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SUMMARY

Modular expansion joints are frequently used on bridges that have movement
requirements of greater than 125 mm (5 inches). Fatigue cracking has been noted on
these joints. Tschemmernegg has developed a design procedure to deal with the fatigue
problem. However, recent analytical studies have shown that the dynamic characteristics
of these joints are quite variable, and the dyhamic response will vary with these joint
characteristics. This variability limits the effectiveness of the existing fatigue design
procedure on some joint systems. This study was a field investigation of the dynamic
loads and behavior of the swivel joist modular joint system on the 3rd Lake Washington
floating bridge. The study was performed to verify the response predicted in past
theoretical studies, to estab_lish the dynamic characteristics of the joint, and to determine
appropriate fatigue design loads on the joint.

The modular joint was instrumented, and measurements of strains, curvature, and
deflection were conducted with trucks of known weight and driving conditions and with
normal, uncontrolled traffic. The procedures are described in the body of the report. The
measurements were analyzed to determine bending moment, stress, and dynamic vehicle
wheel loading. These results were compared to past theoretical studies and fatigue design
procedures. Conclusions regarding the dynarhic loads on the joint, the distribution of
load between elements of the joint, and the relative importance of different load
components were developed. The study found that the subject joint was more sensitive to
vertical loads and less sensitive to horizontal loads than suggested by the
Tschemmernegg method. It also found that changes in traffic patterns have a significant
impact on the behavior of this joint system. Fatigue design recommendations are made

within the report.
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INTRODUCTION

RESEARCH OBJECTIVES
A previous research study for the Washington State Department of Transportation
(WSDOT) examined fatigue cracking noted on the expansion joints of the 3rd Lake
Washington floating bridge (Br. No. 90/25N). This investigation was an analytical study,
and it raised some important questions regarding the actual field conditions that caused the
fatigue cracking. Field measurements of the expansion joints were needed to
 verify the results of the computer analysis and the conclusions drawn from
this analysis
» determine the load spectrum for vertical loads for design and replacement of
the joints, since computer analysis suggested that the flexibility of the
elastomeric springs resulted in longer periods and more amplification of the
vertical loads than those suggested by the Tschemmernegg method
* determine the load spectrum for horizontal loads for design and replacement
of the joints, since computer analysis suggested that the flexibility
introduced by the elastomeric springs resulted in attenuation of the
horizontal loads on the joint
e verify the dynamic characteristics of the joint, including impact and

damping.

THE PROBLEM

The WSDOT commonly uses modular expansion joints on bridges whose expected
movements are larger than 127 mm (5 inches). Modular joints with a total movement
capacity of 1200 mm (48 inches) were manufactured by The D.S. Brown Company under
license of the Maurer Sohne Company of Munich, Germany, and were installed on the
third Lake Washington bridge. These expansion joints, first subjected to traffic in 1989,
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are believed to be the largest modular expansion joints in the world. The design is a fairly
standard, single support bar system, except that steel tubes with an extruded rail cap were
substituted for the heavy center beams because of Buy American requirements for federally
funded bridge construction.

- Approximately 6 months after the bridge was opened to traffic, WSDOT received
numerous complaints because the expansion joints were noisy. Inspection of the joints
showed that the elastomeric bearings used to cushion the traffic impact between the center
beams, stirrups, and support bars were loose. Shims were added, but within a year cracks
in the center beams were noted. Most of these cracks started at the toe of the stirrup fillet
weld and progressed through the center beam, as shown in Figure 1. Two attempts to
repair these cracks were made, but with little success. To date, approximately 25 fatigue
cracks have been noted.

WSDOT had a number’ of concerns regarding this fatigue cracking, and an earlier
study (Roeder, 1993 and Roeder, Hildahl, Van Lund, 1994) analyzed the issue in some
detail. This earlier study provided extensive computer analysis of the joint, and it examined
existing fatigue evaluation procedures. Correlation of these two factors suggested that
several serious discrepancies existed between existing fatigue evaluation and design
procedufes and the behavior computed for these joints. In particular, the study suggested
that the fatigue design loads used in the Tschemmernegg procedure did not necessarily
reflect the type of loading expecting on the subject modular joint. Further, the S-N curve
developed for the subject modular joint did not appear to reflect the observed fatigue
cracking history. As a result of these and other similar concerns, field measurements were
undertaken to determine the actual field conditions and behavior of the larger modular joints

on the 3rd Lake Washington bridge.
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Figure 1. Photo of a Fatigue Crack on the 3rd Lake Washington floating bridge



REVIEW OF PREVIOUS WORK

EXISTING FATIGUE EVALUATION PROCEDURES

Existing fatigue evaluation procedures are summarized briefly here but were
described in detail in an earlier report (Roeder, 1993). Tschemmernegg developed the first
complete fatigue design procedure for modular expansion joints. This evaluation procedure
(Tschemmernegg, 1988; Pattis and Tschemmernegg, 1992; D.S. Brown, 1991;

Tschemmernegg, 1991) is a relatively simple procedure.

First, the loads on the expansion joint are determined. These loads include a

vertical component attributable to the dynamic response caused by gravity load and a
horizontal component attributable to traffic acceleration, braking, and rebound forces. The
recomménded wheel loads, including impact, are vertical loads of a maximum of +91 kN
(+20,450 Ibs) and minimum of -27.3 kN (-6,100 1bs), and a horizontal force of + 18.2 kN
(+ 4,100 Ibs).

Second, the stresses in the center beams and support bars are calculated to
determine the maximum computed stress range, ssmax. 1he centerbeams are treated as
continuous beams, and the elastic parts of the expansion device are treated as rigid supports
for determining of the moments and the stress level. For normal conditions, each
centerbeam is assumed to carry 50 to 66 percent of the wheel load with the wheel. spacing at
1.8m (6 ft), since the wheel distributes the load to more than one center beam.

Third, this maximum stress range is compared to an S-N curve developed from

experimental results by the simple equation

S
S—nzl-*i’i <sgL . (Eq. 1

The comparison considers the full load history of trucks on the modular joint and
the accumulation of damage attributable to variable amplitude loading through the

application of partial safety factors. Separate S-N curves are i)rovided for each component

4



il

»

g@‘

o
Lt
;

e

of the joint. The endurance limit, sg] , is intended to be the stress level that can develop
100 million cycles of loading, but it is inferred from an interpretation of experiments
performed at stress ranges with fatigue lives of less than 2 million cycles. The slope of the
log-log S-N curve is assumed to be -0.33 for a stress range of less than 5 million cycles
and -0.2 for a stress range of between 5 million and 100 million cycles, as illustrated in
Figure 2. The intercept at 100 million cycles is accepted as the endurance limit.

The Tschemmernegg procedure has been used for the fatigue design of a few
modular joints in the U.S., but at present there is no AASHTO fatigue design procedure
applicable to modular joints. The NCHRP 12-40 Research Program, Fatigue Criteria for
Modular Bridge Expansion Joints, has recently started, and a major objective of this
research program is the development of a fatigue evaluation procedure for these joints.

However, at present no results from this study have been published.

EXISTING FIELD DATA

Tschemmernegg also has provided much of the field measurement data for modular
expansion joints (Pattis and Tschemmernegg, 1991; Tschemmernegg, 1973). These
measurements were used as a basis for developing his fatigue design procedure. The
earliest measurements (Tschemmernegg, 1973) were performed on a modular joint built
with a very stiff mechanical system, as illustrated in Figure 3. The measurements showed
that the loads experienced by the joint components and system are dynamic loads, which
depend upon the dynamic characteristics of the joint and the loading. These loads are really
a dynamic response rather than a simple truck wheel load. The loads are time dependent,
and he considered factors such as the eccentricity caused by edge loading as the wheel
progresses across the surface of the centerbeam rail, horizontal loads caused by braking
and acceleration of vehicles, and loads caused by a sloped driving surface. These early

measurements were primarily force measurements made with instrumented and calibrated
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bolts used to attach the centerbeam to the support mechanism. The measurements were
taken under controlled truck conditions in which the weight, velocity, and driving
conditions were known, and a series of measurements of normal, uncontrolled truck traffic
were conducted. These uncontrolled measurements led to the statistical load spectrum
shown in Figure 4. The spectrum shown in this figure was taken from Tschemmernegg's
1973 paper and was based on measurements taken on the Neheim-Husten Bridge on
national highway 7 in Germany.

