢,

ol - 1) is an actual occupancy at time #-1,

A, is the occupancy sample mean,

A is a coefficient, and

a, is the disturbance at time 7.

This shows that the next occupancy is highly correlated with the current occupancy; that
is, the next occupancy depends on the current one.

In the second stage we need to estimate the coefficients of the model, which can
easily be done by running the IDA program. The obtained 3, and A, are 3.1 and 0.773,
their t-ratios are 13.66 and 11.9, respectively. Obviously, these two f-ratios are highly
significant within a 95 percent confidence interval.

In order to accomplish the last step, the IDA software was used again. In viewing
the results, we see that the adjusted Box-Pierce test, Q,, is 20.25, when the degree of
freedom is 18. The tabulated chi-square with 18 degrees of freedom at a 95 percent
confidence interval is 28.87, because Q,, < 2.87, indicating that the residuals are white
noise.

Therefore, the obtained model

At)= A, + 40(1-1) +a,
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is sufficient, and we can use this model to forecast the last 20 values. The three criteria
are

1) E,, =17.4 percent,

2) E_=0.367,

3) £_, =80.5 percent.
The detailed results can be found in Appendix G.

A comparison of these results follows in Table 5.3:

Table 5.3 - Criterion Comparison of Occupancy Forecasting Results

Criterion
Model Eme E”, Em
1 11.7 percent 0.29 46.0 percent
2 12 percent 0.31 40.0 percent
3 12 percent 0.29 53.0 percent
4 17.5 percent 0.37 80.5 percent

where

Model 1 = adaptive prediction system model,

Model 2 = double exponential smoothing model,

Model 3 = exponential smoothing with adaptive response model, and

Model 4 = Box-Jenkins univariate time series model.

From the above table one can see that the criteria of Model 1, Model 2 and Model
3 are almost same and these criteria are much better than those of Model 4. Among the
first three Models, the adaptive prediction system Model (Model 1), is the best one; it has
the two lowest criteria. Next to that is the second Model, which has a much lower £__,
and the third Model is in third place. These results can be seen very clearly in Figure 5.7.

A comparison of the figures of the 20 forecast occupancies and the actual
occupancies (see Figure 5.8) shows that Models 1 through 3 can follow the trend.
Although in Table 5.3 a small difference can be noted among the three criteria, the

forecasting performance of these three Models is almost the same,
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The prediction of Model 4 (Figure 5.9) looks like it is a one lag foreward shift of
the actual occupancies because the prediction of Model 4 depends mainly on current
occupancy (see equation 5.8). When this pattern changes, the forecast occupancies
cannot follow the trend of future occupancies.

The interpretation of the occupancy forecasting results of these four Models is the
same as the interpretation of the volume forecasting results of the same four Models in

section 5.4. The detailed interpretation of these results can be found in Section 5.4,
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CHAPTER SIX

Recommendation and Conclusion

A volume forecasting model using cross spectrum analysis to analyze the lags
between upstream or on-ramp volumes and downstream volumes has been developed in
this report. The ordinary least square method and the recursive method were used to
obtain the parameters of the model. This developed model uses lagged upstream and
lagged on-ramp volumes to forecast short-term downstream volumes.

The critical step in building this model is to analyze the lags, which can be

calculated by the following equation:

/4

. ) ©.1)
2o

where t, is phase delay,

W(f) is phase shift of the cross spectrum, and
fis the frequency, ~© < f <+ and f #0.

After the lags 71 _, 71 72 . and 72 (as defined in Chapter Four) have been

obtained, the optimal data interval can be determined by the following equation:

T = min{ 71, 72 ) (6.2)

and the forecasting model expressed as:

V(t)= ﬂfbl(n)Vup(t—T1)+ nzmbz(fz)rg,,(:—z‘z) (6.3)

The coefficients b, and 62 can be obtained by the ordinary least square method as:

sd:[;n(r)v%r)][;vT(t)v(t)]_' (6.4)
or by recursive method as:

b, (k) =b,(k-1)+K(K)[V,(k)- V(k)b,(k-1)] 6.5)
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Q{x-1)V'(k)
) = V- IV (6.6)
Q(k) = Q(k 1) - QE-VVIHV(E)Q(k 1) 67

1+ V(£)Q(k - 1)V (k)

The volume forecasting results of this model and others indicate that (1) the
forecast volumes can follow not only the trend of the actual volumes, but also their
fluctuations; (2) the three criteria are all less when compared with those obtained by the
other four existing models; (3) the forecasting results using the ordinary least square
method are not much better than the results using the recursive method; and (4) if the on-
ramp volumes are very small (compared with downstream volumes), and the distance
between the on-ramp and the downstream section is very short (compared with the data
interval), then we need not consider the on-ramp volumes when we build the forecasting
model; that is, we only need the first term in the equation (6.3).

These results show that (1) the model developed in this report is the most
promising of these five models for forecasting downstream volumes; (2) we should use
this time series to forecast the downstream volume if we have the upstream volume time
series; (3) to save computation time, off-line forecasting using just the upstream volumes
1s recommended because the forecasting results obtained by ordinary least square method
are not much better than those obtained by recursive method, and on-ramp volumes have
little effect on forecasting.

This developed model is not restricted to forecasting volumes on the freeway. It
can be used to analyze any inflowing and outflowing network system, such as an Origin-
Destination matrix in an urban network system, because it uses cross spectrum analysis to
obtain the lags, instead of using speed to obtain the travel time. Therefore, this method
alleviates the problems that could result from the implementation of traffic variables, such

as route choice, signal delay, speed, etc.
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It 1s difficult to express downstream occupancies as the function of upstream
occupancies; therefore, this developed model cannot be used to forecast downstream
occupancies. To forecast occupancies and to evaluate the prediction of this developed
model, four other existing models were applied in this report. These models use univariate
time series to forecast their own future; therefore, if only the downstream volume time
series is available or if it is difficult to forecast downstream traffic variables using upstream
traffic variables such as occupancies, these four models should be selected and attention
should be concentrated on comparing the predictions made by these models.

The objective of the first three models is to follow the trend of actual volumes or
occupancies. The first step is to obtain the optimal parameters, and then the forecasting of
these models can subsequently be carried out.

The forecasting results indicate that models 1 through 3 can follow the trend; the
forecasting performances of these three models are almost the same, E  is about 12
percent.

However, the Box-Jenkins model, used very successfully in forecasting traffic
variables, has an inherent problem: once it has been built, the form and its parameters can
not be updated. Thus, if changes in the pattern of volumes or occupancies occur in the
future, this model will not accurately forecast these volumes or occupancies. Therefore,
when the Box-Jenkins model is used, the researchers should focus their attention on the

future pattern of the time series.
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APPENDIX A

State of the Art

Over the past two decades, many traffic flow forecasting methods have emerged to
forecast volume, or occupancy, or both (1-23). These methods fall into two categories:
parametric and nonparametric. In urban traffic control systems; parametric methods are
divided further into two categories: second generation and third generation methods. The
former is designed for control intervals of 5-15 minutes, and the latter on a cycle-by-cycle
basis. Second generation algorithms are older and typically require extensive historical
data. They use current traffic measurements to correct for the traffic deviation from the
average historical pattern. The second generation UTCS(UTCS-2) (1), ASCOT (2), and
ASCOT-RTOP (3) all belong to this category.

