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DISCLAIMER

The contents of this report reflect the views of the author, who is responsible for
the facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the Washington State Transportation Commission,
Department of Transportation, or the Federal Highway Administration. This report does

not constitute a standard, specification, or regulation.
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SECTION 1.0
INTRODUCTION

INTRODUCTION

This report is an updated version of WSDOT Research Report WA-RD 143.2
[1.4] (Regression Analysis for WSDOT Material Applications) which was
published in February 1988. Subsequent to the first report, the following topics
have been improved or added:

. expanded information on hypothesis tests (SECTION 3.0),

* expanded information on regression models and associated transforma-
tions (SECTION 4.0), and

. new section on sampling (SECTION 5.0).

The types of examples used in all sections relate to pavement performance or
pavement materials.

DEFINITIONS
. STATISTICAL [1.1]

"Having to do with numbers” or "drawing conclusions from numbers."
. POPULATION [after Ref. 1.2]

All measurements or counts that are obtainable from all of the objects that
process some common characteristic. Example: a "population” of data
would be the pavement condition measured on all Interstate highways in a
specific state.

. SAMPLE [1.2]

A set of measurements or counts that constitute a part (or all) of the
population.

. RANDOM SAMPLING [1.2]

A sampling procedure whereby any one measurement in the population is
as likely to be included as any other.

. BIASED SAMPLING [after Ref. 1.2]

A sampling procedure whereby certain individual measurements have a
greater chance of being included than others. Example: biased sampling
would be taking density measurements only at places on a base course that
appeared to be well compacted.

Material Applications. Text 1 September 14, 1993



MEAN

Average of a group of measurements. The population mean is designated
"" and a sample mean by "X."

MEDIAN [1.2]

The number, in a set of numbers arranged in ascending order, that divides
the set so that half of the numbers are higher and half are lower.

RANGE

The largest measurement minus the smallest measurement in a group of
data.

STANDARD DEVIATION

A measure of variation or dispersion of a group of data. Specifically, the
average of the squares of the numerical differences of each measurement
(or observation) from the mean. The population standard deviation is
designated by "¢" and a sample standard deviation by "s.”

HISTOGRAM

A graphical form of data presentation. A bar chart that shows in terms of
area the relative number of measurements of different classes. The width
of the bar represents the class interval, the height represents the number of
measurements.

VARIABLE [1.3]

A quantity to which any of the values in a given set may be assigned, i.c.,
something on which measurements are made.

CORRELATION
A way to measure the association between two variables.
REGRESSION

Goes a step further than correlation. Generates an equation that can be
used to predict one variable from another (or others in multiple
regression). The predicted variable is the dependent variable and the other
variables are called independent variables.

SYSTEMATIC SAMPLING [1.2]
Selection of successive observations at uniform intervals in a sequence of -
time, area, etc. Example: taking pavement deflection measurements every

500 ft. on a project.

Examples for the calculation of sample mean, sample standard deviation,
range and a histogram are shown in Table 1.1 and Figure 1.1.



Table 1.1. Calculation of Sample Mean, Sample Standard Deviation and
Range for Procter Density Data [after Ref, 1.2]

* Basic data (Procter density) in pcf:

107.5 100.8 107.0 101.5 107.0
112.0 111.4 124.0 103.3 101.3
104.3 109.4 103.5 114.1 98.0
106.0 99.7 110.5 105.0 93.5
101.3 102.5 95.5 94.0 110.1

» Greek symbol "2." indicates a summation calculation is required. To sum the 25 density test
results above:

25
-lei =107.5+ 1120+ 1043 + ... +93.5 + 110.1 = 2,623.2
i=

* Sample mean (X)
n
'EIXi 2,623.2
— 1= , L _
X = n = 95 =104.93 = 105 pCf

* Sample standard deviation (s)

n o
¥ (xi-x)?
i=]

S = n-1

/¢
1114.27
=\/ 5.1 = 6.8 pef

07.5-104.9)2 + (112.0 - 104.9)2 + ... + (110.5 - 104.9)2
25-1

* Range
Range = largest density - smallest density

= Xmax - Xmin

= 124.0 - 93.5 = 30.5 pef
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Figure 1.1. Frequency Histogram for Proctor Density Data
[after Ref. 1.2]
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2.1

SECTION 2.0
THE NORMAL DISTRIBUTION
INTRODUCTION

The normal distribution is a data distribution that can be used to describe many
types of measurements in engineering. Basically, a normal distribution is a beil
shaped curve. The role of the normal distribution in statistics has been stated to
be analogous to the role of the straight line in geometry. Figure 2.1 illustrates a
bell curve, superimposed over a histogram of PCC compressive strength data.
Such a distribution is very convenient to use because it is characterized by the
mean (U orX) and standard deviation (G or s). As Figure 2.1 shows, most of the
strength measurements cluster around the mean (X = 4,824 psi), while fewer

measurements are near the lowest (3,875 psi) and highest (5,975 psi) strength
values.

Since the normal distribution can be defined by the mean and standard deviation,
a set of measurements with gqual means but differing standard deviations can be
illustrated, as shown in Figure 2.2 (subgrade density measurements). In this case,
the population mean is equal to 105 pcf and three different normal distributions
are shown for population standard deviations of 5, 7 and 9 pef. If you were a field
inspector, which of these three distributions would you prefer?

Figure 2.2 helps to provide an answer to the above question. If the total area
under the bell shaped curve is equal to 1.0, then the portion of density tests
between 90 and 96 pcf is about 3.5, 8.0 and 11.0 percent for the three standard
deviations of 5, 7 and 9 pet, respectively. This suggests that the distribution with
G =5 pef is preferable. You will see how to determine these areas later in this
section.

Willenbrock [2.1] (slightly medified) helps to explain Figures 2.2 and 2.3.

The theoretical NORMAL DISTRIBUTION extends out infinitely in both
directions from a mean of 105 pcf and never quite reaches the horizontal
axis...A NORMAL DISTRIBUTION has a total area under the curve of
1.00 (i.e. 100 percent of the data values are represented by the
distribution). Since it extends from -eo to +e (minus infinity to plus
infinity), it encompasses all of the density results that can occur. The area
under the curve within these two limits must therefore be equal to unity
(i.e. 1.000 or 100 percent). For all practical purposes, however, most of
the data values (actually 99.73 percent) occur between 3 ¢ limits below
105 pcf and 3 o limits above 105 pcf.

If the area of each NORMAL DISTRIBUTION is the same (i.e., an area
equal to unity, 1.0000), then the distribution shown in Figure 2.2 that has
the largest spread (i.e., the largest standard deviation, which occurs in case
(c) where ¢ = 9 pcf) should have the shortest overall height at the average
value. Normal distribution (a), on the other hand, has the smallest spread
(i.e., 0 = 5 pcf), so its horizontal spread is smaller than its distribution (c).
Its vertical spread must therefore be larger than its distribution (c).

A far more important result than those mentioned above is also
related to the fact that the area under the curve is equal to 100

6
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a) ¢ =5p.ctf b) ¢ =7p.ci. c) ¢ =9p.ct

L
120126 78 90 120 132
p =105p.ct. i =105p.cf. L =105p.ct.

Figure 2.2. Three Normal Distributions for Procter Densities
(Same Means, Different Standard Deviations)
[after Ref. 2.1]



=105 p.ct.

(a) 0 =5p.ct.
(area between 105 p.c.f. and
115 p.cf. = 48%)

(b) G =7 p.ct.
(area between 105 p.c.f. and
115 p.cf. = 42%)

(c) G =9p.cf.

(area between 105 p.c.f. and
115 p.cf. = 37%)

85 20 95 - 100 105 110 115 120 125 130

Proctor Density (p.c.f.)

Figure 2.3. Superimposed Normal Distributions [after Ref. 2.1]



2.2

percent. Because of this, it can be stated that THE
PROBABILITY OF FINDING A DATA VALUE BETWEEN
105 pef and 115 pcf IS EQUAL TO THE AREA UNDER THE
NORMAL DISTRIBUTION BETWEEN 105 pcf AND 115 pcf.
For distribution (a), as shown in Figure 2.3 (i.e., ¢ = 5 pcf), the
area between 105 pcf and 115 pcf represents about 48 percent of
the area under the entire distribution.

Figure 2.4 shows two normal distributions with equal population standard
deviations (¢ = 5 pcf) but unequal population means (|t = 85 and 105 pcf).

NORMAL DISTRIBUTION EQUATION

The height of a normal distribution (y) can be defined by its corresponding value
of x (refer to Figure 2.5) by the following equation [after Ref. 2.1]:

L e(x-p2no? Eq. 2.1

y= r—————zn

where

y = vertical height of a point on the normal distribution,
x = distance along the horizontal axis,

¢ = standard deviation of the data distribution,

) = mean of the data distribution,

e =constant =2.71828 ...,

7 = constant = 3.14159 ...

To illustrate how Equation 2.1 can be used to determine area under a normal
distribution, refer back to the Proctor density data (Figure 2.3). Calculate the arca
under the normal curve between 105 and 115 pcf for a standard deviation of 5 pcf
(this is shown in Figure 2.3 to be 0.48 or 48 percent of the total area under the
curve). These calculations are -

y= e-(105 -1052/ 5(5)?2 = 0.079788

(5)‘\/ n

and

y=—d (115-1052[252 - 0010798
5\ 2n

The approximate area under the curve is about 0.45 (or 45 percent), which is close
to the "theoretical” value of 48 percent (refer to sketch in Figure 2.6). The
significance of this value is that the probability of a density measurement falling
within the range of 105 to 115 pcf is about 0.48 (let's use the "theoretical” value).

To determine such probabilities in this manner is tedious and time consuming.
There is an easier way to determine these probabilities than computing and
tabulating y's for various y's and o's. To do this, you must convert the normal
distribution to a standard normal distribution and define a variable "z," which is:

10



/— O=5pct.

_,\'70 I l I |

75 80 85 90 95 100 105 110 115 120
n=285(p.ct) L =105 {p.c.f)

Figure 2.4. Normal Distribution (Different Means,
Same Standard Deviations) [after Ref. 2.1]
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Mean

Figure 2.5. Relationship of "y" and "x" Values in the
Normal Distribution
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/ fAe— 0.045203
%A Approx. area = (0.045293)(115-105)
/' - ~0.45 ~45%

0.010798

105 pef 115 pef x {soil density, pcf)

Figure 2.6. Determination of Approximate Area
Under the Normal Distribution



_ deviation frommean _ X- [t
~ standard deviation o

If you substitute z into Equation 2.1, then following relationship results:

yz=—— e Eq.22
\2n

where

yz = vertical height on the standard normal distribution, and
z = as previously defined.

Refer to Figure 2.7, which illustrates this important transformation. Thus, you
can see that the probability of having a density test between 105 and 115 pef is
about 47.7 percent {or 34.1 + 13.6 percent). Fortunately, the "z-statistic” has been
published in tables to allow for easy computation. Such a table is shown as
Table 2.1. You can see that

mean % 1 standard deviations = 68.2% of area
mean + 2 standard deviations = 95.4% of area
mean + 3 standard deviations = 99.8% of area

Recall that all of the area under a normal distribution is 100%.

2.2.1 Example 1: Proctor density data

For normally distributed Proctor density data with p = 105 pcf and ¢ =
5 pef, what is the probability the density will be greater than 92 pef?

First calculate z.

.= 92 -5105 = 26

Now, with z = -2.6, use a cumulative standard normal distribution table
(any statistics book will have one, or use Table 2.1) to obtain the
appropriate area under the curve that equals 0.0047.

Thus, P(density 292 pcf) = 1.0000 - 0.0047
=(.9953 or 99.53 percent

2.2.2 Example 2: Portland Cement Concrete Strength

If a distribution of PCC strength data is p = 5000 psi and ¢ = 500 psi,
answer the following questions:

(a) What is the probability it will be more than 4,000 psi?
(b) What is the probability it will be less than 4,000 psi?

Refer to Figure 2.8 for the results.

14



Y
H =105 pcf.
o= S5pct

—/ \1\ >
90 85 100 105 110 115 120 x
p.cf.
'Y
y'Z

Area =
13.6%

+1 +2 +3 Z

Figure 2.7. The Proctor Density Distributions (Normal and Standard Normal)
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x - scale (PCC strength)

y
-
4000 5000 6000
yZ
Z 4000 Z 5000 Zgonp 2 -scale
From Table 2.1
24000 =%= ] (area less than z = -2 equals 0.0228)
25000 = wgé—;%: 0 (area less than z = 0 equals 0.5000)
6000 - 5000
26000 =" ggp = +2 (area less than z = +2 equals 0.9772)

{a) P (strength = 4000 psi) = 1.000 - 0.0228 = 0.9772 or 97.72%

(b) P (strength < 4000 psi) = 0.0228 or 2.28%

Figure 2.8. PCC Strength Probabilities
16
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2.2.4

Example 3: Ready-Mix Concrete
The contractor claims that the batch plant can produce PCC mix with

1 = 4,824 psi
o = 387 psi

Assume that a very unrealistic job specification states that an acceptable
PCC must have a compressive strength no lower than 4,700 psi and no
higher than 5,000 psi (after seven days of cure).

Question: If the contractor sends 50 truckloads of this mix to the job site,
how many of the trucks should be rejected if you know the real, potential
compressive strength of each truckload (of course you cannot do this but
what the heck)?

Solution: Using z-statistic tables, you find that the total area under the
standard normal distribution between 4,700 and 5,000 psi is about 0.30
(recall that the maximum is 1.0000 under the curve).

Thus, approximately 30 percent of the population will be between 4,700
and 5,000 psi. Thus, 1.0000 - 0.30 = 0.70 or about 70 percent of the 50
trucks (i.e., about 35 trucks) should be rejected.

Try to match this solution by using Table 2.1. Hint: start by computing
Z4700 and Zspoo, then use Table 2.1.

The "t-distribution”

The "t-distribution" is used to test sample means when the population
variance (or population standard deviation) is not known (which is usually
the case for most of the data you deal with). The "t-statistic" is quite
similar to the "z-statistic" but also includes consideration of the sample
size (n). Table 2.2 is used to provide a partial listing of t-values.

where

X -

z= Eq. 2.3
g
X-p
t= Eq. 2.4
s q

This concept will be illustrated in more detail in the next section.

