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DISCLAIMER

The contents of this report reflect the views of the author(s), who is responsible for
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Department of Transportation. The U.S. Government assumes no liability for the contents
or use thereof. Sponsorship for the local match portion of this research project was
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CHAPTER 1

INTRODUCTION

Current levels of freeway congestion create delay, inefficient fuel
consumption, and varying degrees of frustration for drivers. Adding lanes to the
roadway to provide adequate service is neither financially feasible nor aesthetically
desirable. Until modes of transportation other than those that use some type of a
roadway exist for the public, efficient use of current highway networks will be
necessary.

'Ramp metering, a proven means of increasing highway efficiency, has been
employed by the Washington State Department of Transportation (WSDOT) on
Interstate 5 (I-5) in the Seattle area for several years. Ramp metering is one of
several freeway management techniques that WSDOT employs in the Seattle-
Bellevue metropolitan region. Other system technologies include induction loops
embedded in the pavement to count vehicles and lane occupancies, closed-circuit
television cameras for incident detection, variable message signs, and highway
advisory radio. The area of freeway that is monitored includes Interstate 5 from
milepost 153.5 to 186.4, Interstate 90 from milepost 1.0 to milepost 14.6, all of
Interstate 405, and State Route 520 from milepost 0 to the I-405 interchange. (1)

The metering strategy until recently has been to respond to traffic, which,
while helping to alleviate some operational problems on the freeway, does not
prevent congestion from occurring.

A current algorithm developed by the WSDOT's Traffic Systems
Management Center (TSMC) and used on one section of I-5 incorporates data from
the ends of each section to forecast congestion. This process calculates "storage
rates," (the number of vehicles entering less the number of vehicles leaving a

section) and comparing those rates to the lane occupancy at the desired station.



When the storage rate is positive, indicating more vehicles entering a section than
leaving it, and the lane occupancy exceeds 18 percent, the central computer
determines that forced flow conditions have occurred. The computer then sends a
message to upstream controllers in the field to reduce the metering rate by a
predetermined amount until some minimum storage rate has been reached or until
the conditions have improved. (1)

While this system is not perfect, it performs well enough to use until finer
adjustments can be made. Because such a process is quite data intensive, problems
can occur if data are inaccurate or missing. But, missing data are a problem in all
types of transportation research, whether it be in freeway operations, as at the
TSMC, in arterial control, transit facilities, or in studies encouraging pedestrian use.

The existing computer system currently has an algorithm that makes up for
missing data, but this is ineffective. As the algorithm currently works, when a loop is
not working correctly, the loop can be turned off by an operator or the computer
system. When this occurs, the computer calculates the average number of vehicles
in each of the remaining open lanes and adds that amount to the volumes in those
lanes. For example, suppose the section of freeway in question has four lanes, one
of which was a failed loop detector, and 90 vehicles are detected in those three lanes
during one minute. The computer then adds 30 vehicles to the total of 90, for an
estimate of 120 vehicles for that station during that particular minute. The number
of vehicles traversing that data station may actually be 120, assuming a linear
distribution of traffic across all lanes of a freeway is not always practical because
freeways frequently include an HOV lane. The volumes in the HOV lane are
usually much lower than in the general purpose lanes.

This research is part of a larger project that attempted to forecast freeway
and ramp volumes, and lane occupancies for real-time use in ramp metering

applications, as well as forecast data collection efforts as noted above.



This paper will look at previous efforts at developing traffic volume
forecasting methods, both in real-time and off-line situations. Several models that
have been developed will be discussed to provide a foundation for this and future
studies. (2, 3,4, 5, 6, 7, 8,9) A short, noncomprehensive review of these methods is
given in Appendix A which discusses state-of-the-art efforts in this subject area. The
majority of the research effort has been focused on checking the validity of work
done by Zhu at the University of Washington in 1990 and furthering promising
aspects of that work. (9) A discussion of our reasoning can be found in Chapter
Two, Research Design, Chapter Three discusses the results of this research. The

final chapter contains conclusions and recommendations,






APPENDIX A

STATE OF THE ART

The goal of this appendix is to review and discuss traffic forecasting methods
developed in the past that may currently be used in some locations. These methods
are not presented in any particular order for the author does not want to €xpress a
preference for any one model. The final forecasting method, however, is placed in

that position because of its significance to this research.

UTCS

The Urban Traffic Controi System (UTCS) has two forecasting methods.
Both methods forecast demand, but in different ways: Stephanedes, et al. (7)
described UTCS-2 as a second-generation model and UTCS-3 as a third-generation
model.

UTCS-2, as the name suggests, is the older and less sophisticated model of
the two. It requires substantial amounts of historical data for forecasting (though
some researchers suggest only the ten most recent days will suffice), with small
departures from history being taken up by current data measurements. (4) It makes
forecasts in real time on the basis of these historical data and measurements taken
from one location. That is, forecasts for a particular station X are based on history
and measurements at station X. Predictions generally do not go beyond the next
time slice, which is usually between 5 and 15 minutes. (7)

Since the main focus of this research is not on UTCS, the set of equations
used has been left out of this paper. However, the prediction equation is as follows:
(7N

Ve = mg + y(me-1-1fg-1) + (1-0)E1) + v(1-e) (E2)
where

my = historical volume at time t



7 = smoothing coefficient, obtained by a complex equation not shown here
(see (7) for equations)

ft = measured volume at time t

a = constant computed off-line from representative volume data for the

station location

t-1

1 = Lo ¥ft-g-rme-g-3
s=0
t-2 <

Z2 = I o (frog_p-mg-g-3)
s=0

Additionally, the historical volume at time t is determined as the sum of
cyclic volumes plus a constant obtained for an approximation of patterns for that
particular location.

UTCS-3 is a third-generation model, which is more modern and simpler than
UTCS-2. UTCS-3 also has the capability of forecasting more than one time period
in advance. Unfortunately, according to the literature reviews of this model, it
appears to be limited to only two time intervals into the future. This method also
makes predictions without the use of historical data; no historical pattern is required
for forecasts because only current measurements are used for forecasts. Like 1ts
predecessor, UTCS-3 only uses data obtained from one location for its predictions.

The full set of equations for this forecasting method is not included in this
research; however, the demand prediction equation is as follows: (7)

Ve+i = 1fe + (l-vj)[uoatﬂl-a)ﬂa]

where
Vi+j = forecasted volume for time t+] at time t
j = constant computed off-line from representative volume data
f; = measured volume at time ¢
bt = exponentially smoothed volume measurement



o = smoothing coefficient
t-1

T3 = D o°fr_g-)
s=0

One problem with both of these methods is that forecasts are made partially
or entirely on the basis of data collected at the location in question. For forecasting
congestion in real time, this is a viable way to proceed; however, if the objective is to
replace missing data, this method fails. It appears to break down as soon as the
forecasting horizon has passed. One way to make up for this would be to use
forecasted volume in the next volume prediction. This may work for a short time,
but since there is no other source of information about the freeway system, there is
no redundancy built into the forecasts, and this method would tend to produce large
forecasting errors as time progressed.

The reason for developing another forecasting model was 10 overcome the
shortcomings of UTCS-2. Major problems occur with UTCS-2 because of its high
reliance on historical data. It is well-known that traffic volume can vary
considerably, depending on several factors, such as weather, special events, etc. As
discussed above, UTCS-2 does not respond to these circumstances. Therefore, the
model cannot be used with different systems and locations. Additionally, the
database for the historical data must be updated continually.