Most of the third generation algorithms (4,5), were developed more recently.
They make predictions based solely on current traffic measurements. The best-known
method in this category, the third generation UTCS(4), requires a 'representative’ data set
for parameter estimation (6).

More recent studies have used Box-Jenkins type analyses of time series data (7, 8,
9, 10, 11, 12), spectral analysis (13), Kalman filtering (14, 15, 16, 17), automatic control
concepts (18), and adaptive prediction system analysis (19) to forecast freeway traffic
flow. Other researchers used nonparametric methods to forecast freeway traffic volume

23).

PARAMETRIC METHODS

UTCS-2

The second-generation UTCS-2, which is an urban traffic control method, predicts
the next control interval (5-15 minutes) traffic volume at each detector location in real

time, based solely on the measurements from the same location. The algorithm makes use
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of both smoothed historical traffic data and current traffic-volume measurements from the
vehicle detector.

The UTCS-2 set of equations has been presented elsewhere, but the complexity of
the solution is usually not shown. By solving the difference equations of UTCS-2 (1), it

can be shown that UTCS-2 results in the following demand prediction equation:

V()= M(e)+ p[M(t-1)-p- f(t-1)]+(1-q) 4+ p(1-q)B

in which
k
M(t) = a(0) +Z[a(i)coi2nit /N) +b(i)sin(2m't/ N)]
i-1
-1
4=3{q[fle-5-1)-M{r-s-1)]}
5=0
t-2
B= 3 fle-s-2)-Mlt-s-2)]}
5=0
where
V(t) = predicted volume at time 7,
M (t) = historical volume at time ?,
¥i (r) = measured volume at time ?,
p = constant computed off-line from representative volume data of the
location in question {e.g.,for the UTCS system in Washington, D.C., p
was 0.2),
q = smoothing coefficient (e.g., for the UTCS system in Washington, D.C,,
g was 0.9),

a(0),ali),b(i) = coefficients (computed off-line) of Fourier series
approximation of historical traffic patterns for each

measurement location,
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k = user input parameter determining the fidelity of Fourier series
approximation, which is usually the result of a trade-off between Fourier
series accuracy and storage space and computation effort (in general,
for more rapidly varying functions, higher values of & should be used; &-
values from 6 to 20 have been used in past applications (6)),

n = number of sample points of a data set, and

N = total number of time intervals in the a data set (e.g., for 15- minute
intervals, the data for a 24-hour day will consist of 96 intervals).

The UTCS-2 prediction equation is a function of

V()= { M), £(1),n,q}

UTCS-3

The third-generation UTCS-3 predicts traffic volume two control intervals into the
future. Like UTCS-2, UTCS-3 is also an urban traffic control method, forecasting the
volume at each location in real time, based on measurements from the same location. It
differs from UTCS-2 in that the prediction process relies solely on current-day
measurements (no historical traffic pattern is required for prediction). By solving the
difference equations of UTCS-3 (4), it can be seen that UTCS-3 results in the following

demand prediction equation:
P(e+j)=p- (1) +(1-p)gr' +(1-r) 4]

in which

A= r2[r”’f(t—s—l)]
where

I?(t + j) = predicted volume for time (t+)) at time £,
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P = extrapolation constant computed off-line from a volume data of the
location in question,

A = measured volume at time ¢,

q = exponentially smoothed volume measurement, also referred to as
"coarse prediction of volume" , and

r = smoothing coefficient (a value of 0.95 has been used in past applications
(6)).

It can be seen that the UTCS-3 prediction equation is a function of

P(0)={r(t).q.nr}

Previous performance tests have indicated that UTCS-2 performs better than a
number of existing algorithms (17). For example, it consistently performs better than
UTCS-3, with a lower mean square and a lower mean absolute error (6,20,21), and a large
portion of small-magnitude errors (20). UTCS-2 is not subject to an inherent time lag (as
is UTCS-3), therefore, it provides reasonably good values during a vehicle detector

outage, and is available as soon as detector operation is restored (17).

Time Series Model

A time series model calculates autocorrelation and partial correlation coefficients
to fit the historical data and to forecast future values, assuming that these correlation

values are kept nearly constant. The general formula is as follows:

A(B)-w(t)=a, +C(B)a,
in which
A(B) =x,+x,B+x,B* +---+x B?
C(B)=y,+yB+y,B* +--+y B
X5 «-es Xp,¥gs -o-» ¥, Can be estimated by the least square mean method.

B is a backward factor, that is B x (1) =w(zr-1),
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P, and g can be determined by examining the correlation coefficients,

W(i) can be a time senes or any order differentiated iime series, i = ¢, #-1, -
2, .., tp,

&, 1s a constant coefficient, and

& is a noise time series, i =¢, t-1, £-2, t-q.

This method can be expected to perform better than other simple regression
methods because it analyzes the relationship among the past observed data. Well-known
time series techniques were developed by Box-Jenkins (26), and predictions using this
type of analyses have resulted in good accuracy of predictions (7,8,9,10,11,12).

Ahmed and Cook investigated the application of analysis techniques developed by
Box and Jenkins for freeway traffic volume and occupancy time series. (7) A total of 166
data sets from three surveillance systems in Los Angeles, Minneapolis, and Detroit were
used in the development of a predictor model to provide short-term forecasts of traffic
data. The Los Angeles data were 20-second volumes and occupancies per lane, and the
data from Minneapolis and Detroit were volumes and occupancies aggregated over all
lanes at 30- and 60-second intervals, respectively. All of the data sets were represented by
an autoregressive integrated moving average (ARIMA) (0,1,3) model. The moving-
average parameters of the model, however, varied from location to location and over time.

For the purpose of comparing the smoothing performance of the different models,
values of mean absolute error (MAE) and mean square error (MSE) of the fitted ARIMA
(0,1,3) models were chosen as a basis for comparison. These values ranged from 1.3 to
6.5 for MAE, and from 2.8 to 91.41 for MSE. Results of the moving-average model
indicate that both MAE and MSE increase when the number of observations () was
increased. When N equaled five, the ratio to Box-Jenkins varied between 1.0 to 1.27 for
MAE, and between 1.0 to 1.45 for MSE. Larger values of N (10-100) resulted in ratios to
Box-Jenkins of between 1.0 to 2.85 for MAE, and between 1.0 and 6.86 for MSE. The

best results of the double-exponential smoothing model were associated with small values
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of the parameter o. For smoothing constants between 0.1 and 0.3, the ratios to Box-
Jenkins ranged from 1.0 to 1.64 for MAE and from 1.0 to 1.43 for MSE. The Trigg and
Leach model did not improve the forecasts. Even in the best results of this model, the
ratios to Box-Jenkins varied between 1.45 and 8.20 for MAE and between 2.08 and 44.34
for MSE. The ARIMA (0,1,3) model more accurately represented the stochastic process
that generated the traffic data.

