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1. INTRODUCTION AND RESEARCH APPROACH

1.1 Context and Problem Statement

Bridges are important links in modern transportation and communication systems.
Highway bridges have suffered heavy damage in recent earthquakes. Most of the dam-
age was caused by excessive forces at the supports and by weakness of the substructure.
Deficiencies in details at connections. insufficient length of bearing at supports. inappro-
priate design of hinges, embankment movement, liquefaction, and inadequate restraining
devices have been the causes of many failures (Mizuno 1987).

Most design codes express the dvnamic effects of the ground motion as a set of equiv-
alent static forces. The equivalent lateral forces are proportional to the superstructure
weight. The proportionality constant is expressed in terms of different factors. which
include the regional seismicity, the importance and the ductility of the structure. the
soil conditions, and the vibration characteristics of the structure. This design proce-
dure has proven to be inadequate, and design codes are being constantly revised on the
basis of lessons learned from the 1964 Alaska Earthquake. the 1971 San Fernando Earth-
quake, the 1985 Mexico Earthquake, the 1989 Loma Prieta Earthquake. and the 1994
Northridge Earthquake. Research has been valuable for improving the seismic perfor-
mance of bridges.

The increasing use of pile foundations, the significant damage to pile-supported struc-
tures in major earthquakes, limitations in understanding, and the uncertainty in the
prediction of soil-pile-structure interaction under dynamic loads all contribute to recent
interest in the dynamic-response analysis of soil-pile-structure systems.

The objectives of the study presented herein are to increase the safety of the piles
and the structures they support, and to better understand the interaction between the
piles and the structures under both critical and operational conditions. A rational,
dynamic, frequency independent lumped parameter soil-pile interaction model has been

developed for both lateral and axial vibration of single piles and two-pile groups. Special
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attention was paid to the nonlinearity of soil, the formation of gaps and slippage, radiation
damping, and pile-group behavior. The model allows time domain nonlinear analysis to
be conducted in a relatively simple manner. Since the model can reproduce the dynamic
effects by itself, its parameters are defined from the static behavior of a pile-soil system
by reasonable p-y curves developed under the static condition and obtained from finite

element analysis adopting the Winkler hypothesis.

1.2 Research Objectives
The specific objectives of the research reported herein are as follows:

1. To obtain equivalent stiffness properties for single piles and pile groups that can be
used to model the nonlinear behavior of pile foundations for the seismic analysis
of bridge superstructures. Specifically, an objective is to define nonlinear stiffness
characteristics for typical soils and pile configurations to be used as input to seismic

bridge analysis software.
2. To define the dynamic pile interaction effects for groups of two piles.

3. To obtain lumped mass properties for piles and pile groups.

1.3 Background
1.3.1 Dynamic Soil-Structure Interaction

The effects of an earthquake are usually classified as primary, when due directly to
the causative process, such as faulting or volcanic action, and secondary, when due to
the ground motion resulting from the passage of seismic waves. The secondary effects
include those associated with landslides, soil liquefaction, and low frequency structural
vibration in which inertial effects are predominant (Derecho 1991). The foundation effects
discussed in this thesis fall under the last category (Derecho 1991).

Ground conditions at the site affect the earthquake response of structures. Two
aspects of this influence are important: (1) site effect — the amplifying (or attenuating)
effect of local geology on the intensity as well as its filtering effect on the frequency
characteristics of the transmitted seismic waves, and (2) soil-structure-interaction —

the effect of soil properties in the immediate vicinity of a structure on the structural
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response. Soil-structure interaction includes the effect of the underlying soil in modifying
the response of a structure in relation to its behavior when founded on an essentially rigid
base, as well as the effect of the presence of the structure in modifying the ground motion
at the site in relation to the free-field motion (Derecho 1991). -

From the analytical standpoint, one may view soil structure interaction as consisting
of two distinct effects: (a) inertial interaction, which arises from the motion of the
foundation relative to the surrounding soil associated with the transmission of inertial
forces from the structure to the adjoining soil; and (b) kinematic interaction. which
can occur in the absence of inertial forces, that arises when a relatively stiff structural
foundation can not conform to the distortion of the soil generated by the passage of
seismic waves (Derecho 1991).

In the standard analysis of building and bridge structures. it is assumed that the
motion experienced by the base of a structure during an earthquake is the same as the
free-field ground motion that would occur at the level of the foundation if no structure
was present. Strictly speaking. this assumption is true only for a structure supported
on essentially rigid ground. For structures supported on soft soil. the foundation motion
generally is different from the free-field motion due to kinematic interaction. In addition,
a structure with a flexible base has less effective stiffness than the idealized structure,
so that the period of the actual structure is higher than that of the idealized structure
which affects inertial interaction. A flexibly supported structure also differs from a rigidly
supported structure in that a substantial part of its vibrational energy may be dissipated
into the supporting medium by the radiation of waves and by hysteretic action in the
soil. This affects the damping characteristics of the structure. The impofta.nce of the
latter factor increases with increasing intensity of ground-shaking.

In typical dynamic structural analysis, either the load or the displacement is specified
at every point of the structure. In soil-structure-interaction problems, neither the load nor
the displacement is known at the boundary or at other points of the structure. When the
wave front of the incident wave propagating in the soil encounters the structure, scattering
of the wave front occurs. This leads to a load acting on the structure which will cause
motion, accompanied by the generation of a radiation wave in the soil and a relief of the
loading on the structure. All of these mechanisms are coupled: the motion of the structure

depends on the loading acting on it, and the loading, in turn, is affected by the structural
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motion. The same applies to soil. In a dynamic analysis, it is insufficient to prescribe a
zero displacement at a large distance from the structure, as is routinely done in statics.
Rather, an energy absorbing boundary must be specified so that once the waves leave the
zone of interest, they will not return during the time of the analysis. It is thus ensured that
only outgoing waves are present in the actual interaction analysis. This avoids an infinite
energy buildup and it will result in damping, called radiation damping, occurring even
in an elastic unbounded system. Excellent summaries of currently available approaches
to the analysis of soil-structure interaction problems are given in the literature (Seed
et al. 1975, Seed et al. 1977, Seed & Lysmer 1977, Roesset & Tassoulas 1982, Wolf
1985, Derecho 1991). Brief descriptions of the two general approaches to analysis that

are currently used are given below.

1.3.1.1 Complete or Direct Methods

For methods under this category, the motion of the soil mass and the structure is
determined simultaneously. A complete soil-structure interaction problem typically con-
sist of two parts. A site response analysis involves the determination of the temporal
and spatial variation of all motions within a site from a single specified control motion
at some control point within the site where an observed or estimated motion is avail-
able. A source problem. on the other hand, involves the determination of the response
of a structure to specified forces or displacements within a source region (Derecho 1991).
The interaction analysis then consists of the superposition of these two cases. Complete
methods (Idriss & Sadigh 1976, Lysmer et al. 1977) generally employ the finite element
method of model representation.

It is not possible to include the source in the analytical model in earthquake response
analysis, in general. In one approach, referred to as a pseudo-interaction analysis (Lysmer
1978), this difficulty is overcome by defining the seismic environment in terms of specified
loads or displacements on an external boundary. The site response problem is solved first
by deconvolution of the surface control motion to some level below the ground surface
where it can be assumed that the presence of the structure will not influence the ground
motion. This step is depicted in Figure 1.1.a. The second step, shown in Figure 1.1.b,
consists of using the base motion computed in the first step as a specified boundary

motion for a finite element analysis of the soil-structure system.
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1.3.1.2 Substructure Methods ~

In this approach, the complicated soil-structure interaction problem are broken into
more manageable parts. These methods are simpler and cheaper to perform than direct
methods. Here, the soil mass is treated as a continuum (half-space) and the structure is
treated as a discretized model. The half-space is analyzed first, usually in the frequency
domain, and the impedance (force-displacement relationship) and scattering properties at
the soil-structure interface are established (Bielak 1974, Luco 1974, Veletsos 1977). Some
models assume linear visco-elastic properties for the soil to simulate the energy loss due
to hysteresis in the soil. The solution of this part of the problem has gained great impetus
with the development of the Fast Fourier Transform algorithm. In the second step. the
properties determined in the first step are used as boundary conditions in a dynamic
analysis of the structure with a loading that depends on the free-field motions. In recent
years, several substructure methods have appeared, in which the half-space solution is
obtained using finite element models with transmitting boundaries (Gutierrez & Chopra
1978, Lysmer & Kuhlemeyer 1969, Kausel 1988).

The basic substructure method has provided reasonable solutions for cases involving
a single structure at the surface of a uniform half-space. However, its application to the
more practical case of a structure embedded in a layered half-space has not been fully
explored, primarily because of the extreme complexity required in its formulation. For
each dynamic degree of freedom, the standard lumped-parameter system to model the
soil consists of a mass, a spring, and a damper in parallel which is attached to a rigid
support. For time domain analysis, all coefficients should be frequency independent.

Discrepancies between reported results of analysis using the direct method on one
hand and the substructure method on the other have been ascribed to differences in the
definition of the problem (Singh et al. 1980, Chopra 1980). These differences include the
idealization of the soil region, the idealization of the structure, the idealization of the

structural foundation, and differences in the definition of the earthquake input.

1.3.1.3 The Strengths and Limitations of Different Methods

An important aspect of the seismic design of bridges is the evaluation of the dynamic
interaction between the structure and the surrounding soil. This is usually accomplished

in one of two ways, either by representing the effects of the soil on the structural response



by a series of springs and dashpots representing a theoretical half-space surrounding the
structure (substructure or load-transfer method) or by modeling the soil-structure system
by a finite element method (complete or direct method). '
Thus, depending on the method of analysis used, structural response may be seriously
overestimated or underestimated, the former leading to serious over design and lack of
economy and the latter leaiding to potentially hazardous conditions. In a few cases, of
course, both methods may lead to the same degree of safety and economy. It is the
purpose of this section to présent an eyaluation, and to suggest appropriate methods of

analysis for design purposes. For a complete discussion, the reader is referred to Seed et
al. (1973).

Substructure Analyses

These analyses can be made in various ways, but essentially they are all based on
evaluations of structures resting on the surface of an infinite half-space. The most coru-
mon method is to represent the effects of the soil around the structure by a series of
interaction springs and dashpots. Values of spring constants and damping values are
determined by first examining the response of the structure resting on an idealized half-
space and then determining the spring constants and damping values which. with the
half-space removed, would lead to the same response values. In practice, damping values
of 7%-10% are commonly assumed for strong earthquake shaking. Having determined
the springs and dashpots, the dynamic analysis is carried out by specifying the motion
developed in the soil surrounding the spring-dashpot system. In another slightly more
complicated form of this approach, the spring and dashpot values are translated into
impedance functions. This approach offers the advantage that the control method can
be specified in the free-field away from the structure and variation in ground motions in
the vicinity of the structure can be taken into account.

While half-space analyses of this type seem reasonable, they necessarily involve a
number of assumptions and limitations. For example, in soil-structure-interaction analy-
ses, energy is dissipated in the structure as structural damping and in the soil as material
damping. Energy is also lost by radiation of waves from the base of the structure into
the surrounding soil — a phenomenon called radiation or spatial or geometric damp-

ing. It is an extremely important factor in foundation vibration problems, but it is of
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relatively minor importance in studies of earthquake response. Available analytical re-
sults are based on the assumption that the soil has no material damping properties. In
fact, material damping is very high in soils and, thus, an important factor affecting the
soil-structure response is omitted from consideration. To overcome this deficiency, it
is customary to make some assumption concerning the magnitude of material damping
effects and incorporate them with other damping effects in the final analysis.

Half-space analyses can only be made at the present time for deposits with one or two
layers, and even two-layer analyses are very complicated. In general, most sites involve
several layers of different types of soil underlain by rock. The presence of the underlying
rock layer would prevent energy from dissipating continuously through the base. The
assumption of a single soil layer radically over-simplifies the conditions for most deposits
and, again, may inadequately reflect the radiation damping in stratified deposits. Indeed.
because radiation damping effects are not evaluated accurately and material damping
effects are not evaluated at all, the combined effects of these two sources of damping
must be estimated for design purposes, rather than rationally determined. In view of the
uncertainty involved, a conservative choice of an overall damping value is usually made.

In order to determine appropriate values of spring constants, it is necessary to know
the moduli of soils adjacent to the structure. However, the deformation moduli of soil
depend very much on the strain level induced in them and depth of embedment. The
substructure analysis method provides no means for determining the strains induced in
the soils, thereby prohibiting the selection of an appropriate modulus of deformation.
Some design companies advocate the use of soil moduli compatible with the strains
induced in the soil by earthquake motions in the free-field; others use moduli determined
at extremely low strains. Furthermore, in analyzing the response of embedded structures,
some organizations use spring constants appropriate for near-surface conditions while
others use higher values which reflect the influence of the depth of embedment. The wide
difference in results inevitably leads to considerable uncertainty in the selection of design
criteria.

Since half-space solutions are only available for structures resting on the ground sur-
face, there is no simple means for determining spring constants and dashpots for em-
bedded structures. Spring constants for embedded structures can be determined with

reasonable accuracy by static finite element analyses, but dashpot characteristics cannot
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be found from a static analysis. Also, for embedded structures, interaction-spring anal-
yses are invariably based on the assumption that motions around the structure are the
same as those below the base; i.e. the motions are the same everywhere in the surround-
ing soil. Clearly, this could only be so if the surrounding soil were rigid or very stiff.
However, ground motions vary considerably at depths during earthquakes.

The existence of soil-structure interaction effects in a response problem necessarily
means that the presence of the soil affects the movements of the structure and, conversely,
the presence of the structure affects the movements of the soil. Thus, for a soil-structure
system, the ground motions at points below the base of the structure are different from
those in the free-field at the same level. While it is possible to determine the effect of the
structure on the motions developed below its base using the impedance function approach.
interaction-spring analyses are often based on the assumption that the motions below the
base of the interaction-springs are the same as those in the free-field. This is tantamount
to assuming that soil-structure interaction affects the motions in the structure without
simultareously affecting the motions in the soil, which is inconsistent.

Finally, the response of a structure may be influenced to a very significant extent
by the presence of adjacent structures. While it is possible to consider such effects in

balf-space analyses, they are not normally considered in interaction-spring analyses.

Finite element methods of analysis

In an effort to overcome some of the limitations of the half-space or interaction-spring
method of analysis, finite element methods of analysis have been developed and used
to solve soil-structure interaction problems. The control motion is typically specified at
some point in the free-field. As a first step, therefore, it is necessary to determine the
motions that would have to be developed in an underlying rock-like formation in order to
provduce the specified motions at the control point. This can be accomplished readily by
means of a wave propagation analysis of a column in the free-field using an appropriate
computer program such as SHAKE (Schnabel et al. 1972).

It may be seen that this method of analysis does not suffer from many of the limita-

tions of the interaction-spring approach. For example:

1. The analysis can take into account the deformability of the soil around the structure

and the variations of accelerations in the soil profile.



2. The analysis does not involve the use of the same motions below the structure as
in the free-field.

3. The analysis procedure provides a means for determining the motions in the soil

adjacent to the structure.
4. Soil properties (both damping and moduli) can be determined in a rational way.
5. Material damping can be incorporated in the analysis.
6. Radiation damping can be included appropriately.

7. The effects of adjacent structures can be considered. However, while eliminating
these limitations of the interaction-spring approach, finite element analysis can
introduce other limitations that can lead to deficiencies in the computed response
values. These are often due to limitations of the computational techniques used.
and it is important to recognize them in evaluating the significance of the results

obtained.

For example, for strong shaking, the material damping of the soil will typically be
much larger than that in the structure, and it will vary to some extent with depth and
lateral distance from the structure. Furthermore, the damping may vary in different parts
of the structure itself. Clearly, it is desirable, in analvzing situations of this type. to use
a finite element analysis procedure which has the capability of considering a different and
completely specified damping value in each element of the mesh. Few analytical proce-
dures currently in use have this capability. Finite element analyses are often performed
on the basis of mode superposition procedures. In this approach, the damping ratio must
be the same for all elements. Accordingly, when this analysis procedure is used, some
compromise value between the lower values appropriate for the structure and the higher
values appropriate for the soil deposit is usually adopted. For strong shaking, this value
may be in the order of 7%-10%. Variable damping capabilities in the analysis procedure
are highly desirable when finite element with secant modulus procedures are used.

One of the means available for considering the variation of damping in different el-
ements in a soil-structure system is to incorporate damping using a Rayleigh damping
matrix of the form [C] = a[M] + 8[K], in which M = the mass matrix; K = the stiffness

10
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matrix; and a and § are Rayleigh damping coefficients. Thus, damping is expressed as

a linear combination of the mass and stiffness matrices of the system. It can be shown

that the use of this damping matrix is equivalent to using a modal analysis in which the

fraction of critical damping in the nth mode is
ao aywn

2 wp 2’

where w, is the circular frequency of the nth mode of vibration and ¢, and a, are arbitrary

& = [L.1]

constants which are obtained from two conditions. For example, if the damping ratios
&m and &, corresponding to modal frequencies w,, and w, are given, Equation 1.1 can be

written in the form expressing the two conditions as

()=t tfon wm ][], 12

from which

(o) st v e ) -

However, in general, £ can be defined for as many frequencies as desired as

1
b= 52 % wn 2. [1.4]
LCI

In principle, the value of b may range from —oo to +oc, but in practice it is desirable to
select values as near as possible to zeros. If damping ratios are specified for k frequencies,

only k terms are considered. In general, the relationship may be written as

{¢} = (1/2) Q] {a}, [1.5]

where Q is a square matrix involving different powers of the modal frequencies. The

above equation can be used to solve for {a} as

{a} = 2 [QI" {¢}. [1.6]

In effect, the proportion of critical damping varies with frequency and it increases as
the frequency increases. A major advantage of analysis methods using Rayleigh damping
is that they can be modified to permit the inclusion of variable damping (Idriss et al.
1974). While this method of approach is extremely useful for the analysis of certain types

of problems, the frequency-dependence of the damping can lead to very high values of
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damping at high frequencies, as shown in Figure 1.2, with the result that these frequencies
are effectively damped out completely from the structural response (Clough & Penzien
1975). This may be of little importance in analyzing the response of structures such as
earth dams, where the induced stresses are controlled mainly by the first few modes, but
it can be a serious limitation in the analysis of a structure containing critical equipment
with high-frequency characteristics, such as nuclear power plants. Thus, the formulation
of damping in the analysis of soil-structure systems requires the utmost care in cases for
which high frequency effects are important.