In theory, UTCS-3 should be an improved model. Some tests by Kreer (10)
suggest that UTCS-3 is not as great an improvement over UTCS-2 as was first
thought. Those findings indicate that the older model performed better, with both a
lower mean absolute error and mean square error. (See Chapter Three for details.)
While the effect of time lags exists in both models, the effect is greater in the third-
generation model, which requires at least two time intervals to recover should a

detector briefly malfunction.



Spectral Analysis

One of several formal methods of time series forecasting, the spectral
analysis method was used to forecast traffic volumes at the Liverpool (U.K.) Mersey
Queensway tunnel, with relatively successful results. (6) This is a math intensive
method of forecasting that is difficult to understand for most laypersons. Because of
these drawbacks, this method is seldom used in practice, and the forecasting
equations are not presented here. The reader is directed to (6) for further reading.

Researchers took traffic to be the result of several cumulative effects,
including commuters, recreational, and commercial traffic. Assuming this was true,
then the basic traffic patterns would most likely only slightly vary. Each day was
considered to be an ensemble of a time series. The researchers also assumed that
the series was nonstationary. This method also has the property of allowing for a
recursive algorithm to update constants as additional data become available.

Researchers used data in six-minute time slices for two hours in both the
morning and evening commutes for 43 days, excluding weekends. While it may have
seemed wise to remove (or compensate) for trends or cyclic behavior and data, this
created only marginal improvements in forecasts. Researchers also found that the
maximum prediction errors were in the range of 8 to 11 percent, with higher errors
obtained when data compiled from averaged previous data were used in the
prediction, which resulted in a 12 to 19 percent error.

The researchers felt that the results were acceptable, and indicated that most
of the forecasting errors were due to faulty equipment. They believed that error

rates could drop to S percent if improved data collection methods were available.

(6)

Box-Jenkins Model
The Box-Jenkins method has been widely and successfully used for several

types of forecasts, from business revenue projections to traffic forecasts. While



somewhat difficult to use, this method tends to be more intuitive than spectral
analysis, and for this reason is used more often.

In general, the forecasts are a function of some type of weighted moving
average along with a weighted autoregressive element (though one, both, or neither
may be included in the forecasting equation). The operator must determine the
type and order of the process in question before proceeding with forecasts.

Typically, an autoregressive process of order p will have an autocorrelation
function (ACF) that tails off, and a partial antocorrelation (PACF) that cuts off
when less than two standard errors occur after lag p. On the other hand, in moving
average process of order q, the PACF will tail off and the ACF will cut off after lag
q. If both ACF and PACEF tail off, the process is mixed. This indicates that some
sort of transformation may be made, or that the forecasting equation includes both
moving average and autoregressive terms. (3)

The general form of the Box-Jenkins technique is the ARIMA model,
AutoRegressive Integrated Moving Average. If seasonality is experienced, the
series needs to be modified in order to use this method. The modification may
involve differencing the series (using the change in volume instead of the volume
itself), or using some other transformation, such as a logarithm or square root.

Traffic volumes are often considered seasonal since there is a regular, cyclic
pattern to traffic on a daily, weekly, and monthly basis. The traffic in this research is
not seasonal since it occurs over a few hours and was collected in one-minute time
slices.

The general form of the ARIMA model is as follows: (3)

2p(B) (1-8)d(Xg-w) = Og(B)at
where

p,d, q = the order of ARIMA (nonnegative integers)

i = mean of the series



®p (B) = autoregressive portion of order p, equivalent to 1 -~ 1B
.« . - ®BP, |2 | <1

6q(B) = moving average portion of order g, equivalent to 1 - 48
- . .-96g89, | & | <1

at = random disturbances (assumed normally distributed)

B

backshift operator, such that BX¢ = X¢—q

Thus, the above model is described as ARIMA of order (p,d,q). This method
is unique in that it does not have a form that the user applies to the data. Instead, a
data analysis must initially be done to determine the appropriate order for the
model. This step, identification, is the first of three steps (estimation and checking
of fit are the other two). This is often described as "letting the data speak for itself."
(4) The researcher is then free to make observations and suggestions to the
computer as it manipulates the model.

If the data prove to be nonstationary in the identification phase, then
alteration to produce stationarity must occur. This takes place through differencing
with log, or power transformations. Differencing is used if the series is
nonstationary in the mean, while the other transformations are used if the series is
nonstationary in the variance.

When the series is stationary, ACFs and PACFs are found to determine the
order of the series, as described previously. The next step in the ARIMA process is
to determine preliminary coefficients for the model via least squares. The model is
then checked for fit. An effective model will have uncorrelated residuals.

Box and Pierce developed a test to determine if residuals are correlated.
They found that the variable Q was approximately chi-square distributed with K-p-q
degrees of freedom. The variable is defined as

K

Q=n<% [ri’(a)]
i=1

10



where

n = number of observations
K = number of lags checked
ri(a) = residual autocorrelation for lag i

Ahmed and Cook used the Box-Jenkins technique in a study of freeway
traffic data in three metropolitan areas. (2) Like the data used in our research,
most of the data Ahmed and Cook used were from one-minute or shorter time
slices.

They continued research done by Der, and took the data sets best described
by an ARIMA (0, 1, 3) process. Der initially suggested a (1, 0, 1) process, but it has
been determined that this suggests a stationarity for traffic that may not exist in all
cases.

Ahmed and Cook performed further tests, comparing the ARIMA method
with several other models. They used measures of effectiveness of Mean Absolute
Error (MAE), and Mean Square Error (MSE), both of which are described in
Chapter Three. These values for the ARIMA method were normalized to be 1, and
the errors for the other models were taken as

MOE (maode! of choice)

MOE (ARIMA)

The researchers did not find any methods that minimized either MAE or
MSE better than the ARIMA (0, 1, 3) method. Thus, it was felt that this model best
described the traffic process.

The researchers concluded that updating the moving average coefficients
might improve the model. They stressed that this would not be necessary in all
circumstances, citing work by Trigg and Leach (11), which showed that consistently
changing a smoothing constant resulted in larger forecasting errors than using

simple exponential smoothing models.
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When considering computer requirements for updating such coefficients, one
must be careful in deciding when to update parameters--one possible point is when
traffic patterns change (between peaks).

Another researcher praised the computational convenience of the ARIMA
method as a prime consideration for on-line computer applications. (5) Eldor found
that as time slices increased in size, the order of differencing increased as well.
Logically this is expected to occur, since in larger time slices there is a larger
variability in the volumes experienced. The researcher also suggested that, from a
demand perspective, traffic responsive control systems are not necessary for
conditions where there are fairly regular traffic patterns, possibly implying that such
research for the Seattle area is unnecessary. He also noted that incidents alone do
require immediate response in real time, so some limited control should be
employed. Eldor also recommended against using systems where a cushion is
employed to guard against underestimation as this cushion would tend to produce
an overly conservative result. It would then be difficult, if not impossible, to know

when underestimation or overestimation occurs. (4)

Pattern Recognition

The pattern recognition method is currently used on part of Interstate S in
the Seattle arca. While this method does not accurately forecast traffic volumes, it
is effective in forecasting traffic congestion. The goal is to detect congestion before
it occurs, thus preventing it. The model should be simple enough to allow the
central computer to perform routine calculations without delay, but complete
enough to allow for accurate forecasting. The system does not look for several
patterns, but only one, the simple, classic "bottleneck.” This greatly simplifies the
system.

The central computer monitors the freeway in one-minute intervals with
updates from field controllers. Congestion tends to occur when the number of

12



vehicles entering a section exceeds the number of vehicles leaving the section
(positive storage rate), and average lane occupancy across all lanes in the section
exceeds 18 percent.