More recently, Tschemmernegg and Pattis (1991), Ostermann (1991), and Braun
(1992) made additional field measurements of modular joint behavior. These
measurements included joints with multiple and single support bar systems, and they
included systems with some elastic flexibility attributable to elastomeric bearings in the
support mechanism or sliding potential attributable to PTFE sliding elements in the joint.
In these later tests, measurements of strain, loading, and horizontal displacements were
performed. Braun reported that the horizontal displacement of the centerbeams developed a
spectrum such as that shown in Figure 5. The fatigue design procedure has been modified
(D.S. Brown, 1991; Tschemmernegg, 1991) to include this additional information.
However, it is important to note that the load spectrum shown in Figure 4 has not changed
significantly with this new information. Figure 5 suggests that the horizontal
displacements are relatively small under normal traffic loading, and so the researchers have
postulated that the elastic and sliding supports are effectively rigid under dynamic loading.
They further suggest that it is conservative to design for a rigid support, since the bending
moments and bending stresses are larger with rigid supports than with flexible supports.
The net effect of this practice is that the load spectrum is proposed for all types of modular
expansion joint, even though engineers recognize that the joint loading is dependent upon

the dynamic characteristics of the joint and that joint characteristics vary widely.
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The spectrum shown in Figure 4 is used in the Tschemmernegg design method.
However, it is not used directly. Instead, an arbitrary magnitude of forcé for vertical and
horizontal loads, including direct loading and rebound, are employed. The statistical
variation is included through the partial safety factors used to apply the variable amplitude
fatigue calculations, and is ultimately included in the simple stress check used in
Equation 1.

Others (Koster, 1986) have taken exception to the load spectrum used in the
Tschemmernegg fatigue design procedure. Koster contends that deformability of the joint
is desirable because it may spread the load and possibly reduce the critical fatigue stress.
This latter position is logical, but the elastic deformation and stress distribution are very
complicated in a modular joint system. Agarwal (1991) recently performed a series of field
measurements on a modular joint on a bridge in Canada. His field measurements
suggested that the loads and load spectrum used in the Tschemmernegg procedure may not
be universally applicable to all modular joints. He did not detect the large horizontal forces
proposed by the Tschemmernegg design spectrum. However, it was not clear whether the
instrumentation had sufficient sensitivity to detect the true loads on the joint.

OTHER PRIOR INVESTIGATIONS
An earlier study (Roeder, 1993; Roeder, Hildahl, Van Lund, 1994) investigated the fatigue
problems for the 1200 mm modular joints on the 3rd Lake Washington bridge. This study
was an analytical study that examined the predicted behavior of the joints and attempted to
correlate these predictions to existing design procedures and prior research results. A
number of conclusions resulted from this study. First, the dynamic behavior of each type
of modular joint system is strongly influenced by the dynamic response of that system.
The periods of vibration for both vertical and horizontal modes of vibration were computed
for the single support bar expansion joint used on the 3rd Lake Washington bridge. Figure

6 shows the theoretical amplification that would be expected for these joint
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components under dynamic wheel loading. These periods suggested that the joint amplifies
horizontal loads that are applied stowly. It may attenuate many other hbrizontal load
effects, but it amplifies vertical loads through a wide range of vehicle speeds. The vertical
modes of vibration with significant participating mass had periods that ranged from 0.05to
0.005 seconds. These observations suggested a quite different fatigue load design
spectrum than that given in Figure 3. Single support bar expansion joints may not
experience the large horizontal or lateral loads proposed by the Tschémmemegg procedure
because of the transverse flexibility of the joint.

Wheel loads-cause multiple stress cycles for a single truck passage, but a few large
cycles may be caused by the combination of individual truck crossings. The modular joints
on the 3rd Lake Washington bridge have relatively long centerbeam spans. The fatigue
problem is most serious in the edge centerbeams because of the larger stress range

produced by the alternating long and short spans. The analyses showed that a much larger
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stress range is possible between different trucks because the trucks do not travel over the
same path across the joint. This variability may double the stress range over that computed
for a single wheel load.

The elastomeric springs and bearings are an important element in joint behavior.
However, they have frequently been reported as being loose in the joints. The
precompression or looseness of the bearings will affect local bending stress in the critical
region surrounding the stirrup and may also lengthen periods of critical modes of
centerbeam vibration. However, precompression is not thought to be a predominant
contributor to the fatigue problems noted in the joints.

The Tschemmernegg design load spectrum and S-N curves are based on field
measurements, analysis, and fatigue tests of modular joints in Europe. Fatigue design
criteria for modular joints must consider the unique features and dynamic response of each
joint system. The fatigue test must be appropriate for the loads the joint experiences, or it
will lead to improper S-N curves and failure modes. The fatigue test on the as-built tubular
centerbeam may not indicate the fatigue behavior of this joint because the fatigue test does
not include the flexibility of the joint with respect to horizontal loads.

There are clear variations between theoretical calculations and the prior
design and research studies. Most of these differences appear to be related to individual
differences in the design and construction of the modular joint system. The manufacture of
expansion joints is a highly entrepreneurial business, and each system has unique features.
This research was largely started as a means of examining and invéstigating these

differences.
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PROCEDURES

EXPERIMENTAL REQUIREMENTS

A number of difficulties are encountered in performing field measurements on
modular joint systems. First, the vehicle loading of a modular joint is of very short
duration, and individual components of the joint may be loaded for only a few hundredths
or thousandths of a second. As a result, very rapid or continuous data sampling is required
to obtain useful information regarding the dynamic response of the joint. Second, huge
volumes of data can be accumulated in a very short period, and therefore a filtering
technique is needed to assure that only the most useful data are recorded and stored. Third,
there is a high degree of uncertainty regarding trucks that ordinarily cross the joint. The
dynamic response of the joint due to the truck crossing the joint and the effect of the
dynamic response on the stress range for the fatigue critical locations of the joint are
important considerations. However, these depend upon many factors that are not known
when the truck crosses the joint. These factors include vehicle speed, wheel load, wheel
size and spacing, axle span, vehicle position in the driving lane, driving conditions
(constant speed, braking, or accelerating), and the spring characteristics of the suspension
systems of the vehicle. None of these factors are known for‘ a given vehicle crossing the
joint. As a result, the instrumentation and field measurement plan must be sufficiently
robust to encompass a wide range of conditions, and it must provide a wide range of

information.

INSTRUMENTATION

The instrumentation for this research had to be selected with the view of addressing
these issues. First, the joint selected for this experimental study was the 1200 mm joint at
the east end of the eastbound lanes of the bridge. The joint at the east end was selected
because it was more readily accessible, requiring less climbing. Because of the larger

12
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movement capability, there was adequate space for installation of gages and instruments.
The eastbound direction was chosen because a somewhat larger number of fatigue cracks
were noted in this direction. However, the selection of this direction caused some
additional problems and concerns. First, these lanes were converted to reversible lanes
after September 10, 1993, because of the reopening of the Lacey B. Murrow Floating
Bridge. This presented additional possibilities for the accumulation of data on the bridge,
but it also placed a severe time constraint on the measurements. Normal truck traffic was
not permitted on the reversible lanes, and so all load spectrum measurements had to be
completed by September 10, 1993. |