17 Revised February 14, 1994



Table 2.1 Normal Distribution Table [from Ref, 2.2]

Normal Distribution

Normal
Deviate

z .00 .01 .02 .03 04 05 .06 .07 .08 .09
-4.0 0000 .0000 .0000 .0000 .0000 .0000 0000 .0000 .0000 0000
3.9 .Q000 0000 .0000 .0000 L0000 .0000 0000 L0000 .0000 0000
-3.8 .0000 0000 .0000 .0000 .0000 .0000 0000 0000 L0000 0000
-3.7 0001 0001 0000 .0000 .0000 L0000 0000 0000 .0000 0000
-3.6 0002 0002 .0001 L0001 0001 .0001 0001 .0001 .0001 0001
-3.5  .0002 .0002 L0002 .0002 0002 L0002 0002 0002 .0002 0002
-3.4 0003 L0003 .0003 L0003 L0003 .0003 .0003 .0003 .0003 .0002
-3.3 .0005 .0005 00035 .0004 .0004 0004 0004 .0004 .0004 .0003
-3.2  .0007 .0007 0006 0006 .0006 0006 .0006 .0005 .0005 .0005
-3.1 .0010 0009 .0009 .0009 .0008 .0008 0008 0008 .0007 0007
3.0 .0013 0013 0013 0012 0012 0011 0011 0011 .0010 0010
-2.9 0019 0018 0018 6017 0016 0016 0015 0015 0014 .0014
-2.8 .0026 0025 0024 0023 .0023 .0022 L0021 0021 0020 0019
-2.7  .0035 L0034 .0033 .0032 .0031 .0030 0029 .0028 0027 0026
-2.6  .0047 0045 .0044 .0043 .0041 .0040 0039 .0038 .0037 0036
-2.5 .0062 .0060 L0059 0057 .0055 0054 0052 0051 .0049 0048
-2.4 0082 .0080 0078 0075 0073 L0071 0069 0068 0066 0064
-2.3 0107 .0104 0102 .0099 .0096 .0094 L0091 0089 0087 .0084
-2.2 0139 0136 0132 0129 0125 0122 0119 0116 0113 0110
-2.1 0179 .0174 0170 .0166 L0162 0158 .0154 0150 0146 .0143
-2.0  .0228 0222 0217 0212 0207 0202 .0197 0192 .0188 0183
-1.9 0287 0281 0274 0268 L0262 0256 .0250 0244 .0239 .0233
-1.8 .0359 .0351 .0344 0336 L0329 0322 .0314 0307 L0301 .0294
-1.7 .0446 .0436 0427 0418 .0409 .0401 0392 0384 L0375 0367
-1.6  .0548 .0537 0526 0516 .0505 L0495 L0485 0475 .0465 0455
-1.5 .0668 0655 0643 0630 L0618 0606 .0594 .0582 L0571 .0559
-1.4 0808 .0793 0778 0764 0749 0735 0721 .0708 0694 L0681
-1.3 .0968 .0951 .0934 L0918 .0901 0885 0869 0853 L0838 0823
-1.2 1151 131 112 L1093 L1075 1056 L1038 L1020 L1003 .0985
=101 L1357 L1335 1314 L1292 1271 L1251 L1230 L1210 1190 170
1.0 1587 1562 L1539 .1515 .1492 .1469 1446 .1423 1401 1379
-9 1B41 1814 .1788 1762 1736 71 . 1685 1660 .1635 16t
-8 2119 .2090 L2061 2033 .2005 1977 .1949 L1922 L1894 1867
-7 2420 .2389 .2358 2327 L2296 2266 2236 2206 2107 2148
-6 2743 2709 2676 .2643 2611 2578 .2546 2514 .2483 .2451
-5 3085 3050 3018 2981 .2946 2912 2877 .2843 2810 2776
-4 3446 .3409 L3372 3336 .3300 .3264 .3228 3192 3156 3121
-3 L3821 L3783 3745 .3707 .3669 .3632 .3594 .3557 L3520 3483
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Normal

Deviate

z .00 .01 .02 .03 04 05 .06 .07 .08 .09
-2 4207 4168 4129 4090 .4052 4013 .3974 .3936 3897 3859
-1 4602 4562 4522 4483 4443 4404 4364 4325 4286 .4247
-0 .5000 .4960 4920 4880 4840 4801 4761 4721 4681 4641
0.0 5000 .5040 5080 . .5120 5160 5199 .5239 5279 .5316 .5359
0.1 5398 .5438 5478 5517 5557 .5596 .5636 5675 5714 5753
0.2 .5793 .5832 5871 5910 5948 .5987 6026 .6064 6103 6141
0.3 6179 6217 .6255 .6293 6331 .6368 6406 6443 6480 6517
0.4 .6554 L6591 .6628 6664 6700 6736 6772 .6808 .6844 .6879
0.5 6915 6950 6985 7019 7054 .7088 7123 7157 L7190 .7224
0.6 .71257 .7291 .7324 7357 .7389 7422 7454 7486 517 .7549
0.7 71580 L7611 .7642 7673 7703 71734 .71764 7793 L7823 .7852
0.8 L7881 7910 L7939 7967 .7995 .8023 .B0O51 8078 8106 8133
0.9 .B159 8186 8212 8238 .8264 8289 .8315 8340 .8365 L8389
1.0 8413 8438 8461 8485 .8508 L8531 .8554 .B577 .8599 L8621
1.1 . .8643 8665 .8686 8708 .872¢9 .8749 .8770 8790 8810 .8830
1.2 .8849 .8869 .BEE8R 8907 .8925 .8944 .8962 .8980 .8997 9015
1.3 9032 .9049 9066 .9082 9099 9115 9131 .9147 9162 9177
1.4 .0192 .9207 9222 9236 9251 9265 L9279 .9292 .9306 9319
1.5 .9332 .9345 9357 9370 9382 9394 .9406 9418 .9429 9441
1.6 .94352 9463 .9474 9484 9495 9505 .9515 .9525 9535 9545
1.7 .9554 9564 9573 9582 - 9591 9599 .9608 9616 9625 9633
1.8 9641 .9649 9656 9664 9671 9678 9686 .9693 9699 8706
1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767
2.0 9772 9778 L9783 9788 9793 9798 L9803 9808 9812 9817
2.1 9821 9826 L9830 9834 9838 9842 9846 9850 9854 9857
22 9861 9864 L9868 9871 9875 9878 L9881 9884 9887 8890
2.3 .9893 L9896 9898 9901 9904 9906 9909 9911 9913 9916
2.4 9918 L9920 .9922 9925 9927 .9929 .9931 9932 .9934 9936
2.5 .9938 .9940 .9941 .9943 .9945 8946 9948 .9949 L9951 9952
2.6 .9953 9955 .9956 9957 .9959 9960 9961 9962 .9963 9964
2.7 .9965 9966 9967 .9968 .9969 9970 9971 .9972 .9973 .9974
2.8 .9974 9975 L9976 9977 9977 9978 .9979 .0979 L9980 998 |
29 L9981 9982 .9982 9983 .9984 9984 9985 L9OKS 99%6 9986
3.0 .9987 9987 9987 9988 .9988 .9989 L9989 .9989 .999() 9990
3.1 L9990 9991 L9991 L9991 .9992 L9952 .9992 .9992 9993 .9903
32 .9993 9993 .9994 .9994 .9994 5094 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .8996 .9996 9996 .9996 .9996 .9996 L9997
34 L9997 .9997 .9997 9997 9997 9997 .9997 .9997 9997 99908
35 .99098 9998 .9998 .9908 .9998 9998 .9998 .9998 9998 9998
3.6 9098 9998 .9999 .9999 9999 .9999 .9999 .9999 .9999 9999
3.7 .9999 9999 .9999 .9999 .9999 9999 L9999 9999 9999 .9999
3.8 .9999 .9999 .9999 .9999 .999% 9999 .9999 9999 .9999 .9999
39 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4.0 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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2.3

Table 2.3 Partial t-Distribution Table for Two-Tail Test
(after Steel and Torrie [2.3])

Degrees of PrObability Of a nger t
Freedom 0.10 0.05 0.01
1 6.314 12.706 63.657
2 2.920 4.303 9,925
3 2.353 3.182 5.841
| 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.7707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3.250
10 1.812 2.228 3.169
15 1.753 2.131 2.947
20 1.725 2.086 2.845
25 1.708 2.060 2.787
30 1.697 2.042 2.750
oo 1.645 1.960 2.576

CHI-SQUARE TEST TO CHECK NORMALITY

The %2 test of goodness of fit can be used to check whether a set of data is
actually normally distributed. This may not seem all that important; however, the
WSDOT asphalt concrete quality assurance (QA) specification, for example, uses
such an assumption (normally distributed test data, that is). Such checks were
made in the WSDOT report by Markey et al. [2.4] for aggregate gradations (1/2,
3/8, 1/4, #10, #40, #200), asphalt cement content and compaction on a selection of
1989 paving projects. The normality check of percent compaction will be

illustrated following a bit of additional background on the x?2 test.
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2.3.1 Background Information

The x? test can be used to check any data distribution but, of specific interest, is
the normal distribution. To do this, a sample set of data frequencies are compared
against a set based on some hypothesis (data frequencies are, in essence,
histograms as illustrated in Figure 2.1).

The calculated results are compared to a theoretical value (from a y2 "lookup"”
table).

The basic formula for the %2 test is (from Duncan [2.5]):

)15 (F; - f))?

2.
i=1 B4 25

where F; sample frequencies (or actual data frequencies) for k classes,

li

fi = frequencies expected on the basis of the hypothesis that the actual
data is normally distributed, and

k = number of frequencies (for example, k = 14 in Figure 2.1).
Thus, the hypothesis being tested is:

Hp = sample data distribution = normal distribution
H, = sample data distribution # normal distribution

2.3.2 Example

The example is based on data summarized by Markey et al. [2.4] for a selection of
1989 WSDOT paving projects. The data is combined from three "QA" paving
projects, all built during the 1989 paving season. The variable being measured is
"percent of Rice density” which is a measure of the degree of compaction of the
in-place hot-mix asphalt concrete. All three projects had the same mix (WSDOT
Class B) and specification requirements. The total data points (lots) is 201. The
data is shown in Table 2.3, summarized in frequencies in Table 2.4, and the xz
statistic computed in Table 2.5

xzcalculated =16.0
Atable W=k -3=10-3=7, o= 0.05%) = 14.1
Y2table (0 =7, 0. =0.025%) = 16.0

Conclude that the Rice density data is normally distributed at an & = 0.025%. It
fails the normal distribution at o = 0.05%.
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Table 2.3 Rice Density Data

Project
A B C
92.87 93.66 93.08
92,70 9338 9296
91.66 9386 9248
92.14 9350 92.62
92.24 9396 92.04
92.38 93.00 9294
51.74 9252 91.16
9246 9388 92.90
9234 9438 9252
9374 9456 91.68
9276 9516 92.22
92.82 9552 92.06
92,76 9502 93.44
93.04 9432 9122
93.06 9510 9236
9390 9326 9212
9288 09340 9268
9318 9394 9252
93,12 9420 91.58
9286 94.66 92.26
9324 9182 91.68
92,56 9296 91.04
93.64 9142 9340
9482 9220 93.38
92.16 9296
92,78 93.72
92.38 9442
92.48 93.58
9210 93.12
91.80 9434
09348 92.50
9246 93.14
9260 9298
93.54 92.30
91.24 9236
9344 91.14
92,52 91.16
9378 93.12
93.68 92.70
94.60 92.30
94.18 92.24
9464 92.76
92.80 92.84
93.80 92.48
9224 93.00
93.20  92.02

22

Project
C

92.48
92.28
91.78
91.62
93.42
93.60
93.38
92.70
93.20
92.60
93.28
92.58
92.42
92.38
91.78
93.18
94.12
93.06
93.04
92.62
92.90
92.06
91.86
92.38
91.86
93.26
92.80
93.88
94.12
92.30
92.20
92.14
93.50
91.86
92.62
92.16
92.64
91.30
93.70
92.80
92.58
01.38
92.26
93.76

91.66
92.10
92.28



Table 2.4 Rice Density Data — Frequencies, Basic Statistics
From the data contained in Table 2.3

Class Number of Lots
Interval! Within Interval

88.5-8%.0 2
89.0-89.5 0
89.5-90.0 0
90.0-90.5 1
90.5-91.0 0 X =92.73%
91.0-91.5 9 s =0.95%
91.5-92.0 21 n=201
92.0-925 52
92.5-930 47
93.0-935 33
935-940 20
94.0 - 94.5 8
94.5-95.0 4
95.0-95.5 3
95.5-96.0 1
Note

1. Class Interval = 0.5% in Rice Density
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Table 2.5. Calculation of 2 for Rice Density Data

(1) ) (3) C)) (5) {6)
Upper Limit Limits in Relative Relative Absolute Actual
of Class Standardized = Frequency  Frequency of  Theoretical Frequency
910 or less -1.82 0.0344 0.0344 69 3
91.5 -1.29 0.0985 0.0641 129 9
92.0 -0.77 0.2206 0.1221 245 21
92.5 -0.24 0.4052 0.1846 371 52
93.0 +0.28 .6103 0.2051 412 47
93.5 +0.81 0.7910 0.1807 363 33
94.0 +1.34 0.9099 0.1189 239 20
94.5 +1.86 0.9686 0.0587 11.8 B
95.0 +2.39 0.9916 0.0230 4.6 4
00 oo 1.0000 0.0084 17 4
1.0000 2009 201
Note

1. Column | from Table 2.4.

Column 2: z = x—;i where X =92.73%

$=0,95%
n=201

Column 3: Use z (Col. 2) and Table 2.1 to obtain relative frequency.

Column 4: Relative frequency of cell obtained from Col. 3
(interval value - preceding interval value)

Column 5: f = (Relative Freq. Cell)(number of lots)
= (Col. 4)(201)

Column 6: from lot data shown in Table 2.4.

-2
Column 7; %2 = (E ff)
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x2

2.2
1.2
(.5
6.0
0.8
0.3
0.6
1.2
0.1
31
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3.1

3.2

SECTION 3.0
TESTS OF HYPOTHESES

INTRODUCTION

Hypothesis testing is a way in which statistical methods can be used to help in the
decision making process. Such testing considers the mean and standard deviation
of a group of data, the confidence level (a probability statement) and something
about the population being sampled. Hypothesis testing is extremely helpful in
performing multiple regression analysis and hence it is important for you to
understand the basics.

HYPOTHESES

Webster's Seventh New Collegiate Dictionary defines othesis as "...a tentative
assumption made in order to draw out and test its logical or empirical
consequences....an assumption or concession made for the sake of argument..."
You can begin to see the problem in explaining hypothesis testing.

There are always two hypotheses for any statistical test [3.1]. These hypotheses
are

Hg = null hypothesis (most important)

H| = alternative hypothesis
What is about to be presented is one of the fundamental problems in statistics

which is the use of "double negative" statements. Any hypothesis must be tested

statistically to be rejected or not rejected (this is a statistical way of accepting
something).

The hypotheses (Hg or Hj) can result in two types of errors if the wrong one is
selected, as shown in Table 3.1. The probability of the Type I and II errors is very
important, since it determines how carefully you must distinguish between true
and false hypotheses.