When the computer senses that these conditions exist, it forecasts a
bottleneck, and attempts to restrict metering rates for ramps entering the section by
the storage rate amount. The goal was not only to forecast the congested
conditions, but also not to forecast these conditions when they did not occur, as
doing so would restrict the ramp volume unnecessarily, creating more congestion
rather than reducing it. (1) Though this procedure has good prospects for
forecasting congestion in general, its use for determining traffic volume is minimal,

since volume is typically stochastic in nature, especially on a minute-by-minute basis.

Least Squares Approach

The Least Squares Approach, which is the final method considered here, has
implications for this research. Zhu and Nihan employed this method in their
research. The general form of the Zhu/Nihan model is that downstream volume
can be expressed as a function of the sum of fraction of upstream volumes, lagged

an appropriate amount.

p2 q2
Vg = & k1l(p)Vup(t-p) + X k2(q)Von(t-gq) + Z{t)
p=pl g=ql

13



where

plL,p2 = minimum and maximum travel times from upstream
ql,q2 = minimum and maximum travel times from on ramp
k1l = portion of vehicles with travel time p

k2 = portion of vehicles with travel time q

Z(t) = error

The main challenge is to find the appropriate lags, which would indicate pl,
P2, q1, and q2, and to find the appropriate coefficients k at these lags. Zhu and
Nihan used spectral analysis and Fourier’s transformation of the covariance to
determine the lags. (Details of this proof are not given here, but may be found in
reference (9).)

The above equation can be expressed in matrix form, then ordinary least
squares can be used to obtain the coefficients, and updated as time progresses.

This method was used to forecast both volumes and occupancies on a section
of Interstate S, north of downtown Seattle, and an MAE of 8 percent and an MSE of
0.26 were obtained.

The conclusions suggest that off-line forecasting using only upstream volume
might also be appropriate since the entrance ramp atfected the volume only slightly
(the coefficient was less than unity, and ramp volumes are typically less than 20.)
Downstream occupancies were difficult to forecast based on upstream occupancies,

thus, a model for occupancies was not feasible for the research here.
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CHAFPTER 2
RESEARCH DESIGN

Data Collection

To facilitate investigation of forecasting techniques, a study site was selected
where data have typically been found to be reliable (see figure 2.1). Reliability
refers to stations that have equipment that rarely malfunctions. This stretch of
freeway has recurrent peak-hour congestion because of several entrance ramps in a
short area. ‘This is typical of what other researchers often discovered in other parts
of the country. These factors, combined with the fact that the Washington State
Department of Transportation has data stations in this area, create an area suitable

for analysis.

212 S.W. 220 S.W. 236 S.W. 244 S.W.

f——— 1569 —J“—"—" 5700 ———’r1975"’*
<

S 2 S

Fig. 2.1 Study Site

The section used to test the old model is 2.13 miles (11,244 ft.) in total
length, encompassing 212th St. S.W. through 244th St. S.W,, while the section-used
for the new model is 1.46 miles (7,675 ft.) in total tength, encompassing one less
station, 220th St. S.W. through 244th St. SSW. Both sections have two entrance
ramps: one at (220th St. S.W. and the other at 236th St. S.W.) and one exit ramp. In
the final 1,925 ft. of the section, just under the 236th St. overpass, an inside high

occupancy vehicle (HOV) lane has been added (the left lane). This segment serves
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suburban commuters en route to employment centers in the Central Business
District and other suburban communities.

Data were obtained electronically by WSDOT loop detectors. A loop,
embedded in each lane, recorded both volume and lane occupancy. A group of
loops at ome location comprises a data station; at which vehicle counts are
aggregated providing the data used in this study.

Of the data collected over several days, the data collected on February 11
and April 17, 1991 were selected. Two hours of data were collected in one-minute
increments for each day, from 6:15 a.m. to 8:15 a.m., at the following stations: 212th
St. S.W,, 220th St. S.W., 236th St. S.W., and 244th St. SSW., which are on the
mainline of I-5; the entrance ramp at 236th St. S.W.; and the exit ramps at 220th St.
3.W. and 244th St. S'W. The weather on the first day was cloudy with light rain and
good visibility; the roadway was bare and wet. The second day was partly cloudy
with good visibility. (A time-series plot, as well as a listing of the data points, is
given for each time series in Appendix B, Study Data and Plots.) The time series for
the data set indicates that something of significance happened. When the incident
log, maintained at the Traffic Systems Management Center (TSMC) was checked, it

was confirmed that an incident of some type (an accident) occurred.

Calibration of Simple (Zhu/Nihan) Model

As is typically done with time series statistics, the first several data points
were used to generate a forecasting process for the last few points in the data set. In
this case, the first 90 available data points were used to obtain an equation to
forecast the final 30 points.

The model developed here was originally employed to determine if Zhu and
Niban’s methods could be applied to other sections of I-5. A 1.2 mile-long section

south of this area was studied in that research.
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In keeping with the original goals of this research, it was necessary to find
time-lags of upstream stations that significantly affected the data station at 236th St.
S.W.

The study area for checking Zhu and Nihan’s model included the additional
upstream station at 212th St. S.W. and the exit ramp at 220th, which adds 3,643 ft.
(0.69 miles) to the study area of the new model described in section 2.1. We initially
were reluctant to include this station, since it lengthens the study sections, and we
felt it might result in conditions different from those developed by Zhu and Nihan.
However, since the general geometrics of the section were the same, the station was
kept in the study, and appropriate lags were determined.

To ascertain the best coefficients to use, it was necessary to first find the
critical lags affecting downstream traffic volumes. To do this, we estimated travel
times through the study section. These were obtained by determining the length of
the section and selecting expected vehicle speeds for the time period studied. For
example, since the study section is 1.46 miles long and the study period is during the
morning commute, it is not unreasonable to expect a vehicle to take

1.46 mi.
= 0.049 h = 2,92 min

30 mi./h
to traverse the section. A vehicle traveling 30 mph would take 4.2 minutes to travel
from 212th St. S.W. to 244th St. S.W. Determining this assumed speed is supported
by the fact that many of the volumes are around 100 veh/min, which expands to
6,000 vph. This is the assumed capacity for a three-lane freeway, such as this.

A wide range of travel times were selected (one to eight minutes for the
mainline, corresponding to speeds from 11 to 88 miles per hour). Ramp travel times
also ranged from one to eight minutes.

The data were input into a text file using a text editor on a personal

computer, then sent through a modem to MAX, a VAX computer at the University
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of Washington. All statistics operations were done using MINITAB 7, a statistical
software package.

The data files were read into MINITAB and were lagged the appropriate
amounts. For example, if a column of data were to be 94, 103, 87,92, 95 . .. (units
of vehicles per minute), then lagging that column by one time period would result in
MINITAB reading the column as *, 94, 103, 87, 92, 95, . . . where "*" represents
missing or unknown data.

It was expected that the results would be of the form

Vpred = a1V212(t-1) + a2V212(-2) + *** + a{V212(1-i)

+ b1V220(1-1) + b2V220(t-2) + ** + bV220(t4)

* €1Von(t-1) + 2Von(t-2) *+ " + kVon(t-k)
Where Vpred represents the forecasted volumes at 236th; V12, V720, and Von
represent one-minute volumes at 212th St. S.W., 220th St. S.W., and the entrance
ramp from 220th St. SW. The parameters a, b, and c represent constant
coefficients. The letters i, j, and k indicate that the number of lags for each volume
need not be equal.

The results of this method can be found in Appendix C and are discussed in

the following chapter.