Two types of measurements were performed. Most measurements were strain gage
measurements. The strain gages were assembled into a 4-gage (full Wheatstone Bridge)
assembly. The wiring and the placement of the gages varied depending upon the desired
measurement. Most gage assemblies were installed to directly measure curvature of a
centerbeam under vertical or horizontal bending moments. The curvature was measured
directly and depended upon the gage factors of the strain gages; the bending moments could
be directly determined at the measured locations by multiplying curvature times the elastic
stiffness (EI) of the centerbeam. All instruments were installed to measure truck traffic in
the right hand (outside) lane of the eastbound traffic. The gages were centered about
centerbeam 13 (CB13) of the joint. This centerbeam was selected because it is near the
outside edge of the joint. Prior analysis (Roeder, 1993; Roeder, Hildahl, Van Lund, 1994)
had indicated that these outside centerbeams experienced larger stress ranges because of the
greater variability in the span length of these outside beams. Further, most of the past
fatigue cracking has been noted in the centerbeams near the outside edges of the joint. The
gages were installed at locations where significant bending moment was expected, so
reasonable accuracy and sensitivity of the measurements could be achieved. At the same

time, they were placed at positions that provided redundancy of the measurements.
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Figure 7 shows the six basic locations used on CB13 for this test. These were the
locations used for nearly all measurements. Channels 1 through 4 measured curvature (and
as a result bending moment) at four locations near the right hand lane. These bending
moments could be used to estimate the location of the vehicle in the driving lane and the
dynamic wheel load of the vehicle. The determination of the location was made by
comparing the moments measured at the four locations to the bending moment diagram
expected for the joint. Figure 8 shows a typical bending moment diagram and influence
lines computed for CB13 with a given wheel geometry. ‘The full range of these bending
moment diagrams can be translated into influence lines such as that depicted in Figure 9.
Note that the development of the influence line assumes a given wheel spacing and
geometry (tire width, dual or single wheels, wheel Spacing, and axle length), and so there
is still uncertainty in the measurements. However, the influence line can be generated for
some average properties, and this information can be used to generate a wheel load
spectrum for average truck geometry.

Additional field measurements were also conducted, but on limited or specific tests.
One major objective of the measurements was the determination of dynamic loads on the
joint components. The stirrups of the joint would be under tension because of the
precompression of the elastomeric springs in the joint. As the joint was loaded, the stirrup
load would theoretically change, and so a few strain gage sets were installed to measure the
change in force in the stirrup. Note that the cross sectional area of the stirrup was relatively
large, while the magnitude of the forces would be fairly small. Thus, very small strains
were expected here. Full bridge connections for measurement of axial load were
employed. However, because of the very small magnitude of the strain being measured,
these measurements did not provide much useful data and will not be discussed further in

this report.
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Figure 7. Basic Strain Gage Placement on CB 13 for Bending Moment Determination

Figure 8. Typical Vertical Bending Moment Diagram for CB 13
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Strain gage measurements of vertical curvature and bending moment in adjacent
centerbeams (CB12 and CB14) were also used in a few controlled tests. The full bridge
strain gages were similar to those used on CB 13,}and comparison of the bending moments
obtained in adjacent spans provided information about load sharing between centerbeams.
Tschemmernegg (Tschemmernegg, 1988; Pattis and Tschemmernegg, 1992; Brown, 1991)
has proposed a series of rules for distributing load between centerbeams, and this study
provides data to check Tschemmernegg's procedure. Finally, horizontal deflections of the
centerbeam were measured on CB13. One measurement was made near midspan near
Channel 5 and the other near Channel 4 in Figure 7. These measurements were sdmetimes
used instead of basic Channels 1 and 4. Channels 1 and 4 were selected because the
moments and curvatures measured at these locations were generally less interesting and less

useful unless the truck crossed the joint with an unusual path. The horizontal deflection
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measurements were very important because the Tschemmernegg fatigue design procedure
is based on the assﬁmptibn that the support points are fixed against both vertical and
horizontal movement; these measurements provided a check of this hypothesis.

The basic data were recorded with three HP5813A wave form recorders. Each
wave form recorder handled two channels of data. The wave form recorders were capable
of recording up to 4000000 samples per second of data per channel, but they were
sampling at the rate of 2000 samples per second for these tests, a rate more than ample to
measure the joint response. The three recorders were coupled together and were self
triggering. That is, the recorders continually sampled data, but they only recorded data
when a big enough measurement was noted. At this time a-short burst (2 to 3 seconds) of
data was recorded. The data recorders could record a number of trucks until their internal
memory was full. The data were then transferred to an HP98 1(6 computer and were stored
in a compact binary format in an IEM 5300 (330 megabyte) disk drive. This operation was
automatic, and no intervention by the researchers was required. The system could operate
day and night and detect all trucks in the right hand lane. The wave form recorders
measured voltage only. The normal voltage was the unbalanced voltage across the
Wheatstone Bridge. This was a very small voltage difference, and so it was amplified with
Micromeasurements 2100 System signal conditioners to improve the accuracy of resolution
of the data. Figure 10 is a photograph of the basic field experimental equipment and setup.
The disk drive was portable (approx. 14 Ibs.), and it was carried into the University of
Washington campus when it was full. The disk drive was transferred again by an HPUX
700-340 computer, and the data could be analyzed by the normal research computer
facilities.

Only six channels of data were recorded by the recorders. This was adequate for most of
the measurements, but a few additional channels were used on a few control tests. The

additional data were recorded by an HP3852A data acquisition system. Up to eight

17




oc

oy "SYonn O JO SYO0[q Ur A[SNONUNUOD PapIodal a1om eje( "uonisinboe erep oy 1988
0) poprurrad 10U dIOM SIOTYIA IB[IWIIS PUR ‘Suea ‘syony) dn-Joid ‘sjuswmIsul oy 1933
0] AIBSS0U 9ZIS YONI} Sy} PUBR OIjJe1} YOni) JO SUOHBAIIS]O [eNUBW SWOs paxmbar swy L,
-ouey JySu oy ur yonx S| J0 Jed KABSY © PINOM IOU ‘301A3p Y} o33N J0U p[nom due|
S[PPTUW dY} UT O]  Jey) Yons 19s Sem [BUSIS 9y, "¢ JO ‘T ‘] S[auUueyD) Jo JayIe Aq paAtadal
sem TeuSrs JUSTOIIINS B USYM BIEP PIOOAI 0] 1S 2I9M SISPIOIDI AY], "SIUSWAINSLIU dljjen
PA[[ONUOOUN I} O] PISh AIOM ‘SIGPIOAI ULIOJ 9ABM VET8SIH Y Aq palojtuow ‘f a8y
ur pojexnsny[l s[ouURYD d1seq XIs YL ‘wurol oy uo 193]J2 s31 pue due| YL Y Ul oYyJen
SNq pue YOI} PI[[OJJUOIUN JO SIUSUIAINSEIW JO PASISUOD 183) JO adA) puodas Y,

"S)[nsax 1591 Jo adA) puooas oY) Sunoidioyur ux pasn AIom s)[nsal
oy, SWERIQISIUAD UIIMISq PBO JO UONINGLISIP pue ‘[ALI) JO UOLOAIIP “UOLRISIDIE 10

Sunjeiq yonn ‘vonisod Yoru) JO 103339 oY) SE Yons J01AeYaq Jutof JO SHUSIS]A JIseq YSHqeIS?

Sunso], peorT PA[[oNu0)) IO} Pasn YOI, JO JAISW0aD) Pue SPEOT [SYM OnelS ‘T 2In3L]

Bejuo3 501 wejuod, 5201
IIZS nd- kL
o ;
Ited I1ed
x w0l €LY | F
diey €76 [ S0°6 I..SZ'B I
wGe'12 S|aaym ||e ‘eip 1y uwl8
ited '
= — I"S'LZ | diy zvof =
diiy z'6] 9™ £°6




[

data storage and record naming procedure allowed determination of the approximate timé of
the truck group during the data analysis. Large variations in truck traffic volume were
noted. Weekend and holiday traffic volumes were very light, and late night traffic volumes
were clearly lightef than those of day traffic. Data were accumulated over a two and a half-
week period ending September 10, 1993. A few trucks were missed during the short
period required to transfer the block of data from the wave form recorder to the computer,
but the percentage v\;as small. Electrical power limits also resulted in some lost data during
short periods. Further, many lighter trucks were missed because they were not heavy
enough to trigger the instruments. However, a large number of trucks were measured. To
illustrate the number of trucks recorded, duﬁng the 24-hour period of Wednesday,
September 1, 1993, 990 heavy vehicles were measured in the right hand lane of the
eastbound 1-90. This is not inconsistent with a.truck traffic éount of November 13, 1990,
when a total of 6720 axles were counted in all of the westbound lanes during a 12-hour
period. The 990 tmgks would result in nearly 5000 axles in a single lane for a 24-hour
period.