(This is an area in which statistical "games" can be played, so you need to be very
careful). These probabilities are [after Ref. 3.1]

P(Type I error) =«
P(Type Ii error) = B

Table 3.1. Types of Hypothesis Errors

"The Actual Decision”
"The Truth" Reject Hy Accept Hg
Hg true Type 1 Error (o)) Correct!
Hy false Correct! Type II Error (B)
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The general form for calculating the z-statistic for hypothesis testing is

where

_ (sample mean) - (hypothesized value)
ale = standard error

sample mean = X

hypothesized value = i (sometimes assumed to = 0 in regression
hypothesis testing)

L standard deviation of means of random

Vn samples of size n from a "parent”
population with standard deviation ©.
Standard error is sometimes designated G;.

standard error

It

sample size = n

The same general form applies to the t-statistic for hypothesis testing when none
of the population statistics (j1, ¢) are known:

where

3.21

{sample mean) - (hypothesized value)
standard error

teale =

sample mean = X
hypothesized value = |l (again, sometimes an assumed or stated value)

standard error - 2

N 5%
Example 1: PCC Mix

For this example, use the data shown in Figure 2.1. This contractor states
that the batch plant has produced a mix in the past of

U = 4,824 psi
o = 387 psi

(Since these are population statistics, you can assume that these data were
collected over a long period of time)

On the job you take six samples (cylinders) with the result that X =
4,549 psi.

Question: Is the contractor correct?

Sclution: Assume that the data are normally distributed and use
hypothesis testing.

Hg: n = 4,824 psi
Hj: p < 4,824 psi

27 Revised February 14, 1994



3.2.2

reate = X-p _ 4549-4824 _
N 38716

-1.74

Zeritical = -1.65 (for Type 1 error (or a) = 5%) (Refer to Table 2.1
to determine z.)

SINCE Zcale > Zeritical, reject Hy |

Thus for your job, you must judge the contractor's claim to be incorrect.
Refer to Figure 3.1 for an illustration of this process.

Example 2: PCC Mix {after Ref 3.2]
The PCC mix contractor claims the following:
PCC mix > 4,000 psi (28-day compressive strength)

You take a random sample of five cylinders and cure them for 28 days
{n=235).

The results:

X = 3,740 psi
s = 390psi
n = 5

Question: If you are willing to accept a 5 percent chance of a Type I error
(i.e., rejecting a true Hp), should you believe the contractor?

Solution

Hq: 1 2 4,000 psi (null hypothesis)

Hy: u < 4,000 psi (alternative hypothesis)

tc _X-p 3740 - 4000 _
MTsWn T 390W3

teritical (@ 5%) < -2.13 (one-tail o = 5% with

v =n- | =4 degrees of freedom)
Therefore, you accept Hg, since

-1.48

tealc = -1.48 < -2.13 = teritical

You have no "statistical” reason to doubt the contractor's claim. Refer to
Figure 3.2(a) which further illustrates this example. However, note that if
the Type I error (rejecting a true Hg) were reduced to a 1 percent chance,
then
teritical (@1%) > -3.747 (one-tail o« =1% with 4 degrees of
freedom)
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Reject Hp  --{d AcceptHg

r

/

4549 psi 4824 psi x - scale (PCC comp. str.)

\\\\\\“

-1.74 -1.65 ] z - scale

Figure 3.1. Hypothesis ATesting with Population
Mean and Standard Deviation Known
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Reject -—=—1- Accept
Ho Ho
/— t - distribution
Area = 0.05
H
-2.13 0 t - statistic

(a)

3,628 3,740 4,000 x (PCC strength, psi)
; t '
-2.13 0 t (1t = 4,000)
t }
064 0 t (i = 3,740)
(b)

Figure 3.2. t - test Example (PCC Contractor)

30



Thus, you are even more unwilling to accept the alternate hypothesis (H)
that the contractor's claim was incorrect. Note that the Type I error
protects against rejecting a true nuil hypothesis. In other words, you can
select a low Type I error level so that it is difficult to reject the null
hypothesis. However, as the Type I error level decreases, the Type II error
level jncreases (not rejecting a false Hg). It is not easy to illustrate the
calculation of the Type I error (B), but this example is a good case since a
Type I error level of about 11 percent would be needed to reject the null
hypothesis.

Often the Type I error is termed the "seller's risk” and the Type Il error the
"buyer's risk." For the example, the lower the Type I error the lower the
risk of the contractor. Correspondingly, the Type II error increases the
risk of the DOT accepting PCC of lower than specified quality (again not
rejecting a false Hp). Needless to say, a balance between Type I and Type
II errors is needed (but not necessarily the same number or value because
one error type may be more important than another) in developing
statistically based materials "acceptance plans."

At least one illustration of ignoring the Type II error (B) is appropriate
The PCC mix contractor example will be used.

Assume that the sample results,

x = 3,740 psi
s = 390 psi

actually represent the true population (i.e., i = 3,740 psi instead of | =
4,000 psi). First, calculate the value of X, which corresponds to t = -2.13
(e = 5%). This value is the one that separated the rejection and
?bg)gg)pgnce region for Hp (1 = 4,000 psi). (Refer to Figures 3.2(a) and

X - 4000

—BE = ’2.13
V5

- X = 3,628 psi

The value of the Type II error (B) is the area under the curve (or
distribution) with p = 3,740 psi and ¢ = 390 psi but within the acceptance
region of the original Hp distribution (u = 4,000 psi). This is illustrated in
Figure 3.2(b).

36283740 _
=255 =

V5

(Use a t-table, available in most statistics books.)

-0.64

~ B=P(t2-0.64)=0.78 (or 78%)
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Therefore, there is a 78 percent chance of accepting a false Hg (1L = 4,000)
if the true population mean (ji) = 3,740 psi. You can see that the B will
change as the correct population mean changes. Clearly, this level of B is
quite high. Thus, the DOT's risk (the "buyer's risk") is too high. A
balance in setting «<, B and sample size levels is very important in the
proper use of these kinds of statistical tests. This leads to another
important area of statistics, generally called "acceptance testing” and
"operating characteristic curves,” which is not appropriate for discussion
in these notes.

Example 3: WSDOT/Industry PCC Testing

WSDOT and industry representatives jointly tested fresh concrete
delivered to the South Seattie Community College (the testing site) on
December 5, 1989. One purpose of this activity was to see how test
results compared for different testing teams. The tests performed by all of
the teams included both fresh and hardened mix properties: slump, air
content, unit weight and compressive strength. The ready-mix was
specified to conform to a standard WSDOT mix ("AX" mix, the WSDOT
Standard Specifications have since been changed). This mix was
delivered to the testing site as a 5.2 sack mix with fly ash and 3/4 in.
maximurmn coarse aggregate size; additives included an air entraining agent
and a water reducer. The per cubic yard batch weights were:

. cement : 488 Ib

. Fly ash : 1521b

. Fine aggregate : 1,130 Ib
. Coarse apgregate : 1,864 Ib
. Water : 32 gal

. Water reducer : 24.4 oz
. Air entraining agent 6.4 0z

The specified 28-day design compressive strength was 4,000 psi with a
maximum slump of 3 in. (vibrated concrete) and an air content of 5
percent (+ 1 1/2 percent).

Each team picked a number at random (1 through 20). Team 1 would then
obtain their PCC from the truck, Team 2 next and so forth (i.e., there
should be no bias as to when the test teams received their material for
testing). The team test results are shown in Table 3.2 with basic summary
statistics in Table 3.3. The hypothesis test used is a means test for two
independent samples with the population standard deviation unknown and
for small samples. A small sample implies the number of testing teams
were fewer than 30. The hypothesis test formulas used are shown in Table
3.4 and the hypothesis results in Table 3.5.

The results shown in Table 3.5 also includes a comparison of Tests 1-8
and 9-20. This was done since the PCC mix, as discharged from the truck,
apparently had somewhat different fresh mix properties as characterized
by slump. The results shown in Table 3.5 indicate that there were no
significant test differences between WSDOT and industry test teams for
measurements of slump, air content and unit weight. There were
significant differences for the compressive strength results. The strength
tests were organized as follows:
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Table 3.2. Test Summary — WSDOT/Industry Concrete Testing Program

Results
Air Unit Compressive Strength (psi)
Tester Slump Content Weight Commercial Lab WSDOT Lab
No.(®) Affiliation (in.) (%) (pef) No. 1 No, 2 No. 1 No. 2
1 Industry 4.75 4.9 148.45 4280 4040 4680 5000
2 Industry 4.75 4.5 147.20 4360 4210 4700 4750
4 Industry 5.25 5.4 147.24 4180 4310 4650 5050
5 WSDOT 4.75 4.9 148.69 4340 4390 4770 5190
6 WSDOT 5.00 5.6 147.72 4530 4400 4700 4740
7 Industry 4.75 5.5 147.44 4620 4400 4700 4700
3 WSDOT 5.50 5.0 148.15 4740 4730 4770 4730
9 WSDOT 4.00 5.3 149.39 4590 4590 4980 5160
10 Industry 4.00 5.4 146.12 4280 4320 4520 4670
11 Industry 4.50 4.6 148.39 4320 4280 4050 3920
12 WSDOT 425 4.8 136.90 4570 441( 5140 5120
13 Industry 4.00 5.0 147.68 4390 4420 4610 5110
14 WSDOT 4.00 5.1 163.33 4890 4670 5390 5250
15 Industry 3.75 4.8 146.70 4350 4380 5110 5180
16 WSDOT 4.00 5.0 147.83 4500 4590 4820 5050
17 WSDOT 4.00 5.0 148.05 4700 4730 5280 5640
20 Industry 4.25 4.7 146.20 4710 4780 4680 5050

Note:
(a) No testers selected numbers 3, 18, and 19.
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Table 3.3. Basic Statistics For PCC Test Results

Coefficient
Mean Standard of
Sample - Deviation | Variation

Test Data Set Size (n) x) (s) _
(s/x)100
Slump (in.) WSDOT 8 4.44 0.58 13.0%
(Basic Groupings) Industry 9 4.44 0.48 10.8%
Overall 17 4.44 0.51 11.5%
Stump (in.) Tests 1-8 7 4.96 0.30 6.1%
(Sequential Groupings) Tests 9-20 10 4.08 0.21 5.1%
Air (%) WSDOT 8 5.09 0.25 5.0%
{Basic Groupings) Industry 9 4.98 0.37 7.5%
Qverall 17 5.03 0.32 6.3%
Air (%) Tests 1-8 7 5.11 0.40 7.8%
!Seguemial GmuEings) Tests 9-20 10 4.97 0.25 5.1%
Unit Weight WSDOT 8 148.8 7.1 4.8%
(pch) Industry 9 147.3 0.8 0.6%
Overall 17 148.0 4.8 3.3%
Unit Weight (pcf) WwWSDOT 6 148.3 0.6 0.4%
with “outliers” Industry 9 147.3 0.8 0.6%
removed Qverall 15 147.7 0.9 0.6%
WSDOT Cyl/'WSDOT Lab 16 5046 275 5.5%
Compressive WSDOT Cyl/Commercial Lab 16 4586 153 3.3%
Strength Industry Cylf WSDOT Lab 18 4729 340 7.2%
(psi) Industry Cyl/Commercial Lab 18 4368 181 4.1%
(Basic Groupings) Overal/'WSDOT Lab 34 4878 346 7.1%
Overall/Commercial Lab 34 4471 199 4.5%
Overall 68 4674 347 7.4%
Compressive Tests 1-8 WSDOT Lab 14 4795 163 3.4%
Strength Commercial Lab 14 4395 202 4.6%
(psi) Tests 9-20 WSDOT Lab 20 4936 425 8.60%
(Sequential Groupings) Commercial Lab 20 4524 183 4.1%
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Table 3.4. Formulas Used For Basic Statistical Analysis
[after References 3.1 and 3.2)

1. Statistical tests reported are “means test for two independent samples with
population standard deviation unknown and small samples” (small sample implies
that the WSDOT and Industry testers were less than 30, which was the case).

2. Null hypothesis is Ho: [y =l

Alternative hypothesis is Hy: My #

where: [y

M
3. t-statistic

population mean for a specific test for WSDOT testers
population mean for a specific test for Industry testers

Xw - X
f=twoX

8d
V=ny+n-2

where: xy sample mean for a specific test for WSDOT testers

sample mean for a specific test for Industry testers

Koy
il

ny = sample size (WSDOT)

n; = sample size (Industry)
sqd = standard deviation of the difference of the sampie means
. 2 2 12
= Sw (nw‘1)+S[ (Il] '1) nw+n]
(nw-D+(n -1) )( Ny Iy )
Y = degrees of freedom =(ny, - )+ (n; - 1)=ny +1n,-2

Reference 3.1

Leland Blank, Statistical Procedures for Engineering, Management, and Science,
McGraw-Hill, 1980, p. 381-383.

Reference 3.3

Robert Steel and James Torrie, Principles and Procedures of Statistics, McGraw-
Hill, 1960, p. 74.
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Table 3.5. Results Of Hypothesis Testing For Various PCC Tests

t-statistic
Critical Region (2)
Test Comparison Calculated (o = 0.05) Conclusion®
Slump WSDOT = Industry -0.023 -2.131 No significant difference
(Basic)
Slump Tests 1-8 = Tests 9-20 +7.228 +2.131 Significant difference
{Sequential)
Air Content WSDOT = Industry +0.637 +2.131 No significant difference
(Basic)
Air Content Tests 1-8 = Tests 9-20 +0.892 +2.131 No significant difference
(Sequential)
Unit Weight WSDOT = Industry +0.632 +2.131 No significant difference
Unit Weight WSDOT = Industry +2.597 +2.160 Significant difference
without Outliers
Compressive Strength { WSDOT = Industry +2.964 +2.038 Significant difference
(WSDOT Lab)
Compressive Strength | WSDOT = Industry +3.766 +2.038 Significant difference
(Commercial Lab) :
Compressive Strength | Tests 1-8 = Tests 9-20 -1.178 -2.038 No significant difference
(WSDOT Lab)
Compressive Strength | Tests 1-8 = Tests 9-20 -1.939 -2.038 No significant difference
{Commercial Lab)
Compressive Strength | WSDOT Lab = +5.946 +2.000 Significant difference
(All Tests) Commercial Lab
Notes

(a) Critical region defined by the t-statistic for a two tail Type I error of 5% (& = 0.05) for v degrees of freedom
(b} Conclusion based on hypothesis test described in Table 3.3
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Cylinders prepared by all teams and tested at the WSDOT lab.
. Cylinders prepared by all teams and tested at a commercial lab.

The results in Table 3.5 show a significant difference between the two
laboratories (the WSDOT results were higher).

A final set of hypothesis tests were performed to compare the test results
against "fixed" values (or limits). This was done for slump, air content
and compressive strength., The associated and necessary formulas are
shown in Table 3.6 with the results in Table 3.7. The hypotheses are
(illustrated in Figure 3.3):

. Slump
Ho : W = 3in. (specified maximum slump for "AX" vibrated
H : u > 13)(1:1? )(i.e., critical condition is more slump not less)
. Air content
Ho @ M = 5% (specification target air content)

Hy : p #35%
. Compressive strength

Ho : p = 4000 psi (specification minimum 28-day
compressive strength)
H : p < 4,000psi

The results in Table 3.7 indicate that the air content is within the
acceptance region which is to say that the null hypothesis (Hg) 1s accepted
(i.e., there is a statistical basis for accepting the fact that the air content is,
in essence, 5 percent). The compressive strength is also in the acceptance
region (i.e., accept Hp). Naturally, this can be observed by inspection but
was included to illustrate the calculation process (i.e., all means were
greater than 4,000 psi). Finally, the slump results are in the critical region
(accept Hy). This indicates that the slump results exceed the maximum
value of 3 in. Again, by inspection of the data, this result is rather
obvious.