Another aspect of finite element analysis requiring careful control in cases where high
frequency effects are important is the choice of element size for the finite element mesh,
especially in the vertical direction. It has been found (Kuhlemeyer & Lysmer 1973) that
the dimension of the element in the direction of wave propagation has a major influence
on the frequency of motions that can be transmitted, with large elements being unable
to transmit motion with short wavelengths, leading to a marked reduction in response
for higher frequencies. In fact, Kuhlemeyer and Lysmer proposed the empirical rule that
the required mesh size for effective transmission of any motion should be not more than
one-quarter, or preferably one-eighth, of the wave length of the motion. This requires
the use of very small element sizes for transmission of frequencies of the order of 20-30
cps, as is required in nuclear power plant studies.

The extent of the finite element mesh is especially important in considering the effects
of radiation damping. If the boundaries of the mesh are placed too close to the structure,
some of the energy which should dissipate from the system will be reflected back, thereby
changing the response. This difficulty can be overcome by the use of energy absorbing
boundaries (Isenberg 1970, Lysmer & Drake 1971, Lysmer & Kuhlemeyer 1969, Kausel
1988) or by the use of a sufficiently extensive mesh. If the material damping in the soil
is relatively high, energy radiating outward from the vicinity of the structure is absorbed
relatively quickly and free-field conditions are developed within a distance of 120-150m
(400-300 ft). However, if the soil damping is low, the effects of wave motions generated
by the structure may be felt a considerable distance away (Seed et al. 1975).

In analyzing soil-structure response using the finite element method, it is customary
to assume that the motions in the system are generated by the upward propagation of

waves from an underlying boundary. This is particularly true in cases for which the
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control motion is specified at some point in the ground and vertical wave propagation
analyses are used to compute the corresponding motion in an underlying stiff soil or
rock formation. The same base rock motion is then used to excite the soil-structure
system. While this may not be a completely accurate picture of the source of earthquake
excitation in the soil mass, it is probably a reasonably good representation of the actual
condition. Thus, while it is a potential source of error, it is consistent with the normal
simplification of complex engineering systems used for engineering analysis purposes.

In addition to the limitations presented, complications in evaluating dynamic response
also arise from uncertainties in determining soil properties and the characteristics of the
ground motion. Thus, the problem of ground and structural response to earthquake exci-
tation is extremely complicated. Consequently, it is pointed out that even sophisticated
analyses do not have the capability to incorporate many important aspects of actual
conditions (Seed et al. 1975).

Conclusion The following conclusions may be drawn with regard to soil-structure inter-

action effects for embedded structures:

1. The errors and assumptions that must be made in using the half-space theory. or
interaction-spring analysis, to evaluate the response of deeply embedded structures

may make those approaches very approximate for these conditions.

2. The finite element method, properly performed with due regard to the extent and
fineness of the mesh and variations of damping characteristics, is the best analytical

tool currently available.

3. Although it is revealed that the FEM gives the most accurate result for SSI analyses,
it is not advisable to use FEM for routine design of bridges. Because of the heavy
involvement of computer time and data synthesis, it is likely to be too cumbersome
for a design engineer to handle this large volume of numerical results obtained from

FEM unless analysis and design are performed by integrated computer programs.

4. The results of any analysis of the seismic response of deeply embedded structures

must be interpreted with good judgment before being adopted for design.
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1.3.1.4 Dynamic Soil-Pile-Structure Interaction Parameters

The following parameters influence the response of pile supported structures subjected
to earthquake excitation (Gazetas et al. 1991, Derecho 1991, Hadjian et al. 1992).

‘e Soil Profile

1. Shear wave velocity, V,
Bulk density, p,

Poisson’s ratio, v,

Ll

Damping ratio, 8,

(4]

Material nonhomogeneity

6. Markedly layered media
¢ Pile Tip Condition

1. Floating (friction) pile

2. End-bearing pile
o Physical attributes

1. Pile diameter, d

Pile length, L

Pile spacing ratio, s/d

Pile slenderness ratio, L/d

Pile-soil material stiffness ratio, E,/E,
Pile-soil mass density rétio, Po/Ps

Pile batter, a

® N o o s W

Angle of loading for a pile-group, @
¢ Nonlinear Effects

1. Time history of free-field motion
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Lateral resistance of soil per unit length of pile, p-y curves
Axial resistance of soil per unit length of pile, ¢-z curves
Quality of pile-cap contact with the soil

Pile-soil separation and gapping

Pile-soil slippage and friction

Stress induced radial nonhomogeneity of soil

Cracking of concrete pile sections

© ® N S ok wWN

Pile installation procedure

Initial stresses

—
e

1.3.2 Current Practice

Typically, dynamic effects in design are circumvented due to a lack of practical analysis
methods, or ignored due to the seldom substantiated assumption that they are negligible.
For the majority of applications, the state-of-practice is considerably less developed than
the state-of-the-art. This stems primarily from the very complex nature of the dvnamic
problem, particularly for earthquake loads. Another contributing factor is the shared.
but not well defined, responsibility between the structural and geotechnical engineers
and, in particular, the lack of adequate integration of their respective contributions. It is
generally believed that the additional cost of detailed dynamic evaluation is not justified
considering the fact that a correct analysis is not simple. The level of application of the
current state of knowledge in practice is idealized in Figure 1.3. A brief review of seismic
code requirements for pile foundations and available computer codes has been included

herein. A detailed survey is available in Hadjian et al. (1992).

1.3.2.1 Review of Seismic Code Requirements for Pile Foundations

Code provisions have addressed soil-pile-structure interaction effects during earth-
quakes for a number of years. Code provisions covering the design of pile foundations for
seismic loads have developed from two somewhat different backgrounds. One approach,
following recommendations developed by the Structural Engineers Association of Cali-
fornia (SEAOC), is contained in the current Uniform Building Code (1991) requirements
published by International Conference of Building Officials (1991). The other approach,
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stemming from the Applied Tecﬂnology Council (ATC) recommended provision, is con-
tained in the recent NEHRP (1991) document. A brief review of these code provisions

for piles, soil-pile-structure interaction effects during earthquakes, is provided below.

Uniform Building Code (UBC 1991)

The UBC provides specific design requirements for piles subject to seismic forces, but
gives only minimal requirements and guidance for determining design seismic forces for
pile-supported structures. The seismic design requirements are adopted primarily from
the recommended provisions of the current SEAOC “Blue Book™.

Design provisions include the following requirements:

1. Individual pile caps and caissons of all structures subjected to seismic forces are to
be interconnected by ties designed for 2 minimum horizontal force equal to 10% of

- the larger column vertical load (2908b).

2. Special provisions for Seismic Zones 3 and 4 (2910) include allowing greater than a
one-third increase in stress allowable for soils (pile-soil friction and bearing) when
substantiated by geotechnical data, omitting the force F, concentrated at the top
of the building for overturning moment at the base when using the static force
procedure for regular buildings, and the design of piles and caissons for flexure
(e-g., ductile detailing for 120% of the flexural length for concrete) when the tops
of the piles will be displaced by earthquake motions.

3. Consideration of the effects of soil-pile-structure interaction on building response
is required only for structures located on soft soils (profile type S4) with a pe-
riod greater than 0.7 seconds (2335b4B). For this case, the dynamic lateral force
procedure is required for both regular and irregular buildings. However, no spe-
cific requirements are imposed on the mathematical modeling of the foundation
for dynamic analysis (2335c). Since any structure may be designed using the dy-
namic lateral force procedure (2333h) and there are no restrictions that a fixed-base
model be used, the effects of soil-pile-structure interaction may always, if desired,
be scaled up close to or equal to the base shear determined by the static force proce-
dure (2335e3). Thus, any potential reduction in design forces due to consideration

of soil-pile-structure interaction can seldom be realized in design.
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NEHRP (1991)

The interest in soil-structure interaction effects during earthquakes seems to have been
initiated in 1972 by the applied Technology Council following the 1971 San Fernando
Earthquake. A cooperative program, including participants from the public and private
sector, design professionals, researchers, federal agency representatives, staffs from model
code organizations, and representatives from state and local governments throughout the
United States, was initiated to present the current state-of-knowledge in research and
engineering practice as they pertain to the seismic design and construction of buildings.
The ATC 3-06 (1978) document was the result of this pioneering work. A review of
ATC 3-06 indicates that if adequate ductility was provided, piles designed (statically)
to vertical loads and code specified lateral loads (base shear) were expected to perform
their function during earthquakes.

The 1991 NEHRP document, Recommended Provisions for the Development of Seis-
mic Regulations for New Buildings, as well as previous editions, is primarily based on
the early work. ATC 3-06 recommended specific pile design provisions for four seismic
performance categories (A, B, C, D, the latter category comparing roughly to Califor-
nia design practice for normal buildings other than hospitals). NEHRP provisions have
added an additional category E, restricted to essential facilities in zones of relatively high
seismicity.

Specific design requirements of the NEHRP document for piles subject to seismic
forces are similar to the UBC (1991). Provisions include foundation ties for pile caps,
drilled piers, and caissons (7.4.3), and reinforcing for 120% of the flexural length (point
of fixity to pile cap) to achieve ductility for pile foundations in relatively soft soil profiles
in high seismic areas (7.5). A reduction factor of 0.75 may be used for foundation
overturning moment at the foundation soil interface for all building heights when using
the equivalent lateral force procedure (4.3). A 10% reduction is allowed when using the
modal analysis procedure (5.10).

Special provisions that may be used to incorporate the effects of soil-structure interac-
tion by modifying the dynamic properties of the structure and evaluating the response of
the modified structure to the free-field ground motion are provided {(Appendix to Chapter
6: NEHRP 1991). The soil-structure interaction effects result in an increase in the nat-

ural period of the structure caused by the flexibility of the foundation soil and a change
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(usually an increase) in radiation and material damping in the soil. Two procedures
for incorporating soil-structure interaction effects are presented: (1) Equivalent Lateral
Force Procedure, and (2) Modal Analysis Procedure. Both methods lead to a decrease in
design values of base shear, lateral forces, and overturning moments, but may increase
lateral displacements and secondary forces associated with P-A effects. A reduced base
shear of no less than 70% of the base shear determined from the equivalent lateral forces
pro.cedure may be used, based on an effective building period and increased damping for
the soil structure system.

The effective period is based on lateral and rocking foundation stiffness using soil
properties compatible with soil strain levels associated with the design earthquake mo-
tion (Chapter 6: NEHRP 1991). Lateral and rocking stiffness for pile foundations are
computed by evaluating the static stiffness of individual piles. These may be determined
from field tests or analytically. by treating each pile as a beam on an elastic foundation.

It is indicated in the provisions that more elaborate procedures would be justified only
for structures of major importance or if soil-structure interaction is of definite consequence
in design. In this case, techniques that might be considered include better estimates of
soil properties and foundation stiffness, and finite element modeling of the structure-
soil system taking due account of the nonlinear effects in both the structure and the
supporting medium. It is emphasized that, while more elaborate procedures may be
appropriate in special cases for design verification, they involve their own approximations
and they do not eliminate the uncertainties that are inherent in the modeling of the
structure-foundation-soil system, in the specification of the design ground motion, or in

the properties of the structure and soil.

1.3.2.2 Review of Current Software for Pile Analysis

In this section, some of the computer programs for analysis of pile foundations, as

identified by Hadjian et al. (1992), are described. It is not an exhaustive list.

COMS624

This program computes the deflection and bending moment of a pile under static
lateral loads as a function of depth. It is assumed that the pile is a linearly elastic beam
and it is supported as a beam on inelastic foundation (Reese & Sullivan 1984). The

behavior of the soil surrounding the laterally loaded pile is described in terms of p-y

20



curves, which relate soil resistance to pile deflection at various depths below the surface.
In general, the curves are nonlinear and depend on several parameters, including depth,
soil shear strength, and number of load cycles. Solution of the governing differential
equation is based on the finite difference method. This program can handle different types

of boundary condition including specified lateral load, moment, slope, and rotational
restraint.

LPILE — Analysis of Piles and Drilled Shafts Under Lateral Load

LPILE is a special purpose program based on rational procedures for analyzing a pile
under lateral loading (Ensoft Inc. 1991). The program is similar to COM624. LPILE
computes deflection, shear, bending moment, and soil response with respect to depth.
The nonlinear p-y curves may be input by the user, or the program will generate them
internally following published recommendations for various types of soils.

The following features are included in this program: multiple load cases, different

boundary conditions, resistance from pile base, and nonprismatic piles.

APILE2 — Analysis of Vertically Loaded Piles

The program uses a well-known ¢-z method for pile-soil interaction analysis with
nonlinear ¢-z curves. It has the capability of handling negative skin friction. The principal
output is the pile-head movement as a function of applied load but, for any given load.

load transfer and movement can also be obtained as a function of the length of the pile.

GROUP — Analysis of Piles

This program computes the distribution of loads to piles in a group. Batter piles and
vertical piles can be included in the same group. Three boundary conditions are handled
for the pile-head: pinned, fixed head, and elastic restraint. P-y curves can be input by
the user or they can be generated internally. If desired, the pile-soil-pile interaction can
be taken into account by introducing reduction factors for the p-y curves for single piles.
The deflection, bending moment, shear, and soil resistance are computed as a function of
depth for each pile. The solution is two-dimensional. The results satisfy the conditions

of both equilibrium and compatibility with nonlinear soil response. lterative techniques
are employed in solving the nonlinear difference equations.

DYNA
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This program calculates the résponse of rigid foundations to all types of dynamic loads
which can be produced by rotating or reciprocating machines, earthquake, or traffic
(Novak et al. 1985). The foundation stiffness and damping coefficients are returned
for the possible use in soil-structure interaction analysis. Capabilities are included .for
soil layering, a weak zone around embedded foundations and piles, pile interaction in a
group, interaction between degrees of freedom, and other features. The analysis is linear.
Nonlinearity can be included approximately by modeling the weakened zones around the
footing or pile and by adjusting the values of soil shear modulus and internal damping
according to the level of the stress.

For a group of piles, it is assumed that the piles are embedded in a layered medium.
The tip conditions may range from end bearing to floating. Pile heads may be fixed or
pinned. The piles may be of step wise variable cross-section, and they may be battered.
The piles may have a weakened cylindrical zone around them. For a group of closely
spaced piles, the effect of pile-soil-pile interaction (the group effect) on stiffness and

damping of the group is evaluated approximately, using the static interaction coefficients
defined by Poulos (1968, 1971, 1979, 1980).

PILAY2 — Stiffness and Damping of Piles in Layered Media

For a vertical pile embedded in layered soil, the program evaluates dynamic stiff-
ness and damping, internal forces, and displacements for all vibration modes (Novak &
Aboul-Ella 1978a). With stiffness and damping available, the response of pile supported
footings and structures to dynamic loads can be predicted using the same techniques as
those applied with shallow foundations. Any number of soil layers having different prop-
erties can be considered and soil material damping is included in all vibration modes.
Displacements and internal forces in the pile are given for all modes. The pile can be
of variable cross section, or Franki type, and it can stick out of the ground. Any tip

condition can be considered and the head can be either fixed or pinned.

SPASM — Seismic Pile Analysis with Support Motion

This program was developed for the response analysis of piles due to earthquake
ground motion. Wave loadings and mud-slide effects may also be considered. The single
pile member is represented in the analysis by a discrete element mechanical model which

is restricted to linearly elastic behavior. The soil-pile coupling at each node along the
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emi)edded length of the pile is -lrepresented by a multi-element assemblage of friction
blocks, springs, and dashpots. The program allows either degradation or hardening of
resistance as a function of deflection and of the number of reversals of deﬂection_ in
the range beyond an initially elastic condition. Furthermore, the formation of gaps is
allowed in order to properly represent the expected soil-pile interplay in the upper layers
of the soil. Simplified superstructure effects can be simulated by increased stiffness along
the pile member within the structural system and by coupled rotational restraints at
appropriate joints.

It uses Crank-Nicolson type of implicit numerical solution. The computer program

is formulated to allow interfacing with either a superstructure program or a free-field

motion program.

1.3.3 Review of Previous Research

The complexity of dynamic pile behavior led Terzaghi and Peck (1967) to state that

[

... theoretical refinements in dealing with pile problems.... are completely

out of place and can be safely ignored.”

However, in spite of this pessimistic evaluation, a number of analytical and numerical ap-
proaches to the analysis of pile dvnamic behavior have been developed. These approaches
have provided a much sounder theoretical basis for pile design than the equivalent can-
tilever concept or other purely empirical methods which dominated the field for decades.
Nevertheless, some differences between the various theoretical approaches exist, and the
experiments that have been reported are sometimes inconclusive. Also, some uncertain-
ties are inevitable when applying an idealized theory to field conditions. Thus, it may be
useful to review some of the approaches in order to examine the differences among them
and summarize what can be learned from experiments and observations.

There are different dynamic loads that can act on piles including earthquake forces,
wave forces, wind forces, and machine imbalance. Here, earthquake loading is the primary
concern.

In this section, the topics that are discussed include the properties and behavior of
single piles and pile groups, interaction with the cap, pile experiments, pile-structure
interaction, and other topics. The subject of pile dynamics has received a comprehensive

treatment in the state of the art reports by many researchers (Tajimi 1977, De Beer et al.
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1977, O'Neill & Dobry 1980, Nogami 1987, Prakash & Sharma 1990, Novak 1991). A
brief presentation follows in the following subsections which are organized in the way
that is similar to that done by Novak (1991).