The researchers also believed that a rapid adjustment in the parameter estimates--
each observation interval, for example--might degrade the overall forecasting performance
of the ARIMA model. They suggested that computer computational requirements should
be taken into consideration when real-time updating of the model parameters is
contemplated. One way to lower these requirements would be to update the parameters
only occasionally, e.g., at the beginning of peak and off-peak periods.

Eldor developed short-term demand predictors for a real-time traffic-responsive
freeway control system (8). Using real-life traffic counts from the Santa Monica Freeway
in Los Angeles, a time-series analysis was performed which employed the Box-Jenkins
technique. The analysis was applied to three typical freeway stations: an entrance ramp,
an exit ramp, and a mainline station. Two types of predictors were investigated: second
generation control (2-GC) predictors, using both historical and real-time data, and third
generation control (3-GC) predictors, using only real-time data. After some simple
models were tested, the ARIMA series (0,1,1), (0,1,0), and (0,2,1), were employed as
predictors. A statistical and comparative analysis disclosed that the standard deviation of
prediction error in all locations (with the 5-minute data) was approximately between five
and ten vehicles per 5 minutes for the 2-GC and 3-GC predictors, according to the
variance of prediction errors aggregated over all locations. The 2-GC predictor ranked
first, followed by the 1-GC predictor; the 3-GC predictor was third and the random-walk
model [ARIMA(0,1,0)] was last. The distribution of prediction errors according to size

(in vehicles/5-minutes) served as another means for comparing the 2-GC and 3-GC
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predictors, and results showed that the 2-GC predictor performed better than the 3-GC
predictor in terms of percentage of underestimation. On the other hand, the 2-GC had a
higher tendency to overestimate traffic with a higher proportion of small-magnitude errors
(0-2 vehicles/minute). Other analyses suggested that the 1-GC predictor, namely average
historical values, was the best predictor over long time intervals (10- and 15-minute)
because then the aggregation cancelled out any stochastic variations, leaving the flow level
as the primary changing variable. In order to provide a high response in real-time,
therefore, shorter, rather than longer, time intervals for control updates were desired. The
consideration of 10- or 15-minute intervals was perhaps more appropriate for fixed-time
control operations with the same control strategies (stratified by time-of-day) for each day
of operation.

Another researcher used the time series technique to forecast density (9). This
study relied on continuous records of vehicle count in roadway sections of various lengths.
These records, previously constructed from sequential aerial photographs, were sampled
at uniformly spaced, discrete time segments. The time interval was based on Nyquist
frequency estimates, which were obtained from the continuous process. The time series
analytical techniques of Box and Jenkins were used to identify the structure of
autoregressive moving average models. The results indicated that the forecast functions
worked reasonably well up to roughly 5, 10, and 20 second lead times for the 92, 305, and
558 meter test sections, respectively. Each result approached the respective mean value of
the process. Gafarian, Pahl and Ward discussed the applications of time series analysis in
two different situations:

(1)  construction of macroscopic models of large freeway systems in which the
density of various sections of roadway could be simulated by using discrete
time increment models, and

(2) traffic responsive control of systems such as freeways, bridges, and tunnels

in which forecasts of density were desired.
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They pointed out that in the design of other studies, and in the preliminary design
of a particular system, the relation between section length and record length had to be
considered. The correlation time of the density process increased as the physical length of
the roadway section increased; thus, if density was measured over long sections,
correspondingly long historical records would be required to fit models and to forecast the
process. For traffic responsive control, the computational task had to be considered.
However, Gafarian found this analysis, at times, resulted in unsatisfactory goodness of fit
and high errors (9).

Levin and Tsao used the Box-Jenkins time-series method to analyze 20-, 40-, and
60-second occupancy and volume data collected during a morning rush period at two
freeway locations of the Dan Ryan Expressway in Chicago: one on the local lanes and the
other on the express lanes (10). Several autoregressive integrated-moving-average
(ARIMA) models were evaluated, and the ARIMA(0, 1,1) model was found to be the most
statistically significant for all forecasting intervals for both volume and occupancy. A
comparison between the ARIMA(0,1,1) model and the ARIMA(0,1,0) model showed
significant improvement in forecasting volume. The 60-second forecasting interval was
found to be the most effective interval. When compared with occupancy forecasting,
volume forecasting was found to be less variable, as expressed by the ratio of the residual
sum of squares to the mean of the observations. In the same way, forecasts of volumes
and occupancies on the express lanes were found to be less variable than those on the local
lanes.

Nihan and Holmesland explored using times series techniques for short-term traffic
volume forecasts (11). A data set contahﬁng monthly volumes on a freeway segment for
the years 1968 through 1976 was used to fit a time series model. The resulting model was
used to forecast volumes for the year 1977, and the predicted volumes were then
compared to actual volumes in 1977. With the month of December, 1976, as an origin for

the forecast, the September error was 7.5 percent, while all other errors were around 5
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percent or less. The results of this study imply that time series techniques could be used to
develop highly accurate and inexpensive short term forecasts. The researchers also stated
that the main strength of the Box and Jenkins technique was its accuracy, its second
strength, and the main reason for using the model, was the ease of its application after
having been specified; a third advantage was its flexibility. The last advantageous feature
of the Box and Jenkins technique was the speed of detection in changes taking place in a
time series, which could be used as an early waming system or as an early evaluation of
impacts from changes in the environment. They recommend the use of this short term

traffic forecast for the following:

1. Implementation and control of long-range plans,
2. Tactical decisions and traffic system operations,
3. Evaluation of effects of interventions, where decisions were being

monitored for feedback,

4, Advanced warning in monitoring systems, and

5. Optimal control in systems which were demand responsive.

Davis and Nihan designed a time series model to estimate changes in freeway level
of service despite missing data (12). They considered volume and occupancy as
dependent variables, and developed the multivariable regression model for each of these
variables using the Box-Jenkins time series method to check whether or not the error term
was uncorrelated. This multivariable regression model could detect relatively small
changes in traffic stream measures, and provided a separation of intervention effects and
effects attributable to other factors. The model could also easily be extended to estimate
effects from several overlapping interventions. The results from the peak 15-minute
volume data showed a significant effect, which became insignificant when the dependence
of the residuals was taken into account. This showed how an erroneous interpretation can
result from the naive assumption of statistical independence in time series data. As the

results indicate, the time series model can be used to investigate fairly subtle interactions
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among the traffic stream, control policies and external factors. Since the required data
were collected automatically, time series methods could be quite cost-effective, both in

policy evaluation and in more theoretical research in traffic stream phenomena.