New Model Development

The above method should, in theory, forecast traffic volumes relatively well
because what is actually being forecasted is the critical lags. Unless the vehicles
upstream exit to 220th St. S.W., the traffic volumes at upsiream stations will pass the
station for which a forecast is desired.

In cases where an incident, or another form of congestion occurs, it is clear
that traffic volumes will tend to decrease due to a loss of capacity and natural driver

curiosity about the incident. We know, from shock-wave theory, that such
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bottienecks can have major effects on the bottleneck location, both upstream and
downstream .

The important types of shock-waves, in this case, are the backward-forming
and forward-recovery shock-waves. When an incident occurs, this is especially true.
This situation can be represented by a hypothetical density contour map similar to
the one shown in Figure 2.2

If non-recurrent or recurrent congestion occurs at point A, creating
stationary and backward-forming shock-waves, traffic hacks up to some point B,
where an incident, supposedly, has occurred. This creates another backward-

forming shock wave and a new forward recovery wave. (11)

FORCED FLOW CONDITIONS

dist. INCIDENT ’
CLEARED

INCIDENT

tima

Fig. 2.2 Density Contour Map
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In order to compensate for such shock waves :and changes in congestion
levels, it is desirable to have a model that can account for them in some way.
Density contour maps serve as good indicators, but they arc not always casy to
understand, nor are they easy to program.

Instead, consider the model incorporating the storage rate concept, described
in Chapter One, that is currently used at the TSMC for ramp metering purposes. In
the case where an incident occurs downstream of the section where a storage rate is
calculated, the number of vehicles entering the section exceeds the number teaving
it, and the storage rate is positive. ‘The downstream constriction eventually will have
the effect of reducing volumes entering the section until the section has storage
rates approaching zero. At that point, storage rate has no effect.

In the case where reduced capacity oceurs upstream of the section where a
storage rate is calculated, the number of vehicles entering the section will be less
than those leaving it. This, too, will have a negative effect on volumes downstream
of the section, as described in the above discussion of bottlenecks downstream of a
station.

Consider a generic freeway section shown;

8 - C A D~ ™ E
/// ~—_ S
~ ‘\____________
—

Fig. 2.3  Generic Freeway Segment

IF the freeway is cut into pieces, section B-C and section D-E. then traffic
volumes at point A can be viewed considering the effect of storage rates alone.

When a reduction in flow occurs at B, traffic arriving at a rate gy will back up
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because the flow rate departing B is qg, and therefore, qa > qd. Suppose the shock
wave will continue upstream to some point past D and A. Once the shock wave
moves past D, the storage rate in section B-D should theoretically be zero, with the
arrival flow equaling the departure flow. While the shock wave is proceeding
upstream, the flow at A will be reduced until the shock wave moves past.

Likewise, if a bottleneck occurs at E, the arrival rate qa will be less than the
departure rate qq at D. This is best visualized if congestion exists on the entire
segment in Figure 2.3. If a non-recurrent incident occurs at point E, at that point,
the flows past E will be significantly lower than those in the rest of the section. If
the little flow that does get past E does not put the freeway at, or over capacity, the
downstream congestion at points A through D should disappear. This incident will
also have the effect of reducing the volume at A; since this is a forward-recovery
shock wave, and this only exists when there has been congestion and demand falls
below the downstream bottleneck capacity. (12)

Another way to incorporate the effects of local congestion into a model is to
use lane occupancy terms. The data given by the TSMC have one-minute lane
occupancies to 0.1 percent. These data may not always be as accurate as 0.1
percent, especially in congested situations where vehicles have very small distance
headways. This may cause some lack of clarity in the loop detectors. Nonetheless,
the data presented have been used. Thus, lane occupancies will tend to indicate
density that should relate to volume. Upstream occupancies have been used in
addition to upstream storage rates. Downstream occupancies were not used in this
model.

In all three of the above situations, a negative effect on volume occurs. For,
as a downstream storage rate increases, the effect should eventually be to reduce

traffic volume upstream, As upstream storage rate increases, traffic volume
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downstream should eventually decrease, and as upstream lane occupancy increases,
downstream volume should decrease.

In this particular model, though the study section does not, in fact, resemble
Figure 2.3, similarities do exist. The upstream station, at 220th St. S.W. can be
represented by point E, and the downstream station, at 244th St. S.W. can be
represented by point B. Point A can represent the station where forecasts are
desired, the 236th St. S.W. station.

The model will use upstream storage rates calculated by V220 - V236 and
downstream storage rates V23g - V244. Though the station where forecasts are
desired is used in these calculations, this is not a problem. If the station at 236th St.
S.W. malfunctions for some reason, the computer would look at the most recent
mainline volume for this station and use that volume for the next forecast.

Reasoning for this may seem somewhat circular, but if forecasts have a
reasonably small error, error propagation should not be a problem in off-line use.
Difficulties could arise in on-line use if the central computer could not locate the
last true volumes, or if it took too long to make forecasts for real-time control. If
error terms are random and normally distributed, it is logical to assume that
aggregating forecasted volumes (i.e., using five-, fifteen- or sixty-minute data) shouid
result in error terms approaching zero.

The model should take the form of

Vpred = Z +a1V0(t-1) + - - - + 8jV220(t-i)

+ 010220(t-1) * - - - + bjO220(1-)
+ ¢1SRyp(t-1) + ... + ¢kSRup(t-k)
+ dISRqn(t-1) + ... + deRdn(t-m)
where Z is a constant; a, b, ¢ and d represent constant coefficients; V indicates

volume; O indicates lane occupancy; SRyp is upstream storage rate; SRqp is
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downstream storage rate; and i, j, k, and m are indices indicating that the number of
coefficients for each variable need not be equal.
Regressions for several lags were performed on MINITAB. Final results are

in Appendix D, and a discussion of these results can be found in the next chapter.

Validity Concerns

Weather and incidents can cause these models to break down and become
inefficient, and may result in a model that is different from the actual circumstances.
For example, if an incident occurs, it may affect the forecasting equation for days
when no incident occurs. Likewise, the weather indicated on the day modeled here
may not be valid for some predictions. While initially these may seem to be external
validity concerns, such considerations can become internal since only one section of
freeway is considered in this case.

Defective equipment, such as bad loops and bad stations, can always occur,
especially in this situation where the equipment is several years old and has been
subjected to weather. The effects of temperature on the equipment must also be
considered. The computers at the study site have a small fan to keep them cool
during the summer, and minimal heating to keep them warm during the winter.
These weather effects and lack of sophisticated environmental control could
contribute significantly to data errors, especially in hot weather and high humidity.

The consequence of using these instruments greatly affected this research
project because the objective of the research was so closely tied to the quaiity of
data collected. The objective was to develop a model to replace missing or bad
data, so it was important to collect data known to be accurate; however, the only
way to collect these data was by using the same technology known to need
improvement. But good data may not exist for this research. Since the results are
only as good as the original data, those data are suspect. Nevertheless, a site for the

research had to be chosen, and the reason for selecting this section was that these
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stations consistently had reliable data, and the microcomputers at these stations

rarely broke down.
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CHAPTER 3

RESULTS

Introduction

In this chapter, results of the models discussed in Chapter Two are
presented. A set of evaluative criteria is established, and these models are placed
against criteria in order to judge them. A discussion of the results follows, including

how the results were achieved and their implications.

Criteria

Two error measurements established to be effective, (7) along with two
introduced here, were used to compare forecasting methods. The mean square
error (MSE) penalizes large prediction errors and the mean absolute error (MAE)
indicates a typical error for individual forecasts. These two standard means of
judging forecasting effectiveness are defined as follows:

MSE = [£(measured vol - forecast vol)?]/N and

MAE

[Z | (measured vol - forecast vol)|]/N

where N

number of predictions.