1.3.3.1 Dynamic Behavior of Single Piles

The earliest systematic, theoretical studies of dynamic soil-pile interaction are due
to many researchers (Parmelee et al. 1964, Tajimi 1966, Penzien 1970, Novak 1974).
Parmelee et al. (1964) and Penzien (1970) employed a non-linear discrete model and
a static theory to describe the dynamic elastic stress and displacement fields. Tajimi
(1966) used a linear visco-elastic stratum of the Kelvin-Voigt type to model the soil and,
in his analysis of the horizontal response, neglected the vertical component of the soil
motion. Novak (1974) assumed linearity and an elastic soil layer composed of independent
infinitesimally thin horizontal layers extending to infinity. Nogami and Konagai (1987,
1988) developed a lumped parameter model which included linear and nonlinear springs.
along with dampers, for radiation damping. It was developed for time domain analysis
of laterally loaded single piles. A similar lumped parameter model for axial vibration
of single piles was developed by Nogami and Konagai (1986. 1987, 1988) and Kagawa
(1991). The different approaches adopted and the results that they yield are briefly

discussed below.

Single Piles in Homogeneous Soil

Analytical and numerical approaches have been formulated in terms of continuum
mechanics for the analysis of interaction between the pile and soil, schematically depicted
in Figure 1.4. Even for the idealistic assumptions of linear elasticity or visco-elasticity,
homogeneous soils, and the pile being welded to the soil, the problem is very difficult to
solve. Thus, approximate procedures were formulated first. Tajimi’s (1966) solution of
the horizontal response of an end-bearing pile in a homogeneous layer, the first of its kind,
neglected the vertical component of the motion. Novak (1974) formulated a very simple
approach based on plane strain soil reactions, which can be interpreted as a dynamic
Winkler medium or a complex plane-strain transmitting boundary placed directly next
to the pile. Material damping was later included in closed form expressions for the soil
reactions (Novak et al. 1978). The application of the same approach to the vertical

response of floating piles (Novak 1977) indicated great sensitivity of the pile behavior to
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the tip condition and showed that floating piles generate more radiation damping, but
less stiffness, than end-bearing piles. Torsional response was also examined in this way
(Novak & Howell 1977, Novak & Howell 1978) and the importance of material dam

ping
for this vibration mode was demonstrated.

Figure 1.4 Schematic diagram of pile-soil interaction representing impedance functions
for pile-head horizontal displacement. (After Novak 1991)

A somewhat more rigorous solution. similar to that of Tajimi (1966). was formulated
by Nogami and Novak (1976) for the vertical response and, later, for the horizontal
response (Novak & Nogami 1977). These approximate solutions offered basic insight
into the behavior of the soil-pile system. However, more accurate solutions, based on
the solution of the governing equations of a three dimensional continuum,
formulated (Kobori et al. 1977, Sen et al. 1985, Pak & Jennings 1987). Rajapakse and

Shah (1987a, 19875, 1989) evaluated the accuracy of some of the existing solutions and

were also

concluded that continuum models based on harmonic line loads may not be sufficiently

accurate. Therefore, they generated an extensive set of charts for impedances of floating
piles.

Makris and Gazetas (1991) investigated the phase wave velocities and displacement

phase difference in a harmonically oscillating pile. For lateral inertial loading, they

found that significant vibration occurs at the top (depth of 5-10 diameters). The phase
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difference between pile displa.cerﬁents at various depths was shown to be insignificant for
both vertical and lateral load and, therefore, waves emanated nearly simultaneously from
the periphery of an oscillating pile. »

Mamoon and Banerjee (1992) adopted an efficient, but approximate, hybrid boundary
element technique to model single elastic piles in elastic half-space. This method can also
handle some types of nonlinearities. Mamoon and Banerjee (1990) also investigated the
angle of incidence of traveling S-H waves on the response of single-piles and pile-groups.
It has been revealed that, at the low frequency range, piles and pile groups essentially
follow the ground motion and, at higher frequencies, they seem to be remain relatively
still. An obliquely incident wave was shown to produce higher displacements than a ver-
tically incident one. In the low frequency range, vertically incident waves produce higher
rotations of the pile head than those that are obliquely incident. The cap displacements
were not as sensitive to the difference in the angle of incidence. The practical significance
of all such curves is that, by multiplying a given free-field design response spectrum with
the appropriate interaction curve, one may obtain a design response spectrum that can
be used as an input motion at the base of the structure on the pile foundation.

Haldar and Bose (1990) found that the dynamic soil distributed stiffnesses along the
pile in lateral vibrations of a floating finite pile are higher than those for an infinite pile
obtained by Baranov (1967). On the basis of the assumption that the vertical component
of the displacement vanishes for lateral vibration of piles in a uniform elastic soil medium,
this study indicated that soil stiffness does not vary significantly along the pile. The same
conclusion has been made both for the real and imaginary part of the impedance function.

Abendroth et al. (1989a, 1989b) have composed several design alternatives for pile
behavior. The alternatives included an equivalent-cantilever column based on horizontal
stiffness, maximum moment, or elastic buckling load, and finite element analysis.

Valsangkar and Pradhanang (1987) conducted an investigation of the effect of axial
force on the lateral response of end bearing piles, assuming a constant coefficient of sub-
grade reaction as is usually encountered in stiff cohesive soils under small displacements.
The results indicate that an axial force which is less than the critical Euler buckling load
has a negligible influence on natural frequency response, but it usually decreases the first
fundamental frequency. The findings indicated that the existing method of free vibration

analysis neglecting axial load is reasonably valid.
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Some dynamic soil reaction w:alues for plane-strain cases of rigid, massless, infinitely
long piles in elastic, homogeneous, and visco-elastic soil were given by Novak et al. (1978).
Nogami and Novak (1980) investigated the soil reaction on the basis of a continuum
model. They concluded that, at frequencies higher than the fundamental frequency of
the soil deposit (a0 > (1/2)(ro/k), where ro = pile radius, & = pile length = soil deposit
depth), the soil medium can be treated as uncoupled springs and dashpots distributed
along the length of the pile. At any particular frequency, such a treatment is more
favorable for stiffer piles and deeper soil deposits. The constants of these springs and
dashpots can be obtained from a cylindrical plane-strain condition and, therefore, they
are independent of the parameters of the pile.

A finite layer solution has been obtained by Lee and Small (1991a, 19916) for isotropic
and cross-anisotropic. horizontally layered elastic soil. The dynamic soil-reaction char-
acteristics of axially loaded single piles were studied by Kagawa (1991) to find simple
models for a beam-on-Winkler-foundation-type analysis of axially loaded single piles.

Finite element modeling has been applied to piles by many researchers (Kuhlemeyer
1976, Kuhlemeyer 19796, Kuhlemeyer 1979a, Blaney et al. 1976, Wolf & von Arx 1978.
Waas & Hartmann 1981, Sanchez-Salinero 1982. Faruque & Desai 1982, Mugtadir & Desai
1986, Sayegh & Tso 1988, Brown & Shie 1990, Brown & Shie 1991, Trochanis et al. 19915,
Trochanis et al. 19914, Brown & Shie 1991). Boundary element approaches have also been
developed (Banerjee 1978, Banerjee & Sen 1987). Ready to use charts and formulae have
been produced for homogeneous soils (Kuhlemeyer 1979q, Kuhlemeyer 19794, Roesset
1980, Dobry et al. 1982, Novak & El Sharnouby 1983). Thus, a considerable amount
of data on piles in linear, homogeneous media is available. Although some differences
in this data exist from the practical point of view, they agree reasonably well. It has
been found from nonlinear finite element analysis that pile-soil slippage is practically the
only source of nonlinear behavior and energy dissipation under axial loading, as yielding

occurs within a narrow region of soil surrounding the piles (Trochanis et al. 19915).
Much of the attention has been focused on the pile-head compler dynamic stiffness
(impedance function) because it has a strong influence on the response of pile supported
structures. The impedance functions are defined as amplitudes of harmonic forces (or
moments) that have to be applied to the pile head in order to generate a harmonic motion

with a unit amplitude in the specified direction, as is schematically depicted in Figure 1.4
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for the case of horizontal impedance. The complex stiffness can be expressed in any of

the following ways, i.e.
K =K + iK; = k + iwC [1.7]

in which K and K, are the real and imaginary parts of the complex stiffness, respectively,
and i = /=1 = complex operator, ¥ = K, = true stiffness, C = K 2/w = coefficient
of equivalent viscous damping, and w = circular frequency. All of the parameters in
Equation 1.7 depend on frequency or the dimensionless frequency ao = r, w /V, where
1, = pile radius and V, = soil shear wave velocity. An example of the horizontal impedance
of end-bearing piles is shown for two soil-pile stiffness ratios in Figure 1.5. In this figure,
V. is the primary wave velocity in the pile. L is the pile length, v is the Poisson’s ratio,
D is 23 where 3 is the soil material damping ratio, and 5 is the ratio of the soil specific
mass to pile specific mass. The depressions visible in Figure 1.3a practically disappear
for higher soil material damping.

Interesting features of the pile impedance follow from the theoretical solution indi-
cated in Figure 1.5. For example, pile-head dynamic stiffness varies little with frequency.
except for very heavy piles or very weak soils, in which case it diminishes with frequency
in a parabolic manner and can even become negative for endbearing piles vibrating be-
low the fundamental frequency of the soil layer. Also, the geometric damping is absent
because no progressive waves are generated in an elastic medium, leaving soil and pile ma-
terial damping as the only source of energy dissipation. Apart from this low frequency
region, a fully embedded slender pile, not supporting any additional mass, is usually
overdamped and consequently does not exhibit any marked resonance peak in dynamic
tests.

Single Piles in Nonhomogeneous Soil

Comparing experiments with theoretical predictions has repeatedly shown that if the
soil is assumed to be homogeneous, both pile stiffness and damping can be grossly overes-
timated (Novak & Grigg 1976, Novak & Sheta 1982). The reasons for the deficiencies of
the theory based on the assumption of soil homogeneity are local non-linearity and pile-
soil slippage, schematically depicted in F igures 1.6 and 1.7. Single piles under horizontal
loading, as in Figure 1.6, are particularly sensitive to these two factors. Observations of

this kind led to the development of approaches better suited for nonhomogeneous soils.
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A significant improvement in the finite element model was formulated by Roesset and his
co-workers (Blaney et al. 1976, Roesset & Angelides 1979), who placed the consistent,
frequency dependent boundary, derived by Kausel et al. (1975), directly to the pile or
outside the cylindrical finite element zone around the pile. This approach was then used
by-Krishnan et al. (1983) and Gazetas (1984) for extensive parametric studies.

Significant further progress was made by Kaynia (1982) and Kaynia and Kausel (1982,
1991) who based their solution of piles in generally layered media on the formulation of
displacement fields due to uniformly distributed forces on a cylindrical surface (so called
barrel load). Banerjee & Sen (1987) presented a boundary element solution for piles
embedded in a semi-infinite, nonhomogeneous soil in which the soil modulus, F,(z),
varies linearly with depth, =. Banerjee and Sen’s results suggest that, unlike in layered
soils, the frequency variations of the impedance functions. normalized by static stiffness.
are quite smooth and affected very little by nonhomogeneity. The actual magnitude of
the stiffness and damping diminishes with E (o), however.

Other methods suitable for linear, generally layered media are based on a semi-
analytical finite element approach. These methods treat the wave propagation in the
horizontal direction analytically and, in the vertical direction, a finite element ide-
alization including auxiliary sublayers are employed (Shimizu et al. 1977, Novak &
Nogami 1977, Takemiya & Yamada 1981, Waas & Hartmann 1981, Waas & Hartmann
1984, Mizuhata & Kusakabe 1984). The pile is modeled by beam elements.

A much simpler and more versatile solution, particularly well suited for high frequen-
cies, was formulated by Novak and Aboul Ella (1978a) who extended the plane strain
approach to include layered media and incorporated it in the code, PILAY. This code
was used later by Novak & El Sharnouby (1983) to generate design charts and tables for
parabolic soil profiles, as well as homogeneous ones. Roesset et al. (1986) also found the
plane-strain approach to work very well for high frequencies. For very low frequencies,
an adjustment to the plane-strain soil reaction was made for the vertical and horizontal
directions as discussed by Novak & El Sharnouby (1983) and implemented in the code,
PILAY. The plane-strain approach works well for high frequencies because in a layer,
elastic waves tend to propagate more horizontally as the frequency increases, as in a

wave guide.
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Figure 1.6 Schematic diagram of pile separation and soil modulus reduction towards
ground surface. The overall effect is to reduce the resistance to horizontal movements.
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(After Novak 1991)
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While the consideration of a free separation length in the analysis may produce the
reduction in both pile stiffness and damping often observed in experiments, a better
measure of this effect, or a complementary one, may be to account for soil nonhomogeneity
in the radial direction. A simple way of doing this is to assume a weak, cylindri.cal
boundary zone around the pile, as shown in Figure 1.7. The zone is homogeneous and
features a soil shear modulus, G;, smaller than that of the outer zone, and greater material
damping. The purpose of such a zone is to account in a very approximate way for soil
nonlinearity in the region of the highest stresses, pile separation, slippage, and other
deficiencies of the pile-soil interface. Such a zone was proposed by Novak & El Sharnouby
(1983). In their plane-strain solution, the mass of the boundary zone was neglected in
order to prevent wave reflections from the fictitious interface between the cylindrical zone
and the outer region. These reflections occur with non-zero weak zone mass, and result
in undesirable undulations in both stiffness and damping of the composite medium. The
difficulty with wave reflections can be avoided by providing for a continuous transition of
stresses from the inner zone to the outer region. Such a solution has been explored by the
researchers (Lakshmanan & Minai 1981, Dotson & Veletsos 1990, Mizuhata & Kusakabe
1984). The latter authors found that even with the weak zone, the experimental resonance
amplitude measured on a 43.2m long pile was five times larger than the theoretical value
while the resonance frequency was predicted quite well. This is consistent with other
observations and indicative of the need to account for pile separation.

Wolf & Weber (1986) conducted a more rigorous study of the effect of soil tension
exclusion, also assuming the circular cavity in the unbounded thin layer to be plane
strain. They found that soil separation hardly affects horizontal stiffness, K}, but reduces
damping, C by more than fifty per cent, a result quite similar to that of Novak & Sheta
(1980). In addition, if shear is eliminated and, hence, slipping is allowed in the zone of
contact, stiffness is also strongly reduced. Many other authors have studied the interface
behavior (Mamoon 1990, He 1990). '

Recognizing the separation effect and allowing for it in an approximate way, a rea-
sonable agreement between the theoretical results and experiments can be obtained.
This is exemplified in Figure 1.8, comparing the theoretical and experimental responses
of a concrete pile 7.5m in length and 0.32m in diameter. The soil was multi-layered

and a cylindrical weak zone was assumed when calculating the responses using the code
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Figure 1.7 Cylindrical boundary around a single pile. Weak zone with lower shear
modulus is next to the pile representing soil nonlinearity in a approximate way. (After
Novak 1991)
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DYNAS3. In this code, the weak zone is analyzed as massless, but its mass is added

to that of the pile in full or in part. Similar tests and comparisons were reported (Gle
1981, Woods 1984).

Nonlinear Response of Single piles

The theories discussed earlier are essentially linear and quite adequate for small dis-
placements. At large displacements, piles behave in a nonlinear fashion because of soil
nonlinearity at high strain, gapping, slippage, and friction. To incorporate these fac-
tors in a continuum theory is extremely difficult and, therefore, lumped mass models
are most often used when nonlinear analysis is required. Such models, employed by
Penzien (1970), Matlock et al. (1978), Matlock & Foo (1980) and a number of authors,
feature nonlinear springs, nonlinear dampers, gaps. and coulomb friction blocks. The
combination of these elements makes it possible to generate a variety of nonlinear force
displacement relationships. An example of a lumped mass model formulated by Penzien
(1970), is shown in Figure 1.9. Models of this type are very versatile, but it is difficult
to relate the characteristics of the discrete elements to standard geotechnical parameters
of soil. To overcome this difficulty, various nonlinear soil resistance-deflection relation-
ships, known as p-y curves for lateral response and ¢-= curves for axial response, have
been recommended in the literature. For applications in offshore structures, the Ameri-
can Petroleum Institute (1986) specifies the Py curves for clay as well as sand, for both
static and cyclic loading. Extensive data on Py curves and nonlinear pile response were
obtained by Yan (1990), using model piles and the hydraulic gradient similitude method
to reproduce the prototype conditions.

Cyclic loading is defined as repetitive loading with very low frequency so that no
significant inertial forces and radiation damping arise. It provides basic insight into the
material degradation due to soil plasticity and mechanical degradation due to gapping
associated with large displacements. Many studies have been devoted to this type of
loading, but only a few may be mentioned here. Trochanis et al. (1988) found theo-
retically a dramatic decrease in pile stiffness due to gapping. Morrison & Reese (1988)
conducted an extensive full scale investigation of piles and pile groups. Summarizing
their observations, Swane & Poulos (1982) postulated that, during cyclic lateral load-
ing, the two forms of degradation lead to an increase in the pile deflection and bending

stresses. However, if this degradation stabilizes, the pile is said to “shakedown” to a

34



=a

]

l.ed
1.3 4 Thes
2 Experiment
LRy 8.t (kgmm)
: 1.4 <+ 96
3 *? o In
: 0.8 4
< 0.7 x 253
& 0.6
- 0.5
-
13
(-]
~
T
K-3

Figure 1.8 Theoretical and experimental horizontal response of concrete pile for three
levels of harmonic excitation. Close agreement was found using a weak zone. (After El
Marasafawai et al. 1990)
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Figure 1.9 Nonlinear lumped mass model of pile. (After Penzien 1970)
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state of permanent strains and residual stresses and it will react elastically to any further
cyclic loading of the same intensity. When the pile does not stabilize into an elastic or
inelastic response, the pile deflection continues to increase and incremental collapse may
result. The two situations are depicted in Figure 1.11. The shakedown phenomenon is
favorable from the point of view of the applicability of the various linear theories for
dynamic response analysis. It explains why, with adequate adjustments, pa.rticﬁlarly for
pile separation, such theories may give reasonable results, even in cases where overall

strong nonlinearity of the response is clearly manifested.