Spectral Analysis

Another branch of time series methods is spectral analysis, which was employed by
Nicholson and Swann to forecast traffic flow volumes (13). If the basic pattern of traffic
flow tends to repeat itself, then it is possible to consider the time series as being a part of 2
time series group. The problem, therefore, is to predict a nonstationary process, given a
group of sample functions. It is appropriate, then, to consider that the periodic behavior
can be represented in terms of the characteristic modes or functions associated with a
covariance data matrix based on previous data. In this particular application, the
maximum prediction errors were of the order of 8 percent and 11 percent for the morning
and afternoon periods, respectively (13). In most of the cases examined, the afternoon
prediction was found to be less accurate than the morning prediction. Reducing the
prediction period and incorporating recent logged data would considerably improve the
prediction accuracy. Predictions obtained by ‘projecting the average values of previous
data produced greater errors: 12 percent and '19 percent for the morning and afternoon
periods, respectively. If the flow pattern could be described adequately in terms of a
single eigenvector component, the problem of calculating several of the coefficients could
be eliminated. It would then be possible to have an eigenvector length equivalent to a full
day without excessive computation, thus permitting continuous prediction up to 24 hours
ahead. The peak hour results indicate that application of the spectral expansion technique
to the prediction of traffic flow data could be considerable. The prediction algorithms
could be adapted for continuous on-line implementation to traffic control. The main
disadvantage of the method was its inability to account for rapid unforeseen changes that

were not reflected in the covariance matrix based on the characteristics of previous data.
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Kalman Filtering
Kalman filtering is based on a theory proposed by Kalman, whose objective was to

obtain the linear dynamic system specifications that resulted in the prediction, separation,
or detection of a random signal (22). This method can be applied to short-term stationary
or nonstationary stochastic phenomena. It has been applied very successfully to traffic

systems for demand forecasting (14,17). The general formula is

V(t+k)=wW(1) Q)
where

V(t+k) isa predicted value k steps ahead at time ¢

W(t)=W(r-1)+4

W(t) is a weight vector;
A stands for the second term, which changes step by step according to the difference
between the predicted value and actual value of the last step;

Q1) = the vector, composed of the previous actual time-series data of

(1), and

V(#) = the time series.

Gazis developed a method for estimating the number of vehicles on a section of
roadway from speed and flow measurements at the entrance and exit points of that section
(14). This method basically consists of three steps: 1) computing and storing the velocity
and flow mformation; 2) computing the travel time between two points, then obtaining
rough estimates of the number of vehicles; and 3) using Kalman filtering theory to filter
random errors of these estimates by means of a sequential correction scheme. This
algorithm was tested using data from three adjoining half-mile sections in the Lincoln
Tunnel, and the exact counts were compared with those generated by the algorithm. The
results indicate that 99 percent of time the error was below 10 percent. This level of
accuracy had not previously been obtained using flow and speed data (14). The researcher

pointed out that further improvement of the technique would require a refinement of the
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travel time algorithm that reduced day-to-day variations in the bias error. The
instrumentation required for this algorithm was less than that required by previously used
algorithms based on recognition of patterns of car lengths. Only one detector per trap was
required, compared with two in the past. The estimation algorithm could be applied to
multi-lane highways, depending on the distance between traps and the frequency of lane
changing. However, care must always be exercised in selecting the location of the traps.

Based on the above research, Chang and Gazis extended the Kalman filtering
methodology to include explicit consideration of lane-changing on a multi-lane freeway
(15). They found that the estimation error could be reduced, the reduction ranging up to
40 percent. When the roadway section was larger, resulting in an increased number of
lane-changes, the error reduction was greater. Therefore, where lane-changing is frequent
and when a reduction instrumentation cost is desired, it may be worthwhile to invest in
proper calibration of a density estimator that includes lane-changing.

Nahi applied Kalman filtering theory to freeway traffic data processing (16). Two
basic data processing problems associated with freeway traffic were formulated:
estimation of traffic variables (section mean speed and density) and detection of
occurrence of an incident or accident within a given section of the road. The results were
very encouraging. The estimators exhibited a kind of "step response” nature which was
indicative of acceptable tracking capability in the case of large variations in the real traffic
situation,

Okutani and Stephanedes employed Kalman filtering theory for predicting 15-
minute volumes during the day, using the traffic flow on the study section, as well as the
traffic flows on other sections feeding into it (17). They developed two algorithms: one
(M1) used the difference between the traffic volume on the day in question and the traffic
on a day the week before as variable (rather than traffic volume on the day itself); the

other (M2) considered the similarity of the traffic flow pattern from day to day. Three
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prediction error indices were computed: (1) mean relative error, (2) root relative square
error, and (3) maximum relative error. The results indicated that

(1)  atall times all prediction models performed substantially {(up to 80 percent)
better than UTCS-2;

(2)  as a rule, prediction model M1 outperformed prediction model M2,
possibly because the latter prediction was accomplished using traffic data
from a day the week before the day the study was taken;

(3)  when prediction was performed using smoothed (rather than raw) data,
UTCS-2 performance declined; whereas, M1 achieved its best performance
under these conditions; and

(4) by increasing the number of 5-minute time intervals ahead of current time
for which prediction was performed from one to nine in the models,
performance was not significantly affected. Such performance is highly
desirable for long-term prediction.

The researchers also pointed out that the new models seemed promising for

practical applications (17). Prediction error had improved, and the computation time
required was reasonable. These models could be used for predicting a variety of traffic

characteristics, such as time occupancy and traffic density.

Other Parametric methods

Papageorgiou applied automatic control concepts to traffic -flow modeling and
control and developed a traffic flow forecasting model (18). This dynamic time-of-day
control model required estimates of the on-ramp to off-ramp origin-destination matrix
(18). It estimated traffic speed from measurements of volumes and lane occupancy, then
forecast the volume at a downstream station based on known volumes at upstream on-
ramps and mainline stations. He compared two control models: a steady-state time-of-day

control model, which assumed the on-ramp to off-ramp origin-destination matrix to be
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constant, and a dynamic time-of-day control model, and found that the dynamic time-of-
day control model performed better than the steady-state time-of-day control model.

Other researchers employed the adaptive prediction system, the structure of which
was adjustable so that its performance improved as a real-time predictor, through contact
with its environment, to forecast the speed and volume of traffic flow (19). The method
of steepest descent to obtain the adaptive weight vector was used here, which could be
adjusted in the direction of the gradient at each step. This adaptive prediction system
could be used as a real-time predictor. The performance of the predictor depends on both
the characteristics of the traffic variables and the structure of the predictors. In practice,
for the prediction of a specific traffic variable, an adequate number of tests should be run
to obtain the optimal structure of the predictors. For the control of a traffic system, many
traffic characteristics must be predicted. If these characteristics are stationary, the
adaptive prediction system could be used as the predictor, even when some traffic
characteristics change greatly from one level to another level. After several steps, the
predicted values were almost the same as the observed data. The formula developed is
similar to that used in the Kalman filtering method. The results were satisfactory, but the
traffic characteristics were assumed to be stationary. In fact, when the time interval was
less than 5 minutes, volume and occupancy were nonstationary (7,8,10). This method is
the steepest descent type of adaptive algorithms, and was improved further when it was

applied to forecast nonstationary volume and occupancy (24,25).

NONPARAMETRIC METHODS

When a parametric method is used to forecast traffic flow, it has been established
that a regression model should be selected before estimating the model parameters. In this
process, two problems can arise: 1) the regression model used may be wrong, or 2) not
all samples to estimate the parameters may be available, (in this case, the estimated

parameters will differ from the true parameter values). Therefore, although different
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classes of models can be tested, the parametric method will only generate approximations
of the forecasts.