For this research, the above error terms were calculated for the data points
102 through 128 (N = 27). While the reader might expect 30 data points from 91
through 120, data coilection methods employed at the TSMC for this particular day
resulted in gaps in the data set at the end of each 30-minute block. These gaps, in
turn, caused the first few data points to be difficult to use since the forecasting
equations use lagged terms (i.e., terms using data from previous time periods).
When a missing term was lagged, it resulted in an ineffective forecast. In order to
compare the two models isometrically, the first three terms were dropped.

Ordinarily, this would not be the case since data collected would be continuous.
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Additionally, using percentages, rather than absolute numbers, was
preferable. (Absolute numbers are often difficult to evaluate because it is hard to
distinguish the difference in effects of a vehicle error of magnitude E on two
different actual volumes: the error of 15 vehicles on actual volume of 30 vehicles is
different than the error on an actual volume of 115 vehicles.) Percentages were
computed as follows:

% error = 100 * (forecast vol/measured vol - 1)

When the forecast volume exceeds the actual volume, the error will be positive,
indicating overprediction, and similarly, negative error rates indicate
underprediction.

Another error term, Emax% was also used. This was important for
developing criteria to determine when an incident or data collection error might
occur. This can be used in cases where the predicted volume exceeds some pre-set
maximum error. When this happens, one can conclude that some type of
malfunction or incident happened.

Note that it is possible for a model to have a lower MAE in percent but a
higher MAE in absolute terms. This indicates that such a model may be less
sensitive and fairly consistent in its error formation. The other model would tend to
have larger errors as traffic volumes decreased. One way to interpret such a
discrepancy is to analyze the mean square error term. A desirable model shouid
have lower error rates relative to other models in at least two of the three terms.
Given the fact that the field equipment cannot collect data better than about a 10
percent error rate, the chosen models should have error rates less than 10 percent.

Percentage of error was also aggregated into five-minute increments here,
since most data collection for research needs some sort of aggregation for study. If
the one-minute percent error has a normal distribution with mean zero, then the

five-minute error should also hover close to zero.
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Forecasting Results

As discussed in Chapter Two, both forecasting techniques used the
MINITAB statistics software to generate forecasting equations. The general
expected format of these equations is given in that discussion. Appropriate lags
were determined through numerous regression runs, taking a different combination
of variables each run.

In general, runs started by using all variables at all lags, and continued by
dropping the least significant variable at the end of each run until an acceptable
model was developed. Though use of all variables at all lags was not always the
case, it quite often was, as it was the best way to keep track of different variable
combinations.

Accuracy will be somewhat limited because the data interval is one minute.
Obviously, narrower time slices will tend to result in improved accuracy because of
an increase in the amount of information provided. However, when such large
amounts of data are used the result may be larger errors because of the data
collection. Thus, the one-minute time interval limits model sensitivity.

The simpler model, which used Zhu and Nihan's dependent variable set, was
found to have significant variables at 212th St. S.W. (lag 2), 220th St. S.W. (lags 1
and 2), and the entrance ramp at 220th St. S.W. (lags 1 and 3).

The forecasting equation for the simpler model is

Vpred = a1V212(1-1) + b1V220(t-1) + b2V220(1-2)

+ ¢1Von(t-1) + €2Von(t-3)
where MINITAB determined via least squares regression the coefficients and t-

ratios shown in Table 3.1.
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Table 3.1, Coefficients of Simple (Zhu/Nihan Formulation) Model

coefficient t-ratio
a1 = 0.186 2.06
b1 = 0.281 2.58
by = 0.491 5.15
c1 = 0.456 1.36
c2 = 0.598 1.70

Note that all of the coefficients are less than unity. This should be taken as
coefficient values representing percentages of vehicles. For example, in the above
variables, 28 percent of the vehicles measured past 220th St. S.W. take
approximately one minute to travel to the downstream section, and 49 percent of
the vehicles take about two minutes to travel to the downstream station.

This model was found to obtain the following errors:

MAE = 5.18

MAEg, =990

MSE = 43.70

In the new (Nihan/Knutson) model, significant variables were found to be a
constant, volume at 220th St. S.W. (lags 1 and 2), occupancy at 220th St. S.W. (lag
1), upstream storage rate (lags 1 and 3), and downstream storage rate (lag 2). Thus,
the new model gives a forecasting equation of

Vpred = Z  + 31V220(t-1) + a2V220(t-2) + b10220(1-1)

+ ¢1SRyp(t-1) + ©2SRyp(t-3) + d2SRdn(t-2)

Once again, MINITAB calculated coefficients via least squares methods and
obtained the coefficients shown in Table 3.2.

The results in Table 3.2 also serve as coefficients for a variation of the model,

in which updated information is used. This was done to test the improved accuracy
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of forecasts due to new information. Table 3.2 gives coefficients for the updated
model as well, since both new models begin forecasting in the same way.

Table 3.2 Coefficients of Nihan/Knutson Model

coefficient t-ratio
Z =4128 4.16
a1 = 0.472 4.10
ar = 0.226 2.51
by = -0.312 -2.90
c1 = -0.311 -2.95
¢ = -0.153 -1.90
dy = -0.138 -1.48

Once again, the coefficients are fractions, which should be taken as
percentages of vehicles requiring a certain length of time to reach the downstream
station. Exceptions to this rule exist in storage rates and lane occupancy. Analysis
of other constants indicates that most of the effects on predictions lie with the
constant and the upstream mainline volumes. Since most storage rates are less than
about 20 vehicles per minute, the cumuiative effect of the storage rate reduced the
forecast by no more than 20 vehicles.

Occupancy should also have a fraction for a coefficient since, theoretically,
occupancy could be up to 100 percent. In such cases, a coefficient of one combined
with the high occupancy would reduce the forecast by 100 vehicles, approximately
the one-minute capacity of a three-lane freeway. Higher coefficients would have a
more extreme effect.

The negative lane occupancy and storage rates indicate that they will reduce
volumes. The only possible exception to this would be that the occupancy would
cause an increase in volume rather than a decrease. This happened in cases where

conditions were below capacity, or on the left side of the flow-density curve. In this
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particular case, conditions were congested, so the negative sign was within a
reasonable range.

The new model resulted in the following errors:

MAE = 4.94
MAEg, = 1031
MSE = 46.08

The updated model had the following errors:

MAE =433
MAEg, =898
MSE = 3144

Interpretation of Results
These results are compared in Table 3.3 and in Figure 3.1. Percentages of

errors are in Figures 3.2 - 3.7.

Table 3.3 Comparison of Models

Zhu/Nihan Model Nihan/Knutson Model
Old Forecast Model New Forecast Model New Updated Forecast Model
MAE 5.18 494 4.33
MAEg, 9.90 10.31 ) 8.98
MSE 43.70 46.08 31.44
Emax% 27.52 42.74 30.61
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Fig. 3.1 Graphic Comparison of Model Results

It is apparent from Table 4.3 and Fig. 4.1 that the new model with updating is
the better model, if a better model is to be determined through only the terms
introduced previously. However, inspection of Figures 4.2 through 4.7 suggest that
differences in new models appear to be minor.

A closer look at the plots shows that the new model seems 1o have a problem
with overprediction, while the old model tends to underpredict. The new model

with updates also seems to overpredict, and with little difference from that of the

new mode] without updates.,
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These prediction error results posed an interesting problem, considering an
incident occurred on the day used for the analysis. Intuition suggests that due to the
lack of information on downstream conditions, the old model should have
forecasted lower volumes than were experienced. This lack of information should
have presented a problem since congestion occurring downstream can reduce the
traffic volumes upstream, as previously discussed. The overprediction caiculations
of the Nihan/Knutson model seemed to result from inadequate accounting of
storage rates and occupancies, which in turn, provided negative influences on the
volume. The updated model performed slightly better, but the overprediction
suggests some systematic error in the forecasts.

