Final Research Report
Research Project T9903, Task 10
IVHS Backbone Design and Demonstration

ITS BACKBONE DESIGN
AND DEMONSTRATION

by

Daniel J. Dailey, Mark P. Haselkorn, Po-Jung Lin
ITS Research Program
College of Engineering, Box 352500
University of Washington
Seattle, Washington 98195-2500

Washington State Transportation Center (TRAC)
University of Washington, Box 354802
University District Building, Suite 535

1107 N.E. 45th Street
Seattle, Washington 98105-4631

Washington State Department of Transportation
Technical Monitor
Pete Briglia
Advanced Technology Branch Manager

Sponsored by

Washington State Transportation Northwest (TransNow)
"Transportation Commission University of Washington
Department of Transportation 135 More Hall, Box 354802
Olympia, Washington 98504-7370 Seattle, Washington 98195

and in cooperation with
U.S. Department of Transportation
Federal Highway Administration

September 1996



4

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIFIENTS CATALOG NO.

WA-RD 411.1 / TNW 96-01

"2, TITLE AND SUBTITLE 5. REPORT DATE
ITS BACKBONE DESIGN AND DEMONSTRATION September 1996

6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO.

Daniel J. Dailey, Mark P. Haselkorn, and Po-Jung Lin

5 PERFORMING ORGANIZATION NAME AND ADDRESS 6. WORK ONTT KO,
Washington State Transportation Center (TRAC)
University of Washington, Box 354802 11. CONTRACT OR GRANT NO.
University District Building; 1107 NE 45th Street, Suite 535 T9903, Task 10
Seattle, Washington 98 105-4631 '
12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED
Washington State Department of Transportation Final research report
Transportation Building, MS 7370 _
Olympia, Washington 98504-7370 14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway
Administration. v ’

16. ABSTRACT

Traffic congestion is an increasing problem in many areas of Washington state. Efforts to
control traffic flows and mitigate congestion must rely on the ability to accurately monitor the state of
traffic flow on highways and arterials. We present a conceptual framework for ITS development to
monitor traffic conditions and show how this framework solves numerous high-level problems
associated with ITS development. A sample instantiation, the Backbone project, demonstrates the
viability of our unified ITS conceptual framework and shows that such a framework can be
implemented at reasonable cost and with a high likelihood of successful operation. This project was
sponsored by WSDOT and executed at the University of Washington.

5 KEY WORDS : T8 DISTRISUTION STATEMENT
traveler information, backbone, distributed No restrictions. This document is available to the
computing, client server public through the National Technical Information
Service, Springfield, VA 22616
19. sscum'CL'A'ssxF. (of this repory 30. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE
None None 50




DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for
the facts and accuracy of the data presented herein. This document is disseminated through
the Transportation Northwest (TransNow) Regional Center under the sponsorship of the
U.S. Department of Transportation UTC Grant Program and through the Washington State
Department of Transportation. The U.S. government assumes no liability for the contents
or use thereof. Sponsorship for the local match portion of this research project was
provided by the Washington State Department of Transportation. The contents do not
necessarily reflect the views or policies of fhe U.S. Department of Transportation or
Washington State Department of Transportation. This report does not constitute a standard,

specification or regulation.