WW i
=

ererrarsa Conapse

Figure 1.11 Pile stabilization (shakedown) and incremental collapse under cyclic
loading with constant amplitude. (After Swane and Poulos 1982)

The nonlinear pile stiffness characteristics were investigated for both horizontal and
vertical dynamic response by Angelides & Roesset (1980) using toroidal finite elementsin
the region surrounding the soil and the consistent boundary matrix. Even neglecting slip-
page and gapping, they demonstrated the dramatic reduction in pile horizontal stiffness
and equivalent damping with increasing pile force. The p-y curves, also used for compar-
ison, gave lower stiffness values because they accounted for gapping and a high number
of load cycles, N, while only 10 load cycles were applied by Angelides and Roesset. The
effect of a stable gap on soil resistance to pile steady state vibration is schematically

depicted in Figure 1.12. The reduction of the equivalent linear stiffness and the necking
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of the loop are evident. Progressive degradation occurs under incrementally increasing
loads when the hysteresis loops exhibit different shapes for sand and clays. In clay, the
gap may expand with each cycle, giving rise to the characteristic elongated loops with

reduced radiation damping.

Time Domain Analysis

The procedures for the frequency domain dynamic analysis of pile foundations are
well developed. Transient analysis of pile foundations, however, has received very lit-
tle attention, although many real dynamic and/or seismic responses involve transient
motions. Moreover, unless a solution in the time domain is developed, the nonlineari-
ties involved can not be modeled. Analytical approaches for laterally loaded piles have
developed in two separate directions. The first of these retains the conceptual model
of treating the soil restraint as discrete springs, as shown in Figure 1.9. The model is
improved by allowing the spring stiffness to vary along the length of the pile (Reese &
Matlock 1956) and, subsequently, by replacing the linear springs by nonlinear p-y curves
(Matlock 1970, Reese et al. 1975, Reese & Sullivan 1984). The limitations of this ap-
proach are twofold. First, difficulties exist in choosing appropriate p-y curves for a given
combination of pile size and soil type. Second. the replacement of the soil continuum
by discrete springs precludes the extension of the analysis to pile groups, since interac-
tion between neighboring piles may not be taken into account. The second approach
is to use the boundary element formulation. The first general three dimensional time
domain direct boundary element formulation for transient dynamic analysis was given
by Banerjee & Ahmed (1983) and Banerjee et al. (1986). The use of constant tempo-
ral variation was published by Ahmad & Banerjee (1988) for general three dimensional
transient elasto-dynamic analysis, which was transformed to the axisymmetric case by
Wang (1989) and Wang & Banerjee (1990). Mamoon & Banerjee (1992) adopted an
efficient, but approximate, hybrid boundary element technique to model single elastic
piles in elastic half-space for time domain analysis.

Few attempts have been made to develop the transient analysis of pile foundations,
principally because of the formidable computing requirements. Nogami and Konagai
(1986, 1987, 1988) and (Mitwally & Novak 1988) were the first to present approximate
procedures for axial and flexural dynamic analyses of piles. Under axial vibration, much

of the nonlinearity that is observed is due to slip and friction. It was extended to allow
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Figure 1.12 Schematic of (a) Pile under steady-state vibration in stable gap. and (b)
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1991)
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for nonlinear analysis (Nogami et al. 1992). Numerous assumptions and approximations were
adopted in their approach to facilitate the development of a simple practical method of
calculation. Rather significant ones involved the formulation of the soil-pile interaction force
and the solution of the governing equation of pile motion. Adopting Winkler's hypothesis, the
soil response to the pile motion was formulated through a simplified mechanical model based
on Winkler's assumption, the parameters of which were determined from the consideration of
plane-strain wave propagation. One of the advantages of these models is that their properties
are specified in terms of standard geotechnical parameters.

1.3.3.2 Pile Groups

Piles are usually used in groups. If they are not very widely spaced, they interact with
each other, generating phenomena known as pile-soil-pile interaction, or group effects. These
effects have attracted much interest in recent years (Kaynia 1982, Ostadan 1983, Mamoon
1990, Hassini 1990). The effect of a pile group on foundation stiffness and damping is
illustrated in Figure 1.13.

Linear Behavior of Pile Groups

Under static loads, pile interaction increases group settlement, redistributes the loads on
individual piles, and reduces bearing capacity unless this reduction is counteracted by
densification of the soil within the group due to pile driving. The first suggestion regarding
these effects can probably be attributed to Sooysmith (1896). The investigation of static
group effects was put on a rational basis, relying in continuum mechanics, by Poulos (1971,
1979) and Butterfield & Banerjee (1971). Extensive data on static group effects are available
in many works (Poulos & Davis 1980, Butterfield & Douglas 1981, El Sharnouby & Novak
1985, El Sharnouby & Novak 1986, El Sharnouby & Novak 1990). The static data are useful,
even to those interested in dynamics, because at low frequencies, and particularly below the
fundamental frequency of a stratum, the dynamic stiffness is usually quite close to the static
stiffness.

The techniques employed for dynamic pile-groups are extensions of the approaches
used for single piles and most of them are limited to linear interaction. The methods
rely on the availability of a Green's function, with which the load transfer from the
pile surface to soil can be calculated. These loading conditions include point loads, line
loads, ring loads, disk loads, and cylindrical (barrel) loads. Applying this loading to
individual segments into which the pile is discretized, the soil dynamic displacement field
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is established, yielding the soil dynamic flexibility matrix. The soil stiffness matrix is
then obtained by inverting the dynamic flexibility matrix. In this process, the presence
of the pile cavities outside the loaded segment is usually ignored, which implies that wave
scattering among the piles is not accounted for and the soil displacements are calculated
either for the pile axes or as an average of the circumferential values. Then the soil
stiffness matrix is combined with the pile structural stiffness matrix and the soil-pile
system can be analyzed for any type of excitation. Different authors have proposed
various refinements or implications to this procedure.

The first theoretical analysis of pile-soil-pile interaction was conducted by Wolf &
von Arx (1978) who employed an axisymmetric finite element formulation to establish
the dynamic displacement fields due to ring loads. Waas and Hartmann (1981. 1984)
formulated an efficient semi-analytical method which uses ring loads and is well suited
for thin lavered media, properly accounting for the far field: Kaynia (1932, 1982) and
Kaynia and Kausel (1982. 1991) improved the accuracy by combining the cylindrical loads
as a boundary element formulation with the consistent stiffness matrix of lavered media to
account for the far-field. The thin layer method was used by many researchers (Shimizu et
al. 1977). Boundary element solutions, employing Green’s function for generally layered
media, were formulated (Banerjee & Sen 1987, Banerjee et al. 1987, Mamoon et al.
1988, Mamoon 1990, Mamoon & Ahmed 1990, Mamoon & Banerjee 1990). Simpler
solutions based on the dynamic Winkler medium were developed (Nogami 1980, Nogami
1985, Sheta & Novak 1982). The advantage of the latter approach is that it makes it
possible to include the weak zone (Sheta & Novak 1982) and nonlinearity (Nogami et al.
1992).

Basic Features of Dynamic Group Effects

The main features of dynamic group effects have emerged from the theoretical solu-
tions. For example, both stiffness and damping are strongly frequency dependent, and
they can be either reduced or increased due to pile-soil-pile interaction. Their values,
as a function of frequency, may exhibit very sharp peaks and they are affected even
for very large pile spacing. Some of these features can be observed in the example of
a 4 x 4 group whose normalized dynamic stiffness is displayed for different spacings in
Figure 1.13. The normalization is done using the product (number of piles x single pile

stiffness), and it yields a ratio expressing group efficiency. As can be seen in Figure 1.13,
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the group properties and their variation in frequency depend strongly on the spacing ratio,
s/d. This is so because pile interaction depends on the ratio of the wave length to spacing. A
group solution including the weak zone around the piles dulls the peaks but does not
eliminate them. On the other hand, soil nonhomogeneity can make the peaks either more
pronounced, or duller (Gazetas & Makris 1991), depending on conditions such as frequency
and spacing.

Makris & Gazetas (1992) proposed a simplified procedure for estimating the dynamic
interaction between two vertical piles subjected to both inertia and kinematic loading. It is
shown that for a homogeneous stratum, pile-soil-pile interaction effects are far more
sign)ficant for inertial than for kinematic loading. Makris & Gazetas (1991) demonstrated that
the dynamic group efficiency with increasing soil nonhomogeneity tends to reduce the
respective resonant peaks and leads to an interaction function for axial vibration.
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Figure 1.13 Normalized dynamic stiffness and damping of 4 x 4 pile group for different ratios
of spacing to diameter, s/d. (After Kaynia and Kausel 1982; Ld = 15, E/E, = 1000,

pdp,=0.7).

Fan et al. (1991) considered pile-soil and pile-soil-pile interaction for vertically prop-
agating, harmonic S-waves. It was shown that, under kinematic interaction, the effects
of the pile group configuration, number of piles in a group, and relative spacing between
piles are usually insignificant for lateral displacement but quite important for pile cap
rotation, which determines “effective" seismic input motion. A more general formulation
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Figure 1.14 Vertical response of 2 x 2 group of closely spaced piles: theory vs.
experiment. (After Sheta and Novak 1982; L = 3.4m, d = 60.3mm)
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Figure 1.15 Theoretical and experimental lateral response in the Y-direction for a
group of six concrete piles. (After El Marsafawi et al. 1990; L = 7.5m, d = 0.32m)
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has been presented by Kaynia & Kausel (1991) for the dynamic response analysis of piles
and pile groups in a layered elastic half-space. In their investigation, Green’s function
for layered media was evaluated numerically by the application of an integral transform
technique. Toki et al. (1991) studied nonlinear seismic soil-pile interaction with a hybrid
procedure that used a pseudo-dynamic testing (PDT) method which was modified to
account for frequency dependence. Kaynia & Kausel (1991) investigated the effects of
pile to cap fixity and pile spacings on the kinematic interaction of pile foundations. They
concluded that, under vertically incident SH waves, pile groups closely follow the ground
motion. The increasing angle of incidence reduces the horizontal motion, but increases
torsional group response. Rayleigh waves and SV waves with angles between 30 and 60
degrees produce large rocking motions in pile groups.

Chow & Teh (1991) analyzed the behavior of vertically loaded pile groups. embedded
in a homogeneous soil with the pile cap in contact with the ground. The load carried by
the cap is significantly affected by the distribution of the soil’s Young’s Modulus. Pressley
& Poulos (1986) analyzed pile groups for simplified conditions for the load and the struc-
ture. Mugqtadir & Desai (1986) analyzed piles and pile groups using three-dimensional
finite element analysis for nonlinear-elastic and elastic-plastic hardening behavior of soil.
Nogami (1985) presented a simple approach to analyze the flexural vibration of grouped
piles using a pile-head flexibility matrix of grouped piles in layered elastic soil. He used
plane-strain stiffness as the Winkler spring. EIl Sharnouby & Novak (19835) presented
a simple method for the analysis of large pile groups for the static and low frequency
vibration cases. In their analysis, they took the static stiffness and proportional damp-
ing for stiffness and damping constants, even for interaction. They also used the static
interaction factor obtained by Selby & Arta (1991) conducted a finite element analysis of
piles and pile groups. They observed the stiffness and the redistribution of pile moments
due to nonlinear effects. Blaney & O’Neill (1991) suggested a field testing procedure of
slow cyclic load tests and plucking tests of a single pile and integrated these test results
with a simplified SDOF analysis to produce response functions for the dynamic design
of pile groups.

.Trbojevic et al. (1981) presented a simple procedure for conducting dynamic analyses
of dense pile groups based on the complex response method in the frequency domain. The

soil was treated as a linear visco-elastic material with hysteretic damping. El Marsafawi
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et al. (1992a, 1992b) compared t}:e response of two-pile groups obtained from dynamic ex-
periments and those obtained by theoretical analyses. They concluded that the vibration
of the pile groups displays moderate nonlinearity even for small displacement amplitudes
(0.01d). The linear theory, combined with soil properties derived from shear wave ve-
locity measurements, gives reasonable estimates of single-pile and pile group stiffness for
small displacement amplitudes. The damping may be grossly overestimated unless some
corrections are made for separation and other deficiencies. The prediction of group re-
sponse is better than that of the single pile since it is less dependent on the soil properties
of the topmost layer. Chow (1987) investigated axial and lateral response of pile groups
embedded in nonhomogeneous nonlinear soil using the finite element procedure. Otta-
viani (1975) used the finite element method to study the behavior of vertically loaded
single piles and pile groups in a homogeneous linear elastic medium. A few observations
on nonlinear analysis will be made later herein.

With the pile-soil-pile interaction theories being so complex, it is of importance to
examine how the theories perform when compared with experiments. Figure 1.14 shows
one such comparison based on a group of four closely spaced model piles. tested in the field
and evaluated using plane-strain theory for soil reactions with a weak zone. The response
was also evaluated both with interaction ignored and assuming static interaction. Both
of these assumptions proved to be inadequate. The dvnamic interaction theory gives far
better results. On a test group of 102 small scale model piles, encouraging results were
obtained (Novak & El Sharnouby 1984). For six full scale piles, accurate results were
also obtained, but the weak zone and separation had to be included for a satisfactory
match. Successful experiments, conducted on a group of 36 full scale piles were reported
by Masuda et al. (1986). Kobori et al. (1991) also found the theory to be of sufficient
applicability. Thus, it may be concluded that the linear theory works quite well as long
as the experiments do not deviate too much from the theoretical assumptions. Often,
however, a correction for separation, gapping, and nonlinearity is needed, at least in the

form of the weak zone and a pile free length.

Interaction Factors
For the pile group analyses discussed earlier, the computing requirements were quite
severe, particularly for larger groups. Therefore, Kaynia & Kausel (1982) formulated the

concept of the dynamic interaction factor as an extension of the static interaction factor
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approach. In this approach, interaction is considered between only two piles at a time,
and the group properties are obtained by superposition. Dynamic interaction factors are
dimensionless, frequency dependent complex numbers, defined as

_ Dynamic displacement of pile j

i = " Static displacement of pile i [1.8]

in which the displacement of pile j is caused by a unit harmonic load on pile i, and the
static displacement of pile i is established for an isolated pile. The displacement is ei-
ther translation or rotation. Examples of the real and imaginary parts of the interaction
factors, calculated using the Kaynia & Kausel (1982) method, are plotted for homoge-
neous soil in Figure 1.16. The interaction factors are oscillatory in character, i.e. their
magnitudes become negative as well as positive. A negative value of the imaginary part
indicates a possible increase in group damping, characterized by group efficiency greater
than unity. For a limited selection of parameters, a complete set of interaction factors is
available for floating piles in homogeneous soil (Kaynia & Kausel 1982). and for vertical

vibration in soil with linearly increasing modulus with depth (Banerjee et al. 1987).
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Figure 1.16 Vertical dynamic interaction factor for various dimensionless spacings and
frequencies. (After Kaynia and Kausel 1982)
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The interaction factors can be expressed in terms of amplitude, a, and phase angle,
9, l.e.
a0 =0 + ai = |of € 1.9

As an example, the interaction factors from Figure 1.16 are presented in this form in Fig-
ure 1.17. This latter form makes interpolation of interaction factors easy for intermediate

pile spacing.
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Figure 1.17 Vertical dynamic interaction factors in terms of amplitude and phase.
(After Novak 1991)

Correcting the available interaction factors for pile length, endbearing, and other
effects, a very efficient but approximate procedure for group analysis is obtained. For

example, the vertical or horizontal dynamic stiffness of a group with a rigid cap becomes

K¢ = K ZZ €; [1.10]

& = [o]! [1.11]

in which K is the static stiffness of a single pile and ¢;; are the elements of the inverted
matrix [a]. For all the vibration modes, the corresponding formulas are given by Novak
& Mitwally (1990).
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The interaction factor approach would be mathematically accurate if the interaction
factors as well as the single pile properties were calculated with all piles present in
the system, which is not normally done. However, the results may be adequate for
most applications. Kaynia & Kausel (1982) found that the accuracy of the interaction
factor approach is quite sufficient for a homogeneous medium. For a nonhomogeneous
medium, they observed that the approach is less accurate. The interaction effects may
be overestimated in the static vertical response of endbearing pile-groups (El Sharnouby
& Novak 1985).

A remarkably simple approximate method for dynamic interaction factor evaluation
was proposed by Dobry & Gazetas (1988), and extended for non-homogeneous soils
(Gazetas et al. 1991). For homogeneous soils, these authors assumed that the displace-
ment field around the vibrating pile and, thus also, the displacement of the neighboring
pile (the interaction factor), were governed by the law of cylindrical wave propagation.
Then, the vertical interaction factor is simply

o = (2) (8} ) L1

where 3 is the soil hysteretic damping ratio. In their comparisons with the more rigorous
solutions for floating piles, the authors obtained a very reasonable, although not quite

perfect, agreement.

Nonlinear Analysis of Pile Groups

Nonlinear dynamic analysis of pile groups has received much less attention than linear
analysis. Nogami & Konagai (1987) developed a group analysis method assuming that,
in the vertical vibration response, nonlinearity stems mainly from slippage at the soil pile
interface. They represented the soil using a dynamic Winkler model. They found that
this nonlinearity reduces the wave interference effects, making the stiffness less frequency
dependent, and produces residual skin friction and residual axial force in the pile under
transient loading. Then, Nogami and Konagai (1988, 1992) extended the concept of the
dynamic Winkler medium further to include horizontal response, slippage, gapping, and
inelastic soil behavior to be able to generate a variety of degrading hysteresis loops.

In most analyses, it is observed that under large displacements, most of the action
occurs right around the pile and, consequently, pile-soil-pile interaction is not very sig-

nificant. Some insight into this observation can be obtained from static experiments.
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Figure 1.18 show the results of field tests conducted on free-headed test steel pipe piles
of 0.1016m in outer diameter and 3.05m in length. The soil was mainly stratified silty
sand to silty gravel. Figure 1.18 shows that the interaction factor diminishes with increas-
ing deflection, dropping to about one half of the original value at a deflection of about 3.5
percent of the diameter. This reduction varies with spacing and the angle of incidence.
If the pile is unloaded and reloaded, the interaction factors for small displacements be-
come much smaller than the original ones, due to gaps generated by the preceding large
displacements, and then its values asymptotically approach those from the first loading.
It can be concluded that under large displacements, pile-soil-pile interaction is reduced

but not eliminated.
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Figure 1.18 Horizontal static interaction factors for first loading and reloading (After
Janes and Novak 1989)

1.3.3.3 Other Factors Affecting Pile Behavior

Among other factors that affect pile response, the important ones are pile batter, soil-
pile-cap interaction, and soil liquefaction. Those are briefly discussed in the following

sub-sections.