The plots in Figures 3.2 - 3.7 show that the Nihan/Knutson new models
seem to recover from missing data faster than the Zhu/Nihan old model. This is
because some of the data can be replaced as time passes. Since storage rates are
based on previous forecasts, they provide a safety cushion for missing data. This
cushion is more of a redundancy, as in a structure. By having more information in a
model, each individual part loses significance and may be removed without causing
significant problems; however, removing a large portion of the forecasting equation
does have a negative effect,

Amalysis of the five-minute error prediction results in Figures 3.3, 3.5, and 3.7
also indicates that both new models tend to overpredict traffic volume, whereas the
old Zhu/Nihan model tends to underpredict it. This analysis also indicates that the
assumption that error rates are normally distributed is invalid in this case. In a near
perfect model, such error rates would have a zero mean, and likely be distributed so
that few points fall very far from the mean.

When the data were examined and an incident was discovered, a trial run of
the models was then done to see how well an incident could be detected in each.

The first 60 data points were used to generate coefficients for the data lagged as in
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the above models. The coefficients, which are given in Table 3.4, were slightly
different for these models, as might be expected. The table includes all of the
models. The letters indicate where each value goes in the respective equations as

described previously in section 3.3,

Table 3.4 CoefTicients of Incident Test Models

Coefficient Zhu/Nihan model Nihan/Knutson model
Z - 39.71
ap 0.152 0.462
as -- 0.250
b 0.329 -0.312
by 0.576 --
cq 0.023 -0.297
Cy 0.235 -0.194
d; -- -0.112

Error plots for the equations using the above coefficients can be seen in
Figures 3.8 through 3.10.

Inspection of these error plots for incident detection purposes shows that all
methods are equally effective in flagging an incident, indicated by the large
percentage of errors (the difference between forecasted volume and actual volume).
It also appears that due to the large forecasting errors a few minutes prior to time
slice 85, which was the time of the incident, these models may have forecasted the
incident. In detecting incidents, it seemed that as more information is fed into the
model these differences in forecasted and actual volume tended to die out more
quickly over time. In that respect, the old model is better for incident detection
purposes. Conversely, the new models detected an incident, let the error dissipate,
and then proceeded with forecasting. The forecasts will still have errors, but as time

progresses, these errors should approach the mean error for the series.
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Residuals for forecasts were checked for stationarity. All models had

stationary residuals, so they should have valid results.
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Although use recommendations are outlined in the following chapter, an
initial response is noted here. The old (Zhu/Nihan) model might be selected
instead of the new (Nihan/Knutson) model, because it is less data intensive. But,
as was noted previously, the new model recovers more quickly, and has fewer large
forecast errors when the computer has no information for one or more minutes from
certain stations.

In transportation planning research, traffic volumes should be as accurate as
possible. Using the old model would underpredict traffic. On a larger scale, this
could result in the collection of data that do not reflect extreme conditions.

Using the new model would impose extra restrictions on traffic, such as ramp
metering and HOV lanes. For example, if data were collected for input into FREQ,
the results might suggest that restrictive ramp metering be emploved, when the

traffic conditions might not require ramp metering at all.

Validity Concerns

Internal Validity

These models were constructed from a single day’s data and were checked
with another day’s data. Statistically, though this may seem an anomalous way to
proceed, the selection of two days for analysis might have produced invalid data. At
the same time, the two days selected might not have contained data that had any
interesting characteristics that may be extremely important, such as an incident, or a
lane closure. |

Given this type of situation, the best way to proceed was to determined. One
way to formulate a model is to generate several models and take some sort of an
average value of the coefficients. As was discussed previously, averaging data in this
way would have defeated the purpose of the research. The researchers were posed
with the problem of determining an appropriate way to average coefficients, and of
finding ways to combine equations that had different significant variables (i.e., ramp
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volume lagged two time periods in one equation and ramp volume lagged three time
periods in another equation).

Moreover, since the data did not cover a whole day, the researcher realized
the model would probably not be usable during parts of the day other than the
morning commutes, such as weekends, off-peak hours and evening commute hours,
none of which were not included in this study.

Construct Validity

Most reasons for construct validity problems were due to inadequate
pianning. The first models developed used storage rates that did not include on-
ramps as input volumes, which is incorrect. The correct way to calculate storage
rates is to use both incoming and outgoing flows. While this was not a major
problem 1o correct, it caused an unnecessary delay in the research.

To a certain extent this project dealt with a mono-method bias, as the data
were collected solely by electronic means. While some of the information could
have been collected manually, this would have been exceptionally difficult
(synchronizing watches and counting all vehicles in all lanes every minute for two
hours), as well as expensive: lane occupancies could not have been determined
without electronic devices. Mono-method biases are induced by budget restrictions,
as well as the technological limitations of manually collected data.

External Validity

In attempting to construct a model for forecasting traffic volumes, it was
essential that we realize the shortcomings of the model, and how applicable it is to
other situations.

The setting and treatment, as previously noted, are specific to a particular
time of day (the morning commute), and to certain types of drivers (commuters,

who may have different characteristics than other drivers, such as vacationers, etc.)
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The model was developed at only one location covering a very short length of
freeway. This model is quite uniikely to work at any other site, simply based on the
fact that the significant lags will probably differ from station to station. The
methodology employed here may, in fact, be proven useful for other freeway
sections, or other times of the day, but the variables and coefficients in the
forecasting equations are specific to sites and times used for this research, and
should not be blindly applied to other locations assuming that similar results may be
obtained.

Data Collection

One probiem discovered in the data collection process was collecting data
from incorrect and irrelevant stations. The source of this problem was
miscommunication between the researchers and the individuals programming the
TSMC computer.

Another problem with the data collected from incorrect and irrelevant
stations and data collected in the time series plot was that some data points were
missing. This was due to operator error at the TSMC. The operator coding the data
requests into the TSMC computer assumed that the printer had to finish the first
report before starting the second one, that consecutive reports could not be
requested. This is not true; consecutive reports may be scheduled with no time
delay. This miscommunication resulted in a delay of at least one minute between
thirty-minute reports.

Additionally, data is subject to some measurement error. Since all terms in
the forecasting equation were collected by the same methods, the error might have
been similar for each term. This assumption may not always be true since each
controller in the field has different sensitivity settings.

When congested conditions exist, high traffic densities may cause "blurring"

of the volume data to occur. This happens when vehicles get so close that they
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overlap in the loop detector zone. When this takes place, both vehicles occupy the
detector zone, and the controller sees only one vehicle, though two are actually
present. Therefore, extremely congested conditions may result in inaccurate data
collection.

If both sides of the forecasting equation have some unseen error term with
no serial correlation, then using the ordinary least squares regression tends to result
in underestimation of the regression parameter. If the variance of the error terms is
known, then consistent parameter estimates will result. (13) Unfortunately, it is
difficult to obtain the results of error variance and serial correlation.