TABLE OF CONTENTS

EXECUTIVE SUMMARY .. .iiiitiiiiiiiiiiiiiitiiiiieteenesiiorecssssescsensessssssons i
1. INTRODUCTION......ccc..... e eeeeuesenvesannnsoeasatecaaanncnaseatssaanssncoanss 1
2. STATE-OF-THE-ART FOR COMMUNICATION FRAMEWORKS IN
TRANSPORTATION APPLICATIONS . itiitttiteiereeeeseecssacascssosccesesasssnes 5
3. A CONCEPTUAL FRAMEWORK FOR ITS SYSTEM DEVELOPMENT....... 9
4. ITS BACKBONE PROJECT ..uuuiiiiiiiiiteeeeceesessecensessssssssssssssssascsass 14
4.1 TMSUW SERVER . ...ttt e e e e 15
42 LOOP REBROADCAST SERVER ...ttt e e ettt 19
4.3 LOOP REPEATER SERVER. ...ttt ettt et e 20
4.4 TOOP SERVER ... e e e e e et 22
5. GENERAL FRAMEWORK ...cvttteittenrteeretsennsessssosassesossssscnssssssanns 24
5.1 PREVIOUS WORK .......ooooooeoeo. T T TR 24
6. THE DEVELOPMENT ENVIRONMENT......ccccietiteietcencecesrcsasssanccans 27
6.1 COMPONENTS.......eeeeeeeeeeeee e, e, 27
6.1.1 Elements of a Component...........c.coeveveiiiiiennennennnass e 28
N B A o1 ) (o - DR 30
ST UG T L0011 9 o101 (o) o 32
6.1.4 OPETALOT. . ...uuuiiitinit i e e 34
0.1, SIMK. ettt e 34
6.1.6 SUIMMATY. ...ttt et ettt et et et e e e e e anaene 35
6.2 APPLICATIONS FROMCOMPONENTS35
6.3 TOOLS FOR APPLICATION CREATION AND MONITORING.....ccccvvvviiiinnnnnnnnn. 36
6.4 ILLUSTRATION USING ITS DA T A .ottt et 38
6.4.1 TraflNet. .o e e e e aaaaas PO 39
0.4, 2 BUSV W ottt e 42
6.4.3 Hybrid Example: SWIFT ...t i e 44
. CONCLUSION. i ittttteeeceesesecesssssssessssscssssossesessssssossssssonsssensnnse 46
REF E REN CE S ..uiiitiiietttetteeeesssassesecassesssesssossacssssssssssssesscsassasonss 47



LIST OF FIGURES

Figure 1. Five layer architeCture. .........couiiiiii i e eans 6
Figure 2. Seven layer communication architeCture..........o.vviiiiiiiiiiiiiiiii e eieeaennns 7
Figure 3. Overall ITS communication architecture.................cccoeen... e 10
Figure 4. Fusion system architecture..............cooiiiiiiiiiiiiiiiiiiiiiiiiiinenn, et 14
Figure 5. Startup process for TMS ... e e e, 16
Figure 6. Data structure of RTDB..........coooiiiiiiiiiiiiiiiii i, e 17
Figure 7. Flow chart of TMSUW ... e 18
Figure 8. Loop Rebroadcast server system architecture.............ccoooeiiiiiiiiiiiiiiiiiiinnn... 19
Figure 9. Loop Repeater server system architeCture ...............ooeeiiiiiiiiiniiiiiiiiiii, 21
Figure 10. Loop server system architeCture. .......o.vviueinniiiieeiiiniiene et eeeieraeaeeaeness 22
Figure 11. COmMPONENLS .. .....iuinitiiiitiiie ettt re et e e aeenen 28
Figure 12. State diagrams for the elements in a redistributor...............cooviiiiiiiiiinan... 29
Figure 13. Elements of SOUrce COMPONENt. ... .....cviuiiiiiiiiiiiiiiiii it eiereeneneeaeen 31
Figure 14. Hierarchical scaling mechanism................oo i, 32
Figﬁre 15. Redistributor component elements..........ouueiuereiieterntiaiieaanaeaneeieaeaaenaen. 33
Figure 16. Elements of the operator COMpONent. ..........coivviiiiiitiniieiieiiieiiiienenenaneneen.. 34
Figure 17. Construction of applications from COmMPONENts ............ccvieviuiieriiiinuenieiiennennn. 36
Figure 18. Application CONSOIE..........oviuiiiiiiii e 37
Figure 19. TrafNet and BusView appliCations ..........cooeeiiiiiiiiiiiiiiiiiiiniiieaeiieiennaans 40

Figure 20. SWIFT application in the context of TrafNet and BusView..................coeinenl. 45