Davis and Nihan suggested a nonparametric regression method, the &-NN method,
to forecast traffic flow (23). In the .-NN method, we assume that we have a series of
observations [x(s), y(s), s = 1, ..., n] of input/output pairs, which we call our learning
sample, and an additional input measurement x(¢), from which we want to forecast y(?).
First, the &NN method ranks the input measurements in the learning sample x(s)
according to their distance from x(f). Let s,, ..., s, denote the indices of the & input
vectors closest to x(#). The forecast is then computed simply as §(¢) = %Z y(s) (e as
the average of the outputs corresponding to the & nearest neighbors of x(t)l). Thus, the -
NN approach replaces the problem of selecting a class of models and then estimating the
model parameters, which entails the problem of maintaining and sorting an adequately
large learning sample.

An empirical study has shown that this method performed comparably but was not

better than the linear time-series approach (23).

SUMMARY
This chapter reviewed several existing methods, mainly parametric, that have been
used to forecast volume and occupancy. When choosing among these models, the

following points should be considered:

1. Every parametric method has parameters that differ from place to place and
over time.
2. Some methods are very simple, like the simple moving average, and some

are very complicated, like the spectral method. The more complicated
methods generally require additional computations.
3. The same method may have different forms, like the Box-Jenkins

techniques. When these methods are used, the model should fit the

particular data.
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Time interval is also an important factor in forecasting. Generally, when
the interval is below 5 minutes, the traffic variables are nonstationary, and
the best way to forecast these variables is to use more complicated
methods. However, when the time interval is greater than 10 minutes,
simple models should be compared to complex models, so that the best
model can be chosen to forecast traffic variables. Sometimes the simpler
model is a better predictor.

So far, these methods have not been compared against the same data sets;

therefore, careful selection of a model is essential.
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Derivation of Recursive Model

First, we should prove that if

k

AlR) =2V ()V() = Alk-1)+ VT (k) V(k)

=1

then

A'(k)=A"(k-1)-

Proof

Multiplying both sides of equation (B.1) by A~'(k), we get

1=A(K)A (k-1)+ A (K) VT (k) V(k)
then multiplying both sides by A™'(k)VT(k), we have

APPENDIX B

A (k-DVT(R)V(E)A (k1)

1+ V(&) A (k- 1)V (k)

(B.1)

(B.2)

AT E-DVH{E) =AM BV () + A (K VI (R) VKA (k- 1)V (k)

= A" (B)VT(E)1+ V(K)A " (k - 1)V (k)]

multiplying the both sides of the above equation by

[1+ V(£)A™ (k= )V (k)]V(R)A (k- 1),

we obtain

A (k=)VT(B)[1+ V(E)A " (k- )V (#)] V(K)A (& - 1)

=AY (B)VT(k)V(K)A " (k-1)

therefore,
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A (k=-D)VT()V(K)A (k1)

A (k-1)- 1+ V(K)A (k- 1) VT (k)

=AY (k-1)-A KV VKA (k-1)

= A" (k-1)-A""(k)AK) - A(k-1)]A" (k-1)
=A'(k-1)-A"(k-1)+A7'(k)

=A™ ()

this results in equation (B.2).

Second, let

M(k) =3V, ()V' (1)

=1

SO

SO

K(k)=A"(k)V" (k) (B.3)

From the equation (B.2), we have

A k-)VI(E) V(KA (k-1)

K(k)=|A"(k-1)- 1+ V(k)A (k- 1) V' (k)

]v'f(k)

therefore

K(k) = _ - (B.4)
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APPENDIX D

Forecasting Results by Adaptive Prediction System Model

The forecast volumes by the adaptive system model are found in Table D.1 (see

Chapter Three for details about the model).

Table D.1
Comparison of Predicted and Actual Volumes
Actual Volume Predicted Volume Differences
99 1104 -11.4
102 108.4 6.4
103 107.7 4.7
111 105.9 5.1
88 106.8 -18.8
i17 104.1 12.9
97 105.2 -8.2
98 103.7 -5.7
88 102.6 -14.7
100 99.1 0.9
104 98.2 58
69 98.9 -29.9
104 94.5 9.5
96 95.0 1.0
98 935 4.5
87 94,7 -7.7
85 91.5 6.5
85 90.1 -5.1
77 88.7 -11.7
104 37.2 16.8

The above results can be obtained when =10 and p=0.0000004.

The three criteria for this model can be calculated as

(1) E, = f‘, K‘i%l/(—') +20 =9.4%
Z AQ (:)/( /) +20=03
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(3) E_ =Max

t=103

= 43%

where £, E_, and E__ have be defined in Chapter Five, V,(z) is the actual volume at
time ¢, and 17(1) is the predicted volume at the same time .

The forecast occupancies by the adaptive system model are found in Table D.2.

Table D.2
Comparison of Predicted and Actual Occupancies
Actual Occupancy Predicted Occupancy Differences
10 10.4 0.4
11 10.3 0.7
10 10.2 0.2
10 10.0 0.0
12 9.8 22
9 9.8 0.8
7 9.8 -2.8
8 9.6 -16
10 9.5 0.5
3 9.5 -1.5
3 94 -1.4
9 9.1 0.1
8 89 0.9
10 8.7 1.3
6 8.7 2.7
8 8.1 0.1
8 8.0 0.0
8 8.1 0.1
9 8.1 0.9
9 8.0 1.0

The above resuits can be obtained when N=10 and n=0.0004.

The three criteria for this model can be calculated as

(1) Em=§9%)é(’)+zo=u.7%
E, -f 2)( o) +20=10.29
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122
(3) E_ =Max

=103

o(6)-0(1)

)

where £, E_, and E___ have be defined in Chapter Five, O(t) is the actual occupancy at

= 46%

time ¢, and O(t) 1s the predicted occupancy at time 7.

All these results were calculated by using the CYBER system.

79



APPENDIX E

Forecasting Results by Double Exponential Smoothing Model

The forecast volumes by the double exponential smoothing model are found in

Table E.1 (see Chapter Three for details about the model).

Table E.1
Comparison of Predicted and Actual Volumes
Actual Volume Predicted Volume Differences
99 110.7 -11.7
102 108.3 -6.3
103 106.9 -3.9
111 105.9 5.1
88 106.6 -18.6
117 102.7 143
97 105.1 -3.1
98 103.2 -5.2
88 101.8 -13.8
100 98.6 1.4
104 98.4 56
69 98.9 -29.9
104 925 11.5
96 94.0 2.0
98 93.7 43
87 94.0 7.0
85 92.0 -7.0
85 899 -4.9
77 88.2 -11.2
104 85.2 18.8

The above results were obtained when a=0.1, and N=95, at which point the

exponential smoothing forecasting was made.

The three criteria for this model can be calculated using the results in the above

table as

(1) E, = ﬁJV‘*(P{Ej(’) +20 =10.5%
(2) E, = i Vd(;/)dzg(’) +20=03
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122

(3) E_ =Max

max

A

Valt)-V(1)

20

and E_,, have be defined in Chapter Five, Vd(t) is the actual volume at

= 43%

=103

where £, E_,
time ¢, and 17'(1) is the predicted volume at the same time 7.