Since the new model tends to overpredict rather than underpredict, an
inaccuracy other than the one described above must exist. It may be that different
terms in the equation may be underpredicted to different degrees. For example, the
terms causing a negative influence on the forecast may have coefficients with
absolute values that are too small, while terms causing a positive influence have

coefficients with absolute values that are too large.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Evaluation of the new (Nihan/Knutson) models and the old (Zhu/Nihan)
model suggests there is little difference among them. All have similar error
statistics, and all have a large number of forecasts that exceed a ten percent error
(10 of 27 for the new model without updates, 7 of 27 for the new model with
updates, and 11 of 27 for the old model). Additionaily, applications that develop
from this research must be limited to morning commutes at this particular location
to maintain validity. But this research may provide an incentive to improve the
existing model (for the morning commute) before researching other, more extensive
models.

This research is not an accurate comparison between the old model and the
new model without updates since the old model used new information to update
forecasts and, thus, tended to be more accurate. The new model without updates
does not use additional information to update predictions and had slightly worse
forecasts. The new model with updating, on the other hand, made more accurate
forecasts than the old model.

In the new method incident detection is less evident than in the old method.
The "error” due to an incident, which is the difference between actual and
forecasted volumes, tends to damp out in the new model as time goes on. This
damping tends to mask the effects of an incident by reducing errors more quickly
than the older model, making the errors more difficult to detect. Conversely, the
old model tends to keep larger differences longer, providing a more apparent error
flag. In that respect, the old model is better for the detection of errors, When an

incident does occur, the time series plots of the error rates suggest that neither
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model is acceptable for anything other than detection of that incident immediately
following the incident. Incidents are interesting freeway phenomena, and studying
them requires a considerable amount of traffic data, but current models are unable
to supply this data.

As noted previously, data collection measures have the shortcoming of being
heavily dependent on other stations, which also raises the issue of the accuracy of
data forecasted from other forecasted data. It is difficult to ascertain how errors
propagate -- linearly, exponentially, logarithmically, or by other means.

All models are alike in that three time-lags are necessary to get the models
started. Due to the comparability of the models studied in Chapter Two, the
relation of storage rates to shock-waves may not affect traffic as much as first
expected. In other words, since the only difference between the old model and the
new models is in their lane occupancy and storage rates use, then the similar test
resuits suggest that with respect to model accuracy, the effects of storage rates and

lane occupancies are minor.

Recommendations

It is best to select a model in which data intensity is minimized, and intuitive
understanding is maximized. Considering these criteria, the model developed by
Zhu and Nihan seems to be the model of choice. Another advantage of this model
is that it requires less computer time, which is the result of its low data-input
requirement.

Yet, the new model with updates provides better forecasts. Selecting a
model requires that a decision to evaluate the effects of improved forecasts versus
simplicity and speed be made. Administrators at WSDOT, or other agencies that
forecast traffic volumes, need to decide the value of accurate forecasts over fast,

simple, and economical forecasts.
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Considering the data intensity of the new model, we do not recommend that
it be used for on-line applications. The new model could be used in an off-line
situation to replace missing or bad data. If an on-line situation is required, the old
model should be implemented, and in select locations only. These locations should
be areas of high interest due to high numbers of incidents of accidents, ramp meters
(current or projected), or existing research at a particular location.

If the research goal is incident detection, some sort of simple algorithm
should be made so that the computer looks at actual traffic volumes and
occupancies in real time, and compares these traffic volumes with forecasts. If any
large difference is noted (such as exceeding Emax%, described in Chapter Three),
this may be a cause for further investigation on the part of the FLOW operator.

The present is a good time to put a forecasting method into place for testing.
Since a new WSDOT freeway management computer system is coming on-line soon,
this offers a chance to program it now, while the current system is operational. It
would then, not be necessary to take the system off-line and reduce services in order
to install a forecasting method. This also allows for calibration and software
debugging in a safe environment, where mistakes can be made without impacting

freeway operations

Implications

Further Research Issues

Further research is necessary on this project. Both methods seem promising,
but only on a local scale. Possible future research topics could include methods for
coordinating forecasts for three or four stations totally independent of one another,
Or some stations using forecast data and others using "real" data, and perhaps
another situation with all stations using forecast data. Another topic of interest

might be identifying important stations such as ramp meters, locations of high traffic
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volume, and places of high accident and incident rates for use, rather than
coordination of an entire freeway network for these types of forecasts.

Perhaps models could be simplified as well. One way to go about this wouid
be to generate models for a few stations on the present system, and to compare
coefficients with like variables. It may be that there is little variation in the
coefficients, which would indicate that possible coefficient ranges could be
constructed for forecasts.

Operational Issues

Given the site-specific nature of this research and other projects, a trend is
developing to generate models that work in one place, with plans for expansion as
good models are developed. Unfortunately, this has had the effect of making
models infinitely more complicated on a large scale than they were when used
individually. Research using the old model developed by Zhu and Nihan (in 1990),
used spectral analysis to determine appropriate lags for the specific stations. If such
a model were to be implemented on the freeways currently monitored by the TSMC,
it would take several months or possibly a few years with the current computer
system. In 1992, when a new computer comes on-line, this time may be reduced, but
determining lags is so data intensive that it is not unreasonable to expect delays in
achieving complete system coverage.

In general, it is not practical to develop models that are so site specific, due
to the complex interactions among stations. For example, the old model requires
input from three places: two upstream mainline stations, and an entrance ramp. If
one of those stations malfunctions, the model breaks down. Likewise, the new
model requires data from five places: three mainline stations, and one each
entrance and exit ramp.

Given that WSDOT has over 110 data cabinets located throughout the

Seattle region, this results in approximately 770 different schemes for forecasting
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traffic volumes (one forecast method for each day of the week, for each station). If
each of these is dependent on three to five other stations for forecasts, this quickly
mounts to between 2,300 and 3,800 different variables needed in memory. While
this is not an inordinately large number of variables for a mini-VAX to handle, the
number of calculations needed every minute can only compromise the main goals of
the system, which are surveillance, control and driver information, by slowing down
the result tabulations. If a system is so dependent on its individual parts, it is not
difficult to imagine situations where entire systems might break down, much like a
telephone line being cut, and the resultant power outage lasting several hours.

This model may not hold up very well under different conditions. Days
where there is little or no congestion will certainly have different characteristics
than we discovered in this research. A different model may be necessary for
different conditions. If this is the case, criteria for changing from one model to
another must be developed. Criteria for developing types of conditions to model
must be developed as well. Since research takes place for many reasons, it seems
logical that WSDOT would hope to use some form of forecasting method 24 hours a
day. Different forecasting methods might be employed during the morning, evening,
and lunch commutes, the periods between those times, and in the late night and
early morning if useful utilization of this research is to be gained. Research on all of
these times of day should be undertaken.

Policy Issues

Given the site-specific nature of this research and other projects, a trend
seems to be developing to generate models that work in one place, with plans for
expansion as good models are developed. Unfortunately, this has had the effect of
making models infinitely more complicated on a large scale than they were when
used individually. Consider the older model developed by Zhu and Nihan in 1990.

Research on that model used spectral analysis to determine appropriate lags for the
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station in question. If such a model is to be implemented on the freeways currently
monitored by the TSMC, it would take several months or possibly a few years to do
so on the current computer. In 1992 when a new computer comes on-line, this time
may be reduced, but the nature of determining lags is so data intensive that it is not
unreasonable to expect delays in achieving complete system coverage. As a rule,
however, simplification of models should be stressed to encourage system-wide

application.
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APPENDIX B
Study Data and Plots

Volume Series at 212th St. S.W.

106 86 103 93 106 94 86 107 102 105 108 109

117 111 104 9 98 111 97 99 99 25 87 124
84 82 100 103 107 113 * * * * * *
106 91 86 115 83 29 94 110 104 68 102 104
87 83 96 98 105 91 39 116 111 105 105 96
65 93 102 116 97 82 * 89 78 93 105 112
109 99 100 105 111 103 93 ) 73 88 97 74
57 71 74 72 59 30 31 34 48 45 47 52
40 * 58 56 58 62 64 63 54 41 61 57
53 42 41 “ 61 65 65 67 56 55 42 56

59 57 55 54 53 57 62 50

Volume Series at 220th St. S.W.