What the above hypothesis tests do not do is indicate whether the
difference between a 3 in. slump or say a 4.44 in. slump is structurally
important.

Example 4: Friction Number Data — Paired t-test

The friction number data are for SR-82, an Interstate highway in
District 5. The milepost locations indicate that the friction testing was
performed on portland cement concrete surfaces only. The friction tests
were essentially obtained every one-half mile in all available lanes. The
friction number data are shown in Table 3.8. Lane 1 is the "outside" or
"curb” lane in all cases.
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Table 3.6. Formulas Used For Comparing Test Results To Fixed Values
[after References 3.1 and 3.3}

1. Statistical tests reported are “means test for one sample with population standard
deviation unknown and a small sample.”

2. Null hypothesis is Hp: L = fixed value
Alternative hypothesis is H: Ly, # fixed value (or < or > fixed value)

where: | = population mean for a specific test and tester group

fixed value

3 in. for maximum specified slump (H; > 3 in.)

= 5% for air content (assumed based on WSDOT
Spec. 6-02.3(2)A for cast-in-place concrete
above the finished ground line) (H; # 5%)

= 4,000 psi for 28-day compressive strength
(H; < 4,000 psi)

3. t-statistic
=Xl

s/n

v=n-1

where: x = sample mean for a specific test and tester groups

Wo = stated mean population value in Hy

$ = standard deviation of the sample

n = sample size

s/\n = standard error (sometimes designated s5)

Reference 3.1

Leland Blank, Statistical Procedures for Engineering, Management, and Science,
McGraw-Hill, 1980, p. 377.

Reference 3.3

Robert Steel and James Torrie, Principles and Procedures of Statistics, McGraw-
Hill, 1960, p. 19.
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Accept Hg ~a—1— Reject H,

Slump

Ho :p=3in.
Hy ip>3in.

0 | t - statistic
Overali= +1.746
WSDOT = +1.895
Industry = +1.860

Reject Hy, i Accept Hy -—= Heject H,

Air Content

Hp :p=5%
Hy :p=5%

I o !

{ - statistic
Industry = -2.306

Overall = +2.120
WSDOT = +2.365

Reject H, ~t— Accept Hy

Compressive Strength
Hg :p = 4,000 psi
Hy :p < 4,000 psi

I 0
Overall = -1.693
WSDOT = -1.753
Industry = -1.740

t - statistic

Figure 3.3. t - test Acceptance and Critical Regions for PCC Test
Data Compared to Specification Values
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Table 3.7. Results Of Hypothesis Testing for Fixed “Population’ Values

t-statistic
Critical Range(®
Test Comparison Calculated (o =0.05) Conclusion(®
Air Content Overall = 5% +0.389 +2.120 No significant difference
(Basic)
WSDOT = 5% +1.018 +2.365 No significant difference
Industry = 5% -0.161 -2.306 No significant difference

Notes

(a) Critical region defined by the t-statistic for a two tail Type I error of 5% (o = 0.05) for v = n-1 degrees

of freedom

(b} Conclusion based on hypothesis test described in Table 3.6

t-statistic
Critical Range(©)

Test Comparison Calculated (. =0.05) Conclusion
Slump Overall =3 in. +11.604 >+ 1.746 Significant difference
(Basic)

WSDOT =3 in. +7.025 >+ 1,895 Significant difference
Industry = 3 in. +9.006 >+ 1.860 Significant difference
Compressive Overall = 4000 psi +14.796 <-1.693 No significant difference
Strength(d)
WSDOT = 4000 psi +15.215 <-1.753 No significant difference
Industry = 4000 psi +9.097 <-1.740 No significant difference

Notes

{c) Critical region defined by the t-statistic for a one tail Type I error of 5% (& = 0.05) for v =n-1. A one-
tail & = 0.05 is equal to a two-tail o = 0.10. Thus, can use Table 2.2

(d) Based on WSDOT lab results




Table 3.8. Friction Number Data, SR 82 (MP 4.0 - 14.0)

Friction Numbers

Mileposts Eastbound Waestbound

Lane 1 Lane 2 Lane 1 Lane 2

4.0 40.4 50.6 38.5 46.4
45 36.2 50.5 41.0 47.2
5.0 383 44.3 40.6 47.7
5.5 40.1 46.0 38.7 46.8
6.0 413 47.4 396 44.4
6.5 426 459 40.4 478
7.0 35.4 43.9 395 47.7
7.5 37.9 48.1 411 43.3
8.0 41.0 48.6 43.3 55.3
8.5 416 45.5 41.7 492
9.0 41.0 443 38.8 51.7
9.5 40.0 48.5 40.8 46.1
10.0 38.9 50.3 386 48.5
10.5 42.9 47.3 43.6 49.4
11.0 1.8 46.2 a41.0 50.7
11.5 43.8 48,5 1.7 49.5
12.0 40.9 559 421 47.0
12.5 415 52.9 415 53.4
13.0 434 50.3 40.8 52.5
13.5 46.3 52.6 40.9 46.4
14.0 40.4 54.0 1.4 46.5

Note: Lane 1: "Outside" or "curb® lane

Lane 2: "Inside" or *median” lane
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Table 3.9 presents a few basic statistical measures of the friction number
data. This includes mean, standard deviation, the number of data points
and the coefficient of variation. The coefficient of variation is a
dimensionless number that is the standard deviation divided by the mean
multiplied by 100 (to convert to a percent). Stated another way, this value
is used to express the standard deviation as a percentage of the mean.

A review of the information in Table 3.9 shows that, in general, the mean
(or average) friction number is highest for the "inside" or "median" lanes.
This is not surprising since the traffic in the inside lanes is generally lower
than that in the "outside" lanes. These differences are about 7 friction
numbers. Further, the coefficient of variation is generally higher for the
inside lanes. This might suggest that studded tire wear (higher wear
exposure in the outside lanes) results in more uniform but fower friction
numbers.

For this analysis, the proposed hypothesis (or "nuil" hypothesis) is that
there are no statistically significant differences among the differences
between the mean friction numbers of the lanes. The mean friction
number differences were based on "paired” observations, i.e., at a specific
milepost the difference between any two friction numbers from two
separate traffic lanes was calculated. The probability level chosen for this
comparison was 95 percent. This implies that there is only a 5 percent
chance that the true null hypothesis will be rejected. If the null hypothesis
was accepted, then the last column of Table 3.10 would show "no
significant difference.” This would suggest that there would be only a 3
percent chance of the conclusion being wrong, and one could conclude
(for the specific test data used) that there was no real difference in friction
numbers for the two lanes compared. On the other hand, if the last column
in Table 3.10 showed "significant difference,” then the null hypothesis
would be rejected. This would result in the conclusion that there was a
real difference in friction numbers for the specific lanes and route being
compared. This is further illustrated in Figure 3.4.

A review of the conclusions drawn in Table 3.10 (and the formulas shown
in Table 3.11 and the calculations in Table 3.12) suggest that the inside
lane has "significantly” higher friction numbers than the other lanes. This
indicates that the lower exposure to vehicle traffic (and studded tires)
results in higher pavement friction resistance (not a surprising finding). At
the time the Friction Numbers were taken, this section of SR-82 was 15
years old.

Example 5: Pavement Structural Condition (visual pavement
distress) — Paired t-test

A reasonable statistical test of PSC visual condition "paired observations”
can be made (for example, if rating results from the 20 or so sample units
are collected in a district and the "matching"” information from the annual
survey). These paired observations along with hypothesis testing using the
t-statistic can be used. The mean differences of PSC (as one measure) will
be tested. The proposed hypothesis (null hypothesis) is that there are no
statistically significant differences for identical sections. The specific
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Table 3.9. Basic Statistics for Friction Number Data, SR 82

Lane Direction and Number
Route Mileposts Parameter w8 EB
1 2 1 2
SR-82 4.0-14.0 Mean (x} 40.7 48.4 40.8 48.6
Std. Dev. (s) 14 3.0 25 3.4
Data Points (n) 21 21 21 21
Coeff. of Var. 3.4% 6.2% 6.1% 7.0%
Table 3.10. Results of Hypothesis Testing for Friction Number Data, SR 82
Lane t - statistic (©
Comparison Conclusion ‘¢
i ir: (a) {b) ,
Route | Mileposts | (Dir ;%" | calculated |Critcal Region | (Hypothesis)
. (o= 0.05)
SR-82 4.0-14.0 WB: 1-2 -12.587 -2.086 Significant Difference
EB:1-2 -9.540 -2.086 Significant Difference
Lane 1 is "Outside” fane of two lanes in one direction.
Lane 2 is "Inside" lane of two lanes in one direction.
Notes:
(a) t-statistic calculated from paired friction number observations for lane directions
and numbers shown,
(b) Critical region defined by the t-statistic for a Type | error of 5% (o = 0.05) for n-1
degrees of freedom
(number of data points minus one).
(c) Conclusion based on the Initial hypothesis that there are no significant

differences in friction numbers for the cases shown.
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Reject <—L AcceptH g <-L Reject
Ho

Ho

t - distribution

Area = 0.025 /—Area =0.025

-2.086 0 +2.086 1 - statistic

Figure 3.4. t - test Example (SR-82 Friction Numbers)



cquations necded for paired t-tests were previously shown in Table 3.1 1.
An example using paired observations is shown in Table 3.13.

Additional analysis must be done in order to check the B (Type II error).
Recall that the basic errors in hypothesis testing for this condition are:

. Type I error (o): risk of rejecting a true null hypothesis (Hg) and
thus concluding the annual and sample surveys are different when
in fact they are not.

. Type 11 error (B): risk of accepting a false null hypothesis (Hp) and
thus concluding the annual and sample surveys are the same when
in fact they are not.

To check the potential for a Type I error, an operating characteristic curve
was used for a two-sided t-statistic and o = 0.05 (from p. 368, Blank
[3.1]). The Type II error decreases as the difference between the means of
the annual survey and sample survey increases. Below are listed the
sample size, § and 1 - B (defined as the "power” of a test which is the
probability of rejecting the null hypothesis (no difference between means)
when it is false). The APSC is the difference between the mean of the
annual survey and the sample survey.

B 1-B
APSC n=20 n=25 n=30 n=20 n=25 n =30
2.5 0.82 0.79 0.75 0.18 0.21 0.25
50 0.52 0.42 0.35 0.48 0.58 0.65
7.5 0.17 0.10 0.05 0.83 0.90 0.95
10.0 0.02 0.01 ~0 0.98 0.99 ~1.00
The larger the power the better. Thus, sample sizes of 20 have reasonable
power in detecting mean differences in PSC of about 7.5 points or more.
A sample size of 30 is almost adequate to detect differences in PSC of 5.0
points. It would take a sample size of greater than 100 to detect mean
differences as small as 2.5 points (§ =0.25, 1 - B =0.75, n = 100) and a
sample size of 75 to detect mean differences of 5.0 points (§ = 0.05,1 -
=0.95, n =75).
The bottom line is that the paired t-test with the range of sample sizes of
20 or more within a district should provide reasonable probabilities against
rejecting a true hypothesis (no mean differences between the two surveys)
and_accepting a false hypothesis (the two surveys are different) for
differences in PSC of say 7.5 or more points.
3.2.6 Nonparametric Statistic

The paired t-test discussion in the previous paragraph assumed the
samples are to be taken from a normal distribution of PSC differences. If
this is not the case, nonparametric ("distribution free") statistics can be
used. Nonparametric tests assume that the sampled data are simply from a
continuous variable.
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Table 3.11. Formulas Used For Comparing Test Results To Fixed Values
[after References 3.1 and 3.3]

1. Statistical tests reported are “means test for one sample with population standard
deviation unknown and a small sample.”

2. Null hypothesis is Hy: |L = fixed value

Alternative hypothesis is Hy: Ly # fixed value (or < or > fixed value)

where: [t = population mean for a specific test and tester group
fixed value = 3 in. for maximum specified slump (H; > 3 in.)
= 5% for air content (assumed based on WSDOT
Spec. 6-02.3(2) A for cast-in-place concrete
above the finished ground line) (H; # 5%)
= 4,000 psi for 28-day compressive strength (H; < 4,000
psi}
3. t-statistic
(=X
s/Vn
v=n-1
where: x = sample mean for a specific test and tester groups
Ho = stated mean population value in Hg
s = standard deviation of the sample
n = sample size
s/n = standard error (sometimes designated 83)

Reference 3.1

Leland Blank, Statistical Procedures for Engineering, Management, and Science,
McGraw-Hill, 1980, p. 377.

Reference 3.3

Robert Steel and James Torrie, Principles and Procedures of Statistics, McGraw-Hill,
1960, p. 19.



Table 3.12. Friction Number Example — Calculation of t-statistics
1. Summation of differences between Lane 1 and Lane 2:
2d; =-162.9 (eastbound) ¥d; = -159.9 (westbound)
To illustrate: Td; = (40.4 -50.6) + (36.2 - 50.5) + ... + (40.4 - 54.0) = -162.9 (for eastbound)
2. Summation of squared differences between Lane 1 and Lane 2:
Y.d;2 = 1541.3 (castbound) Td; 2= 1371.2 (westbound)
To illustrate: $di2 = (40.4 -50.6)2 + (36.2 - 50.5)2 + ... + (40.4 - 54.0)2 = 1541.3 (for eastbound)

3. Calculate mean of friction number differences:

d= Z‘f?l = % =-7.757 (eastbound)
d= % = % =-7.614 (westbound)

4. Calculate standard deviation of the differences:

(2di2 0 a2]1/2
n-1 -1

Sd=

L.

[1541.3 |
Sd=|"39 - Gﬁ) (-7’.?’57")2]”2 = 3.726 (eastbound)

F1371.2 1
Sd = 20 G—Oj (-7.614)2]”2 = 2.772 (westbound)

5. Calculate t-statistic:

d-0
teale=—— Sd
\[_
7.