If the double exponential smoothing model begins to forecast at point 100, the

results obtained are as shown in the following table.

Table E.2
Comparison of Predicted and Actual Volumes
Actual Volume Predicted Volume Differences
99 112.6 -13.6
102 109.9 -7.9
103 108.2 -5.2
111 107.0 4.0
88 107.6 -19.6
117 103.4 13.6
97 105.8 -8.8
98 103.7 -5.7
88 102.3 -14.3
100 99.0 10
104 98.7 5.3
69 99.2 -30.2
104 927 11.3
96 94.1 1.9
98 938 42
87 94.0 -71.0
85 92.0 -7.0
85 89.9 49
IE 88.2 -11.2
104 85.1 18.9

The above results were obtained when a=0.1, and N=100, at which point the
model begins to forecast.

The three criteria for this model can be calculated by using the results in the above

table:

+20=10.7%

0 5. G
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) E,=F (:/)E:)?(’) £20=031
(3) E,, = 1\:; V“(;) U;(t)‘ =43.8%

The forecast occupancies by the double exponential smoothing model are found in

Table E.3.

Table E.3
Comparison of Predicted and Actual Occupancies
Actual Occupancy Predicted Qccupancy Differences
10 99 0.1
11 9.8 1.2
10 9.9 0.1
10 9.8 0.2
i2 98 22
9 10.1 -1.1
7 98 2.8
8 92 -1.2
10 28 1.2
8 8.9 0.9
8 8.6 -0.6
9 8.4 0.6
8 84 0.4
10 82 1.8
6 24 -2.4
8 7.8 0.2
3 7.7 0.3
3 7.6 0.4
9 7.6 1.4
9 7.3 1.3

The above results were obtained when o=0.1, and N,=82, at which point the
forecasting was made.

The three criteria for this model can be calculated using the results in the above

table:

+20=12%

t=1

(1) £ = ZJ Ofr)- ?()
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(2) EW=§ %ﬂé&hzowm
(3) Emﬂzxi%ﬂ = 40%

=103
where £, E_, and E___ have be defined in Chapter Five, O(t) is the actual occupancy at
time £, and O(t) is the predicted occupancy at time ¢,

If this model begins to forecast at point 100, then the results obtained are as shown

in the following table.
Table E.4
Comparison of Predicted and Actual Occupancies
Actual Occupancy Predicted Occupancy Differences
10 10.6 0.6
11 103 0.7
10 10.4 0.4
10 10.2 0.2
12 10.0 2.0
9 10.5 -1.5
7 10.0 . 3.0
8 9.0 -1.0
10 8.5 1.5
8 8.8 0.8
8 8.4 0.4
9 8.1 0.9
8 82 0.2
10 8.0 2.0
6 84 24
8 7.6 0.4
8 7.5 0.5
8 75 0.5
9 75 1.5
9 7.8 1.2

These results were obtained when a=0.15, and N,;=100, at which point the model

begins to forecast.

The three criteria for this model can be calculated using the results in the above

table:
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+20=12.9%

0 r- o000

o) -0 +20 =0.332
or) | '

122
(3) E, =Max

=103

o(r)-O(z)
ot

All of these results were calculated by using the CYBER system.

=42.7%
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APPENDIX F

Forecasting Results by Exponential Smoothing
with Adaptive Response Model

The forecast volumes by the exponential smoothing with adaptive response model

are found in Table F.1 (see Chapter Three for details about the model).

Table F.1
Comparison of Predicted and Actual Volumes
Actual Volume Predicted Volume Differences
99 108.1 -9.1
102 105.6 3.6
103 104 .4 -14
111 103.8 7.2
88 104.6 -16.6
117 97.9 19.1
97 98.1 -1.1
98 98.1 0.1
88 98.1 -10.1
100 9.3 3.7
104 96.6 7.4
69 9.9 279
104 878 16.2
9% 89.2 6.8
98 89.2 838
87 90.1 3.1
85 89.9 4.9
85 89.9 -4.9
77 89.6 -12.6
104 86.8 17.2

The above results were obtained when a=0.3, 1=0.1 and N,=95, at which point the

forecasting was made.

The three criteria for this model can be calculated by using the results in the above

table:

+20=938%

() E, = EJ——%(QEJ)}(O
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(2) E,,:lzn: Vd—(;f)@@ﬂow.zs
(3) Em=h€%f%—)~ =39%

where £, E_, and E__ have be defined in Chapter Five, Vd(t) is the actual volume at

time ¢, and ¥(¢) is the predicted volume at the same time .

If this model begins to forecast at point 100, then the results are as shown in the

following table.
Table F.2
Comparison of Predicted and Actual Volumes
Actual Volume Predicted Volume Differences
99 110.2 -11.2
102 105.0 3.0
103 103.2 0.2
111 103.1 1.9
88 106.3 -18.3
117 95.5 21.5
97 102.7 -5.7
98 102.3 4.3
88 101.7 -13.7
100 93.5 6.5
104 94 .4 9.6
69 7.7 =287
104 81.5 225
96 853 10.7
98 89.5 8.5
87 94.2 12
85 93.3 83
85 912 6.2
7 88.2 -11.2
104 80.1 239

The above results were obtained when =0.4, t=0.4 and N, =100, at which time the

model begins to forecast.

The three criteria for this model can be calculated by using the results in the above

table:
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t
+20=12.3%

(2) E, = f @Eg—(ﬂ +20=0.325
(3) E_, -—-l\:IZZXVd—(:}-E}{)/—(t—) =41.6%

=103
The forecast occupancies by the exponential smoothing with adaptive response

model can be found in Table F.3.

Table F.3
Comparison of Predicted and Actual Occupancies
Actual Occupancy Predicted Occupancy Differences
10 38 02
11 9.9 1.1
10 10.5 0.5
10 104 04
12 10.4 1.6
9 11.2 2.2
7 10.6 -3.6
8 8.2 0.2
10 8.1 19
8 8.2 0.2
8 8.2 0.2
9 8.1 0.9
3 8.3 0.3
10 8.3 1.7
6 9.2 -3.2
8 8.1 0.1
8 8.0 0.0
8 8.0 0.0
9 8.0 1.0
9 82 0.8

The above results were obtained when a=0.9, t=0.3, and N =99, at which time the

forecasting was made.

The three criteria for this model can be calculated using the results in the above

table;
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(1) Em=;zzj0—(’())z—f)j(i)+zo=1z%
2 0()-0)| . _

E, _’% BON +20=0.29
= lo0)-00)| _ ..,
(3) Em=Max—0(t)— =53%

=103
where £, E_, and E,, have be defined in Chapter Five, O(¢) is the actual occupancy at
time , and O(¢) is the predicted occupancy at time .