74 89 80 92 86 96 83 85 93 89 98 N
a8 101 96 99 102 89 87 01 83 96 89 84
75 89 67 74 93 92 * * * * * *
38 94 98 84 82 91 69 79 83 R 86 76
86 76 90 79 83 84 97 76 86 1¥7 99 100

100 60 78 36 99 38 * 79 80 83 62 90
31 88 85 79 92 93 97 87 82 30 &0 82
55 20 25 25 30 35 23 31 32 29 27 40
33 * 41 40 47 45 33 39 47 26 39 27
31 48 37 43 44 46 40 35 40 45 31 31
43 47 33 45 40 39 37 26

Occupancy Series at 220th St. S.W.

134 15.6 14.7 174 19.6 16.5 14.6 14.7 15.6 15.1
173 191 19.1 21.4 26.5 28.7 292 26.7 292 30.5
222 283 268 20,7 15.6 168 10.6 123 17.0 199

* * * * * * 15.0 15.8 172 15.8
15.1 18.6 143 236 26.8 26.2 26.0 171 211 289
240 19.9 18.2 223 26.2 22.5 236 24.6 215 269
283 15.1 16.2 205 240 2713 * 226 227 17.9
12.3 203 211 277 279 258 28.7 31.5 29.5 309
31.6 273 20.1 233 46.3 73.9 73.6 75.5 75.1 56.9
54.2 58.8 61.9 58.7 52.9 591 63.0 * 62.4 66.2
56.4 57.0 73.5 61.1 60.7 65.8 70.4 66.5 570 523
66.2 50.9 58.7 60.7 64.1 71.1 66.5 49.5 70.8 67.4
49.0 54.6 60.9 56.5 62.0 62.3 65.7 65.2

* represents missing data

57



Volume Time Series at 236th St. S.W.

104 97 88 99 92 97 116 98 92 99 107 101
a5 106 102 100 106 105 95 97 96 100 98 95
99 96 83 108 34 85 * * * * * *
97 9 ¥ 109 97 94 87 8 85 101 97 100
87 102 93 36 97 91 92 98 94 50 105 103
97 104 106 90 89 36 * 93 88 94 94 10
91 95 100 9 105 93 104 77 62 66 83 82
81 61 53 43 52 45 52 49 40 52 52 48
438 * 55 51 47 42 52 45 43 42 43 50
51 53 53 47 30 55 46 54 49 50 51 53

53 54 51 49 48 53 53 43

Volume Time Series at 244th St. S W.

87 102 96 100 104 96 109 106 99 93 110 111
101 102 109 106 98 105 106 97 94 105 99 94
92 103 90 103 98 87 * * * * * *
55 65 73 91 102 86 91 79 94 30 54 87
90 97 87 92 88 9n 92 102 92 77 95 114
97 93 99 95 79 92 * 97 94 9 9 103
9 96 99 31 89 95 81 74 81 90 78 88
83 82 36 67 55 50 54 55 48 52 51 53
62 * 58 61 62 67 53 57 43 55 45 57
54 48 61 56 54 62 56 56 58 55 53 61

59 55 70 63 54 60 55 62

Ramp Volume from 220th St. S.W.

11 9 12 7 9 13 4 10 14 10 12 7 3 15 6 7 9 6 06

w 8 7 7 6 6 7T 6 1 6 1 * * R * = 11 7
7 11 9 w 8 12 6 5 1 8 9 6 5 7T 6 9 10 7 10
7 11 9 § 7 14 20 17 8§ * 6 9 12 8§ 9 9 13 12 12

12 9 7 7 & 9 14 11 11 15 11 12 13 8 & 10 o6 12 12
g8 6 * 7 8 8 6 10 & 7 5 6 6 5 6 6 7 6 12
7 7 8 9 9 6 5 5 18 12 7 5 6 6
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APPENDIX C

Results of Old Model Forecasts of
Volumes at 236th St. S.W.,

Table C.1 Comparison of Predicted and Actual Volumes

Old Model
Predicted Actual Error % Error
51.07 42 9.07 21.59
54.00 52 2.00 3.85
52.22 45 722 16.05
45.36 48 -2.64 -5.49
53.22 42 11.22 26.71
46.28 48 -1.72 -3.59
38.25 50 -11.75 -23.50
43.79 51 -7.21 -14.14
38.42 53 -14.58 -27.52
44 86 53 -8.14 -15.35
47.48 47 0.48 1.03
46.04 50 -3.96 -7.93
50.42 55 -4.58 -8.33
55.51 46 9.51 20.67
52.67 54 -1.33 -2.46
5191 49 291 5.93
48.69 50 -1.31 -2.61
50.96 51 -0.04 -0.07
49.90 53 -3.10 -5.84
39.84 53 -13.16 -24.83
46,76 54 -7.24 -13.41
53.59 51 2.59 5.08
54.13 49 5.13 10.47
47.51 48 -0.49 -1.01
57.31 53 4.31 8.13
49.89 53 -3.11 -5.87
47.05 48 -0.95 -1.99
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APPENDIX D

Results of New Model Forecasts of

Volumes at 236th St. S.W.

Table D.1 Comparison of Predicted and Actual Volumes

New Model without Updates
Predicted Actual Error % Error
59.95 42 17.95 42.74
58.31 52 6.31 12.14
49.60 45 4.60 10.21
50.14 48 2.14 4.47
55.49 42 13.49 32.13
51.68 48 3.68 7.67
45.01 50 -4.99 -9.97
48.66 51 -2.34 -4.59
50.84 53 -2.16 -4.07
56.20 53 3.20 6.04
54.59 47 7.59 16.15
56.45 50 6.45 12.91
58.80 55 3.80 6.91
53.84 46 7.84 17.03
54.11 54 0.11 0.20
48.84 49 -0.16 -0.32
48.89 50 -1.11 -2.23
57.63 51 6.63 13.00
50.45 53 -2.55 -4.81
44.65 53 -8.35 -15.75
57.19 54 3.19 5.92
62.92 51 11.92 23.37
50.60 49 1.60 3.27
52.12 48 4.12 8.58
56.11 53 3.11 5.86
52.33 53 -0.67 -1.26
51.28 48 3.28 6.83
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Table D.2 Comparison of Predicted and Actual Volumes

New Model with Updates
Predicted Actual Error % Error
54.86 42 12.86 30.61
55.07 52 3.07 5.91
49.11 45 4.11 9.14
46.84 48 -1.17 -243
54.49 42 12.49 29.74
47.07 48 -0.93 -1.94
45.40 50 -4.60 -9.20
48.65 51 -2.35 -4.60
50.32 53 -2.68 -5.06
57.32 53 432 8.14
53.66 47 6.66 14.16
54.86 50 4.86 9.73
57.34 55 2.34 4.26
52.38 46 6.38 13.87
51.20 54 -2.80 -5.18
49,31 49 0.31 0.63
47.75 50 -2.25 -4.50
57.94 51 6.94 13.60
48.26 53 -4.74 -8.95
46.53 53 -6.47 -12.21
58.43 54 443 8.20
61.17 51 10.17 19.93
48.61 49 -0.39 -0.79
52.77 48 4.77 9.94
53.22 53 0.22 0.42
51.69 53 -1.31 -2.48
51.29 48 3.29 6.84
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