EXECUTIVE SUMMARY

The management of large, complex systems (e.g., power distribution systems,
transportation systems) has been greatly aided by the use of increasingly sophisticated
sensors and communicatioh technologies to obtain and process real-time data on system
activity. Typically, these data are generated by different types of sensors geographically
distributed throughout the system. ‘These various sensors take measurements of different
system parameters, each of which provides a partial picture of the situation under
examination. Under such a system, data typically move from the sensors, through some
applications, to the ultimate end user. These data are then used for multiple purposes,
including management and control, billing, end-user i-nformation,* planning, and emergency
response. |

A wide range of developments have contributed to innovative Intelligent
Transportation Systems (ITS). As the ITS community moves toward major demonstration
projects and a national architecture, a unifying conceptual framework must be defined. A
successful conceptual framework must not only address ITS communication needs, but
must also address a number of complex, higher-level needs. These include the following:

(1)  the need for inter-agency and multi-jurisdictional data sharing without
disruption of existing operations;

(2) the need to support existing investments in ITS technology and system

development;

(3) the need to effectively manage the expansion of sensor technologies and user

applications in a straightforward, principled manner;

(4) the need to encourage future innovation by providing an open architecture; and

(5) the need for interoperability among local, regional, and national ITS

developmental efforts.



We present a conceptual framework for ITS development that has a modular design
and addresses the higher-level needs mentioned in the introduction. Again, to meet higher-
level needs, the architecture must share multi-jurisdictional data, support existing ITS
technology,’expand easily, encourage future innovation, and be interoperable @ong local,
regional, and national ITS developments. Our ITS framework has several major
components and is based on a client/server distributed-computing model. The components
include (1) “instance servers” that bridge data sources to a communication network, (2)
"fusion servers" that gather and operate on various data types, and (3) presentation systems
for delivering management and traveler information. Each client or server process exists in
a distn'buted—?:omputing environment, so that they might all be present on one computer or
distributed over a set of computers. This distributed architecture allows for the system to
be “scaled” and also permits any process to migrate to any computer. Similarly, the
number and type of data sources or display applications can easily be extended.

The approach described in this paper embodies several specific features, which
include (1) an architecture that will deliver real-time data to a large number of consumers
while maintaining a mechanism for authorization; (2) a definition of distributed applications
that includes an entire set of components arranged in an hierarchical structure; and (3) a
clear mechanism for building “value-added” applications that use a generally available data
. stream. In this paper, we have described in detail a set of paradigms to implement such
distributed applications and have discussed several actual implementations in the domain of
ITS.

We have presented a conceptual framework for ITS development and héve shown
how this ﬁmework solves numerous high-level problems associated with ITS
development. A sample instantiation, the Backbone project, further demonstrates the
viability of our unified ITS conceptual framework and shows that such a framework can be

implemented at reasonable cost and with a high likelihood of successful operation.



1. INTRODUCTION

The management of large, complex systems (e.g., power distribution systems,
transportation systems) has been greatly aided by the use of incréasingly sophisticated
sensors and communication technologies to obtain and process real-time data on system
activity. Typically, these data are generated by different types of sensors geogréphically
distributed throughout the system. These various sensors take measurements of different
system parameters, each of which provides a partial picture of the situation under
examination. Under such a system, data typically move from the sensors, through some
applications, to the ultimate end user. These data are then used for multiple purposes,
including management and control, billing, end-user information, planning, and emergency
response.

As sensors and the communication infrastructure continue to advance, software

developers will more often find themselves working in distributed-computing environments

- with the potential to access and combine multiple types of real-time data in order to deliver

services to clients. These developers need to address a range of issues, including the
following: |

(1) Sensors vary greatly by the technology employed, their complexity, and
location. This implies that a method is needed to make data available on the
network in a form that can be consistently interpreted, and this method must
accommodate muitiple technologies.

(2) Access to data is necessary for numerous, geographically distributed users for
multiple purposes. A single data source must be simultaneously accessible to
various types of distributed clients.

(3) The number and type of sensors used changes over time, and new sensors will
be added. Data structure definitions change with the sensors employed, and the

data structures used to interpret the data stream must track these changes.



(4) A single type of data provides only a partial picture of the current state of a large
system. Multiple data sources are used with data fusion algorithms to estimate a
system state.