If this model begins to forecast at point 100, then the results are as shown in the

following table.
Table F.4
Comparison of Predicted and Actual Occupancies
Actual Occupancy Predicted Occupancy Differences
11 9.9 1.1
10 11.0 -1.0
10 10.2 0.2
12 10.0 20
9 11.9 -2.9
7 94 -2.4
8 7.0 1.0
10 7.6 24
8 9.9 -1.9
3 84 0.4
9 8.0 1.0
8 8.9 0.9
10 82 1.8
6 9.8 -3.8
8 6.3 1.7
8 7.4 0.6
8 79 0.1
9 8.0 1.0
9 9.0 0.0

The above results were obtained when o=0.8, 1=0.9, and N=100, at which time

the model begins to forecast.
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The three criteria for this model can be calculated using the results in the above

table:
(1) E,_= EJ (2)(()3( ) +20 =15.7%
= Z A(’) +20=0356
(3) E_ = h:;x Q(%Ef;ﬁ =63.9%

=103

All these results were calculated using the CYBER system.
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APPENDIX G

Forecasting Results by Box-Jenkins Time Series Model

*
* * * % *
* *kk%k *
2 * % * 2 k% *
* 2%2 kk Dhkkkkk 2%k & X k k k%
* k Kk Kk 3k kk * kk kk D%k * kk k%D
* 2 % *kk 2 % K % 2 %
%k * 2% * x Kk &
* * *
*
--------- e —— -_— i e
25.00 50.00 75.00 100.00 125.00
Figure G.1
Plot of the First 102 Data Points
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Plot of the Whole Time Series (122 Data Points)
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Figure G.3

Autocorrelation Function of the First 102 Data Points

The autocorrelation function indicates that the time series model is a random

model.

The adjusted Box-Pierce test can be calculated as

20
0, =N(N+2)Y 755=1418
Jj=1

where N=102

R, = autocorrelation coefficient at lag /.

Because the degree of freedom of this adjusted Box-Pierce test is even less than 19, the

obtained model is satisfactory, that is, the time series is a random time series. Therefore,

the forecasting model shouid be

V(f)= MV +a,

where V(1) = predicted volume at time ¢,
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MV = the mean of the first 102 data points,

a, = a disturbance at time 7, the expected mean of a, equals 0.
The obtained forecasting model indicates that this model can only forecast the mean of the
time series.

Because the mean of the first 102 data points is 109.36, the three criteria are

(1) E@==5154¥%£19+a0=17%
(2) E, = lzn: V)=V o0 033

=103

V(1)

122
(3) E__ =Max

=103

= 58.6%

Vd(t)"l}(t)
V

where £, E_, and E_, have be defined in Chapter Five, V,(z) is the actual volume at
time ¢, and I;(t) is the predicted volume at the same time ¢.
A comparison of the forecast volumes and the actual volumes can be found in

Figure G.4.
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Comparison of the Forecast and Actual Volumes

In the above figure, A stands for forecast volumes, B stands for actual volumes.
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Autocorrelation of Occupancy Time Series
(First 102 Data Points)
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Figure G.6
Partial Autocorrelation of Occupancy Time Series
(First 102 Data Points)
The PACF plot suggests that AR(1) should be trieE. The obtained model is

Olt) = 4, + 40(t-1)
where:

A, =31, t-ratio = 13.66

A =0.733, t-ratio = 11.9.

Obviously, the f-ratios for these two parameters are significant within the 95 percent
confidence interval.

The calculated adjusted Box-Pierce test of the residuals is Q,~20.25. When the
degree of freedom is 18, the tabulated chi-square of the 95 percent confidence interval is
28.87, which is greater than O, Therefore, the obtained model is satifactory.

The comparison of forecast occupancies and actual occupancies can be seen in

Table G.1.

95



Table G.1
Comparison of Predicted And Actual Occupancies

Actual Occupancy Predicted Occupancy Differences
10 10.1 0.1
11 10.8 0.2
10 11.6 -1.6
10 10.8 0.8
12 10.8 1.2
9 12.4 -3.4
7 10.1 -3.1
8 85 0.5
10 93 0.7
8 10.8 -2.8
8 93 -1.3
9 9.3 -0.3
8 10.1 2.1
10 93 0.7
6 10.8 -48
8 7.7 0.3
8 93 -1.3
8 9.3 -1.3
9 9.3 0.3
9 10.1 -1.1

The three criteria for this model can be calculated using the results in the above

table:
() E, = ZJ ()O()O( ) +20 = 17.46%
(2) E, f é(t) +20 =036
- lot-o0)| ...
(3) E_ :Max—o(t)—-— =80.5%

t=103
where £, E_, and E_, are defined in Chapter Five, O(t) is the actual occupancy at

time #, and (X{¢) is the predicted occupancy at time ¢.
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Appendix H

Calculation For Model Five

The calculation of the phase delay between the time series at NE 185th St. and the

time series at NE 162nd St. is given in the following table:

Table H.1
Calculation of Phase Delay One
Frequency Period Phase Coherence Phase Delay
f Phase/2rtf
0.6000 0.000 0.458
0.0098 102.0 0.042 0.444 0.68
0.0196 51.00 0.083 0.414 0.67
0.0294 34.00 0.152 0.367 0.82
0.0392 25,50 0.225 0317 0.91
0.0490 20.40 0.284 0.260 0.92
0.0588 17.00 0.310 0.170 0.34
0.0686 14.57 0.249 0.069 0.58
0.0784 12.75 0.085 0.001 0.17
0.0882 11.33 -3.075 0.045 *
0.0980 10.20 3.045 0.133 *
0.1078 9.273 2.896 0.230 43
0.1176 8.500 2.695 0.285 36
0.1275 7.846 2.329 0.255 29
0.1373 7.286 1.826 0.228 21
0.1471 6.800 1.394 0.299 1.5
0.1569 6.375 1.180 0.383 1.2
0.1667 6.000 1.110 0.396 1.06
0.1765 5.667 1.111 0.322 1.0
0.1863 5.368 1.143 0.212 0.98
1.1961 5.100 1.201 0.096 *
0.2059 4.857 1.408 0.015 *
0.2157 4,636 -2.439 0.005 *
0.2255 4.435 -2.193 0.056 *
0.2353 4.250 -2.254 0.137 *
0.2451 4.080 -2.437 0.195 *
0.2549 3.923 -2.734 0.245 24
0.2647 3778 -3.046 0.309 1.95
0.2745 3.643 2977 0.383 1.73
0.2843 3.517 2.784 0.461 1.56
0.2941 3.400 2.674 0.490 1.45
0.3039 3.290 2.658 0.446 1.39
0.3137 3.188 2.851 0.326 1.45
0.3235 3.091 -2.995 0.277 1.62
0.3333 3.000 -2.686 0.309 1.72
(.3431 2914 -2.626 0.319 1.7
0.3529 2.833 -2.690 0.303 1.92
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0.3627 2757 -2.748 0.274 1.55
0.3725 2.684 -2.759 0.230 1.51
0.3824 2615 -2.644 0.180 *
0.3922 2.550 -2.340 0.145 *
0.4020 2.488 -1.797 0.115 *
0.4118 2.429 -1.146 0.134 *
0.4216 2372 -0.721 0.157 *
0.4314 2318 -0.374 0.143 *
0.4412 2.267 -0.086 0.121 *
0.4510 2.217 0.122 0.092 *
0.4608 2.170 0.315 0.060 *
0.4706 2.125 0.643 0.034 *
0.4804 2.082 1.132 0.016 *
0.4902 2.040 1.568 0.005 *
0.5000 2.000 3.142 0.000 *

Because coherence is similar to correlation (33), if it is very small, say 0.2, the two
time series are not correlated. In the above table, if at a certain FREQUENCY the
coherence is less than 0.2 and the corresponding phase delay is not be calculated, this is
indicated by an asterisk (*).