The uncontrolled truck traffic measurements were used to establish a fatigue load
spectrum for vertical and horizontal wheel loads on the joint. These loads were not static
wheel loads but were dynamic loads that included the effect of impact and dynamic
amplification or attenuation. The six basic channels (four for vertical bending and two for
horizontal) directly measured the bending curvature, and the curvature was translated into
bending stress, bending strain, and bending moment as desired. The variation and
distribution of stress are quite interesting, as they affect fatigue behavior. However, the
stress and bending moment at the strain gage locations depended upon the placement of the
wheels on the centerbeam, and this placement was not known for the uncontrolled traffic
measurements. The first four channels of measurements allow estimation of the vertical
plane bending moment at four locations on the centerbeam under one lane of traffic.
Theoretically, these four moments should have been enough to estimate both the magnitude
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of the dynamic wheel load for vertical loading on the centerbeam and position of the wheel
on the joint through influence lines developed for each gage location. Note that the
influence lines depended upon dynamic effects as well as static loading and truck size.
More measurements were made than were actually needed to determine load and position.
This provided redundancy, which could be used to verify and improve the accuracy of the
estimates. The position of the vehicle wheels, combined with the two horizontal plane
bending moments, allowed estimation of the horizontal wheel load on the centerbeam. The
combination of these loads for all of the trucks measured on the joint allowed development

of a fatigue wheel load spectrum.

DATA CORRECTION AND ANALYSIS

The controlled field measurements required only limited data interpretation and

analysis. The digital wave form recorders stored the measured voltage as a binary fileina

least count integer format. This resulted in a minimal storage space requirement, even
though a very large quantity of data was stored. Once the data were recovered from the
field disk drive, the digital data were first converted to a normal voltage measurement, and
this voltage was multiplied by a calibration factor to determine the curvature, deflection, or
bending moment as appropriate. The conversion from integer to normal voltage format
~ was performed with a simple equation using scaling data stored at the front of the data file
by the digital recorder. Once the data had been converted to voltages, bending moments,
and deflections, they were restored in ASCII format where they could then be plotted or
used in normal data analysis. This ASCII format required a much larger data storage
space, but it could readily be passed between computers and be rgad and interpreted by
nearly any device. Approximately 2 gigabytes of data were stored in this format from the
field tests. The controlled test results were a small portion of these data, and the controlled
test data could readily be analyzed and evaluated by physically examining and plotting each
file. Interesting observations could be noted and conclusions could be drawn where

appropriate.
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The uncontrolled load spectrum measurements required all of the analysis noted
above, but considerable additional analysis was also required. First, the huge quantity of
the data prevented the researchers from manually evaluating and analyzing each data file.
Thus, automated procedures for data analysis had to be developed. Second, the data were
automatically recorded and stored. Electronic instrumentation tends to drift or change with
time. These changes can partly be attributed to changes in electrical resistance caused by
time and temperature, outside electrical interference, or by temporary malfunctions of an
individual circuit. Temporary aberrations may also have been caused by bridge traffic.
The uncontrolled truck data were stored in blocks of 10 trucks. The time required to
accumulate 10 trucks of data could be as small as 5 or 10 minutes during busy portions of
the day or as much as an hour during weekends, holidays, or early morning hours. Once a
block of 10 trucks had been stored, the computer checked the data acquisition equipment,
re-initialized itself, and started to record more data. The binary data files containing these
10 trucks were identified by the notation "sdxxTyyyyyy", where xx was the day number
(1,2, 3, and etc) of the test and yyyyyy was the time of day measured in seconds (O up to
86400) after midnight. This identifier allowed the researchers to tell the time that the data
were acquired and the time required to complete the 10 truck measurements. However,
because of the long periods required to complete 10 trucks at some times, inadvertent drift
was included in the data.

The first task in the analysis of the data was to scan the data to determine whether
any offsets or malfunctions existed in the individual data channels. Figure 12 illustrates a
typical offset data recording. It shows that the initial and final voltage readings were not
returning to zero, most probably because of circuit heating. The offset seemed particularly
prevalent late, at times when traffic was very light, because the equipment then had a long
time to drift without benefiting from the periodic correction provided by the controlling

computer system. These offsets were corrected very easily by removing the offset from all
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Figure 13. Typical Out-of-Range Data Channel
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Figure 14. Typical Spline Correction for Out-of-Range Voltage Data

voltage measurements on that file. Unfortunately, the offset caused other problems.

On occasion some vehicles went out of the voltage measurement range, as
illustrated in Figure 13, because of the initial offset. These out-of-range vehicles were also
identified, and the data were corrected. A few channels went out of range because the
trucks were very large. Some out-of-range problems were caused by a combination of
large trucks and a voltage offset that evolved during the test. However, the number of
out-of-range channels was not large. A method for establishing the out-of-range peaks was
established for these cases, and as a result these lost data were recovered. Figure 14
provides an example of the data recovery for the overrun illustrated in Figure 13. The
recovery method used a variation of the spline function, combined with the existing end

conditions before and after truncation. The data were recovered for a very small number of

25



trucks, and the recovery method was quite accurate. The accuracy was evaluated by

arbitrarily truncating some curves with complete data and using the procedure to regenerate
the truncated data for comparison. The generation method appeared to consistently estimate
the peak moment within 2 or 3 percent, and the estimate was consistently smaller than the
true peak. As a result, these recovered data would be an important contribution to the load
spectrurh but would not skew or distort the test results.

Figure 15 illustrates a data file that appeared to be influenced by some unknown,
outside electrical source or had another form of temporary malfunction. Channels 1 and 4
appeared to be partlcularly susceptible to thls problem. However, these temporary
dysfunctions occurred on only a few trucks and normally occurred on one channel at a
time. These dysfunctional data were simply neglected, as the six channels for the single
centerbeam provided a basic redundancy in the measurements, and it did not appear to be
possible or practical to regenerate this information.

Once the data had been scanned and checked for general accuracy, they were
carefully analyzed to determine wheel loads and rebound cycles. A computer program was
written to perform this operation. Figure 16 illustrates the wheel loads determined from
voltage measurements of a typical truck crossing. The wheel location program cycled
through the incremental time history of each data file until a peak wheel load was located on
one. of the‘data files. Once this peak had been located, the corresponding peaks and
rebound peaks were read for all six data files. Rebound and free vibration peaks after
completion of the wheel crossing were noted for each channel until the amplitude was less
than approximately 10 percent of the peak. The time and amplitude of each peak for each
channel were recorded. Each wheel record contained many peaks, and each truck record
contained several wheels. In this manner, all the information on nearly 20,000 trucks was
condensed into a series of summary files, which were used to estimate the wheel load

spectrum.
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The summary files of times and voltages were then converted to bending moments
and times for each wheel of each truck. The bending moments could then be translated into
estimated wheel loads with the aid of influence lines and moment diagrams. This second

operation is discussed in greater detail in the next chapter.
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DISCUSSION

RESULTS OF CONTROLLED TESTS
Two series of controlled tests were performed (Hildahl, 1993). During August 17

through 19, 1993, the right lane of traffic was shut down for several hours each day, and
loads were applied by a moderately heavy, three-axle dump truck. The dimensions and the
static wheel loads of the truck were measured before testing. Figure 17 is a photo of the
test truck for the controlled tests. Figure 11 shows the static wheel loads and dimensions
of the test truck. The truck passed over the joint at known speeds and locations 24 times
during the two-day period. The position of the vehicle relative to the joint was measured
by the tire track observed on strategically placed tape markers on the joint. The truck
sometimes traveled at a known constant speed and at other times at a known speed with
braking or acceleration.