Pile Batter
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Pile batter is often used to increase the horizontal stiffness of the group. For machine
foundations and other structures, this is sometimes useful. However, under earthquake
loading, pile batter may not always be beneficial, because it restricts the pile’s ability
to sway and yield, resulting in greater seismic forces and possible damage to the piles
and the cap. Little information is available on the dynamic effects of the batter. As a
very approximate practical approach, the pile can be analyzed first as if it were vertical,
and the stiffness matrix obtained in this way can be taken as valid for the inclined
element coordinates. Then, this matrix can be transformed into global coordinates, being
horizontal and vertical, to give the battered pile stiffness matrix in these coordinates.
More details on this are given by Novak (1980). For static conditions, Poulos (1980)
employed a similar technique. He recommended the evaluation of interaction between
two vertical piles whose distance is equal to the separation measured on the inclined piles
at L/3 from the top.

One of the few dynamic solutions of pile groups with batter was produced by Mamoon
(1990) using an approximate analytical formulation, denoted as method I where the soil
domain is modeled as an elastic half-space. An example of Mamoon’s result is shown in
Figure 1.19, comparing the normalized vertical stiffness (real part) of a 3 x 3 group of
vertical piles with that of a similar group featuring piles with a 15 degree batter in one
plane. (Notice that the vertical scale is not the same for both cases.) Kaynia's solution
of the vertical group is displayed for comparison. The comparison of cases (a) and (b)
suggests that for the separation s/d = 5 and higher frequencies, the inclination of the
piles causes a significant reduction in the real part of the impedance. For the peak, this
reduction is about 43 percent. Also a slight shift in the peak can be noticed. The batter

effect results in an increase in the imaginary parts of the impedances.

Soil-Pile-Cap Interaction

In most situations, piles have caps, and soil-pile-cap interaction may occur. The cap
influence depends not only on the size and embedment of the cap, but also on the quality
of its contact with the soil. Considering the behavior of actual soils under static and
dynamic loading, it may be speculated that this contact will be well maintained in stiff
clays and dense sands; but in loose to moderately dense sands, the cap base may separate
from the soil, and, in soft clays, the contact in the cap base as well as the cap sides can

be lost. Finally, the separation of the base is more likely for endbearing piles.
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Figure 1.19 Real part of vertical impedance of a 3 x 3 group for (a) vertical piles, (b)
piles with 15 degree inclination (L/d = 15, E,/E, =1000, p,/p, =0.7) (After Mamoon
1990)
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The few dynamic analyses that have been reported invariably presume full contact
and perfect elasticity and, thus, their results should be applied with some allowance for
the actual soil behavior. Banerjee & Sen (1987) observed a rather small effect of the
cap on the vertical impedances of single piles and groups of two and four floating-piles,
respectively. This is a valid conclusion for the stiff piles that they analyzed (E,/E;, =
10,000). For more flexible piles, the cap may cause a more significant increase in pile
impedances, as can be deduced from static analysis (Figure 1.20).

An extensive theoretical study of dynamic cap effects was conducted by Mamoon
(1990). He included cap inertia in his analysis, but ignored the shear stresses in the
mat base, even for the horizontal response. The principal observation is that, for some
conditions, cap inertia can reduce or eliminate the sharp peaks in the impedances, typical

for pile groups without caps.

Effects of Soil Liquefaction on Pile Behavior

Piles are often used in loose saturated sands and silts. If such deposits liquefy due to
increased pore water pressure during an earthquake, the piles lose much of their lateral
and vertical support which can result in a substantial increase in bending moments,
loss of stability, and failure. Damage of this type occurred in the Niigata and Alaska
earthquakes of 1964 and elsewhere.

Only a relatively few studies have been devoted to this important subject (Seed &
Idriss 1969a, Zienkiewicz et al. 1978, Finn et al. 1970, Finn et al. 1971, Zienkiewicz et al.
1991, Nomura et al. 1991, Kagawa 1992).

Kagawa (1992) presented a theoretical study of pile behavior during liquefaction.
The potential significance of the impact of liquefaction on the dynamic response of pile
foundations has been studied by Kagawa (1992) through a numerical study. Results
of this study demonstrated that, due to liquefaction, the pile-head acceleration may
be amplified or it may be attenuated, pile-head displacement and pile moment will be
greatly amplified in most cases, and the depth at which the maximum pile moment occurs

increases significantly.

1.3.3.4 Soil-Pile-Structure Interaction

Once the properties of the pile foundations are established, they can be incorporated

into the examination of pile structure interaction just as with other types of foundations.
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Figure 1.20 A cap increases the static stiffness for short piles. (K} Ko = stiffness with
and without cap; d; do = dia. of pile and cap, v = 0.5, E,/E, = 1000) (After Liu and
Novak 1990)
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A number of studies have been devoted to this subject. As there is a difference between
direct excitation of the structure by external loads and excitation by seismic motions of

the ground, these two cases are discussed separately in this thesis.

Pile-Structure Interaction Under External Loads

Typical examples of direct external loads are Figure 2.3. The near-field element in
the unbalanced forces acting on machine foundations, wind forces on buildings, wave
forces on offshore towers, and inertial loading from support movement due to earthquake
excitation. In such cases the pile foundation impedance can be superimposed on the
structural system matrices to give the governing equations of the pile-structure system

in the standard form, i.e.
[M]{a} + [C]{a} + [K]{u} = {P(t)} (1.13]

in which [M], [C], and [K] are the mass, damping, and stiffness matrices incorporat-
ing the structure and foundation properties. and, in some cases, other factors such as
hydrodynamic effects, aerodynamic damping properties etc.; {u} and {P(¢)} are the dis-
placement and loading vectors, respectively. Dynamic pile-soil-pile interaction reduces
the resonance frequencies only slightly. However, it provides damping which attenuates

the peak response (Novak 1991).

Pile-Soil-Pile Interaction Under Seismic Loading

The evaluation of soil-pile-structure interaction is needed to establish the forces ex-
pected to act on the structure and the piles in a seismic event. Such studies can be done
experimentally or theoretically. Experimental investigations are most often conducted on
models using shaking table tests, less often in a centrifuge. The tests require careful scal-
ing and a special design of the test bin boundaries which are to prevent wave reflections
(the box effect). Shaking table tests of pile supported structures have been reported,
e.g., Mizuno et al. (1984) and Nomura et al. (1991), pile scaling has been examined by
Kana et al. (1986); and the modeling of the free-field conditions in centrifuge tests has
been investigated by Cheney et al. (1990).

For design purposes, the theoretical analysis of pile structure interaction is more
practical and it is conducted much more often. Adequate for routine designs, a simple
procedure is based on substructuring and the following assumptions: the input ground

motion is given for the pile heads and it is not affected by the presence of the piles and
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their cap; soil-pile interaction a.na]ysis is conducted separately to yield the pile foundation
impedances; and the seismic response is obtained from Equation 1.13 using standard
analysis, even response spectra. For shear buildings, all the matrices in Equation 1.13
may be rearranged to take the form that is common to shallow foundations. This typé of
analysis, known as inertial interaction analysis, usually indicates that the pile foundation
flexibility and dissipative properties result in the reduction of the seismic forces as well
as the base shear and an increase in the building response, just as in the case of shallow
foundations (Novak & El Hifnawy 1984).

The assumption of the input ground motion not being affected by the presence of
the piles is based on the idea that the dominant seismic wave lengths are much larger
than the pile diameter and, given the bending flexibility of slender piles, the piles will
follow the horizontal motion of the ground. A more comprehensive examination of these
assumptions involves consideration of the wave scattering effect, known as kinematic in-
teraction. A few researchers have examined this phenomenon. Gazetas (1984) conducted
an extensive parametric study of the response of single endbearing piles exposed to har-
monic shear waves propagating upward from the bedrock. He defined the kinematic

interaction factors as

I, = up/ug [1.14]
I, = ¢,r0/ug [1.13]

in which u, and u, are the absolute values of the horizontal displacements, relative to
the bedrock, of the embedded pile head and the ground surface motion in the absence of
piles, respectively, and ¢, is the absolute value of pile head rotation. The magnitude of
I, depends on the soil profile, the stiffness ratio, E,/E,, the slenderness ratio, L/d, and
the frequency ratio, f/f1; where f = wave frequency and f, = fundamental horizontal
frequency of the soil layer. For a parabolic soil profile, f; equals 0.56(V,/L). When
there is no kinematic interaction, I, = 1. Synthesizing his numerical results, Gazetas
found it possible to express the kinematic interaction factors for each soil profile in terms
of a dimensionless frequency parameter. For the parabolic soil profile, this parameter

becomes

Fg = (f/fi) (Ep/E))*'® (d/L)*. [1.16]
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In terms of this parameter, the kinematic interaction factor for translation assumes the
form plotted in Figure 1.21. As can be seen, for small f/f;, E,/E,. and d/L, the
kinematic interaction factor is close to unity; for large values of these ratios, it drops to
about 0.5. This suggests that the kinematic interaction is either negligible or is on the
conservative side. Only for the homogeneous soil profile, a slight amplification of I, may
occur at low frequencies. The effect of the angle of incidence was examined by Mamoon
and his group (Mamoon & Ahmed 1990, Mamoon 1990).
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Figure 1.21 Kinematic interaction factor for parabolic soil profile as a function of
dimensionless frequency parameter, Fg. [(E, = E;(z = d)) (After Gazetas 1984)]

For pile groups, kinematic interaction may be more significant. Waas & Hartmann
(1984) examined a single pile and a large group of 356 piles and concluded that, while a
single pile follows the earthquake motion of soil with little deviation, a large group of stiff
piles in soft soil shows a response s;igniﬁcantly different from the free-field motion. Signif-
icant kinematic interaction effects were also observed for a similar pile groﬁp by Wolf &
von Arx (1982) who considered horizontally traveling waves. Thus, for important projects
such as nuclear power plants, a complete analysis including kinematic interaction may be
desirable. Such a complete response analysis of a pile-supported structure, in which the
kinematic interaction is evaluated beforehand to give the ground motion for the inertial

interaction calculation is schematically indicated in Figure 1.22 with M representing the
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mass of the structure and aq representing input bedrock acceleration. Analysis of this
type has been conducted Waas & Hartmann (1984), Hadjian et al. (1990) and Kobori et
al. (1991).

L
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Figure 1.22 Schematic of seismic response analysis including kinematic interaction
(After Novak 1991)

The two step response analysis shown in Figure 1.22 indicates that pile stress comes
from two sources, i.e. pile deflection due to ground motion and inertial interaction. One
limitation of the accuracy of most kinematic interaction studies is that they assume soil
linearity. It is well known that for strong earthquakes, linear site response analysis can
yield unrealistic displacements and stresses.

One more complication may occur if the piles are not adequately connected to the
cap or if this connection fails in a severe earthquake. Then the cap may uplift, modifying
the seismic forces on the structure, substantially increasing the forces on the peripheral
piles that maintain the connections. These piles can become overloaded and may fail.
Uplift of the tip of an endbearing pile, which was not socketed, from the bearing stratum

may have similar but less severe results. More data on the uplift effects are reported by

El Hifnawy & Novak (1986).
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1.3.3.5 Mechanical Behavior of/Soil

Accurate modeling of boundary value problems of soil-structure interaction using
numerical (finite element) procedures requires a detailed knowledge of the constitutive
behavior of the soil. A comprehensive general stress-strain relation for soils would be
very complex simply because of the large number of parameters that affect the behavior
of soil.

The whole problem of the behavior of soil structures is dependent on the soil skeleton-
pore water pressure interaction. In the classical work of Biot (1941), the governing equa-
tions for such phenomena were first formulated, but further development was needed
to provide full forms suitable for non-linear finite element analysis (Zienkiewicz & Sh-
iomi 1984, Zienkiewicz 19834, Zienkiewicz 19855). But the soil-skeleton and pore-water
interaction is too complicated to consider in the current work. and this interaction is

neglected.

Constitutive Models

A number of constitutive models for soils have been published and evaluated. and
they are well established in the geotechnical engineering community (Chen & Saleeb
1982, Chen & Baladi 1985, Chen & Han 1988, Lubliner 1990). Classical plasticity models
(Drucker et al. 1957, Schofield & Wroth 1968, Roscoe & Burland 1968) can reproduce
basic trends of soil under monotonic loading, but they fail when applied to more complex
situations. Modified plasticity theories are able to eliminate most of these difficulties
(Dafalias & Herrmann 1982, Hirai 1987, Zienkiewicz et al. 1991). Among the models.
the cap plasticity model has been used widely in recent years in finite element analysis
programs for a number of geotechnical engineering applications (DiMaggio & Sandlar
1971, Sandler et al. 1976, Sandler & Rubin 1979, Chen & McCarron 1983, Daddazio
et al. 1987, McCarron & Chen 1987, Simo et al. 1988, Hofstetter et al. 1993). From
a theoretical point of view, the cap model is particularly appropriate to soil behavior,
because it is capable of treating the conditions of stress history, stress path dependency,
dilatancy, and the effect of the intermediate principal stress.

In this research, a simple, isotropic, generalized cap model with an elliptic cap and
without strain softening has been used. Considering the importance of this model, it,

along with the determination of its parameters, is described in Appendix D.

58



-

Shear Modulus and Damping of soil
The shear modulus and damping in soils are important to the analysis of all soil
vibration problems. In particular, the modulus and damping for small strain amplitude

are necessary for the analysis of foundation vibrations. For the analysis of earthquake

_effects, the modulus and damping for a range of strain amplitudes are needed.

Current methods of determining the dynamic response of a horizontal saturated sand
layer are based on total stress procedures. The significant ground motions are assumed
to be shear waves propagating vertically and the appropriate shear modulus, G, for use

in the analysis, may be determined from an equation of the form (Seed & Idriss 1975).
G = 1000 K, (on)"? [1.17]

in which K, is a parameter that varies with shear strain and o,, is the mean normal
effective stress. The value of A is depicted in Figure 1.23. The initial effective stresses
are used in the computation of the initial value of G and. thereafter, G is modified to
take into account its dependence on shear strains. Although the pore water pressure
increase during shaking decreases the effective stresses in a layer. the effect of decreasing
mean normal effective stress on the shear modulus, G, is not taken into account in the
total stress methods of analysis.

In fundamental studies of effective stress-strain relations for sands, Seed & Idriss
(1975) and Hardin & Drnevich (1972) showed the shear modulus, G, to be a function of
the mean normal effective stress and the shear-strain. On the basis of extensive resonant
column tests performed on a range of soil, Hardin & Drnevich (1972) concluded the

following:

1. The shear modulus decreases and damping ratio increases very rapidly with in-
creasing strain amplitude as shown in Figure 1.23. However, the rate of decrease or
increase depends on many parameters, and a single relationship between modulus
or damping and strain amplitude is not sufficient. The initial rates of decrease in
modulus or increase in damping are higher for: (1) lower effective mean principal
stress; (2) higher void ratio; and (3) lower number of cycles of loading. The initial

rates are also higher for cohesive than for cohesionless soils.

2. The shear modulus increases and the damping ratio decreases with increasing ef-

fective mean principal stress. For very small strain amplitudes, the modulus varies
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Figure 1.23 Moduli and damping ratio for sand (After Seed and Idriss 1970)
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with the 0.5 power of eﬁ'ec/tive mean principal stress. But, at large strain ampli-
tudes, the modulus depends primarily on the strength of the soil and the variation
is more nearly with the 1.0 power. The damping decreases approximately with the
0.5 power of effective mean principal stress independent of strain amplitude. The
deviatoric component of the ambient state of stress in the soil has a much smaller

effect than the effective mean principal stress.

. The modulus decreases and the damping ratio decreases with increasing void ratio

in undisturbed cohesive soils. The effect is accounted for by a factor, F(e), which

is a function of the void ratio, e.

The shear modulus decreases for cohesive soils and increases slightly for cohesionless
soils with the number of cycles of loading. The damping ratio decreases approxi-
mately with the logarithm of the number of cycles of loading in both cohesive and
cohesionless soils, up to about 50,000 cycles. Beyond this, there appears to be a
fatigue mechanism involved that causes the damping to increase with the number

of cycles.

The effect of degree of saturation on the modulus and damping in cohesionless
soils is small, but the modulus of cohesive soils increases rapidly with a decreasing

degree of saturation.

Thixotropic effects cause the modulus to increase and the damping ratio to decrease
with time, particularly in cohesive soil. The recovery of the modulus and damping

with time after high amplitude cyclic loading is also significant.

For undisturbed cohesive soil, damping is increased only slightly with frequency
within the range considered. Hardin and Black (1966, 1968) have shown that dry
cohesionless soils are almost unaffected by frequency from essentially zero to a few
hundred cycles per second. Although frequencies above 0.1 Hz have a relatively
minor effect on the modulus and damping in cohesive soils, the behavior should be
expected to change drastically for much lower frequencies where creep phenomena

are involved.

The effect of preconsolidation pressure is to increase Gmqr over the normally con-

solidated value, depending on the plasticity index, PI, of the soil, with almost no
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effect of overconsolidation for PI = 0. An equation for Gm, including this effect
is given by Hardin & Black (1969). The effect of overconsolidation on the behavior
at larger strain amplitudes was shown by Hardin & Drnevich (1972).

In saturated sands, the progressive development of pore water pressure during cyclic
loading continuously diminishes the level of effective stress and, hence, the shear modulus
and the resistance to deformation is also diminished.

During cyclic loading, the slips at grain contacts result in volumetric compaction and
increased values of K,, the coefficient of effective lateral stress. Both effects stiffen the
sand against further deformation. It is also probable that the slips at grain contacts
result in a more stable sand structure under the existing effective stress regime. The
processes, leading to increased resistance, are referred to collectively as hardening. The
effect has been noted in dry sands and in saturated undrained sand at the strain levels
typical of ground shaking.