(5) Clients require access to data at geographically distributed sites.

(6) Geographically distﬁbuted sensors are likely to be located in politically distinct
jurisdictions, and data clients are likely to come from politically distinct
organizations, necessitating reliable and flexible mechanisms for data security.

(7) Data must be available in real time.

(8) Software supporting these types of distributed systems must be reusable to
leveragé previous development efforts.

A distributed application can be defined as “an application program consisting of
several cooperating components running on different physical nodes.” (Schill 1990) In this
paper, we describe a structured approach to developing real-time, distributed-computing
applications that are suitable for relaying dynamic data in real time to a large but authorized
group of users. This approach effectively and economically addresses all the above issues.
The approach is based on an asynchronous, distributed, client/server architecture and relies
on fhe creation of autonomous, reusable pieces of software. Within this approach,
applications are seen not as clients, but rather as configurations of the various structured
software components.

Our structured approach is suitable for creating distributed applications that address
a specific class of problem. The types of distributed applications for which our
development environment is most appropriate include those that: (1) require multiple, real-
time data sources, (2) involve unidirectional data flow, (3) handle data with content and
structure that may vary slowly with time (on the order of minutes), (4) require scaling to
support thousands of clients, (5) require each client to be identified as an authorized
consumer of the data, and (6) require real-time data on a time scale of tenth's of seconds.

These features are typically present when data from a variety of remote sensors are



combined to provide surveillance or control functions. This general class of problems is
becoming more prevalent with widespread acces‘s to the Internet and the development of
new sensor technologies.

A wide range of developments have contributed to innovative Intelligent
Transportation Systems (ITS). As the ITS community moves toward major demonstration
projects and a national architecture, a unifying conceptual framework must be defined. A
successful conceptual frarﬁework must not only address ITS communication needs, but
must also address a number of complex, higher-level needs. These include the following:

(1) the need for inter-agency and multi-jurisdictional data sharing without

disruption of existing operations;

(2) the need to support .existing investments in ITS technology and system

development;

(3) the need to effectively manage the expansion of sensor technologies and user

applications in a straightforward, principled manner;

(4) the need to encourage future innovation by providing an open architecture;

and

(5) the need for interoperability among local, regional, and national ITS

developmental efforts.

Many of the challenges to be addressed by an ITS conceptual framework are, at
their root, data exchange problems. Data exchange is central to any ITS application for a
number of reasons. First, only one dimension of the overall transportation picture can be
presented by a single type of data, whether it is inductance, loop-based volume and
occupancy readings, satellite-based GPS tracking, radio-based vehicle location, CCTV-
based visual information, laser-based vehicle identiﬁcatién, or data from other real-time
sensor technologies. Second, these real-time data sources need to be available in parallel
with other less dynamic, but nevertheless essential, data sources, such as map databases,

construction site information, and transit schedules. Third, these data systems can fail or



present improbable data, so multiple data sources can help to assure the reliability and -
accuracy of the overall transportation picture.

Another key aspect of ITS data exchange is that these multiple data sources are
often controlled and used internally by politically and geographically distinct agencies and
jurisdictions. In addition, the pool of data made available through data exchange must
promote the innovative development of future applications, and at the same time must be
scaleable for local, regional, and national ITS data nee;ds. |

For data exchange to be effective, three general problems must be solved: (1)
bringing together the various available data sources on a single communication network
accessible by all participating parties; (2) fusing the multiple data types into a reliable,

- coherent, and dynamic pool of transportation data; and (3) supporting applications that
convert this pool of data to information that can be used by traffic engineers and planners,
transit agencies, commercial vehicle operators, government officials, and travelers to more
efficiently use existing transportation facilities. These problems can all be addressed
through a unifying communication framework. In this paper, we explore the state-of-the-
art developments in communication frameworks for transportation applications; we

describe a conceptual framework for all ITS applications; and we conciude with an example

of an ITS project that illustrates this conceptual framework.