A second series of controlled tests was performed during February 1 and 2, 1994.
This second series of controlled tests was performed when the bridge was closed to other
traffic. This provided many more options in the speed and placement of the vehicle on the
joint. Forty-two load passes were made with the same truck used in the earlier tests and a
nearly identical loading. Nearly all of the truck passes were made at various points within
the outside (southern-most) lane, so that the greatest amount of useful information
regarding truck location could be obtained. Most of the tests were performed with
eastbound truck traffic, but a few passes were performed with a westbound truck. These
tests may be useful in interpreting future reversible lane measurements. Two tests were
performed with the truck passing in the center lane so that the effect of such a truck passing
on the measured results could be determined. The results of these tests would be used to
establish basic elements of joint behavior, such as the effect of truck position, truck braking
or acceleration, and the distribution of load between centerbeams. The results would also

be used to interpret the second type of test results.
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Given the voltage measurements recorded from these tests, the bending moments as
a function of time could be directly'determined, and bending stresses could be determined
from the bending moments. Figure 18 shows the stress at a location typical of those with
fatigue cracking while a truck crossed the joint. It shows that each wheel caused a sharp
stress increase, and a rebound cycle is noted on the graph after the wheel left the
centerbeam. The rebound depended upon the speed of the vehicle and the dynamic
characteristics of the joint. A series of free vibrations occur on the graph after the rebound
cycle. This free vibration could be used to determine critical information about the dynamic

behavior of the joint, as illustrated in Figure 19. First, the period of vibration was inferred

from the time observed between peaks of free vibration. This was not an exact

determination, as the vibration depended upon the initial conditions and the mode excited
by the loading. There were a large number of modes of vibration to be excited (Roeder,
1993; Roeder, Hildahl, Van Lund,1994), but they tended to have closely spaced periods.
Some of these dynamic characteristics are summarized in Table 1. Periods of vibration ih
the range of 0.012 to 0.025 seconds were noted for vertical loading and periods of 0.03 to
0.05 seconds were typically measured for horizontal loading. Periods as long as 0.12
seconds were noted when the truck crossed the joint with severe braking. The longer
measured periods appeared to be associated with larger amplitude motion where the period
may have been increased by larger deformation of the elastomeric spring or by sliding
movement in the joint. The shorter periods were associated with smaller amplitude
vibration where greater stiffness of the supports could be expected. These periods agreed
well with those computed in earlier dynamic analysis of the subject joint. The damping
was estimated from the logarithmic decrement of the decay of the free vibration. This
damping varied from case to case but was estimated to be approximately 6 to 13 percent of
critical. Again, the larger damping was often associated with larger amplitude motion.

Even larger damping was noted with braking or acceleration of vehicles because of internal
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Table 1. Typical Dynamic Characteristics

Dynamic Estimated From Estimated from Past | Tschemmernegg
Characteristics Field Measurements Theoretical Estimates from Field
Calculations Measurements
Periods for Vertical 0.0125 t0 0.015 0.005 to 0.05 secs.
Modes of Vibration | seconds for Normal with Averages Approx. 0.015 secs.

Vibration

Approx. 0.015

seconds

Periods for

Horizontal Modes of

0.03 to 0.05 seconds
for Normal Vibration

and 0.12 seconds for

0.015 to 0.15 secs
with Average

Approx. 0.03 to

Approx 0.048 secs.

Vibration severe braking 0.05 seconds and
0.15 secs associated
with global
movements
Vertical 6 to 13% of Critical No Estimate Approx. 7.1 %
Damping Under Normal
Vibration
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movements and friction of the joint components. Table 1 also compares the measured data
to results obtained by Tschemmernegg on field measurements from the Werratal Bridge.
The comparison to Tschemmernegg data showed good correlation between the measured
damping values. Comparison suggested that similar but somewhat shorter periods for
vertical modes of vibration occurred on the 3rd Lake Washington bridge. Horizontal
modes of vibration were much more variable in the theoretical calculations and in these tests
than reported by Tschemmernegg. Very long periods of vibration were computed and
‘measured when the vehicle was braking or accelerating over the joint. Very little mass
participates in the modes of vibration associated with these long periods. As a result, these
modes are excited only by severe truck loadings, which cause rigid body movements of the
centerbeam.

Figure 20 shows the typical measured bending moments created.by the controlled
test truck passing over the joint with nearly the same path both very slowly and at 90 kph
(55 mph). The trucks mainta’ineci constant speed as they crossed the joint and neither
braked nor accelerated. The axle loads were approximately 80 kn (9 tbﬂs) for each of the
two rear axles and 67 kn (7 tons) for the front axle. The dynamic load experienced by the
joint was proportional to the maximum bending moment. Comparison of the two truck
crossings showed that the vertical loads for the high speed vehicle were amplified 30 to 40
percent over the static loading. This measured amplification was typical of other values
obtained at similar vehicle speeds. Figure 20 shows that a péak centerbeam bending
moment was achieved as the wheel crossed directly over the centerbeam, and a dynamic
rebound occurred as the wheel left the centerbeam. Tschemmernegg's fatigue design loads
have a dynamic rebound of 27.1 kn (6.1 kips), which is appfoximately 40 percent to 45
percent of the maximum direct static wheel load and approximately 30 percent of the
vertical load, including impact on the joint. The rebounds shown in Figure 20, which are
fairly typical of those observed throughout the test for these driving conditions, were in the
order of 30 percent to 50 percent of the direct impact loading with the truck traveling at 90
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kph (55 mph). However, there was no rebound with the static loading, and this suggests
that the rebound effect may be smaller with slower moving vehicles.

After the wheel left the centerbeam, the beam vibrated in free vibration.
Examination of the period of this vibration gives a measure of the period of the excited
mode of vibration, and the free vibration response illustrated in Figure 20 suggests that the
period of the centerbeam vibration was approximately 0.015 seconds. Prior computer
analysis (Roeder, 1993; and Roeder, Hildahl, Van Lund, 1994) showed that many, closely
spaced modes of vibration contributed to the dynamic response of these joints in both the
horizontal and vertical planes. The computed periods ranged from 0.05 second to 0.005,
second with 0.015 second as an approximate average value. Thus, it appears that the
measured period for vertical vibration of the centerbeam was consistent with that predicted
in the theoretical calculations. Further, the duration of a ramp loading on an individual
centerbeam with the vehicle speed noted in Figure 20 was approximately 0.0125 seconds.
The ratio of this duration to the period of vibration was approximately 0.85, and the
theoretical dynamic amplification predicted by Figure 6 was approximately 50 percent.
These combined observations suggest that the correlation was quite good between earlier
(Roeder, 1993; and Roeder, Hildahl, Van Lund, 1994) theoretical predictions and
experimental predictions when vehicles were moving at speeds near 90 kph (55 mph).

Figure 21 shows the horizontal plane bending moments measured with the truck at
90 kph (55 mph) and with essentially a static loading. The vehicle crossed the joint with
essentially no braking or acceleration. However, note that the joint was on a slight 3
percent to 4 percent grade, and this grade necessitated some minimal acceleration to
maintain driving speed. In addition, the inclination resulted in a small vector component of
the gravity load in the "horizontal" direction. Note also that the bending moments were
proportional to the dynamic force felt by the centerbeam. Earlier dynamic analysis

(Roeder, 1993; and Roeder, Hildahl, Van Lund, 1994) suggested that this joint system was
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very flexible -in horizontal loading, and as a result researchers postulated that the
centerbeam could not experience a large horizontal load. On the other hand, the
Tschemmernegg fatigue evaluation procedure requires a horizontal design force that is
approximately 30 percent of the basic veftical (static) design force, and the method also
postulates that the elastic support points must be modeled as a rigid connection for the
horizontal loading. Comparison of the moments in Figure 21 to those obtained in Figure
20 suggest that the dynamic force acting in the horizontal direction would have to be well
under 10 percent of the vertical load if this rigid support assumption were applied.

Figure 22 shows a similar, typical comparison to Figure 20 with the truck driving at
a much slower speed (approximately 50 kph or 30 mph). The dynamic amplification was
in the range of 25 percent to 35 percent of the static load. The duration of loading was
longer at this reduced speed, and the ratio of the duration to the period of vibration for the
centerbeam was proportionally larger (1.55 as opposed to 0.85). Thus, the theoretical
amplification from Figure 6 would be approximately 25 percent, because the load duration
in Figure 22 falls on the right side of the hump of the curve. These comparisons were
generally consistent with the earlier theoretical predictions. The dynamic rebound was
quite large at the higher speed, but it was smaller at lower speeds, as illustrated by
comparison of Figures 20 and 22. The rebound was obviously zero under static loading.
The rebound was about 40 percent to 50 percent of the vertical load at 90 kph (55 mph) and
was about half this amount at 50 kph (30 mph).