57
teale = (—3-47% -9.540 (eastbound)

V21

teate = TP _ 15587 (westbound)

21
6. Determine t value

teriticat =+ 2.086 (for two tail Type I error = 5% with v =n - 1 = 20 degrees of freedom)
(the tcritical concept is illustrated in Figure 3.4)
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Table 3.13. Illustrative Example of Comparison of Two Different Survey Methods

Assume the measured variable is PSC measured by the annual survey
and PSC by the district sample

§urvey Method

Segment No. Annual Sample d; d;2
1 100 90 10 100
2 100 85 15 225
3 60 40 20 400
4 50 40 10 100
5 70 50 20 400
6 35 30 5 25
7 80 65 15 225
8 40 20 20 400
9 50 30 20 400
10 60 50 10 100
11 80 80 0 0
12 50 55 -5 25
13 60 70 -10 100
14 70 75 -5 25
15 80 65 15 225
16 90 95 -5 25
17 95 95 0 0
18 85 80 5 25
19 65 40 25 625
20 30 50 30 900

. _(}:diZ_l?z)”?
d={n-1 "n-1

_ (4325 20 N2
-(T-19(9.75)) =113
d-0 975
Ccalculated =" —g — =773~ +3.859
Vo 20

t criticat* = +2.093

*o = 5%, n =20

=195, d =9.75, Td2=4325

Thus, the conclusion is that there is a significant difference between the annual and
sample surveys run on the same 20 segments (since t calculated > t critical)-
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A "two-sample signed rank test for means" will be used (referred to as the
Wilcoxon test—refer to Blank [3.1], p. 456). The Wilcoxon is the
nonparametric equivalent of the paired t-test. Tables 3.14, 3.15, and 3.16
are used to describe the Wilcoxon procedure and show an example
problem (example uses same data as used in Table 3. 13).
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Table 3.14. Wilcoxon Paired Section Analysis
(after Blank [3.1])

1. Null hypothesis is Hy: 8= 8,

Hl: 5¢ 80
Where:

6 = mean difference between paired measurements
8() =0

2. T statistic

T smaller sum of absolute value of signed ranks of differences

min[Dy, Ds]

IfT < Tg, reject Hy

IfT > Ty, accept Hy
where T = table value of T

3. Procedure

(a) Subtract paired samples to obtain differences
di =Xj1 - Xi2

and discard all d; = O values and reduce n accordingly.
(b) Arrange absolute values, | d; |, in increasing order.

(c) Assign ranks (1, 2, ..., n) to the ordered differences. "Ties" are given the
average of the assigned ranks.

(d) Compute the sums

D, =2d;foralld; >0

Dy=Zd; foralldj <0
(e) Compute T test statistic
T = min [D, D3]
€9 Refer to Table 3.9 for table T values
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Table 3.15. Typical Two-Tail T Distribution Values (from Blank [3.1])

o level
n =0.05
6 0
7 2
8 4
9 6
10 8
11 1t
12 14
13 17
14 21
15 25
16 30
17 35
18 40
19 46
20 52
21 59
22 66
23 73
24 81
25 89

Note: T values shown can be used for sample sizes up to
25. For larger sample sizes, use a standard normal
distribution and

g LolT
oT

i
uT = n (n4+ )

172
[n(a+D2n+1)
or=[M g
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Table 3.16. Illustrative Example of Wilcoxon Hypothesis Test

Use the example data in Table 3.7 (recall eliminate all d; = 0)

Ranks

d; o rl d(ilrtla d Plus Minus
10 5 3 recall, all repeated ranks
15 5 3 given the avg rank, i.e.,
20 5 3 ranks 1, 2, 3, 4, Sequal 15
10 5 3 and avg =3
20 5 3

5 10 7.5
15 10 7.5
20 10 7.5
20 10 7.5
10 15 11

0 15 11

-5 15 11

-10 20 14.5

-5 20 14.5
15 20 14.5

-5 20 14.5

0 25 17

5 30 18
25 —
30 154.5 16.5

n = 18, Tg = 40 for & = 0.05 (Table 6)
T = min [150.5, 16.5]

Since (T = 16.5) < (T = 40), conclude that Ho is false, i.e., there is a significant
difference between sample means.
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4.1

4.2

SECTION 4.0
REGRESSION ANALYSIS

INTRODUCTION

Recall from SECTION 1.0 that regression analysis can be used to generate an
equation to predict one variable from another (or others, which constitutes
multiple regression). The predicted variable is the "dependent variable" and the
other variables are called "independent variables."

Sir Francis Galton (England) apparently first used the term "regression” in the
context of statistics in the late 1800s [4.1]. He was studying the inheritance of
human characteristics and noted that offspring tend to "revert” (regress) toward
"mediocrity.” What he was trying to say was that children's heights, as they grow
into adults, tend toward an average or median height.

CORRELATION

In statistics, there are several ways two variables can be evaluated so that their
collective association can be measured. A common measure of association is
correlation. A few of the more significant points about correlation include {after
Ref. 4.2] the following. ‘ -

(a) The correlation coefficient is designated by “r."

(b) The correlation coefficient can range between -1 and +1. If the two
variables whose association is being measured are designated as "y" and
"x", then the correlation coefficient is positive if an increase in y
corresponds to an ipcrease in x.

(c) The correlation coefficient equals 1.0 if all of the y and x values fall on a
straight line.

(d) When the correlation coefficient approaches 0.0, then there is little (if any)
association between y and x (however, there are exceptions - refer to
Figure 10.2 (p. 221) of the MINITAB manual [4.2]).

The basic equation for determining the correlation coefficient is

L(x-Xy-9
= i Eq 4.1
[ze-%220-92]
The "computation" formula for r is
Ixy - E__);Zy
r= : Eq.4.2

(o =2 27
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4.2.1 Example — calculation of the correlation coefficient

An example of correlation will be a comparison of asphalt concrete
resilient modulus values obtained in the same laboratory by two different
technicians [4.3]. The laboratory data are for a gravel aggregate
specimens tested at 77°F. They are shown on Table 4.1.

To simplify the calculations, units of X100 psi will be used, along with

Equation 4.2.

Y x y? x2 Xy
0.204 0.195 0.0416 0.0380 0.0398
0.231 0.207 0.0543 0.0428 0.0478
0.227 0.198 0.0515 0.0392 0.0449
0.228 - 0.204 0.0520 0.0416 0.0465
0.261 0.229 0.0681 0.0524 0.0598
0.195 0.180 0.0380 0.0324 0.0351
0.225 0.206 0.0506 0.0424 0.0464
0.216 0.202 0.0467 0.0408 0.0436
0.205 0.182 0.0420 0.0331 (.0373
0.232 0.235 0.0538 0.0552 0.0545
0.205 0.186 0.0420 0.0346 (.0381
0.261 0.237 0.0681 0.0562 0.0619

Ty=2.690 Ix=246] IZy2=0.6078 Xx2=0.5087 Ixy=0.5557
After Equation 4.2:

(2.461)(2.690)
12

2 2172
[(0:5087 - C46L2Y g 075 - 2307

0.5557 -

r=

0.00403
I'= 500437 - +0.92
4.3 LINEAR REGRESSION WITH ONE INDEPENDENT VARIABLE
4.3.1 Basic Regression Model |

First, examine a basic regression model (or equation, which in this case
indicates the same thing):

yi= bo + b1xj + €;j Eq. 4.3
where  y; = value of the dependent variable for the ith data point,
xi = value of the independent variable for the ith data point,

bo,b1 = constants (regression parameters),
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Table 4.1.  Asphalt Concrete Resilient Modulus Data
by Two Technicians - Grave! Aggregate at 77°F

Resilient Modulus (psi)
Specimen , at77°F
No. Operator Operator
y X
1 204,000 195,000
2 231,000 207,000
3 227,000 198,000
4 228,000 204,000
5 261,000 229,000
6 195,000 180,000
7 225,000 206,000
8 216,000 202,000
9 205,000 182,000
10 232,000 235,000
1" 205,000 186,000
12 261,000 237,000
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4.3.2

€ j = random error term, and
i=1,2,3,..,n

The above model! is a simple, linear model. It is simple since there is only
one independent variable (x). It is lincar since both the parameters (bg, by)
and the independent variable (x) are not power functions. (A non-linear
model is one where the regression parameters ("constants”) appear as
exponents or when multiplied or divided by other parameters. Further,
other types of non-linear models are ones where the independent
variable(s) are second order powers (or higher). Non-linear models will be
illustrated in Sections 4.3.7, 4.3.8, and 4.3.9.)

The regression parameters (bg, bp) are usuvally called regression
coefficients. The coefficient by is the slope of the regression line and the
coefficient by is the intercept of the regression line. This is illustrated in
Figure 4.1, which is a plot of Friction Number at 40 mph versus ADT per
lane for pavement field data for a select type of limestone rock surface
course. The resulting equation, based on ¢ight data points, is

FN40 = 56.9 - 0.00666 (ADT LANE)

The intercept (bg) at zero ADT per lane is 56.9. This is analogous to a
new pavement surfacing that has received no traffic. The slope (by) is
0.00666, which means that the Friction Number is reduced by 0.00666 for
each increase of | ADT per lane (or more understandably, the Friction
Number is reduced by about 6.7 for each increase of 1,000 ADT per lane).

Method of Least Squares

The best relationship (or line) to use to predict some y from x is one that
minimizes the differences between the regression line and the actual data.
In Figure 4.2 (a), a clear association is shown and one not so clear is
shown in Figure 4.2 (b). Thus, Figure 4.2 (a) probably comes closest to
minimizing the differences between the line and the plotted y and x data
points.

The minimization of the differences between the regression line and the
actual data points is illustrated in Figure 4.3, i.e., the differences between
the fitted data on the regression line %;i) and the actual data points (y;) are
minimized . More specifically, the squared differences are minimized, i.e.,
a minimum of X(¥j - y;)2. The squared term results from the derivation,
which is based on calculus. From this basic idea come the following
equations, which are used to obtain the regression coefficients for a
simple, linear regression model:
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Friction number {FN 4¢ )

60

40

20

10

by =56.9

FN4g = 56.9 - 0.00666 (ADT/lane)
RZ =0.77

(original data points not availabie)

b

1000 2000 3000 4000
ADT/ane

Figure 4.1. Friction Numbers versus ADT per Lane for
Select Limestone Rock Surfaces
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(a) A clear association between the line and the data points

(b) Unclear associations between lines and the data points

Figure 4.2. Data Fits
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® actual data point (v, )

[ fitted points ()\!i )

Figure 4.3. Ilustration of Minimization of Differences Between
the Regression Line and the Data Points



_Z&i-DGi-P

s3] (basic)
Z (xi- X)2
Sxiy; - 29 %)
n .

by = computational

1 o Exo)? (comp )

Xi -

bo=y-bix _ (basic)
bg = % (Zyi - b1Zxy) (computational)

Eq. 44

Eq. 4.5

Eq. 4.6

Eq. 4.7

4.3.3 Example — determination of a regression line by the method of least

squares

Use the data from Table 4.1 to apply an "adjustment” to the resilient
modulus data obtained by Operator "x". In other words, predict the
modulus values that would be obtained by Operator "y" from what you

know about the results obtained by Operator "x."

Determine the

appropriate regression line (the basic information needed to determine bg

and by is contained in SECTION 4.3.2).

Exiy - ) E9)

b = (fromEqg.4.5)=
1 ( q.4.5) . i
Txj2 - =
n
(2.461) (2.690)
_05557-7n 000403
- (24612  0.00399
0.5087 - =45
= 1.0100

1
bg = (fromEq.4.7)= 7 (Zy; - b1 Zxj)

= 15 (2.690- (1.0100)(2.461))

= 0.0170
The following regression equation results:

$=0.0170 + 1.0100 (x)

The results of this equation (predicted y) are shown for each of the original

"_ 1

y" and "x" data points in Table 4.2.
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Table 4.2. Actual and Predicted Resilient Modulus Values for Operator Y

Resilient Modulus (psi)
at 77°F
Specimen Actual Predicted
No. Qperator Operator Operator
y y* X
1 204,000 214,000 195,000
2 231,000 226,000 207,000
3 227,000 217,000 198,000
4 228,000 223,000 204,000
5 261,000 248,000 229,000
6 195,000 199,000 180,000
7 225,000 225,000 206,000
8 216,000 221,000 202,000
9 205,000 201,000 182,000
10 232,000 254,000 235,000
11 205,000 205,000 186,000
12 261,000 256,000 237,000

* Rounded to nearest 1,000 psi
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4.3.4 Sum of squares (or the basic information needed to evaluate how
"good" a regression line ''fits' the data)

4.3.4.1 Total sum of squares (SSTO) [after Ref. 4.5]

If all y; data points were identical, then ali y; = ¥, which would
mean there would be no need for any statistical measure
(regression line, etc). However, this is rarely the case with real
data. To best evaluate the "fit" of a regression line to actual data,
three types of sum of squares measures will be examined, the first
of which is illustrated in Figure 4.4 (a) and is denoted the total sum

of squares (5STO):

n
SSTO = .El (i -9)?
1=

If SSTO = 0, then all data points must have the same value. The
larger the SSTO, the greater the difference between the y; data
points. The calculation of SSTO for the five data points shown in
Figure 4.4 (a) is

il

SSTO =(y1-$)?+(y2- 2 +(y3-9)? + (y4- 2 + (y5 52

5
T (yi-9)?
1=1

Use squared terms, since the sum of deviations of y; -y by
definition is zero (which gets us nowhere).

4.3.4.2 Error sum of squares (SSE)

The "fit" of the regression line to actual data results in some error
("lack-of-fit"}), as shown in Figure 4.4 (b). This error is defined as

A,
¥i-¥Yi

Thus, the error sum of squares (SSE) is defined as
I A
SSE= 3 (yi-¥)?
i=1
or for Figure 4.4 (b), as

SSE = (y1-Y1)2 +(y2- §22 + (v3 - §32 + (v4 - §4)2 + (y5 - §5)2
Stated another way, the SSE is the amount of the sum of squares

best explained by the mean (y) of the dependent variable. The SSE
=SSTO when ally =y.
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Figure 4.4. Ilustration of Deviations Used to Determine
Sum of Squares

- |



4.3.4.3 Regression sum of squares (SSR)

Hopefully, for a regression line you wish to develop, the SSTO is
much larger than the SSE. The difference is termed the regression
sum of squares (SSR):

n
SSR = ,zl @i -2
1=

These deviations are illustrated by the dashed lines shown in
Figure 4.4 (c). Since the SSR is composed of deviations between
the "fitted" regression line and the mean of the data points, the
larger the SSR the better the fit of the regression line to the data.
Stated another way, the SSR is the amount of the sum of squares
explained by the regression equation. For Figure 4.4 (¢), SSR is

SSR=@F1-72+32-92+33-92+F4-92+ (5 -5
4.3.4.4 Final overview of sum of squares

From the previous sections, we can see that

L= = AL = + v D

yi-y = Yi-¥ vi- Vi
total deviation of fitted deviation around
deviation regression value the regression line

about the mean
or Z(yi- 92 =Z(i-9?+Z(yi-$iP
SSTO = SSR  + SSE

4.3.5 Regression line "goodness-of-fit"
4.3.5.1 Coefficient of determination (R2)

The R2 value explains how much of the total variation in the data
is explained by the regression line. Stated another way, the R2
measures the reduction in the total variation for "y" associated with
the use of "x". The R2 = 1.0 when all data points fall on the
regression line, as shown in Figure 4.5(a). The R2 = 0 when the
regression line matches the average (or mean) of the data points, as
dlustrated in Figure 4.5 (b). In other words the mean of the data
points is as good a predictor of "y" as any line fit through the data
points.