2. STATE-OF-THE-ART FOR COMMUNICATION FRAMEWORKS IN
TRANSPORTATION APPLICATIONS

This section presents a state-of-the-art review of communication framewofks used
in transportation applications as of fall 1993.

Although motorized vehicles are the key components for transportation in North
America, research on advanced. vehicle-highway systems slowed dramatically in the 1980s,
leaving the United States and Canada without national guidelines for a communication
framework. As a result, both academia and industry have designed many separate ITS

projects, but these modular technologies have not been consolidated in large ITS

" demonstrations. However, “programs in Japan during the past few years have jolted the

United States, leading to a revival of its activities in advanced vehicle-highway
technology.” (Chen 1990, 695) Several researchers have now developed prototype
communication systems for transportation applications.

Although researchers have just begun to develop communication systems for
transportation, communication systems are already well-developed in several other
applications. ITS researchers can learn from the research in other areas and can use
existing communication paradigms in ITS applications. Research for other applications
indicates that an ITS architecture must be flexible, open, and, above all, able to support the
modular nature of ITS applications (Hsin 1992).

One example of such an architecture is the communication architecture developed by
Laraqui et al. for the Integrated Road Transport and Traffic Environment (IRTE), Europe’s
version of ITS. The IRTE architecture consists of three layers - application, network, and
subnetwork - to prevent the system from relying on one monolithic structure. The layers,
and the relationships of the applications among the layers, form a “key towards openness
(and thus competition) in the provision and combination of IRTE communication facilities

and applications services.” (Laraqui 1994, 379) Although each layer must operate in



coordination with the other layers to keep information flowing, all layers can perform their

tasks independently. The architecture is designed so that each layer “represents one task

for transmission and reception. A single task avoids the efforts of solving intralayer

communications and reduces the number of tasks in the system.” (Laraqui 1994, 382)

Similarly, Varaiya and Shladover have designed an ITS systems architecture that

incorporates a hierarchy of five layers. Their hierarchy gives the communication

framework a modular approach for the following two reasons: (1) “Each layer presents a

standard reference model to the layer above it....and the design of each layer can proceed

independently using the reference model of the layer below;” and (2) “communication takes

place only between adjacent layers and between peer layers.” (Varaiya 1991, 909) Varaiya

Figure 1. Five layer architecture

and Shladover designed their architecture to work for either an Advanced Vehicle Control

System (AVCS), in which the vehicle is fully automated, or an Advanced Traffic

Network
Link Link Link
. Coord'n Coord'n Coord'n
Regulation Regulation Regulation
Physical Physical Physical

Management System (ATMS), in which the vehicle is only partially automated.

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Network
Link Link Link
Coord'n Coord'n Coord'n
Regulation Regulation Regulation
Physical Physical Physical

In their architecture, the five layers correspond to five task domains: network, link,

coordination, regulation, and physical. The network layer decides the optimum steady state




i

for traffic flow over a section of the highway. The link layer chooses the lanes that
vehicles should drive in to balance the traffic and prevent lanes from being used
inefficiently. The coordination layer communicates among the vehicles to properly
implement lane changes. The regulation layer maintains proper vehicle orientation and
spacing relative to the other vehicles. The physical layer collects the sensor data from the
accelerator, brake, and steering wheel. See Figure 1, taken from Varaiya and Shladover's
report. (Varaiya 1991, 917)

Still another example of a modular communication architecture in an ITS application
is the model designed by Albus, Jeberts, and Szabo. They adapted a Real-Time Control

Figure 2. Seven layer communication architecture

(RCS) architecture that was already being used by other intelligent control systems. This

architecture, like the others described here, relies on hierarchical layers of control to achieve

Trip destination -- 8 hr

Trip planning Level 7
Trip segments -- 50 min

Trip segment planning Level 6
Road segments - 5 min

Road segment planning Level 5
Lane segments -- 30 sec

Vehicle path planning Level 4

Path segments -- 3 sec

. Actuator
Points| s W] T] Servo Level 1

Actuator commands - 3 ms

SENSORS AND ACTUATORS |

modularity. Its control architecture was designed for an Advanced Vehicle Control System