Figure 23 shows the horizontal bending moments due to the same truck as shown
in Figure 22 crossing the modular joint. The truck was crossing the joint at a position
similar to that shown Figures 20 and 21. Figure 23 shows that the horizontal force at 50
kph (30 mph) was somewhat larger than that noted for the 90 kph (55 mph) vehicle.
However, in both cases the bending moment and horizontal force were much smaller than

the vertical load. The majority of the participating mass in the horizontal modes of
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vibration were resident in modes with periods of between 0.16 and 0.035 second.
Therefore, the ratio of the duration of load to the period varied between a high of
approximately 0.6 at 50 kph (30 mph) and 0.0 at 90 kph (55 mph). Figure 6 shows that
the dynamic amplification approaches a maximum of 1.5 at the slower speed and is much
smaller at 90 kph (55 mph). Figure 23 is consistent with this observation, since the
dynamic moment was approximately twice as large for the slower speed as for the higher
speed, but in both cases the horizontal load was much smaller than that suggested by the
Tschemmernegg design method.

The horizontal loads were much smaller than those suggested by the
Tschemmernegg fatigue design procedure under normal driving conditions. If a vehicle
was braking or accelerating as it crossed the modular joint, the horizontal forces were much
larger. Figure 24 shows the horizontal load bending moments with moderate braking when
the truck was moving at approximately 90 kph, and Figure 25 shows the moments with
emergency braking at a similar speed. Comparison of the figures shows that vehicle
braking caused much larger horizontal dynamic loads than those suggested by
Tschemmernegg. These bending moments were 10 to 20 times larger than those noted
with normal traffic.

Horizontal movements were also measured for some cases. No horizontal
movement of the centerbeam was noted if the truck was not braking or accelerating to gain
speed over the joint. Figure 26 shows the horizontal movements measured if a truck
crossed the joint with no braking or acceleration. The figure shows no significant
horizontal movement and no permanent set in the displacement. In contrast, Figure 27
shows typical centerbeam movement if the truck was braking to an emérgency stop. A
substantial horizontal deflection occurred under this severc» braking condition. The
maximum movement was approxirhately 10 mm, and there was a permanent set of

approximately 3 mm. Most of the horizontal displacement and all of the permanent set can
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be attributed to rigid body displacement. This is evident by noting that the displacements
were essentially the same at mid-span, stirrups, and support bar locations. The permanent
set was slowly reméved by vibration caused by traffic on the bridge after the truck had
passed. The geometry of the joint facilitated the return of the centerbeam to its original
poéition when the joint vibrated. The largest centerbeam movements appeared to occur at
slower speeds because of the dynamic characteristics of the joint. This result is consistent
with the observations made in analysis that greater dynamic amplification of horizontal
loads occurred at slower speeds because the duration of loading more closely matched the

longer periods noted for horizontal displacement. The major portion of the deflection was

due to deformation and sliding of the elastomeric springs. That is, the centerbeam moved

approximately as a rigid body. The elastomeric deflection was elastic and was recovered
after the load had been removed, while sliding resulted in permanent set and was not
recovered until the normal vibration of the joint had returned the centerbeam to its original
position. These measurements indicate that horizontal loads on this particular joint system
are significant only when the vehicle is braking or accelerating. This phenomena is
consistent with some observations (Braun, 1992) of past joint fatigue behavior, but it is
quite different than the event assumed in existing fatigue evaluation procedures.

The direction of travel may also be viewed as important. The joint was on a slight
(3 percent to 4 percent) grade, and the normal eastbound traffic had to accelerate slightly to
maintain a constant speed. Several measurements were taken with the same truck traveling
in the westbound direction. Figure 28 shows the horizontal plane bending moment with
the truck traveling in a westerly direction and crossing the joint at a path nearly identical to
the one noted for the eastbound truck plotted in Figure 21. The truck did not need to
accelerate to maintain its speed in a westerly direction. Comparison of these two figures

suggests that the slope did not have a significant effect on this particular joint.
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Vehicle acceleration also causes horizontal moments and horizontal displacements
of the centerbeam. Figures 29 and 30 show the horizontal plane midspan bending moment
and the horizontal deflections of a truck traveling in the eastbound direction at
approximately 50 kph and accelerating to gain speed. The figures illustrate that only the
rear drive axles caused significant moment and displacement, whereas all wheels of a
braking vehicle caused these effects. The moment and displacement were much larger than
those noted with the truck crossing the joint at a similar speed without acceleration, but
both measurements were much smaller than those noted when a vehicle was braking. The
speed of the truck was slower, so the dynamic amplification should have been somewhat
larger at this vehicle speed. However, the truck was moderately old and had limited
power, and thus it is possible that a more powerful vehicle would have caused a large
acceleration effect. Therefore, it is clear that truck acceleration causes a significant effect.
It appears that horizontal loads caused by vehicle acceleration are smaller than loads caused
by vehicle braking, but this observation can not be proven definitively from these data.

The joint geometry was measured, and the application of Tschemmernegg's
distribution model suggested that less than 50 percent of the total wheel load would be
applied to a single centerbeam in August, and 50 percent should be appropriate in
February. During the load distribution tests, bending moments were measured as a
function of time, and typical values of all three curves are plotted in Figure 31. In this
figure, the moments are adjusted to account for the difference in span length of the
centerbeams; as a result, the moments can be compared at a given time to provide a measure
of the portion of load carried by each centerbeam. The figure shows at a glance that well
over 50 percent of the wheel load was carried by an individual centerbeam in the Februar)"
test. When CB13 reached its maximum moment, the moments in CB12 and CB14 were

only about 10 percent of that in CB13. As a result, these measurements indicate that a
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maximum of 70 percent to 80 percent of the total wheel load was carried by the single
centerbeam. Correlation of these results to the August tests suggested that 60 percent to 70

percent of the wheel load was felt by an individual centerbeam for each wheel crossing.

LOAD SPECTRU

An examination of the fatigue design load spectrum was one important goal of this
research. The uncontrolled truck measurements provided insight into these load data when
they were combined with the controlled test results. Figure 4 shows the load spectrum
proposed by Tschemmernegg for vertical wheel load and horizontal wheel loads, including
impact. This figure shows data provided for approximately 250 billion wheel crossings,
but only 25,000 (i.e., 1 out of 10,000) of the these wheel ‘crossings are at the maximum
load level. The actual data for formulating Figure 4 are not available, but a graphical
interpretation of these data suggest that dynamic vertical wheel loads (including impact)
produce the statistical distribution function illustrated in Figure 32. Past analytical studies
{Roeder, 1993) have suggested that the Tschemmernegg load spectrum may not be
applicable to the subject joint because of the vehicle speeds on the bridge and the dynamic
characteristics of the joint. The uncontrolled truck measurements provided a valuable check
of the consistency of this design information for the subject modular joint and for U.S.
truck traffic.

The dynamic response of nearly 20,000 truck wheel crossings were measured
during these uncontrolled tests, and the summary data on the peak response for each wheel,
the maximum rebound and free vibration cycles, were developed as described earlier. The
peak voltages measured for each wheel érossing were translated into dynamic bending
moments, and these moments may theoretically be translated into a dynamic load and
vehicle position by means of influence lines. However, only the very heaviest trucks were

measured. That is, trucks with vertical dynamic wheel loads of less than approximately 30
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KN (6.75 kips) were neglected. The Tschemmemnegg load spectrum and statistical
distribution shown in Figure 4 suggests that this limit includes only the heaviest 16 percent
of the truck wheels.

The speed of the truck crossing the joint, the position of the truck on the joint, the
geometry of the truck wheels, the distribution of loads between centerbeams, and the actual
static wheel loads of the truck all affected the uncontrolled measurements. None of these
variables were known for any one measurement. The speed of the truck affects the
dynamic amplification of the static wheel load, as illustrated in Figure 6. With the periods
computed and verified by measurements with controlled truck traffic, the vertical wheel
loads could be amplified through a wide range of truck speeds, and if the truck speed was
estimated with reasonable accuracy, the dynamic amplification could be theoretically
estimated with good accuracy. Tschemmernegg (1992) has proposed a method for
estimating the load distribution between centerbeams. Prior discussion of the controlled
truck measurements revealed that adjustments to load distribution are warranted, but that
the load distribution noted by Tschemmernegg clearly is occurring.