In summary, the important factors which must be considered when computing the
response of saturated sand layers to a given earthquake are (a) the initial shear modu-
lus in-situ; (b) the variation of shear modulus with shear strain; (c) contemporaneous
generation and dissipation of pore water pressures; (d) changes in effective mean normal
stress; (e) damping; and (f) hardening. All of these factors except damping are taken

into account in this thesis using the geologic cap model.

1.4 Research Approach
1.4.1 Finite Element Analysis of Pile Cross Sections

The objective of the work of this thesis was to develop the nonlinear spring properties
that can be applied for Winkler analyses of arbitrary single piles and pile groups. Several
Finite Element analyses were performed for circular piles of 0.457m (18”) and 0.610m
(24;') diameters.

DYNAZ3D, a finite deformation, large strain Finite Element code for dynamic analysis
in three dimensions was used for these analyses. Isoparametric solid elements with single
point integration controlling “zero energy” modes were used to model both the soil and
the pile cross-sections. The piles were modeled as rigid disks for 2D models and assumed

to be linearly elastic for 3D models, while soil was assumed to be elasto-plastic. The
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plastic behavior was represented using the Geologic Cap Model (DiMaggio & Sandlar
1971, Sandler et al. 1976, Sandler & Rubin 1979, Simo et al. 1988, Hofstetter et al.
1993). The pile-soil interfaces were modeled by using sliding interface elements which

permit sliding with separation, closure, and friction.

Plane-stress/plane-strain models Two dimensional models, that included cross-sections
of single piles, sets of two piles at various spacings, and typical pile cap models, were
analyzed with pseudo-static harmonic loads. Maximum values of the loads were
were such that reasonable force-displacement curves could be obtained. Plane-stress
and plane-strain models were considered in order to provide bounds for soil layers
near the surface and for those at greater depths. The reason for using the plane-
strain condition is that previous research has shown that the force-displacement
behavior of a thin layer based on plane-strain conditions provides a reasonable re-
sponse for piles with moderate to high frequency vibration. The pile cap model
was analyzed with plane-stress assumptions only, because at this depth no restraint
would be available to attain plane-strain conditions in practice. From the results,
equivalent spring/damper models were developed to simulate the effect on the piles
and pile caps of the surrounding soil and pile-soil-pile interaction for lateral loading.
A typical finite element model is shown in Figure 2.2 for computation of lateral re-
sistance provided by the soil to a single pile. Similarly, finite element models. shown
in Figures 2.17 and 2.13, were used for a square pile cap and two-pile groups, re-

spectively, to compute lateral resistance.

Axisymmetric models Axisymmetric models are appropriate to obtain stiffness and
damping properties in the axial direction of a single pile. In order to separate
the effects of soil deformation and pile-soil slippage from the axial deformation of
the pile and the stiffness of the soil beneath the tip, thin cylindrical layers of the
pile were modeled with a layer of soil of same thickness. The model was loaded
harmonically with pseudo-static axial force while pressure was applied to the soil
to simulate overburden for various depths. Only shear deformation was allowed in
the soil. From these analyses, spring/damper models for axial loading on a single
pile were developed as a function of depth. A typical finite element model is shown
in Figure 2.10, which is used to find soil resistance to vertical displacement of a

single pile.
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Three-dimensional models The axial pile-soil-pile interaction effects can not be mod-
eled with axisymmetric assumptions. Therefore, three dimensional models were
utilized to consider the axial behavior of sets of two piles within a finite layer of
soil. As with the axisymmetric models, pseudo-static axial force was applied har-
monically to one of the piles to obtain stiffness/damping properties that can be

assumed to exist between adjacent piles.

1.4.2 Development and Verification of the Winkler Model

Several equivalent Winkler pile models were developed using the nonlinear spring
elements obtained in this work for the near field and the spring/damper elements of
Nogami et al. (1992) for lateral vibration. The main objective was to investigate the
ability of this simplified approach to accurately model the nonlinear, dynamic response
of single piles. The lumped parameter model of the pile was excited at the top with an
impulsive lateral load and the free vibration response was noted. The computer runs
were performed by the bridge analysis software, NEABS, described in an earlier report
(McGuire, Cofer. Marsh, and McLean 1994).

An equivalent three dimensional finite element model of a single pile and surrounding
soil was developed and loaded at the top with the same impulsive lateral load. As with
the two dimensional models, nonlinear soil material properties, sliding interfaces at soil-
pile interfaces, and non-reflecting boundaries were used. The response of the pile was

noted and used for comparison with the load transfer models.
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2. MODEL BASICS AND FINDINGS

2.1 General

A rational, dynamic, nonlinear soil-pile interaction model has been developed for a
single pile and a two-pile group for lateral and axial vibration. Nonlinearities arising from
the nonlinear stress-strain relationship of soil and from the pile-soil interface, which is
susceptible to separation and friction, were considered. These were formulated as simple
combinations of frequency independent masses, springs, and dashpots. Therefore, time
domain nonlinear analysis may be conducted in a relatively simple manner. The model
has been developed by adopting Winkler’s hypothesis, i.e., the soil response at a given
depth depends only on the reaction of the pile to soil at that specific depth. Figures 2.1
and 1.9 show typical Winkler pile models.

r
foutedaz
\_

Figure 2.1 A typical discrete soil-pile model based on Winkler’s hypothesis. (After
Makris and Gazetas 1991)
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For the development of the i;lass, spring, and dashpot models, pile segment(s) in a
soil layer of finite thickness have been considered. A finite element discretization of the
soil-pile combination was made using 8-node, quadrilateral, isoparametric elements. Due
consideration was given for the near-field region of soil in which large strains may occur.
In the far-field region, the soil was assumed to remain essentially elastic because of small
strain development. Elastic behavior is, therefore, appropriate for the far-field. Pile seg-
ments have no (or little) deformation in comparison with the soil, and they are considered
to be rigid where appropriate. A sliding interface was assumed to exist between the pile
and soil during analyses for lateral vibration. However, to avoid instability, this interface
was not included in the models for determining axial vibration response.

Due consideration was given for the initialization of geo-static stresses within the
model. The properties of soil were obtained from conventional laboratory tests. The test
results are summarized in Appendix C. Pseudo-static perturbations in the form of forces
on single pile segments and pile segments within the two-pile groups were simulated
using the finite element program, DYNA3D. The response was measured in the form
of displacement and reactive forces in single pile models, and in the form of reactive
forces in pile group models. The force and displacement histories were obtained from the
post-processor, TAURLUS, analyzed, plotted, and presented in this thesis in Appendix E.
The force-displacement curves were simplified using simple parameters such as elastic
or unloading stiffness, elasto-plastic stiffness, vield force, hardening coefficient. and a
ga§ parameter. These simple parameters, called bilinear parameters afterwards. are also
presented in Appendix E.

2.2 Modeling of a Single Pile

For modeling a single pile, the model proposed by Nogami et al. (1992) for lateral
vibration and that proposed by Nogami and Konagai (1986, 1987, 1988) for axial vibra-
tion were applied with some modifications. Those models are described in Appendices A
and B, respectively.

The lateral and axial vibrations were modeled on the basis of finite element analysis
of a circular thin soil layer of unit thickness and diameter 40d (where d is the diameter
of the pile). Within the range of stress developed, it was assumed that the pile segment

is relatively rigid. Therefore, the pile was modeled as a rigid disk, surrounded by a mesh
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representing the soil, as shown in Figures 2.2 and 2.11. Soil within a radius of 4d from the
pile center was modeled with a nonlinear geologic cap material model. The remainder of
the soil was modeled with consistent elastic properties because soil strains are assumed
to be small away from the pile. All parameters for modeling of the soil properties were
appropriate for the depth considered and for the existing Ko-stress condition. There
was a sliding interface between the pile and soil. The sliding interface was modeled
to mimic gap formation, impact within a gap. and sliding with friction. The interface
was not modeled by using any element; rather it is resolved in the solution algorithmic
phase in the explicit finite element program, DYNA3D. The Ko-stress state was taken
as the initial condition. The main analyses were performed using DYNA3D because its
material library includes the geologic cap model. The stress initialization was done by

incorporating the initial stress output file from the implicit finite element companion

program, NIKE3D.

Figure 2.2 Finite element mesh used for the analysis of 2D soil-pile layer for lateral
vibration of single pile. Symmetry has been used.

2.2.1 Lateral Vibration of a Single Pile

The model is based on the model proposed by Nogami et al. (1992) in which the pile is

modeled as beam on inelastic Winkler-type foundation modified for dynamic analysis. It
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is based on a thin layer solution. In this model, there are two nodes at each layer: a pile
node and an auziliary node. The model consists of a nonlinear near-field spring, a linear
near-field viscous damper, lumped masses at the pile and auxiliary nodes, three linear
far-field springs and three linear far-field dampers. The model is shown in Figure 2.3.
The detail of the near- and far-field elements are shown in Figure 2.4. The model is
described in Appendix A in details. Nogami et al. (1992) provided explicit expressions
for the far-field element parameters in terms of elastic soil properties. In this thesis
the major emphasis goes to the formulation of the nonlinear near-field springs and the
lumped masses. The spring characteristics were obtained using a finite-element approach.
The lumped masses were obtained by using a consistent formulation with assumed shape

functions and a lumping procedure.

2.2.1.1 Characteristics of the Near-Field Spring

For very large depths, the plane-strain condition is appropriate while, for very small
depths, the plane-stress condition may be used. It has been shown that for moderate
to high frequency vibration, plane-strain soil impedance is appropriate for the linear
elastic case (Novak 1974, Novak & Nogami 1977, Novak et al. 1978, Novak & Aboul-Ella
19784, Novak & Aboul-Ella 19785). Plane-strain analyses for several depths, represented
by vertical effective stresses of 6.9, 17.3, 34.5, 68.9, 137.8, 275.6, 551.2, and 1102.4 kPa
(1, 2.3, 5, 10, 20, 40. 80, and 160 psi) were performed. But for very small depths, the
plane-strain case can not be realized. So, the plane-stress condition is assumed to be
more appropriate where vertical pressure will not change with lateral pile movement.
Plane-stress analyses were used for 4 vertical stresses: 6.9, 17.3, 34.5, and 68.9 kPa (1,
2.5, 5, and 10 psi). The basic soil parameters were needed exactly for these specific
vertical confining pressures. These are interpolated from Tables C.4 through C.7. The
resulting soil properties are tabulated in Tables D.1 through D.2. The resulting cap
parameters for those soils at different layers are presented in Table D.3. In Table D.1,
some averaging was used to obtain a set of uniform values throughout the depths. The
averaging procedure is described in Appendix D. In the following sections, the derivation
of the coefficients for the near-field and the far-field elements is described.

To develop the nonlinear near-field spring, the pile segment was forced to move later-

ally either in the plane-stress or plane-strain condition during the computer simulation
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Figure 2.3 A model for lateral vibration of single pile. The model consists of springs,
dashpots, and masses to represent.
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Figure 2.4 A combination of springs, dashpots, and masses to represent the near-field
and far-field element for modeling lateral vibration of a single pile. (After Nogami and
Konagai 1992)
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of a lateral load test using the f;nite element mesh, shown in Figure 2.2, and the dis-
placement of the segment was observed using TAURUS. The lateral force-displacement
behavior for a single pile or pile-groups is represented by Py curves, where p is lateral
force per unit length of pile and y is lateral displacement. Moreover, a similar relation-
ship is represented by the ¢-z relation for vertical response of a single pile or pile-groups,
where ¢ is axial force per unit length of pile and z is axial displacement. A typical p-y
curve is shown in Figure 2.5 for two cycles of the load, and it includes nonlinearities from

hysteretic and gap behavior.
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Figure 2.5 A typical p-y curve for the near-field spring, shown as lateral force per
length of pile (pounds/inch) versus displacement (inches)

Initially, when a pile segment moves laterally in a thin layer of soil, the force-
displacement relationship remains linear elastic. When the force level exceeds the elastic
range, it leaves a gap behind it and plastic deformation continues. It is shown in Fig-
ure 2.6. The slope of the p-y curve changes to represent plastic behavior. Upon unload-
ing, the pile segment moves back elastically until the “zero” force state is almost reached.
Then, with reverse loading, the pile moves back, through the gap created before, with
very small resistance. Here, the slope of the p-y curve is called the first gap stiffness.
With increasing reverse load, the pile segment reaches the rear end of the gap, after

which the loading behavior is elastic until reverse plastic loading occurs. The slope of
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reverse plastic loading is similar to that of the loading elasto-plastic slope. At the same
time, the rear end of the gap moves more. Reverse loading becomes elastic again until -

the “zero” force state is again reached. Then it moves back through the gap.

Figure 2.6 A pile leaves a gap behind it when plastic deformation continues during
lateral-motion.

A comprehensive determination of near-field spring constants has been made for piles
with diameters of 0.457m (18”) and 0.610m (24”), respectively, using soil parameters
determined from laboratory tests performed on soil samples taken from a Snohomish
river site in Washington State. Most of the soil samples were silty (MH, ML, SM). The
soil was uniform from depths of 3m (10’) to 9m (30’). Constant soil parameters for this
range of depths were used, with modification for confining pressures. These thin-layer
p-y curves were produced for 6.9,.17.3, 34.5, 68.9, 137.8, 275.6, 551.2, and 1102.4 kPa (1,
2.5, 5, 10, 20, 40, 80, and 160 psi) of vertical effective stress, assuming drained conditions.
In all cases, the coefficient of earth pressure at rest, Kj, was assumed to be 0.5, and the
coefficient of friction in the interface was assumed to be 0.4. The p-y curves for very
small vertical stresses, 6.9, 17.3, 34.5, and 63.9 kPa (1, 2.5, 5, and 10 psi) were developed
for the plane-stress condition. All p-y curves are presented in Figures E.1 through E.4.

For the analysis of pile vibration using NEABS as modified by McGuire (1993), the

p-y curve is simplified as a combination of several linear segments with (see Figure 2.7):
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1. initial stiffness, K;,

2. yield force, F,,

3. hardening stiffness without gap, K,

4. unloading stiffness without gap, K,

5. hardening stiffness with gap, Kj,

6. unloading stiffness with gap, K, and
7. hardening parameter, 3, and

8. a gap parameter representing the capability on the trailing edge to follow the leading

edge of the gap, 7.

This simplified representation of p-y curves, shown in Figure 2.7, will be called as
bilinear p-y curves. The parameters K; and K3 are found to be more or less the same for
all the p-y curves. Also, K; can not be determined from a load controlled test. Its value
has a minor significance in practice, and should be in between Ky and K,. K5 can be
taken to be equal to K. The hardening parameter, 8, represents the way in which the
p-y curve hardens for reverse loading with elasto-plastic load increments. For isotropic
hardening, 3 equals one, and for kinematic hardening, 3 equals zero. Intermediate values
of 3 represent mixed hardening. The gap parameter, +, represents the behavior of the
movement of the leading and the trailing edge of the gap. Effectively, it relates the plastic
movement of soil, upigstic and the generated gap, ugq,.

g e 2.1
Uplastic

Figure 2.5 shows the matching between the p-y and its linearized version. The matching
is excellent and it validates the use of bilinear parameters to represent any p-y curve with
gap formation.

The simplified parameters which can reproduce the p-y curves for lateral vibration
of single piles are presented in Tables 2.1 and 2.2. The tables show that the stiffness
increases with confining pressure almost linearly in both plane-stress and plane-strain

conditions. The stiffness values are almost independent of the pile diameter. This is
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Figure 2.7 A linearized idealization of p-y curves
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because the region of soil considered in the near-field zone is 40 times the diameter of
the pile. For larger diameters, larger models were used. Initial stiffness is usually less in
the plane-stress case than in plane-strain case. The yield force increases with confining
pressure. The yield forces are proportional to the diameters in both the plane-stress and
plane-strain cases. Hardening occurs for all the p-y curves. The effect of the gap is more

significant in the plane-strain case than in the plane-stress case.
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Table 2.1 NEABS parameters for p-y curves for a single pile vibrating laterally for
different confining pressures. [d = 0.457Tm, K} = 0.50, f = 0.40, isotropic hardening,
drained condition]

T Vertical

Initial Post-yield Initial First Gap | Hardening Gap
pressure, | stiffness, | stiffness, | yleld force | stiffness, | parameter, | parameter,
psi Ibs/in? Ibs/in? lbs/in Ibs/in? 3 -

Plane-strain condition

1 174. 46. 135. 5. 0.42 1.06

2.5 423. 71. 215. 7. 0.33 1.02

5 832. 117. 315. 11. 0.43 1.01

10 1692. 183. 529. 48. 0.62 1.19

20 2160. 291. 1034. 69. 0.60 1.13

40 2594. 617. 2062. 131. 0.49 1.03

80 3704. 1112. 4537. 314. 0.10 1.09

160 5474. 1865. 8711. 695. 0.41 1.02
Plane-stress condition

1 157. 49. 143. 14. 0.33 0.54

2.5 389. 78. 218. 15. 0.58 0.71

5 868. 140. 354. 52. 0.13 0.73

tl 10 1479. | 195. ) 559. 100. 0.54 0.63
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Table 2.2 NEABS parameters for p-y curves for single pile vibrating laterally for
different confining pressures. [d = 0.610m, K = 0.50, f = 0.40, isotropic hardening,
drained condition)

Vertical | Imitial | Post-yield Initial First Gap | Hardening Gap
pressure, | stiffness, | stiffness, | yield force stiffness, | parameter, parameter,
- psi lbs/in? Ibs/in® lbs/in lbs/in? 3 ~
Plane-strain condition
1 179. 44, 175. 7. 0.35 1.07
23 429. 73. 278. 7. 0.35 1.03
5 857. 116. 419. 10. 0.43 1.03
10 1653. 192. 668. 19. 0.50 0.99
20 1921. 24]1. 1321. 76. 0.49 1.30
40 2762. 600. 2735. 159. 0.54 1.11
80 3931. 1384. 4484. 337. 0.43 1.05
160 5397. 1988. 12250. 702. 0.16 1.05
Plane-stress condition
1 159. 53. 189. 24. 0.30 0.64
2.5 431. 70. 270. 28. 0.74 0.80 "
5 776. 100. 494, 37. 0.64 0.85
10 1913. 302. 381. 287. 0.58 0.40
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2.2.1.2 Characteristics of Near-field Dampers

A damper represents one means of dissipating energy. It is very difficult to estimate
damping constants from the finite element analysis of any structure for which viscosity
of the material is actually unknown. For most cases, it is obtained from a field test.
Moreover, a field test for a thin layer of soil and pile segment combination for either
plane-stress or plane-strain conditions with initial Ko-stress would be extremely difficult.
It is easy to specify the damping coefficient as a fraction of critical damping, i.e. as a

proportional damping. Then the damping constant is

C = 26 K [ ware- [2.2]
where, K; = initial or unloading-reloading stiffness.
W.we = average loading frequency, and

= material damping ratio.
The stiffness value. A, may be represented by the elastic stiffness or an unloading-

reloading stiffness. The circular frequency for the actual earthquake loading may be
estimated from the earthquake acceleration history of the free-field motion by counting
the number of peaks, either maxima or minima, by counting the number of crossings
of the zero acceleration level, by Fourier analysis of the acceleration time history for
kinematic interaction analysis, or by considering the modal frequency of the structure
involving predominantly foundation movement for inertial loading. Engineering judgment
is needed to compute the w,,.. The damping coefficient, £ is merely estimated as 0.01
to 0.10, still based on engineering judgment and the magnitude of displacement at that
particular level. The value of £ can be obtained from the curves prepared by Hardin
& Drnevich (1972) and Seed & Idriss (19696). However, before using these curves, the
average strain within the radius ro to r; should be known. The average value of strain
should be taken as a function of the maximum displacement. Since the value of the
displacement is unknown, the selection of the value of B becomes iterative. One may
observe that the value of C is frequency dependent and, therefore, C must be defined
for an estimated frequency. For higher frequencies of loading, the specified value of C
represents higher values of £. Also, higher frequencies of loading are damped out due to
the discretization of the structure by finite elements. However, high frequency loads have
relatively less importance for bridge design. For a high amplitude of loading, excessive

cyclic deformation will induce a hysteretic dissipation of energy due to the nonlinear
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effect of the spring which will be taken care of by the nonlinear springs. This dissipation
of energy will be much more important than that dissipated in the damper. So, it is

reasonable to estimate the damping constant by the use of Equation 2.2.