For example, if RZ = (.20, then the total variation in y isreduced

by only 20 percent when x is used (on the other hand r = VR2 = /0.2
= 0.45).
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? RZ = 1.0 (or 100%)

\_—Q-Q, 45 x

(@)

I\ RZ =0 (or 0%)

{b)

Figure 4.5. INustrations of the Coefficient of Determination (R )
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4.3.5.2 Mean square error (MSE) and root mean square error (RMSE)

The mean square error is calculated as follows:

SSE _SSE
error degrees of freedom — n-2

MSE =

The root mean square error is simply the square root of MSE:
RMSE = VMSE

The RMSE is the standard deviation of the distribution of § for a
specific x. Stated another way, the RMSE is the standard deviation
of the regression line. The larger the RMSE for a specific
regression equation, the poorer the associated predictions.

4.3.6 Example — Straight Line Fit (PSC vs. Age)

An example with six data points is shown in Figure 4.6. Assume that
these data resulted from measurement of pavement distress (hence
Pavement Structural Condition (PSC)) over a 15-year period. The
regression equation would allow the estimation of PSC at any age. First,
attempt a "straight line" fit of the data.

(a) Determine the regression coefficients (bg, b1)

Data y X

Point (PSC) AGE x? xy
1 100 0 0 t
2 100 4 16 400
3 80 7 49 560
4 65 10 100 650
5 40 12 144 480
6 20 15 225 300
405 48 534 2,390
Ly Ix Zx2 Ixy

y=22-615max=2-50

ey - ER.E)

by = (from Eq. 4.5) =
2
(zx2) - _m(Z:)

2,390 - &6(409)
- (48)2
534 - -
= -5.667
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Figure 4.6 Example Data - Pavement Condition versus Age
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(b)

(c)

bo = (from Eq. 4.7) = *};(Ey - b1Zx)

= £(405 - (-5.667) (48))

= 112.836

The following regression equation results (and refer to Figure
4.7a):

y = 112.836 - 5.667 (x)
or
PSC=113- 5.7 (AGE)

This equation results in the following predicted values for PSC:

Data Predicted Actual Actual
Point PSC PSC AGE
1 112.836 100 0
2 90.169 100 4
3 73.169 80 7
4 56.169 65 10
5 44,836 40 12
6 27.836 20 15

Total sum of squares (SSTO)
6
SSTO = _Zl (yi -¥)?
1=

= (100-67.5)2 + (100-67.5)2 + (80-67.5)2 + (65-67.5)2 + (40-67.5)2
+(20-67.5)2

=1,056.25 + 1,05625 + 15625 + 6.25 + 756.25
+2,256.25

= 5,287.50

Error sum of squares (SSE)
6 A
SSE = _21 (yi - ¥i)?
i= :

= (100-112.836)2 + (100-90.169)2 + (80-73.169)2 + (65-56.169)2
+ (40-44.836)% + (20-27.836)2
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(a)

1401 PSC =113 - 5.7(AGE)
1201, — 95% Confidence
100 intervals
PSC 80 o
60 \x\‘
40
20 \3
0+ 1
0 5 10 15
Age (yrs.)
(c)
1207

PSC = 102 - 0.456(AGE)
100"““‘*2\ - 0.349(AGE) 2

x

L

N

PSC6B01

x

0 ) —

5 10 15
Age (yrs.)

(o)

1407 PSC = 78(AGE) "0-2001
120

100
801 ®

PSC ol ) .
40.. ® ——
201 .
0 ' ,
0 5 1 15
Age (yrs.)

(d)

120 PSC = 104 - 0.748(AGE) 17>

80 \
PSC60 L

\x
401 \
201

a

0 15

& Actual data points

x Calculated from regression

equation

Figure 4.7. Fitted Regression Equations for
PSC versus AGE Examples
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= 164.763 + 96.649 + 46.663 + 77.987
+ 23.389 + 61.403

=470.854

{d) Regression sum of squares (SSR)

6 A 2
SSR= 3 (¥i-y))
i=1
=(112.836-67.5)2 + (90.169-67.5)2 + (73.169-67.5)2 + (56.169-67.5)2 +
(44.836-67.5)2 + (27.836-67.5)2

=2,055353 + 513884 <+ 32.138 + 128392 +
513.657+ 1,573.233

=4,816.657

(e) SSTO = SSR + SSE = 4,816.657 + 470.854 = 5,287.511 (checks
with (b))

§3) Coefficient of determination (R2)

R?= SSS%% = ?——’gégﬁ% =0.911 (or 91.1%)

(g) Mean square error (MSE) and root mean square error (RMSE)

SSE _ SSE _ 470.854

MSE = ffror =02 = 4

=117.714

RMSE =v117.714 = 10.850

The RMSE is the standard deviation of the distribution of y for a fixed x.
If you wish to determine the interval estimate of y for a given x, as
illustrated in Figure 4.7a, first calculate [after Ref. 4.6]:

1/2
s = RMSE[1+—(" -%)2 ]
n

T(x - )2
The interval estimate is then

9 + l89
This interval is the "narrowest" forx and gets larger as one moves further

away from X (either larger or smaller). For our initial example of PSC
versus AGE:
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' Standard
Data  Actualx Actualy Predictedy (i-%? Deviation

Point (AGE) (PSC) ) (sp)
1 0 100 112.84 o4 8.4
2 4 100 90.17 16 5.7
3 7 80 73.17 1 4.5
4 10 65 56.17 4 4.8
5 12 40 44 .84 16 5.7
6 15 20 27.84 49 7.6

150

If you wish to place a 95% confidence interval estirnate for the
mean values of y for specific x values on the regression line, then

tiable = 2.776 for two-tail < =5%,v=n-2=6-2=4

Thus, the confidence iﬁtervals are as follows:

95% Confidence
Data Predictedy  Standard Deviation Interval
Point () (s9) (£ tsg)
1 112.8 8.4 89.5, 136.1
2 90.2 5.7 74.4,106.0
3 73.2 45 60.7, 85.7
4 56.2 48 429, 69.5
5 448 5.7 29.0, 60.6
6 278 7.6 6.7,48.9

This interval estimate is plotted in Figure 4.7(a). It illustrates the
uncertainty associated with the regression line, particularly as one moves
away from the ¥ and X values.

The MSE (or RMSE) can also be used for testing whether the regression
coefficients (bg, by) are significantly different from zero. This 1is
illustrated for the PSC vs. AGE example:

Hy: bg = 0 (null)
H;: bg # 0 (alternative)

bg-0
Sbo

1 X2 172
where s = MSE |-+ ———
" " oExi - %2
i-

2 2
[117.7 (l BN =84

fealc =

6+ 150

_1128-0

lae=""g4~ = 134
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If tealc > table (1 - o<, n - 2), conclude H;
teale = 13.4 > 2.776 = tiaple

Since tealc > teable, YOu can conclude that by is different from zero.
Forby:

Hg: by = 0 (nulh)
Hi: by # 0 (alternative)

by -0
Sp

[l
{:MSE S —
[z (x; - @z}]

_ | 1 1/2_
= [17&%)} =09

-5.667 - 0
< leale = 09 < -6.3

tcalc =

where  sp

Since teale = -6.3 > -2.776 = typle, conclude Hy, i.e., by, is different from
Zero.

As a rough rule-of-thumb, the ¢y values automatically calculated from
statistical software for the regression b values should equal or exceed the
following (for e« = 5%):

Number of Data Points tealc{equal to or greater)
13

3
4 4
5-7 3
8-13 2.5
14 or more 2

(h)  Since we have already spent so much time on this example, we will
introduce the concept of “residuals.” A residual is simply the
difference between the observed value (actual data point) and the
fitted (predicted) value:

Residual = y; - §

Generally, residuals are examined by plotting them versus the
independent variable (x). If the residuals generally fall within a
band centered on Residuals = 0, then this suggests the model is
appropriate. A definite pattern in the- plotted residuals indicates a
poor model. The significance of this is that a random distribution
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of the plotted residuals indicates that there is no systematic error in
predicting y (PSC in this case) due to x (Age). A systematic

residual trend indicates that x is producing some systematic
prediction error. :

The residuals for this example are:

(1) 2

Data Actual  Predicted

Point (PSC) PSC Residual
1 100 112.836  -12.836
2 100 90.169 +9.831
3 80 73.169 +6.831
4 65 56.169 +8.831
5 40 44.836 -4.836
6 20 27.836 -7.836

The plot of the residuals versus AGE follows:

10+
¢ °
&
54
o — — - - - - - - — o~ —
Residuals
(PSC Units)
-5 o
®
=10 A

0 2 4 6 8 10 12 14 18
Age (yrs.)

This plot suggests a better model should be attempted since there is
a bit of a trend apparent from AGE =4 to 15 years.

4,37 Example — Power Fit (PSC vs. Age)
Since we can detect a modest "curve” to the data points in Figure 4.6, try
an equation with the following form (someone told us a "power" (or non-
linear) model would probably work best):
b
PSC = b (AGE) |
The log transformation process is required to obtain the regression

constants, in the case of bp and bi1. (Additional information on
transformations is presented in Section 4.4.)
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(a) Transform the data to logs (base 10):

Data y X logy log x
Point (PSC) (AGE) (log (PSC)) (log (AGE))
1 100 0* 2.0000 -1.0000
2 100 4 2.0000 0.6021
3 30 7 1.9031 0.8451
4 65 10 1.8129 1.0000
5 40 12 1.6021 1.0792
6 20 15 1.3010 1.1761
* set' AGE = 0 to 0.1 (cannot take log of 0.0)
(b) Determine regression constants (bg, by):
Data
Point  log (PSC) log(AGE) (log(AGE))?2 (log(PSC))(log(AGE))
1 20000 -1.0000 1.0000 -2.0000
2 2.0000 0.6021 0.3625 1.2042
3 1.9031 0.8451 0.7142 1.6083
4 1.8129 1.0000 1.0000 1.8129
5 1.6021 1.0792 1.1647 1.7290
6 1.3010 1.1761 1.3832 1.5301
10.6191 3.7025 5.6246 5.8845
Xy Ix Tx2 IXy
y=12801_ 1 7699 ana % = 21923~ 0.7838
Eay - E0.E)
by = (from Eq. 4.5) = >
(x2) . X7
n
(3.7025) (10.6191)
_ 38845 6 _0.6684
- 2 T 3.3398
5.6246 - G192 ’
= -0.2001

bg = (from Eq. 4.7) = % Xy - (b1)}{(Zx))

= £ (10,6191 - (:0.2001)(3.7025))

1.8933
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The following regression equation results (and refer to Figure 4.7b):
log § = bo + by (log x)
log § = 1.8933 - 0.2001 (log x)

9 - ([ObO)(x)b[ = (101.8933)(x)-0'2001

§ = 78.2168(x) 20"

or

PSC = 78.2 (AGE) 2!

{c) The basic regression equation statistics are (without calculations
shown):

R?=35.8%
RMSE = 0.2448

As one can see, the RMSE value is significantly smaller than shown in’
Paragraph 4.3.6(g). The question arises "How does one interpret RMSE in

this case?" Since the variable transformation was in terms of logs, so is the

RMSE. For example, if AGE = 10 years, then the predicted PSC is:

log PSC = 1.8933 - 0.2001 (tog 10)
= 1.6932

and the log PSC + 1 RMSE is:
1.6932 + 1(0.2448) = 1.9380
1.6932 - 1(0.2448) = 1.4484

thus, PSC = 1 RMSEis:

PSC + 1 RMSE = 10"%0 = 86.7

PSC - | RMSE = 10" ** = 28.1
Thus, a "small” RMSE in this case is not so small!
Therefore, the "power fit" is not an improvement over a straight line fit (as
determined in Section 4.3.6). Refer to Fi§ure 4.7b for the plotted curve.

The equation PSC = 78.2168 (AGE) 001 results in the following
predicted values for PSC:
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Data Predicted Actual Actual

Point PSC PSC AGE
1 124.0 100 0.1
2 59.3 100 4
3 53.0 80 7
4 49.3 65 10
5 47.6 40 12
6 45.5 20 15

Note that if AGE = 0 in this equation, then PSC = 0. Thus, the "form" of
the equation is essentially useless (the R2 is quite low as well).

(d) Check the residuals (refer back to Paragraph 4.3.6(h))

Data Actual Predicted

Point PSC PSC Residual
1 100 124.0 -24.0
2 100 59.3 +40.7
3 80 530 +27.0
4 65 49.3 +15.7
5 40 47.6 -1.6
6 20 45.5 -25.5

Now plot the residuals versus AGE:

501
401 ®
30+

20t
Residuals 104
{PSC Units) 0

10 T

0 2 4 6 8 10 12 14 16
Age (yrs.)
The above residual plot shows a clear systematic trend about the

Residual = 0 line, thus a better mode! is needed (however the low R2
suggested that conclusion already).

4.3.8 Example — Polynomial Fit (PSC vs. Age)

Well, our attempt at a "curve" fit did not work out too well. This time, try
a polynomial fit of the PSC versus AGE data. (Refer to Section 4.4.3 for

more details on polynomials.) We will try a second degree polynomial
with the following general form:
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y =bg + by (x) + bz (x)?
or

PSC = by + bi(AGE) + bz (AGE)?
Since this equation has two independent variables (AGE and AGE?), the
calculations get a bit more complex. To keep this example short, a
computer program (MINITAB) was used to estimated bg, by, bz and R2
and RMSE. The following equation results:

PSC = 102.23 - 0.456 (AGE) - 0.349 (AGE)?

(bp) (b1 (b2)

R2=98.2%

RMSE = 5.56
The above equation is a good fit of the data.
The equation

PSC = 102.23 - 0.456 (AGE) - 0.349 (AGE)2
results in the following predicted vatues for PSC (plotted in Figure 4.7¢):

Data Predicted Actual Actual
Point PSC PSC AGE
1 102.2 100 0
2 94.8 100 4
3 81.9 80 7
4 62.8 65 10
5 46.5 40 12
6 16.8 20 15

(a) Check the residuals:

Data Actual Predicted

Point PSC P_§C Residual
1 100 102.2 -2.2
2 100 94.8 +5.2
3 80 81.9 -1.9
4 65 62.8 +2.2
5 40 46.5 -6.5
6 20 16.8 +3.2
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Now plot the residuals versus AGE:

81

Residuals
(PSC Units) _2+ ®

439

L J

o 2 4 & B8 10 12 14 18
Age (yrs.)

The above residual plot shows no systematic trend about the Residual = 0
line, thus it is an improved model over the “straight line” fit of
Paragraph 4.3.6.