While the vehicle speed and load distribution may be estimated by established
methods, the vehicle position, geometry, and static wheel loads require additional
considerations. Tschemmernegg has proposed that wheel loads be approximated by two
point loads that are spaced at a distance appropriate for the centroid of the wheel group for
the axle. Measurement of typical truck axles indicated that a spacing of approximately
1.825 m (6 ft) is appropriate for most dual-wheel rear axles. A larger spacing is needed for
most front axles or single-wheel rear axles. The largest wheel loads produce the greatest
fatigue damage. Thus, the greatest accuracy in the load estimate is required for heavier
wheel loads. Further, the heaviest loads are expected on rear axles with dual wheels.
Given this 1.825 m (6-feet) wheel load spacing, theoretical influence lines can be

developed for the bending moment at each of the measured moment locations. Figure 33

47



Influence Coefficient (KN-m/KN)

0.4

0.2

0.0 |

04 L -

1.0 2.0 3.0 4.0 5.0 6.0 l 7.0
Truck Position From Curb (m)

Figure 33. Theoretical Influence Line With Point Loads at 1825 mm (6 ft.)

Load is uniformly distributed
over the width of two tires and
distributed to centerbeams as
appropriate. —\

— N Nl—1.22m —{ o [
31|{3 3|3
Am - .1 m

Figure 34. Typical Wheel Load Distribution Geometry for Rear Axle

48

8.0



-

shows a typical influence line for a vertical load bending moment with equal point loads
spaced at 1.825 m (6 ft.). As expected, large increases in measured moments are will
occur as one of the wheels is positioned over fhe measurement location. Magnitudes are
smaller when neither wheel is close to the given gage location. The measured moment can
be influence lines for four different locations. Any two moment measurements will provide
an estimate of vehicle position and dynamic wheel load for that axle crossing for most
cases. However, there are also a few singularities. That is, there are locations where the
relative magnitude of the moments are the same but the vehicle position has two possible
locations. The redundant measurement locations theoretically can be used to determine
which position is appropriate under these singularity conditions. Theoretically, these loads
and positions can be determined with great accuracy. However, practical constraints limit
the accuracy of this load and position determination. Wheel loads are not point loads.
Instead they are distributed over an area such as depicted in Figure 34. Influence lines may |
also be computed when the wheel load is uniformly distributed over this area. Figure 35
shows the influence lines for the 4 measured moment locations, and a comparison of
Figures 33 and 35 shows that the curve is nearly identical unless one wheel is positioned
very near the measured location. If one wheel is positioned very near the moment
measurement location, a na:row tire or single tire will result in a larger measured moment
than that predicted by a dual tire with the same total axle loading. The distribution of wheel
load across the tire width also reduces the peaks in the influence lines, as can be seen by
comparing Figures 33 and 35.

Channels 2 and 3 produced the largest measurements when a truck was centered in
the right hand driving lane. It was desirable to use the larger measurements for load
determination, since they would provide greater sensitivity and fewer concerns regarding
measurement accuracy. Therefore, the researchers proposed that Channels 2 and 3 be the

primary channels for estimation of vehicle position and wheel load. Channels 1 and 4 were
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to be used for resolution of singularities or other uncertainty. The controlled vehicle
measurements provided a general check of this proposed procedure, since the speed,
geometry and position of the vehicle were known with reasonable accuracy. Note that the
geometry and static loads of the controlled vehicle were known to the highest accuracy,
while speed was known only within an accuracy of + 5 kph (£3 mph). Possible
positioning errors of up to 50 mm (2 inches) had to be expected. The positioning errors
were caused by the fact that individual vehicle wheels may have crossed the joint at slightly
different positions during a given truck crossing, as well as by uncertainty of the
measurement itself. Figures 36 and 37 show the measured moments for all measured rear
axle crossings divided by the known static load, plotted along with the influence lines for
distributed wheel loads for Channels 2 and 3. These illustrate that the general trends of the
measured values follow the computed influence line, but there is a huge amount of scatter
in the results.

| Some of the scatter shown in Figures 36 and 37 had to be expected, as the
measured data were a dynamic response. This dynamic measurement included possible
amplification and attenuation, and it did not include load distribution between centerbeams.
The speed of the vehicle and the dynamic periods of the joint components were known, and
so the measured dynamic wheel load could theoretically be converted to a measured static
wheel load by dividing by the amplification factor predicted in Figure 6. The
measurements wheel load distribution between centerbeams varied from August 1993 to
February 1994. However, they should have been nearly constant during those two time
periods. The dynamic amplification and load distribution corrections were made to the data
to obtain measured static moments. The measured normalized, static moments and
influence lines are plotted in Figures 38 and 39. Considerable scattér remains, but the
results much more consistently match the influence line predictions. Despite the improved

comparison, the theoretical influence lines were still not adequate for accurately placing the
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position of the vehicle and establishing the wheel load magnitude. Averaging procedures
would improve this estimate. These averaging procedures are illustrated in Figure 40 for
the vehicles within the right lane of traffic.

The normal value for Figure 40 should be 1.0. The scatter about this value is quite
uniform, although it is skewed toward the edges of the driving lane. Examination of
Figures 38 and 39 and comparison of the theoretical influence line to the measured data
show that the characteristics of the measured data were close to the influence line, although
there was an offset of the data in both cases. Figure 38 suggests that a better and quite
good comparison would be achieved‘if the theoretical influence were shifted 10 to 15
inches to the left. Figure 39 suggests a better comparison if the theoretical influence line
were shifted approximately 10 inches to the right. Changes in the stiffness of the
elastomeric springs and other elements could have caused changes of this type in the
influence lines, but there is no rational theoretical basis for changing these stiffness values
except that they fit the experimental data better. However, a significant body of
experimental data with known conditions exists, and these data could form the basis for
empirical influence lines.

Figure 41 illustrates one formulation of the empirical data for trucks in the right lane
with a least squares fit curve fof the data. Empirical relations such as that illustrated in
Figure 41 were examined in some detail, and several factors were noted. First, trucks that
were approximately centered in the right hand driving lane produced results that were
relatively‘insensitive to position. That is, a substantial variation in position caused
relatively small changes in load estimate. Note that an influence line position of 3.3 m (130
in.) had the right wheel over the white line on the right edge of the lane. An influence line
position of 4.6 m (180 in.) had a left wheel crossing the white line into the center lane.
Second, vehicles that were outside the center of the travel lane were easy to identify

because of the larger moments measured at channels 1 or 4 and the moment reversal noted
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at channels 2 or 3. Finally, the scatter produced by efforts to isolate the vehicle position
was greater than the scattered produced by assuming the truck was in the center of the
marked driving lane, if the data for trucks driving outside the lane were excluded.

As a result of this analysis, the trucks that were changing lanes or driving out of the
right hand lane were identified and removed from the statistical sample. The dynamic
wheel loads were then estimated for direct impact loading, vertical rebound, and horizontal
loading. Figures 42, 43, and 44 show the histograms of these data. These are dynamic
wheel loads that consider the distribution of load between centerbeams. For these curves,
60 percent of the wheel load was estimated to aict on the individual centerbeam rather than
the 50 percent postulated by the Tschemmernegg method because of the greater load
distribution to individual centerbeams noted during the controlled tests. Examination of
these histograms shows that only vehicle wheel loads greater than 30 kn (6.7 kips) were
recorded, but a substantial number of vertical wheel loads exceeded the dynamic wheel load -
of 91 KN (20.4 kips) proposéd by Tschemmernegg. A substantial number of vehicles also
exceeded the rebound load spectrum design value of 27.3 KN (6.1 kips) proposed by
Tschemmernegg. Even larger statistical wheel loads would result if the 50 percent load
distribution had been eniployed. Very few vehicleé exceeded the 18.2 KN (4.1 kips)
horizontal load proposed by Tschemmernegg. The horizontal loads were computed under
an assumption of stiff supports, and as a result, the true horizontal wheel load was
overestimated. However, this statistical variation would be appropriate if the same stiff
boundary conditions also were used in conjunction with the wheel load estimate.