2.2.1.3 Characteristics of Nodal Masses

Near-field masses are obtained from a lumped mass procedure. The model has two
nodes: a pile node and an aeuziliary node. The mass of the pile node consists of the mass
of the pile itself along with the contribution of the mass from the near-field soil. The
contribution of the mass from soil is computed from the consistent mass matrix developed
for the annular segment of soil with inner and outer radius ry and r,, respectively, where
1o 1s the radius of the pile and r; is the inner radius of the near-field zone. r; can be
chosen arbitrarily such that all of the nonlinearity is contained within the near-field zone
and the p-y curves should be consistent with this zone. In all cases. r; was taken as 40d.
where d is the pile diameter. The nodes are assumed to exist at the pile center and at the
outer boundary. All points of the outer boundary of radius r; are assumed to have equal
displacement and share the same degrees of freedom. The shape function in cylindrical
coordinates is assumed to vary as a function of the nth power of r and it is not a function

of the 8 coordinate at all. The consistent mass matrix for two nodes is

M] = { (mpr3)(m —1) } [ (2n+1)m +1 ZA{(2n + 1)m +3} 2.3]
’ (n+1)2n +1) Z5{(2n + 1)m + 3} m+(2n +1) e
where, m = ry/ro,
ri = radius of near field zone,
ro = radius of rigid pile,
n = power in the shape function (Nogami assumed n = 1).

In his analysis, Nogami assumed n = 1 arbitrarily. Using the HRZ lumping scheme,
described in Appendix F, the contribution of the soil to the nodes as lumped mass is

represented by the mass matrix,

™M = (wprd)(m — 1) {@n+1)m+1} 0 ] 2.4)
2(n+1)}(m + 1) 0 {m+ (2n+1)} -
The values of —21— are plotted in Figure 2.8 as a function of n and m. Having the

my+m22
mass contributions from soil, the nodal mass at the pile node can be obtained by adding

the nodal contribution from soil to the mass of the pile itself, as

_ 2 [(m=1){m+(2n +1)} Pr B}
m, = TpsTo { 5n+ 1)(m + 1) + p,} s (2.5]
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where s = spacing of the nodes in the vertical direction.
The mass at the auxiliary ﬁode, m,, can be obtained by adding two contributions,
one from near-field soil and the other from far-field soil.

m, = my +my [2.6]
where, m;; = first diagonal element of [M], and
m; =  mass contribution from far-field soil.

The mass contribution, mf, can be obtained from the equation

mf=mpr®é& (V) [2.7]

where &, (V) is a function of Poisson’s ratio, and it can be obtained from Figure 2.9 and
Table 2.3.

2.2.1.4 Characteristics of the Far-Field Elements

The far-field element consists of the far-field mass contribution, my springs, K;, K>,
and K;, and dampers, C;, C,, and C;. Those are shown in Figure 2.4. The far-field
element has been adopted from Nogami et al. (1992), as discussed in Appendix A. The
mass contribution from the far-field, my; can be obtained from the Equation 2.7. The
spring and damping constants are defined as:

K, 3518
s Ky ¢ = GE&(v) { 3.581 [2.8]
| K; 5519
e 113.0973
1 G, = Gré () 25.133 [2.9]
| G Y 9.362
where, G = Shear modulus of soil of the pertinent layer, and
& (v)and €, (v) = Function of Poisson’s ratio v. It is obtained from Figure
2.9 or from Table 2.3 as a function of Poisson’s ratio, and
Vs = Shear wave velocity in soil.

The spring constants and damping constants are basically frequency dependent. How-
ever, the aforementioned values work well for the range of frequency, 0.02 < a, < 2.0,
where a, is the nondimensional frequency and it is defined as a, = r,ow /V,, the com-

monly encountered frequency range for earthquake loading. The details are described by

Nogami et al. (1992). 79
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Table 2.3 Functions &i(v) and {m(v). (After Nogami 1992)

| Poisson’s ratio, u=| Function £ (v) | Function &.(v) |

0.50 2.000 1.0000
0.49 1.940 0.7828
0.48 1.883 0.6420
0.47 1.831 0.5336
0.46 1.784 0.4464
0.45 : 1.741 0.3740
0.43 1.667 0.2628
0.40 1.580 0.1428
0.35 1.476 0.0352
0.25 1.351 000000
0.20 1.311 000000
0.10 1.252 000000
0000 1.213 000000
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Figure 2.9 Mass and Stiffness factors for a single pile vibrating in the lateral mode
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2.2.2 Axial Vibration of Single'IPile

This model is basically an extension of that proposed by Nogami and Konagai (Nogami
& Konagai 1986, Nogami & Konagai 1988, Mitwally & Novak 1988), which has been de-
scribed in Appendix B. The model was originally developed for elastic soil and pile
conditions, and extended to include nonlinear behavior. Analogous to the model for
lateral vibration, the model consists of two nodal masses at the pile node and an auxil-
iary node, a nonlinear near-field spring, a linear near-field damper, three linear far-field
springs, and three far-field dampers, as shown in F igure 2.10.

The thin layer solution and Winkler hypothesis is once again the basis of the devel-
opment of the model for axial vibration response. Moreover, it is assumed that during
axial vibration of a single pile in semi-infinite soil, all points move only in the vertical
direction. This simplifies the problem of 3D vibration to 2D vibration. and allows the
thin layer solution to be considered as an approximate solution of more complicated 3D
vibration. This assumption is a reasonable one if the pile is long. When the pile is long
enough, the thin layer moves vertically. and subsequent layers move in the same way,
maintaining compatibility in an approximate manner, since each layer does not move
equally. Resistances of different magnitudes develop at different depths depending on
the shear modulus and pile displacement magnitudes.

For the assumption of no lateral displacement, only the shear deformation is included.
rather than bending deformation of thin soil layers. This makes the stiffness of the soil
spring proportional to the thickness, rather than the third power of thickness. This as-
sumption applies to the skin resistance only. For the determination of the tip resistance,
the pile tip is assumed to be on a nonlinear half-space with appropriate effective overbur-
den pressure. The latter topic will be discussed in Section 2.5. The following subsections

describe the model for skin resistance behavior for axial vibration.

To develop the nonlinear spring characteristics, a finite element model was developed
for a thin layer elasto-plastic soil and a rigid pile segment. Figure 2.11 shows a typical
finite element model used to generate the nonlinear spring characteristics for axial vibra-
tion. Since the 3D computer program, DYNA3D, was used, it was necessary to take a

sector of a thin circular segment. Soil within 8d of the pile was modeled with the geologic
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Figure 2.10 A model for axial vibration of single pile.
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cap model. It was observed that soil displacement at a large distance (20 diameters) from
the pile center was negligibly small and, therefore, an artificial, no displacement bound-
ary was placed there. A pseudo-static load was applied along the pile axis to observe
the resulting displacement. No sliding interface was assumed to exist between the pile
and soil because initial observations showed that it induces instability. The initial K-
state of stress was assumed as the initial condition. The overburden pressure was always
maintained to ensure the confining effect.

Figure 2.11 Finite element mesh used for the analysis of 2D soil-pile layer for axial
vibration of single pile. '

All nodes along the boundary were assumed to be fixed, and the rest of the nodes were
allowed to move only vertically. The resulting force (per unit thickness)-displacement
behavior, represented by t-z curves, were produced with 8 different confining pressures
for soil of the Snohomish river site. These curves are presented in Figures E.5 and E.6
for piles of 18” (0.457m) and 24" (0.610m) diameters. Most of the curves were obtained
for a linear range of forces, because within the nonlinear range, the ¢-> response is non-
hardening. So, it becomes unstable when it reaches or exceeds the yield force in a load
controlled simulation. Moreover, it was almost impossible to precisely estimate the yield

force.
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The bilinear parameters for the ¢-z curves are presented in Tables 2.4 and 2.5. The
tables show that the initial stiffness increases with increasing confining pressure. However,
they are not proportional. Also, comparing the tables, it can be observed that the stiffness
of the near-field spring is almost independent of pile-diameters, although higher stiffness
could be expected for larger pile diameters. The reason is that a larger soil region was
included in the model for the larger pile diameter, as explained in the previous section.
However, the yield force is almost proportional to the pile diameters. Since almost all
the piles are analyzed in the linear range, it is necessary to estimate the strength of the

near-field springs. The strength of the springs may be obtained from the equation
tmer = (Qwrt)rmaz- [2.10]

The value of 7,,,, may be obtained from recommended values presented in Table 2.6.
Finally, this spring behavior should be elastic perfectly plastic, without hardening. The

gap parameters are not needed for this case.

Table 2.4 NEABS parameters for -z curves for single pile vibrating axially for different
confining pressures. [d = 0.457Tm, K} = 0.0, isotropic hardening, drained condition)]

Vertical | Imitial | Post-yield | Inmitial Hardening
pressure, | stiffness, | stiffness, | yield force parameter,
psi lbs/in? lbs/in® lbs/in 3
1 155.
2.5 285. 3. 279. 0.000
5 810. 21. 352. 0.000
10 1020. 0. 552. 0.000
20 1246. 0. 9535. 0.000
40 2093.
80 2621.
160 3774.
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Table 2.5 NEABS parameters for -
confining pressures. [d = 0.610m,

-

Ko

z curves for single pile vibrating axially for different
= 0.50, isotropic hardening, drained condition]

Vertical | Imitial | Post-yield| Initial Hardening
pressure, | stiffness, | stiffness, [ yield force parameter,
psi lbs/in? lbs/in? lbs/in B

1 153.

25 398. 45. 357. 0.000
5 807.

10 1618.

20 1934.

40 2092.

80 2625.

160 3768. .
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Table 2.6 Shaft resistance f, for bored pile, determination from laboratory strength

data (After Poulos 1989)

| Soil type [ Equation | Remarks | References
Clay fs = ac, a = 0.45 (London Clay) Skempton (1959)
a = 0.70 times value for Fleming et al. (1985)
driven displacement pile
fs = Ktanéo, | K is lesser of K or Fleming et al. (1985)
0.5 (1 + I\’o)
K/Ky =2/3 to 1: Ky depends | Stas and Kulhawy
on OCR; é depends on (1984)
interface material
Silica Sand | f, = Bo!, B = 0.10 for ¢’ = 33° Mayerhof (1976)
B = 0.20 for ¢’ = 35°
B = 0.35 for ¢' = 37°
B = Ftan(¢’' — 3°) Kraft & Lyons
where ' = 0.7 (Compression) (1974)
F = 0.5 (Tension)
Uncemented | f, = B0’ B = 0.50 to 0.8 Polous (1988)
Calcareous f: < fstim fslim = 60 to 100 k-'v/mz
Sand '
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2.2.2.2 Characteristics of the D,a.mper

Proportional damping can be used in the same way as for lateral vibration. The

damping ratio is for the material damping alone. The explicit value of C can be computed
as

C = 2% Kifw [2.11]
where, K; = initial or unloading-reloading stiffness,

w = average loading frequency obtained from counts of peaks
or 0 crossing, fourier analysis of acceleration time history
for kinematic interaction, or the modal frequency which dominates
foundation movement of the bridge foundation system, and

§ = effective material damping ratio.

2.2.2.3 Nodal Lumped Masses

For a thin layer of soil with a pile segment, only two degrees of freedom are needed
to model the vibration: the pile node and an auxiliary node. During the axial vibration
of the pile, the whole layer of soil vibrates along with the pile. Therefore, some inertial
resistance comes from the soil, and for the sake of modeling, a certain part of the soil
layer should be assumed to contribute to the inertial resistance of the pile. For a point in
a soil layer at a large distance away from the pile, the amplitude decays and becomes less
important. A shape function may, therefore, be applied to compute the soil contribution.
The shape function assumed here is the approximate displacement shape of the same

layer of elastic soil with a rigid pile segment. The resulting consistent mass matrix is

27 p,tr,? ilm) A
M = At H g ot =
where
Julm) = 1/4-{142(lnm) +2(In m)?/m?}, [2.13]
fia(m) = (3/4)(m? = 1)(In m)(1/m?) — fus(m), [2.14]
fa(m) = fu(m) +(1/2)(1 ~ 1/m*){1 - 3/(lnm)} , [2.15]
m = ri/rp. [2.16]
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After HRZ lumping, the foll?:»wing consistent mass matrix, was obtained (see Ap-
pendix F):

M] = {(r?-ro®) p, t} [ film) 0 ] [2.17]

0 fi(m)
where
, _ fu(m) a .
film) = ) + Falm)’ nd [2.18]
% _ f22(m)
f22(m) - fll(m) + f22(m). [219]

[2.20]

and the contribution of mass from near-field soil to the pile, m,, and to the auxiliary

node, m,, are

m, = wrip, t(m? —1)f! (m),and [

(V]
o

.1]

m, = wraps t(m? — 1) f],(m), respectively. (2.22]

5

AV
[

The value of f{;(m) is plotted in Figure 2.12 as a function of m. However, the above
expressions will only work well for low frequency vibration. The shape function that
was assumed will not represent the actual displacement behavior during high frequency
vibration for which the mass contribution of the soil would be lower than this due to
both positive and negative contributions of the soil from wave effects. The effect of soil

mass would be further reduced for nonlinear soil, because most of the effects are local
during nonlinear vibration.

2.3 Modeling of Pile Groups

For the vibration of two-pile groups, in addition to the near-field and far-field elements
considered for a single pile, it is necessary to consider interface springs between the piles.
Also, the number of auxiliary nodes at which the near-field and far-field elements are
connected would be more than one, as opposed to the model of a single pile. Here, it
may be expected that each external pile should be connected to the far-field elements
through auxiliary nodes. Also, near-field soil mass would be distributed between the pile
nodes and the auxiliary nodes. The emphasis of this thesis is given to the determination

of the near-field and interaction-springs for the pile groups. In general, there are 3
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near-field nonlinear springs required for each pile node, 3 nonlinear interaction-springs
required for each pile-soil-pile connection, and three sets of far-field elements required for
each external pile for modeling of 3D vibration of a general pile group. ‘
For the sake of modeling, it is expected that three interaction-springs (i.e., direct-
lateral, shear-lateral, and axial springs) between two isolated piles for general vibration
will be required to represent the interaction between neighboring piles. So, in a large
group, each pile will be connected with neighboring piles by direct-lateral, shear-lateral,
and axial interaction-springs. For even closely spaced pile groups, say with 2d clear
spacing (i.e., 3d center spacing), the far neighbors will have a 3d clear spacing (i.e., 6d
center spacing). For this spacing, interaction can be neglected. For this interaction
model, it is assumed that the consideration of interaction between neighboring piles
only is sufficient for engineering accuracy. For the interaction of more than two-pile
groups, the interaction-spring behavior may be obtained from that of two piles. The
Winkler hypothesis was once again the basis of this approximate model for the pile-soil-

pile interaction for axial and lateral vibration for earthquake loading.

2.3.1 Characteristics of Springs in Two-Pile Groups

There are three basic types of springs in pile group models. These include nonlinear
near-field springs, nonlinear interacting springs, and linear far-field springs. Nonlinear
near-field springs are required for those connecting piles with surrounding soil. and non-
linear interacting-springs are required for those connecting the piles themselves.

The non-linear spring elements for the modeling of a two-pile group with near-field
and interaction-springs are shown in Figure 2.13 for uniaxial lateral vibration and in
Figure 2.14 for biaxial lateral vibration. From Figure 2.13, it is observed that one load
case is necessary to determine the force displacement behavior for the three near-field
springs required for direct-lateral vibration. The load case, in which one segment is
moved and the other is kept fixed, is required to get the interaction-spring, K2, and the
near-field spring, K1, characteristics. Then, it may be considered that the behavior of K3
and K1 are same both in compression and tension.

For the two-pile groups with vibration in both direct-lateral and shear-lateral direc-
tions, two types of additional springs are required. One is an interaction shear-spring and

the other is a near-field spring for connecting pile-segments with the surrounding soil.
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Figure 2.13 Model for direct-lateral vibration of a two-pile group moving laterally
along the line which passes through the piles

Moreover, one additional load case is required to establish the behavior of the springs K4
and K6, as shown in Figure 2.14.