Example — WSDOT Power Model (PSC vs. Age)

The polynomial fit was good but we do not like the type of equation.
Another approach which uses regression analysis which “fixes" the form
of the equation is used by the WSDOT Pavement Management System
(WSPMS). This form is:

PSC = by - b; (AGE)Power
whereby the "Power” is selected, then by,by determined. The power 1s
varied in increments of 0.25 (starting with a Power = 1.0 ranging up to a
Power = 3.0) until the best fit is obtained. For example, we will select a
Power = 2.5 for illustration purposes.

(a) Power = 2.5, determine by, by

Data

Point PSC AGE (AGE)2-5
1 100 0 0.0
2 100 4 320
3 80 7 129.6
4 65 10 316.2
5 40 12 498.8
6 20 15 8714
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The resulting bg, by values are:

bp =96.95 = 97.0
b1 =0.0956

The equation becomes:

PSC = 97.0 - 0.0956 (AGE)2-5

R2=96.3%
RMSE =7.01

(b) A summary of various power levels results in the following:

Power = 1.50
PSC = 106 - 1.48 (AGE)!-50

R2=97.6%
RMSE = 5.58

Power = 1.75
PSC =104 - 0.748 (AGE)!.75
R2=98.4%
RMSE = 4.64

Power = 2,00
PSC =101 - 0.377 (AGE)2.00
R2=982%
RMSE =4.88

Power = 2.25
PSC =98.9 - 0.190 (AGE)2.25

R2=97.4%
RMSE =5.80

Thus, the use of a Power = 1.75 produces the “best" fit for our example
data.

(c) As a check on our "best fit" equation, the predicted values for PSC

are:

Data Predicted Actual Actual

Point PSC PSC AGE
1 103.6 100 0
2 95.1 100 4
3 81.0 80 7
4 61.5 65 10
5 45.7 40 12
6 18.1 20 15
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These results are plotted in Figure 4.7d.

(d) To verify the process of calculating bg, by, R? and RMSE, all
necessary calculations will be shown.

Data y X x2 Xy
Point ~ (PSC) AGE (AGE)!75 ((AGE)L75)2 ((AGE)!75)PSC)
1 100 0 0 0 0
2 100 4 1131 127.92 1,131.00
3 80 7 30.12 907.21 2,409.60
4 65 10 56.23 3,161.81 3,654.95
5 40 12 71.37 5,986.12 3,094.80
6 20 15 114,33 13.071.35 2,286.60
405 28936  23,254.41 12,576.95
Ty Tx Ix2 Xy
y=242=67.50 andx = 22~ 4823
Txy - (EX)H(EY)
by = (from Eq. 4.5) =
Ex2 - &
n

12,576.95 - (289:38)(403)

(289.36)2

23,25441 - 3

-0.7479

bo = (from Eq. 4.7) = (Sy - b} £x)

é(405 - (-0.7479)(289.36)

103.5687

This confirms the regression equation obtained by use of MINITAB in that
the rounded bg and by result in:

PSC = 103.6 - 0.748(AGE)175

81



This equation results in the following predicted values for PSC:

Data Predicted Actual Actual

Point PSC PSC AGE
1 103.57 100 0
2 95.11 100 4
3 81.04 80 7
4 61.51 65 10
5 45,70 40 12
6 18.06 20 15

Total sum of squares (SSTQ)
6
SSTO = 'Zl {yi -¥)?
1=

= (100-67.52+...+4(20-67.5)2
= 5,287.50 (same as calculated in Section 4.3.6)

6
Error sum of squares (SSE) = '21 (yi - %i)2
1=

(100 - 103.57)2 + (100 - 95.11)2 + (80 - 81.04)2 +
(65 - 61.51)2 + (40 - 45.70)2 + (20 - 18.06)2

= 1274 4 23.91 + 1.08 + 12.18 + 32.49 + 3.76
= 86.16

~ Regression sum of squares (SSR)

6
SSR = .Zl @i - 92
i=

(103.57 - 67.50)2 + (95.11 - 67.50)2 + (81.04 - 67.50)2 +
(61.51 - 67.50)2 + (45.70 - 67.50)2 + (18.06 - 67.50)2

1,301.04 +762.31 + 183.33 + 35.88 4+ 475.24 + 2,444 31

I

= 5,202.11

SSTO =SSR + SSE = 5,202.11 + 86.16 = 5,288.27 (checks approximately
with SSTO = 5,287.50)

Coefficient of determination

SSR _ 5202.11 _
SSTO = 5,287.50 ~

RZ = 0.9839 = 98.4% (checks)
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SSE _
n2 ~

RMSE = \/ 86;116 = 4.6411 = 4.64 (checks)

(d) Check the residuals:

Data Actual Predicted

Point PSC PSC Residual
1 100 103.6 -3.6
2 100 95.1 +4.9
3 80 81.0 -1.0
4 65 61.5 +3.5
5 40 45.7 -5.7
6 20 18.1 +1.9

Now plot the residuals versus AGE:

6y

Residuals
(PSC Units)

0 2 4 6 8 10 12 14 16

Age (yrs.)

The above residual plot shows no clear systematic trend about the
Residual = 0 line, thus it is an improved model over the "straight line" fit
of Paragraph 4.3.6.

4.3.16 Example — Nonlinear Fit Using Natural Logarithm (PSR vs. IRI)
If a relationship between PSR (Present Serviceability Rating) and IRI

(International Roughness Index) is desired, then the following model
should work well:

b
PSR= (5) ¢! XD

or transformed for the purpose of performing the regression:
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1n[ P58~ ooy

This model is a bit different in that it has a "fixed" intercept {bg) which is
set at 5 (the upper limit of PSR). To develop an example, we will use data
from Paterson [4.8] developed for the World Bank.

PSR IRI(m/km)

42 1.0
2.5 38
2.0 5.0
15 6.6
(a) Determine regression coefficient (by):
Dat transformed y
ata y X
point SR (RD  (poRssy (R In{ 3% xy x2
T ) 1.0 0.84 1.0 0.17435 0.17435 1.0
2 2.5 3.8 0.50 3.8 0.69315  -2.63397 1444
3 2.0 5.0 0.40 5.0 091629 -4.58145  25.00
4 1.5 6.6 0.30 6.6 -1.20397  -1.94620  43.56
-15.33597  84.00
and by = Zf—h):.z. (from p. 156, Reference 4.5)
1
-15.33597 _
bi = “gigp =018257=-0.183
thus, Iner =-0.183 (IRD)

or

Eg_R — ¢-0.183 (IRD

or

PSR = 5¢-0-183 (IR)
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The plot of PSR vs. IRI is

5
4 m Calculated from
regression equation
34
PSR
2 1
1 <4+
0 i t . t t t ]
0 1 2 3 4 5 6 7

IR

(b) Now, check the regression statistics:

Data Predicted Actual Actual
Point PSR PSR IRI

1 4.16 4.2 1.0

2 2.49 2.5 3.8

3 2.00 2.0 5.0

4 1.49 1.5 6.6

(i)  Total sum of squares (SSTO)

4
SSTO = 'Zl (yi -9)?
i=
where § = 017435+ (0.69315) : (-0.91629) + (-1.20397)
_ -2.98776
= 71
= -0.74694
SSTO = (-0.17435 - (-0.74694))2 + (-0.69315 - (-0.74694))2

+(-0.91629 - (-0.74694))2 + (-1.20397 - (-0.74694))2
= 0.32786 + 0.00289 + 0.02868 + 0.20888
= 0.56831
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(ii)

(ii1)

(iv)
)

(v1)

Error sum of squares (SSE)

4
SSE = T (i-%i)?
i=1
where §i = -0.183(IRD)
Data
Point IR 9i)
1 1.0 -0.1830
2 3.8 -0.6954
3 5.0 0.9150
4 6.6 -1.2078
SSE = (-0.17435 - (-0.183))2 + (-0.69315 - (-0.6954))2

+(-0.91629 - (-0.915))2 + (-1.20397 - (-1.2078))2
= 0.000070 + 0.000005 + 0.000002 + 0.000015
= 0.000092

Regression sum of squares (SSR)
4 A
S8R = ,Zl (¥i- )2
1=

= (-0.183 - (-0.74694))2 + (-0.6954 - (-0.74694))2
+(-0.915 - (-0.74694))2 + (-1.2078 - (-0.74694))2
= 0.31803 +0.00266 + 0.02824 + 0.21239
= 0.56132
SSTO = SSR + SSE = 0,56132 + 0.000092 = 0.56141 (approx. checks)
Coefficient of determination (R2) |
R2 = SSR/SSTO = 0.56132/0.56831 = 0.988 (or 98.8%)

Root Mean Square Error

MSE = SSE/dferror= E—S_El = (:000092/3 = 0.00003 1
RMSE = +0.000031 =0.00554
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4.3.11 Exercise — Power Fit (Resilient Modulus vs. Bulk Stress)

An example of a regression analysis one can try involves the use of log|p
transformations to estimate the resilient modulus of a subgrade soil from
laboratory triaxial tests. The goal is to develop a relationship between
resilient modulus and bulk stress (sum of the principal stress, G, 62 + 03)
in the following form:

Eg = K1 K2
where Eq = resilient modulus (psi)
4] = Bulk Stress (psi)
K1, K2 = regression constants (better known in these notes as
bg, by)
The data follow:
Data Resilient Bulk Stress,
Point Modulus, psi psi
1 13,600 13
2 15,100 14
3 19,100 16
4 21,700 18
5 24,300 20
6 13,600 7
7 15,100 8
8 19,100 10
9 22,900 12
10 25,400 14
11 17,000 4
12 17,000 5
13 19,100 7
14 21,700 9
15 25,400 11
Required:

Estimate K, K5, R? and RMSE
Answer:

K)=12,092

K7 =0.1929

R2=17.2%

RMSE = 0.0886
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Thus, equation is: Eg = 12,092(9)0.1929

(Similar to Paragraph 4.3.7(c), the interpretation of RMSE in this case can
be illustrated as follows:

General Form: log Ep =log K| +K, (log 0)
log Ep = log (12,092) +0.1929 (log 0)

Use 6 = 10 psi
then log Ep, = 4.0825 + 0.1929 (log 10)

=4.2754

now calculate ER + 1 RMSE

thus 4.2754 + 0.0886 = 4.3640

or B = 1047 = 23,121 psi (+ 1 RMSE)

and 4.2754 - 0.0886 = 4.1868

or Eg = 10%'%% = 15,374 psi (- 1 RMSE)

Thus, the interpretation of RMSE is a function of the variable
transformation used to develop the "model” being used.)

Can you reproduce the above results? Review Section 4.4.2 for the

necessary transformations. Clearly, there is a large amount of scatter in
the data which even a regression equation cannot accommodate.

4.4. TRANSFORMATIONS
4.4.1 Transformation of variables
Variable transformations can be used for at least three reasons:
(a) to make data distributions more symmetric (or normal),

(b)  to simplify a regression equation that relates two or more variables,
and

(©) to create a regression equation form that is more "theoretically”
correct.
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The three most commonly used transformations are:
(a)  square root {e.g. V),
{b) logarithm (e.g. log10 (x)),
() negative reciprocal (e.g. - 1/x).
The Minitab Handbook (p. 72) is an excellent information source.
4.4.2 Transformation of equations
Transformations of equations can be quite helpful. For example, a

commonly used relationship to describe the stress sensitivity of
unstabilized soils is (refer back to the exercise in Section 4.3.10):

ER = K] @)K2 Eq. 4.8
(coarse-grained)

or
ER = K3 (ca)¥4 Eq. 4.9

(fine-grained)

where ER = resilient modulus (psi),
0  =bulk stress (psi),
Od = deviator stress (psi), and
Ki, K2, K3, K4 = regression constants.

To obtain the regression constants, a transformation of the entire equation
is needed:

ER = K1 @)K2
becomes

log ER = log K] + K (log 6)
and

ER = K3 0g)%4
becomes

log By =log K3+ Kj (log 6g)
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To obtain a regression equation in the form of

y =bo +bi(x)
then y =logEy
bp =log KT (or log K; )
b1 =Kz (or Kg)
x =log0 (or log 6y)

To convert out of logjg, convert from
log E, = log K} + K(log 6)
to
Ej = 10K1 92 =K 6K2
(letting 10K1 = K1)
Clearly, a similar transformation is appropriate for Equation 4.9,

As a reminder, helpful log g relationships include the following:

logxy- =logx+logy
X

log; =log x -logy

logx® =nlogx

log I\l& _logx

n
4.4.3 Types of regression models
(a) Linear (refer to Figure 4.8(a))
y =bo +bi(x)
(b) Exponential (refer to Figure 4.8(b))
y = bo(b1)* (original) |

log y = log bg + x log b} (transformed)
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y
y=bg+byx .
0 b y =bg b}
0
forby > 1
' -
X ' X
(a) Linear {b) Exponential
y 1
y= bo + b1 (X_)
y= bo X b1
b
forby > 1 0
- o
1 ' X ' X
(c) Power ' (d) Hyperbolic

Figure 4.8. Types of Regression Models [after Ref. 4.6]
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4.5

(c) Power (refer to Figure 4.8(c))

y = bp(x)b! (original)

log y = log by + by log (x) (transformed)
(d) Hyperbolic (refer to Figure 4.8(d))

y=bg+b (%)(original)

y = bg + by (x!) (transformed)

where x1 = 1
X

(e) Polynomial
y =bg +b1x + b2x2 + ... + bkxK (general form)
() First degree polynomial (straight line)
y = bg + b x (refer to Figure 4.9(a))
(i1)  Second degree polynomial (parabola)
y = by + byx + byx2 (refer to Figure 4.9(b))
(iii)  Third degree polynomial
y =bp + byx + byx2 + b3x3 (refer to Figure 4.9(c))

Note: If you choose a polynomial form, always attempt to obtain
the "best fit" with the lowest degree polynomial equation.

USE OF REGRESSION EQUATIONS

Any regression equation is only as good as the data used to develop it. Further,
such equations should never be used beyond the range of the data from which
they were developed. This is particularly important for muitiple regresston
equations.

4.5.1 Hlustration of Multiple Regression Equation

The originally reported regression equation which correlated Pavement
Serviceability Rating (PSR) to Pavement Serviceability Index (PSI) for the
AASHO Road Test experiment is as follows [from Ref. 4.7]:

PSI=541- l.80]0g10(1+S_V)-0.09\JC+P Eq. 4.10

92 Revised February 14, 1994



-
X

(a) First Degree (straight line)

N~

y=by +b, x+b2x2

-
X

(b) Second Degree (parabola)

y=b0+b1 x+b2 x 2 +l1d x3
o

X
(c) Third Degree

Figure 4.9. Polynomial Regression Models [after Ref. 4.6]
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where PSI dependent variable whose source data was the mean PSR ratings

from a panel of raters. Mean PSR based on about 10 individual
ratings.