The Tschemmernegg design load spectrum was graphically analyzed to obtain a
cumulative distributién function. The distribution function shows the probability that a
given dynamic wheel load will be exceeded. These distribution functions were plotted. In
addition, the researchers noted that Tschemmernegg's data indicated that only the largest 16

percent of wheel loads were measured in this study, and so these measured data were also
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translated into a partial distribution function for vertical impact loading and horizontal
loading. These curves are shown in Figures 45 and 46. These figures quite clearly show
that a much larger proportion of vehicles were causing large, vertical dynamic loads on the
modular joint than predicted by the Tschemmernegg method. A much smaller proportion
of vehicles were causing large, horizontal dynamic loads on the modular joint than
predicted by the Tschemmernegg method. This difference may be partially attributed to a
larger portion of the loading experienced by an individual centerbeam. That is, a 70 or 75
percent distribution would improve the comparison between the experimental and
Tschemmernegg's vertical impact and rebound wheel load spectra. However, poorer
comparison between the two spectra would result for horizontal loading. As a result, much
of the difference must be related to dynamic characteristics of the joint. This modular joint
system amplifies the dynamic response for a wide range of vertical load conditions.
Horiiontal loads are attenuated through a large range of vehicle‘speeds. At the same time,
normal traffic produces very few vehicles that brake hard or accelerate as they cross the
joint. Future changes in traffic patterns could change these traffic characteristics, since
slower vehicle speeds or increased vehicle braking could significantly increase the
horizontal load effect. The statistical variation in rebound loads appéars to be similar to that

noted for direct vertical loading.

DESIGN RECOMMENDATIONS

Recommendations for design loads were developed from the experimental
evaluation. However, it must be emphasized that the design loads are very sensitive to the
type of joint and traffic patterns. Joints that are stiffer with respect to horizontal loads
should be designed for larger horizontal loads. Further, traffic patterns that produce a
larger amount of braking and accelerating than observed during this research must also

cause larger horizontal forces.
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For the swivel single support bar system studied in the research, a substantial
number of measured vertical wheel loads were larger than those reported by
Tschemernegg. However, fewer and smaller horizontal loads were measured than reported
by Tschemmernegg. Larger loads cause the greatést amount of fatigﬁe damage. Therefore,
it is recommended that the vertical dynamic wheel load be increased to 110 KN (24.7 kip).
The vertical rebound load should be increased to 45 KN (10.2 kips). When these increased
vertical loads are employed, it is appropriate to recognize the smaller horizontal loads
present in the joint. Therefore, a horizontal load of 10 KN (2.2 kips) is suggested for this
joint system and traffic pattern. These recommendations are summarized in Table 2.

Note that these measurements. suggest that a larger portipn of the individual wheel
loading is supported by a single centerbeam than is suggested by the Tschemmernegg
method. Therefore an increase should be applied to the Tschemmernegg method. The
increase should be approximately 10 percent of the wheel load for all spacing conditions.
For example, a distribution factor of 0.6 should be used when the Tschemmernegg
procedure calls for a 0.5 distribution.

The combined effects of these recommendations will increase the conservatism of
the fatigue desi_gn and result in heavier centerbeams. However, this appears to be a small

price to pay in comparison to the cost of early replacement of the joint system.
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Table 2. Design Recommendations

Recommendations From

Recommendations From

This Research Tschemmernegg Procedure
Direct Vertical Dynamic 110 KN 91 KN
Load (24.7 kips) (20 kips)
Rebound Vertical Dynamic 45 KN 27.3 KN
Load (10.2 kips) (6 kips)
Positive Horizontal Dynamic +10 KN +18.2 KN
Load (+2.2 kips) (+4 kips)
Negative Horizontal -10 KN -18.2 KN
Dynamic Load (-2.2 kips) (-4 kips)
Load Distribution to 0.1 + Tschemmernegg Tschemmernegg Graphical
Centerbeams Graphical Procedure Procedure Provided
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SUMMARY, CONCLUSIONS AND RECOMMENDATiONS

SUMMARY

This study examined the performance of modular expansion joints under field
conditions. The single support bar modular system on the third Lake Washington floating
bridge was instrumented to measure strains, moments, loads, and deflections under truck
traffic. Controlled tests were performed with a truck of known wheel loads and driving
conditions. The results were analyzed, and important conclusions regarding the behavior
of this joint system were dfawn from these tests. Additional measurements were
~ performed with normal truck traffic crossing the bridge. Approximately, 20,000 vehicle
wheels were recorded. These wheels constituted the heaviest 16 percent of vehicle wheei
loads expected on a modular joint. These tests provided valuable information regarding the
fatigue design loads for modular expansion joints.

CONCLUSIONS

The most important conclusions drawn froh the research include the following.

1. The experimental observations, including stiffness and periods of
vibration, were consistent with theoretical calculations made in an earlier study.

2. The vertical loading due to direct impact of a truck is amplified through a
wide range of vehicle speeds, with dynamic amplification of about 50 percent
expected at normal interstate vehicle driving speeds.

3. The vertical rebound load is larger with higher speeds and smaller with
slower traffic.

4. The horizontal loads under ordinary traffic on this particular modular -
joint system are much smaller than those suggested by the Tschemmernegg fatigue

design method because of the flexibility and potential for slip noted with this type of
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modular joint. This is consistent with the theoretical calculations indicating that
joint behavior is very dependent upon the joint type.

5. Bending moments due to horizontal loads under vehicle braking may be
very large. These moments may exceed those suggested by the Tschemmernegg
fatigue design method.

6. Horizontal movements occur in the joint when braking vehicles cross the
joint. The movements are quite large and involve multiple spans of centerbeam and
they incorporate shear deformation of the elastomeric springs and sliding of the low
friction surfaces. A portion of the movement is not immediately recovered, but the
centerbeam returns to its original position only after vibration of the joint caused by
normal traffic. The largest horizontal bending moments are not caused by larger
horizontal forces. Instead, these largest moments can be attributed to increased
effective span lengths in the centérbeam caused by rigid body movements.
However, the movement places a significant limit on the maximum horizontal force
that the joint components may experience.

7. Load distribution between centerbeams was also evaluated, and these
measurements suggest that the load distribution between individual centerbeams
produces a somewhat larger force on individual centerbeams than suggestéd by the
Tschemmernegg fatigue evaluation method.

8. The experimental load spectrum obtained during a three-week period in
late August and early September 1993 showed a larger number of larger dynamic
wheel loads for vertical impact and rebound than suggested by the Tschemmernegg
procedure.

9. The experimental load spectrum obtained during the three-week period
showed a smaller number of maximum horizontal loads than that suggested by the

Tschemmernegg procedure.
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10. The dynamic loadings on modular expansion joints are very sensitive to
the characteristics of the joint. These characteristics include the stiffness under both
vertical and horizontal loading.

11. The dynamic loading on modular expansion joints is also very sensitive
to traffic patterns. Slower (or faster) vehicle speeds and increased (or decreased)
braking or acceleration of vehicles crossing the joint may dramatically change the

expected load history and fatigue life.

RECOMMENDATIONS

Several recommendations can be made because of these experimental observations.
These include the following.

1. The dynamic loads on modular expansion joints are very sensitive to
traffic conditions, wheel loads, and dynamic characteristics of the joint. Changes in
these parameters, such as decreased vehicle speed or increased braking and
acceleration of vehicles as they cross the joint, may dramatically change the
dynamic loads and fatigue life of the joint system.

2. The vertical fatigue design loads for modular joints of this type,
including dynamic impact, should be larger than those recommended by the
Tschemmcrnegg procedure. The direct vertical load should be increased to 110 KN
(24.7 kips). Also, the rebound load should be increased to 45 KN (10 kips). The
dynamic properties of the joint, combined with the traffic patterns, result in greater
amplification of the vertical load effects.

3. Individual centerbeams feel a somewhat larger portion of the wheel load
than suggested by the Tschemmernegg method. Therefore, the Tschemmernegg
distribution ratio should be increased by 0.1.

4. The horizontal fatigue design loads for modular joints of this type may

be much smaller than required in the Tschemmernegg method. It is suggested that
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these loads be decreased to 10 KN (2.2 kips) if the above vertical load increases are
employed. However, it must be recognized the these horizontal loads may be much

larger in the future if traffic patterns on the bridge and the joint change.
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