As expected, the behavior of spring K1 in tension is the same as that of K3 in compres-
sioﬁ. However, they should have different yield forces in tension and compression. On
the other hand, springs K2, K4, K5, and K6 are expected to behave in the same manner in
both tension and compression. Also, spring K6 should behave similarly in positive and
negative shear. Moreover, as the spacing between two piles, s, increases, the stiffness
of the interaction-springs, K2 and K6, are expected to diminish, and K1, K3, K4. and K5
should tend to those for a single pile. Then, K1, K3 and K4 should have the same vield
strengths.

2.3.1.1 Direct-Lateral Vibration

The characteristics of the interaction-springs for different confining pressures and for
drained conditions are determined for soil taken from the Snohomish river site. For the
determination of the direct interaction-spring constants for lateral vibration, plane-strain
conditions were assumed for all depths represented by 6.9, 17.3, 34.5, 68.9, 137.8, 275.6,
551.2, and 1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) vertical stresses. Plane-stress
was assumed for confining pressures 6.9 and 34.5 kPa (1 and 5 psi). Due attention was
given to the initial Ko-stress condition and constitutive modeling of elastic and elasto-
plastic soil. The displacement at a distance of 20d from the pile was assumed to be zero,
and a zone of radius 4d was assumed to be the zone of nonlinearity. Within the nonlinear

zone, soil was modeled using the geologic cap model, while, beyond the nonlinear zone,
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Figure 2.14 A more general model for vibration of a two-pile group for direct-lateral
and shear-lateral vibration.
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it was modeled using the elastic ‘model. At the boundary of these zones, the observed
strains were small, implying that the elastic constitutive model of soil is applicable in the
far field. Moreover, the pile-soil interface was modeled with sliding interface elements
with a coefficient of friction, f = 0.4. The finite element model is shown in Figure 2.15.

The condition of symmetry was used to save computer time.

\

Figure 2.15 Finite element mesh used for the analysis of 2D pile-soil-pile layer.

A pseudo-static load was applied on one rigid segment of the pile either toward the
other pile or in the reverse direction, varying sinusoidally with a very low frequency and
low rate of loading, keeping the other pile fixed. The resulting displacement in the first
pile, and active or reactive force on both piles, were observed and analyzed to establish
the p-y behavior of the two-pile group. The resulting p-y behavior of the interaction-
springs and the near-field springs are presented in Figures E.7 through E.22 for soil from
the Snohomish river site. The NEABS parameters for those spring were computed, and
they are presented in Tables 2.7 through 2.9. The values of K, K3, Ki, Fy, 7, and
P given in these tables refer to Figure 2.7. The value of ¢/, refers to initial effective
confining pressure in the layer. The spacing, s, is expressed in terms diameters, d.

From the tables, one may observe that the stiffness of the interaction and near-
field springs increases with confining pressure. The stiffness of the interaction-springs

decreases with increasing spacing. The stiffness of the near-field springs increases with
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increasing spacing. The stiffness of the near-field springs is almost of the same magnitude as that
for isolated solitary piles. Although the stiffness does not depend on the pile diameter, the yield
force does. The yield force of the near-field springs is less than, but of similar magnitude to, that
of a single pile. The reason is that a single pile gets better inelastic redistribution. The yield force
of the near-field springs is higher than that of the interaction-springs. All of the springs
displayed hardening, and the gap effect was shown to be very significant.

Logically, one would assume that, when the stiffness value of the interaction spring becomes
small in comparison with that of the near-field spring, group effects diminish, which occurred at a
spacing of between 2d and 4d.
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Table 2.7 NEABS parameters for p-y curves for near-field springs for two-pile groups
vibrating laterally for different confining pressures. [d = 0.457m, Kj = 0.50, f = 0.40,

isotropic hardening, drained condition]

S Uluo K]_ K2 Fy K4 ﬂ %
psi | lbs/in? | lbs/in® | lbs/in | lbs/in?
Plane-strain condition

2d | 2.5 | 267. 72. 116. 19. 0.26 | 1.21
2d | 3 532. 101. 147. 25. 0.68 | 1.31
2d | 10 | 1344.

2d | 20 | 1609. 781. 64. 141. | 0.74 | 1.04
2d | 40 | 1924.

2d | 80 | 2647.

2d | 160 | 3755.

4d | 1 115. 42. 69. 5. 0.63 | 1.19
4d | 2.5 | 288. 47. 116. 12. 0.40 | 1.03
44| 5 570. 36. 200. 33. 0.88 | 1.39
4d | 10 1120. 162. 214. 4. 0.74 | 1.09
44 | 20 1357. 271. 406. 46. 0.57 | 1.01
4d | 40 1732. 4]18. 936. 77. 0.70 | 1.04
4d | 80 | 2468. 675. 2053. 200. | 0.7111.00
4d | 160 | 3505. 1363. | 3830. 389. |0.79 | 0.87
8d | 1 165.

8d | 25| 304. 59. 154. 6. 0.15 | 1.05
8d | 5 609. 88. 220. 9. 0.36 | 1.04
8d | 10 | 1451. 184. 285. 66. 0.53 | 1.12
8d | 20 | 1709. 264. 423. 53. 0.77 | 1.15
8d | 40 | 1835. 518. 1102. 103. | 0.611]0.95
8d | 80 | 2727. 814. 2785. 254. | 0.14| 1.01
8d { 160 | 3864. 1434. | 5073. 546. | 0.67 | 0.83

Plane-stress condition

4d | 1 126.

4d 5 660.

8d 1 145.

8d | 5 725.
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Table 2.8 NEABS parameters for p-y curves for near-field springs for two-pile groups

vibrating laterally for different confining pressures. [d = 0.610m,

isotropic hardening, drained condition]

(0 = 0.50, f = 0.40,

s | olg K, K, Fy K, B ¥
psi | lbs/in? | lbs/in? | lbs/in | lbs/in?
Plane-strain condition

2d | 1 116. 76. 66. 9. 0.39 | 1.16
2d | 2.5 [ 305. 29. 159. 22. 0.49 { 1.20
2d| 5 646. 143. 124. 37. 0.38 | 1.67
2d | 10 | 1218. 122. 262. 64. 0.74 | 1.23
2d | 20 | 1751. 271. 562. 62. 0.49 | 1.14
2d | 40 | 2179. 578. T74. 106. | 0.66 | 1.11
2d | 80 | 2634. 873. 1279. 212. 1095 1.08
2d | 160 | 3859. 1479. | 2889. 501. 1.02 | 1.04
4d 1 127.

44 | 2.5 | 281. 52. 157. 6. 0.22 | 1.05
4d | 3 561. 78. 221. 8. 0.48 | 1.04
44 | 10 1179. 39. 330. 76. 1.18 1 1.13
4d | 20 | 1633. 238. 623. 53. 0.44 | 1.07
4d | 40 |’ 1944. 442. 1016. 103. | 0.82 ] 1.09
4d | 80 | 2608. 943. | 2219. 219. | 0.42 ] 0.97
4d | 160 | 3836. 1299. | 5521. 421. | 0.56 | 0.93
8d | 1 125. 57. 182. 4. 0.12 | 1.15
8 | 25| 304. 63. 197. 7 0.12 | 1.07
8| 5 607. 92. 351. 34. 0.15 | 1.09
8| 10 | 1361. 23. 426. 107. | 0.16 | 1.06
8d | 20 | 1684. 249. 812. 64. 0.19 | 0.98
8d | 40 | 2021. 507. 1188. 121. | 0.90 { 1.09
8d ] 80 [ 2789. 1213. | 2216. 319. | 0.43]0.95
8d | 160 | 3899. 1532. | 7669. 610. | 0.50 | 0.96

Plane-stress condition

2d| 1 110. 79. 26. 18. 0.87 | 1.08
4di 1 124. 128. 9. 10. 0.27 | 1.13
4d | 5 579. 157. 197. 24. 0.24 | 1.06
8d 1 142.

8| 5 627. 159. 277. 34. 0.39 | 1.06
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Table 2.9 NEABS parameters for p-y curves for interaction-spring between two-pile
groups vibrating laterally for different confining pressures. [d = 0.457m, K} = 0.50, f
= 0.40, isotropic hardening, drained condition]

§ U:,o kl K2 Fy K4 .—ﬁ Y
psi | lbs/in? | lbs/in? | lbs/in | lbs/in?
Plane-strain condition
2d | 2.5 | 206. 7. 89. 14. 47.84 | 1.14
2| 5 490. 42. 157. 22. 0.99
2d | 10 | 2277.
2d | 20 | 2190. 132. 509. 141. 0.26 | 0.69
2d | 40 | 3246.
2d | 80 | 5031.
2d { 160 | 8021.
4d | 1 95. 24. 64. 9. 0.08 | 0.63
4 | 2.5 | 225. 23. 114. 3. 0.19 | 0.97
4d | 3 414. 79. 173. 16. 0.14 | 1.04
4d | 10 | 1040. 79. 266. 46. 0.06 | 0.92
4 | 20 | 1073. 39. 682. 27. 0.96
4d | 40 | 1316. 149. 1319. 59. 0.90
4 | 80 | 2172. 361. | 2504. 150. 0.77
4d | 160 | 3188. 373. 5223. 332. 0.61
8 | 1 110.
8d | 2.5 | 136. 22. 80. 3. 0.46 | 0.90
8 | 5 324. 33. 123. 3. 0.31 | 0.90
8d | 10 T17. 39. 224. 48. 0.96
8d | 20 812. 72. 582. 26. 1.02
8d | 40 | 1122. 112. 1050. 38. 0.99
8d | 80 | 1483. 333. 1732. 144. 0.39 | 0.86
8d | 160 | 2094. | 609. 3785. 302. 0.73
Plane-stress condition 1| - )
d| 1 119.
4d d 732.
8d 1 76.
8 | 5 459.
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Table 2.10 NEABS parameters for p-y curves for interaction-spring between two-pile
groups vibrating laterally for different confining pressures. [d = 0.610m, K| = 0.50, f
= 0.40, isotropic hardening, drained condition)]

s | oo | Ki K Fy, Ky B |
psi | lbs/in? | ibs/in? | lbs/in | lbs/in?
Plane-strain condition

2d| 1 117. 35. 72. 9. 0.78
2d | 25| 305. 29. 159. 22. 0.50 | 1.01
2d| 5 849. 95. 214. 83. 0.57 | 0.78
2d | 10 | 1331. 90. 375. 47. 0.94

2d | 20 | 1636. 79. 689. 48. 0.87 | 1.00
2d | 40 | 2375. 120. 1683. 83. 0.36 | 0.96

2d | 80 | 3433. 360. 3766. 179. 0.87
2d | 160 | 5041. 697. 8133. 427. 0.77
4d | 1 103. 66. 39. 45. 0.19} 1.08
4d | 2.5 | 231. 28. 141. 5. 0.3210.88
4d | 3 483. 36. 225. 6. 0.40 { 0.92
4d | 10 | 1079. 169. 326. 45. 0.23 1 0.95
4d | 20 | 1092. 64. 835. 51. 0.37 1098
4d | 40 | 1373. 133. 1782. 84. - | 0.87
4d | 80 | 2241. 205. 3481. 164. 0.81
4d | 160 | 3238. 612. 6813. 340. 0.66
8d| 1 62. 14. 74. 2. 1.08
8d | 2.5 160. 26. 96. 4. 0.57 | 0.89
8d| 5 348. 35. 7. 30. 1.28 | 1.10
8d | 10 T44. 158. 275. 24. 0.99
8d | 20 851. 75. 653. 49. 0.56 | 1.10
8d | 40 | 1068. 136. 1488. 90. 1.00
8d | 80 | 1439. 61. 2856. 139. 0.92

8d { 160 | 2103. 538. 4785. 339. {0.34]0.73
Plane-stress condition

2d| 1 112. 47. 57. 12. 0.52 | 0.64
4| 1 101. 95. 45. 34. 0.75 | 1.02
4d| 5 532. 90. 171. 22. 0.62 | 0.65
8d| 1 68. 22. 47. 18. 094 1.11
8d| 5 352. 35. 135. 20. 0.88 | 0.63
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2.3.1.2 Shear-Lateral Vibration

For the computation of shear-lateral interaction spring behavior, the two piles with
soil were modeled within the finite element framework. The same mesh, as shown in
Figure 2.15, is used without the symmetry. The piles were considered to be rigid while
the soil was considered to be elasto-plastic near the pile and elastic away from the pile.
Due consideration was given for the initial Kq-stress condition and sliding interfaces.
From this thin layer finite element model, the interaction behavior was obtained using
the same procedure as that used for that of direct interaction springs. The resulting p-y
behavior of the interaction-springs and the near-field springs is presented in Figures E.23
through E.38 for soil from the Snohomish river site. The NEABS parameters for those
spring were computed, and they are presented in Tables 2.11 through 2.14. The values
of K3, K,, Ky, Fy, v, and 3 given in these tables refer to Figure 2.7. The value of o/,
refers to initial effective confining pressure in the layer. The spacing, s. is expressed in
terms diameters, d.

From the tables, it is observed that the stiffness of the interaction and near-field
springs increases with confining pressure. The stiffness of the interaction-springs de-
creases with increasing spacing. The stiffness of the near-field springs increases with
increasing spacing. The stiffness of the near-field springs is almost of the same magni-
tude as that for isolated solitary piles. Although the stiffness does not depend on the pile
diameter, the yield force does. The stiffness of the interaction-spring for shear-lateral
vibration is much less than that for direct-lateral vibration. This essentially means that
the direct-lateral interaction is much more prominent than shear-lateral interaction. The
yield force of the near-field springs is less than, but of similar magnitude to, that of a
single pile. The reason is that a single pile gets better inelastic redistribution. The yield
force of the near-field springs is higher than that of the interaction-springs. All of the

springs displayed hardening property, and the gap effect was shown to be very significant.
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Table 2.11 NEABS parameters for p-y curves for near-field spring between two-pile
groups vibrating laterally in shear-direction for different confining pressures. [d =
0.457m, Ky = 0.50, f = 0.40, isotropic hardening, drained condition]

s OJUO K] Kg Fy K4 ﬂ Y
psi | lbs/in2 | lbs/in? | lbs/in | lbs/in?
Plane-strain condition

2dl 1 112. 40. 73. 6. 0.36 | 1.10
2d | 2.5 | 264. 54. 126. 6. 0.28 | 1.06
2d| 5 536. 91. 182. 6. 0.33 | 1.03
2d | 10 999. 151. 291. 27. 0.39 | 1.14
2d | 20 | 1425. 298. 470. 40. 0.33 | 1.01
2d | 40 | 1892. 584. 903. 87. 0.38 | 1.05
2d | 80 | 2604. 1038. | 1971. 228. 0.27 | 1.06
2d | 160 | 3490. 1814. | 4632. 584. 0.17 | 1.01

4d | 1 119. 40. 83. 3. 0.27 | 1.08
4d | 2.5 | 277. 51. 134. 3. 0.23 | 1.05
4d | 5 397. 86. 195. 6 0.29 | 1.03

4d | 10 | 1052. 145. 305. 27. 041 | 1.15
4d | 20 | 1382. 305. 501. 41. 0.35 | 1.08
4d | 40 | 1935. 593. 1022. 101. 0.36 | 1.04
4d | 80 | 2602. 1026. | 2369. 237. 0.19 | 1.02
4d | 160 | 3724. 1799. | 5226. 509. 0.10 { 0.93

8d | 1 128. 40. 109. 3. 0.09 | 1.08
8d | 2.5 | 297. 33. 159. 5. 0.15 | 1.04
8| 5 397. 92. 229. 6 0.25 | 1.02

8d | 10 | 1147. 151. 354. 33. 0.36 | 1.16
8d | 20 | 1618. 336. 593. 54. 0.32 | 1.03
8d | 40 | 2094. 677. 1194. 127. | 0.35 | 1.00
8d | 80 | 2876. | 1142. | 2803. | 307. | 0.13 | 0.98
8d | 160 | 4023. | 1961. | 6309. 741. |-0.06 | 0.97

Plane-stress condition

2d| 1 138. 103. 7. 109. 0.23 | 3.60
2d| 5 635. 451. 12. 377. 0.93 | 4.63
4d | 1 125.
4d | 5 525.
8d | 1 122.
8d| 5 579. 126. 165. 18. 0.45 | 0.97
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Table 2.12 NEABS parameters for p-y curves for near-field springs for two-pile groups
vibrating laterally in shear-direction for different confining pressures. [d = 0.610m, K
= 0.50, f = 0.40, isotropic hardening, drained condition]

§ 0”,,0 Kl Kz Fy K4 ﬁ Y
psi | lbs/in? | lbs/in? | lbs/in | lbs/in?

Plane-strain condition

2d| 1 111. 40. 104. 6. 0.24 | 1.06
2d} 25| 261. 53. 175. 5. 0.37 | 1.07
2d| 5 539. 90. 236. 8. 0.32 | 1.03
2d | 10 | 1067. 92. 319. 78. 0.50 | 1.11
2d | 20 | 1355. 225. 765. 77. 0.13 | 1.10
2d | 40 | 1808. 430. 1234. 128. 10.70 | 1.13
2d | 80 | 2300. 924. 2541. 270. | 0.50 | 1.11
2d | 160 | 3530. 1561. | 6187. 677. |0.42 ) 1.03
4d | 1 120. 24. 121. 6. 0.70 | 1.07
4d | 2.5 | 272. 44. 188. 5. 0.46 | 1.07
4d| 5 562. 72. 254. 3. 0.69 | 1.07
4d | 10 869. 7. 468. 28. 0.72 | 1.17
4d | 20 | 1566. 303. 730. 30. 1.03

4d | 40 | 2062. 545. 1328. 103. | 0.49 | 1.09
4d | 80 | 2387. 881. 2784. 820. | 0.79 | 0.38
4d | 160 | 4102. 1632. | 5136. | 489. | 0.67 | 0.93

8d| 1 127. 41. 147. 8. 1.13
8d| 25| 291. 49. 222. 3. 0.24 | 1.06
8d| 5 621. 102. 296. 14. 0.40 | 1.08
8d{ 10 985. 137. 543. 37. 0.13 | 1.20

8d 1 20 1638. 302. 870. 58. 0.03 |<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>