SV = wheelpath roughness measured by the Road Test longitudinal
profilometer in terms of slope variance (mean of the two

wheelpaths)
C = length of Class 3 and sealed cracks in feet per 1,000 ft2
P = patched area in ft2 per 1,000 ft2

The summary statistics for Equation 4.10 are:
RZ2= 91.6%
RMSE = 0.32
n =49 data points

The original data used to develop Equation 4.10 is shown in Table 4.3. To
illustrate more examples of regression analysis, the MINITAB computer program
was used to see if we could obtain the same result. Using the same independent
variable transformations, we get

PSI=540-1.79 logig (1 +SV)-0.09VC+P
R2=91.7%

RMSE = 0.32

n =49 data points.

Thus, we get essentially the same result; however, it might be interesting to
develop some different regression equations using the same basic data as follows:

(1) PSR vs. logo (1 + 8V) __ ‘ Eq. 4.11
PSI=15.92-2611og)p(l +SV)
R2=88.8%
RMSE =0.37
n=49

(b) PSRvs. VC+P Eq. 4.12
PSI=4.01-023JyC+P
R?2=812%
RMSE = 0.48
n =49
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Table 4.3. Data Used in the Development of AASHO Road Test Correlation Between PSR and
PSI for Rigid Pavements [from Ref. 4.7]

Mean Slope | Cracking -- Patching -- Transformations
Variance in Class3and | Patched Arcla)\) log
Mean Panel Wheelpath Sealed cracks | /1000 fi2 ( T3V, \[
Sae | PSR & | W1000#2(C) (I+(SV) C+F
Tllinois 2.0 52.0 53 8 1.72 7.8
4.2 6.5 4 0 0.88 2.0
2.6 222 42 11 1.37 7.3
2.3 26.2 46 7 1.44 7.3
1.2 47.8 102 28 1.69 11.4
2.8 25.5 15 1 1.42 4.0
4.4 3.2 0 0 0.63 0.0
1.1 50.8 65 5 1.71 8.4
0.9 76.8 74 85 1.89 12.6
Minnesota 1.3 43.3 40 59 1.65 10.0
1.8 _ 24.2 23 66 1.40 9.4
2.1 24.7 47 41 1.41 9.4
4.1 2.4 4 0 0.54 2.0
38 4.0 2 0 0.70 1.4
3.0 7.8 14 1 0.95 3.9
3.0 7.5 22 0 0.93 4.7
29 9.7 14 0 1.03 3.7
2.5 17.6 34 0 1.27 5.8
1.4 59.2 16 12 1.78 5.3
43 3.0 0 0 0.60 0.0
4.3 4,0 0 0 0.70 0.0
3.7 53 0 0 0.80 0.0
3.6 4.4 0 0 0.73 0.0
39 53 0 0 0.80 0.0
a9 6.3 0 0 0.87 0.0
1.3 323 76 1 1.52 8.8
1.2 27.8 &4 0 1.46 8.0
2.2 25.6 97 1 1.42 9.9
4.4 4.0 0 0 0.70 0.0
Indiana 4.0 6.6 0 0 0.88 0.0
3.8 6.6 3] 0 0.38 3.3
3.6 6.8 2 0 0.89 1.4
3.2 98 | 2 1.03 1.7
2.6 i4.6 72 0 .19 8.5
2.8 10.4 70 1 1.06 8.4
1.8 494 41 29 1.70 g4
1.8 54.5 42 37 1.74 8.9
2.1 36.6 50 29 1.58 8.0
2.2 25.1 86 33 1.42 10.9
1.8 454 40 65 1.67 10.2
2.7 9.9 81 5 1.04 9.3
4.2 6.1 0 0 0.85 0.0
4.3 52 0 0 0.79 0.0
4.3 7.1 0 0 0.91 0.0
1.2 81.9 54 219 1.92 16.5
2.2 322 36 0 1.52 6.0
4.3 4.6 0 0 0.75 0.0
2.8 12.6 5 13 1.13 4.2
2.7 17.8 5 16 1.27 4.6
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{(c)

(d)

(e)

®

(2)

(h)

@

PSR vs. SV .

PSI=3.84 -0.05SV
R2=739%
RMSE =0.57
n=49

PSR vs. C

PSI=3.64-0.03C
RZ2 = 59.4%
RMSE =0.71
n=49

PSR vs. P

PSI=3.08 - 0.02P
R2=262%
RMSE = (.95
n=49

PSR vs. (C+P)

PSI=3.55-002(C+P)

R2=612%
RMSE = 0.69
n=49

Eq. 4.13

Eq.4.14

Eq. 4.15

Eq.4.16

PSR vs. log [(C+ D+ (P + 1)] Eq. 4.17
PSI=4.61-141log1o[(C+ D+ (P+1)]

R2=84.1%
RMSE = 0.44
n=49

PSR vs. logig (1 + SV), log1gl(C + 1) + (P + 1)] Eq. 4.18
PSI = 5.56 - 1.64 log1 (1 +SV) - 0.62 logol(C + 1) + (P + 1)]

R2=92.7%
RMSE =0.30
n=49

PSR vs. logig (1 + SV),VC + P Eq. 4.19

Illinois data only:

PSI=573-1.73logig (1 +SV)-0.13C +P

R2=955%
RMSE =0.31
n=9
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Minnesola data only: Eq. 4.20

PSI=5.48-2.08logig (1 +SV)- 0.08VC +P
R2=94.5%
RMSE =0.28
n=20

Indiana data only: ' Eq. 4.21

PSI=5.37-1.62logio(1 +SV)-0.09WC+P
R2=952%
RMSE =0.23
n=20

From the prior equations, we can conclude:

If only one independent variable is to be used SV (or its transformation) is
the single best predictor of PSR (Eq. 4.11 and Eq. 4.13). The worst single
predictor is Patching (Eq. 4.15). The combined C + P term as a log
(Eq. 4.17) can predict PSR almost as well as log oSV (Eq. 4.11)

The fit of the data can be improved (Eq. 4.18) over the originally
developed equation (Eq. 4.10); however, the improvement is rather small.

The three separate equations (Eq. 4.19, 4.20, 4.21) based on data from the

three states in the form of the original equation (Eq. 4.10), all fit the data
rather well.
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5.1

SECTION 5.0
SAMPLING

INTRODUCTION

The purpose of a sample survey is to make inferences about the sampled
"population” [5.1]. For many WSDOT applications, the population would be the
WSDOT maintained highway network.

In any sampling process, two factors affect the usefulness of the data contained in
the sample: the size of the sample and the variability of the data within the
sample. The goal of most sampling surveys is to keep the sample size as low as
possible while keeping the variability of the data below some maximum
acceptable limit.

To accomplish the above goal, careful consideration should be given to the
sample survey design. Such surveys are generally inexpensive when compared to
other data collection procedures but can still represent a significant investment,
Enough emphasis cannot be placed on the design of a sampling survey in order to
minimize costs while maximizing the information gained with the survey. Some
of the sample survey methods available are [5.1, 5.2, 5.3}k

simple random sampling

stratified random sampling

one-stage cluster sampling

multi-stage cluster sampling (multi-stage sampling)
systematic sampling

A brief description of each of the above sampling methods follows:

(a) Simple random sampling. This method provides that every sample has
. an equal probability of being chosen from a population.

Example: If all highways in a given geographic area were divided
into equal lengths (segments or sections), then each highway
segment would have an equal chance of being chosen for the
required sample size.

(b)  Stratified random sample. This is the sampling process whereby a
population is divided into strata and then random samples are obtained
within the described strata.

Example: Divide the WSDOT route system into the six districts
‘and data estimates were required for each district, then each district
could be considered a stratum and each individual highway
segment could be randomly selected within each district (thus six
strata).

(c) One-stage cluster sampling. This process first groups elements within a
population together and then the elements are randomly sampled.
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(d)

(e)

Example: If data estimates are required for the entire state route
systemn, counties could be randomly selected throughout the state.
Within each selected county all highway segments would be
sampled. The pavement segments surveyed are considered to be
"clustered” within the selected counties.

ampi Iti-stag ling). This method is
snrmiar o one- stage cluster samp!mg but takcs the process further. Multi-
stage clustering allows for larger areas to be clustered together and then
randomly sampled. The elements within these clusters are also randomly
sampled.

Example: Again, as for the previous example, if data estimates are
required for the state route system, then counties within a district
can be randomly selected and within those selected counties
pavement segments may be randomly selected. This would
constitute a two-stage cluster sample if all data within the
pavement segment are sampled. If the data are only sampled
within the pavement segment, this is simply referred to as a two-
stage sample. A three-stage sample would be randomly selecting
WSDOT districts within the state, then counties within the selected
districts, then pavement sections within the selected counties.

. This process samples every K-th element of a set
of data.

Example: If data estimates are required for the state route system
“and with 39 counties in the state, then every fourth county from a
listing of all counties could be selected for a total of ten counties.
Within each county selected all highway segments would be
sampled in the data collection effort.

In addition to the above sampling methods, combinations of the five presented can
be created. For example, a stratified two-stage cluster sample can be taken. Other
combinations are possible.

A properly designed highway sample survey can provide the following:

*

A less expensive indication of statewide, district or county pavement
trends (as opposed to a network-wide survey of the population).

Year-to-year differences in pavement trends.

Valuable research tool for various statistical pavement experiments.
Expansion or reduction to accommodate changing needs.

More detailed objective data may be obtained since the amount of

pavement being surveyed is much smaller than in a mass inventory survey
(i.e., a survey of al] segments or sections).
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5.2

SIMPLE RANDOM SAMPLE

A simple random sample is the most fundamental sampling technique. A recent
WSDOT activity using a simple random sample was to "check” the annual visual
pavement condition surveys (the annual condition survey results can be defined as
a population and constitutes a "mass inventory”). To achieve this goal, a simple
random sample was assumed for each district. Each sample unit was assumed to
be a one mile long pavement segment located between two mileposts. Thus, if it
is further assumed that only one side of a route is rated during the annual survey
and there are about 1,000 centerline miles in each district, then a district
population is composed of 1,000 individual sample units.

A straightforward way to examine the issue of how many samples are needed to
check the annual survey is to use estimates of the standard error. The standard
error of a survey is analogous to the standard deviation for a set of data, and,
literally, is the standard deviation of means computed from samples taken from a
population of data. The standard error decreases as the sample size increases (not
exactly a surprise). The estimate of the standard error for a simple random sample
is [5.1,5.4]:

S n

SE=—=1Afl-3g Eq. 5.1
where SE = standard error of a simple random sample,

S = standard deviation of the population,

n = number of one-mile highway segments sampled for a specific
sample size,

N = total number of one-mile highway segments in a specific
district, and

n . .

N = sampling fraction.

If S is the standard deviation of all PSC values within a district, then assume, for
now, various levels. A summary of possible SE estimates for various levels of S
and sample sizes are shown in Table 5.1 (all based on calculations using Equation
5.1).

Based on district and state condition rating statistics from Washington [5.5] and
Texas [5.4], a district S is about 20 (i.e., the PSC standard deviation = 20). Using
this value in Table 5.1, the associated sample size standard errors are:

Sample Condition Rating
Size Standard Error (SE)
1% 6.3
2% 44
3% 36
4% 3.1
5% 2.8
10% 1.9
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Table 5.1. Standard Error Estimates for a Simple Random Sample

Standard Standard Error for Various Sample Sizes!
Deviation of
D‘S‘(‘l!g‘..f SC 1% 2% 3% 4% 5% 10%
5=10 3.1 22 1.8 15 1.4 0.9
{low)
§=20
(low-medium) 6.3 4.4 36 3.1 2.8 1.9
§$=30
(medium) 9.4 6.6 54 4.6 4.1 2.8
S$=40
(high) 12.6 8.9 7.2 6.2 55 38
S=50
(very high) 15.7 11.1 9.0 1.7 6.9 4.7
Note
1. If N = 1000, then a 1 percent sample = 10 sample units (each sample unit

one-mile long). Similarly, a 10 percent sample = 100 sample units.
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An "optimum" sample size of two to three percent appears reasonable. If a two
percent sample is used, then 20 individual sample units must be measured (again,
assuming a district population of 1,000 sample units). For the six WSDOT
districts, this suggests a total of 120 sample units. Of course, other possibilities
exist.

For convenience, Table 5.2 is provided which shows various WSDOT route
system mileages.

SAMPLE SIZE DETERMINATION BY USE OF PRECISION

A method which uses probability considerations can also provide an indication of
the required number of samples for a sampling plan. The method is based on the
fact that the precision of the data estimates improves as the number of samples
increases.

The population mean for a given data type lies within an interval defined by the
following probability statement:

PX-21. a2 SESpu<x+z1.0nSE)=1-a (Eq.5.2)
where: X = sample mean,
Z1 -2 = standard normal variable at a specified level of
significance,
SE = SAn = sample error of a randomly obtained number of
samples,
S = standard deviation of the population,

= population mean, and

o = level of significance.

By use of Equation 5.2 we can specify with a 100 (1 - o) percent confidence level
that the population mean will fall within an interval length of + d which is equal to

+ 21 . o2 SAn. The interval length also represents the precision of the estimate
(or the amount of deviation from the true value in actual units or percent allowed).
By rearranging terms the required number of samples for a given confidence level
is:

n= (Eq. 5.3)

Z1-.af2 S 2
d

To calculate the required number of samples by use of Equation 5.3, the
population standard deviation must be known or estimated and the data precision
and confidence level selected.
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Table 5.2. WSDOT Mileages

All Route Systems (lane-miles)

District BST ACP pccp ol ‘l’;’s"’ Ramps ~ Grand
1 193 2,536 939 3,668 277 3,945
2 1,558 1,037 6 2,601 24 2,625
3 283 2,383 179 2,845 136 2,981
4 76 1,660 195 1,931 83 2,014
5 983 1,193 721 2,897 145 3,042
6 1.486 1.604 135 3.223 21 3.282

4,579 10,413 2,175 17,167 722 17,889
Interstate
District Cc]&t ﬁ; l;ne Lane-Miles

; 208 1,211
2 54 217
3 55 331
4 96 498
5 252 1,069
6 107 445

772 3,771
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By use of our example in Paragraph 5.2 and Equation 5.3 for the following input
values:

S = PSC district level population standard deviation
= 20,
z = 1.960 for a 95 percent confidence level, and
d = 10PSC points,
then, = |4 98%))(20) = 15.4 ~ 16 one mile sample segments

If we could only "tolerate” d = 5 PSC points, then (all other inputs the same}

2
n= l% = 61.5 =~ 62 one mile sample segments

Clearly, the selected level of d is critical in selecting a sample size as is the
standard deviation (S). This is further illustrated in Table 5.3 which shows the
required 95 percent confidence level sample size for various levels of S and d.
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Table 5.3. Sample Size Estimates by the Precision Method for a 95% Confidence Level

Standard Sample Size (n)
Deviation of for Various Levels of Precision (PSC)!
D¢ | d=25 d=50 d=75 | d=100
S=10
(low) 62 16 7 4
$=20
(low-medium) 246 62 28 16
S=30
(medium) 554 139 62 35
S=40
(high) 984 246 110 62
S=50
(very high) 1,537 385 171 96
Note
1. Sample sizes rounded up to nearest whole number.
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