From the above table we can see that the phase delay is between 0.17 and 4.3
minutes; that is, the time series at the NE 185th St. section precedes the time series at the
NE 162nd St. section by 0.17 to 4.3 minutes. Most phase delays are around 1 minute
(with a few exceptions), so we will use V,,p(t—l) and Vup(t—2) to forecast the
downstream volume ¥, (1).

The calculation of phase delay between the time series at the NE 175th St. on-
ramp and the time series at the NE 162nd St. section is shown in table H.2. Phase and

coherence in table H.2 were calculated by using BMDP software on MAX system (30).

98



Table H.2

Calculation of Phase Delay Two

Frequency Period Phase Coherence Phase Delay
Phase/2pf

0.0000 0.000 0.652

0.0098 102.0 0.027 0.613 0.44
0.0196 51.00 0.065 0.504 0.53
0.0294 34.00 0.147 0.349 0.8
0.0392 25.50 0.330 0.201 1.34
0.0490 20.40 0.664 0.123 *
0.0588 17.00 0.959 0.084 *
0.0686 14.57 0.749 0.054 *
0.0784 12.75 0.361 0.037 *
0.0882 11.33 0.147 0.033 *
0.0980 10.20 0.233 0.029 *
0.1078 9.273 0.395 0.021 *
0.1176 8.500 0.49 0.011 *
0.1275 7.846 1.319 0.017 *
0.1373 7.286 1.074 0.035 *
0.1471 6.800 1.821 0.073 *
0.1569 6.375 0.607 0.113 *
0.1667 6.000 0.489 0.160 *
0.1765 5.667 0.458 0.197 *
0.1863 5.368 0.525 0.204 0.45
1.1961 5.100 0.769 0.183 *
0.2059 4,857 1.147 0.200 0.39
0.2157 4,636 1.464 0.273 1.08
0.2255 4435 1.619 0.361 1.14
0.2353 4.250 1.694 0.445 1.15
0.2451 4.080 1.670 0.523 1.09
0.2549 3.923 1.609 0.581 1
0.2647 3.778 1.547 0.607 0.93
0.2745 3.643 1.493 0.584 0.87
0.2843 3.517 1.460 0.528 0.82

From the above table we can see that the phase delay is from -0.27 to 1.34
minutes, which indicates that the time series at the on-ramp at NE 175th St. will precede
the time series at the NE 162nd St. (downstream) section by -0.27 to 1.34 minutes.
Because -0.27 is near zero, the time series at the on-ramp at NE 175th St. precedes the
time series at the NE 162nd St. section,

The calculated phase delays show that the delays are between -0.3 and 1.34
minutes; obviously, 0 and 1 are the integrals that are between the delay interval and also
near the extreme values (-0.3 and 1.34). However, volume at lag 0 (simultaneous volume)

cannot be used to forecast the downstream volumes, so Vm(t —1), which is one lagged on-
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ramp volume, should be used together with the upstream volumes to forecast the

downstream volumes.
Therefore, the forecasting model is
V()= 8,1, (e 1)+, (¢~ 2) +5,(,, (1 ~1) (EL1)
where bl(l), b(2), and bz(l) are coefficients.

If we use the ordinary least squares method to obtain the above coefficients, then

we have
b(1) =0.42 f-ratio = 5.72
b,(2) =0.6 t-ratio = 7.99
b,(1) =025 t-ratio = 0.77.

5,(1) and b,(2) are significant from 0, but ,(1) is not significant from 0. The Box-Pierce
test of the residuals is O _=27.8 when the degree of freedom is 20; compared with 31.41,
the tabulated chi-square value, this O, is within the 95 percent confidence interval, and
therefore, the residuals are white noise.
The t-ratio for bz(l) is not significant from 0, so if we drop this term in equation

H.1, we have

b(1) =043 t-ratio = 5.84

bl(z) =0.61 t-ratio = 8.3.

The forecasting results of model H.1 can be found in table H.3.

100



Table H.3
Forecasting Resuits by OLS Method

Actual Volume Predicted Volume Differences
99 105.0 6.0
102 101.8 0.2
103 103.8 -0.8
111 106.1 4.9
88 100.5 -12.5
117 104.4 12.6
97 108.1 -11.1
98 93.6 4.4
88 840 4.0
100 94.2 58
104 98.0 6.0
69 87.9 -18.9
104 92.6 11.4
96 92.6 34
o8 89.5 8.5
87 91.3 43
85 75.6 94
85 85.4 04
77 88.7 -11.7
104 94 .4 9.6

The three criteria of the above results are

(1) E, = IZZZJV_"%Q +20 =8%
(2) E, = i V—d(%%g@ +20=0.26
(3) E_ = 1\/112;: %)K@ =27.4%

If the coefficients change (refer to Appendix B for the formula), then we have the

following forecasting results.
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Table H.4
Forecasting Results by Recursive Method

Actual Volume Predicted Volume Differences
99 105.0 5.0
102 101.7 0.3
103 103.9 0.9
111 105.9 5.1
88 100.5 -12.5
117 104.3 12.7
97 108.4 -11.4
98 92.8 52
88 338 42
10¢ 950 5.0
104 97.5 6.5
69 88.2 -19.2
104 93.0 11.0
926 91.6 4.4
98 90.6 7.4
87 90.0 3.0
85 76.8 8.2
85 85.8 0.8
77 89.3 -12.3
104 94.6 94

The three criteria of the above results are

) E, = gj—————V"(gzj(") +20 =8%

(2) E, = ;23 %@ +20 =026
L AURZ0/ -

(3) E_ = M;x m7om 27.8%

The three varying coefficients are included in the following table.
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Table H.5
Three Varying Coefficients

Last Pomnt B(2) h(2) (1)
102 042 0.60 0.25
103 0.43 0.59 0.19
104 0.46 0.57 0.14
105 0.46 0.57 0.17
106 0.46 0.57 0.17
107 0.50 0.53 0.15
108 0.48 0.54 0.32
109 049 0.53 0.30
110 0.52 0.52 0.11
111 ¢.51 0.52 0.12
112 0.52 0.52 0.16
113 0.53 0.51 0.20
114 0.53 0.51 0.09
115 0.56 0.49 0.05
116 0.54 0.50 0.10
117 0.54 0.50 0.13
118 0.54 0.50 0.12
119 0.56 0.48 0.15
120 0.56 048 0.15
121 0.55 0.49 0.12

From the above table, we can see that b](l), bl(Z), and bz(l) vary when more data

points are used to obtain these coefficients.
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