(AVCS) and includes seven layers: trip-destination planning, trip-segment planning, road-



segment planning, vehicle-path planning, steering and attention coordination, steering
dynamics, and actuator servos. See Figure 2, taken from Albus, Jeberts, and Szabo's
report. (Albus 1992, 383)

.In the first three levels, a plan is developed for the level's domain, the plan is
decomposed into a series of time segments, and the decomposed goals are passed to the

next level. For example,

input to level 7 is the destination or goal and desired route for the vehicle for
a period of up to 8 hours in the future....level 7 generates a plan for the next
8 hours consisting of a series of up to ten trip segments of about 50 minutes
in duration....Input to level 6 defines the destination, or goal, that is desired
for the vehicle about 50 minutes in the future....level 6 generates a plan for
the next 50 minutes consisting of a series of about ten road segments of
about 5 minutes in duration....Input to level 5 is the destination, or goal,
that is desired for the vehicle about 5 minutes in the future....level 5
generates a plan for the next 5 minutes consisting of a series of about ten
land segments of about 30 seconds in duration. (Albus 1992, 379)

The decomposition of high-level goals continues on down through the hierarchy.
In the Task level (4), individual vehicle goals are decomposed into subgoals
for each subsystem. This decomposition process continues through the E-
Move level (3) for path planning, the Primitive level (2) for vehicle
dynamics, and Servo level (1) for actuator control. As a result of this entire
process, drive signals are generated for each actuator that accomplish the
highest level goal. (Albus 1992, 379)
In summary, a communication framework is the backbone needed before diverse
ITS technologies can work together in one ITS demonstration. ITS researchers are

designing prototypes of ITS communication systems that all have one characteristic in

common: the frameworks use layers of communication to achieve modularity.



3. A CONCEPTUAL FRAMEWORK FOR ITS SYSTEM DEVELOPMENT

We will now present a conceptual framework for ITS develdpment that has a
modular design and addresses the higher-level needs mentioned in the introduction. Again,
to meet higher-level needs, the architecture must share multi-jurisdictional data, support
exisﬁng ITS technology, expand easily, encourage future innovation, and be interoperable
among local, regional, and nationa_l ITS developments. Our ITS framework has several -
major components and is based on a client/serve-r distributed-computing model. The
components include (1) “instance servers” that bridge data sources to a communication
network, (2) "fusion servers" that gather and operate on various data types, and (3)
presentation systems for delivering management and traveler information. Each client or
server process exists in a distributed-computing environment, so that they might all be
present on one computer or distributed over a set of computers. This distributed
architecture allows for the system to be “scaled” and also permits any process to migrate to
any computer. Similarly, the number and type of data sources or display applications can
easily be extended.

The framework is based on a communication backbone - an underlying medium that
supports communication between ITS client applications, intermediate processes, and data
sources without regard to physical location. Figure 3 represents the central nature of the
babkbone. This backbone meets both system and higher-level needs. For example, the
backbone is an element necessary for distributed-computing applications. But it also
promotes inter-agency and inter-jurisdictional cooperation by making it easier for an agency
to share its data, and access the data of others, without disrupting that agency's current
operations. |

We propose that the communication backbone be based on the protocols and
standards used by the worldwide Internet community. Our selection of standard Internet

protocols not only leverages the vast investment already made by the U.S. government, but



‘ GPS
GPS Instance
Data . Server Data
Fusion Server
T GPSS
pe Server
y . AVL
ositioning
Loop
Loop Server
Instance

Server
ITS BACKBONE GIS
Application
AVL
Instance
Server
% Traffic
Map Traffic Workstation
Database Reporter
System Application

Figure 3. Overall ITS communication architecture

it also enables us to use standard network interface hardware and software. This allows

ITS application and sensor developers to focus on ITS issues rather than on communication
issues. In addition, this style of network model allows the concepts layered on top of such
a backbone to work equally well at the local, regional, and national levels.

A second key aspect of this network model is peer-to-peer communication. This
paradigm is often used to share data in a distributed-computing environment, and it
inherently supports the notion of geographic independence for ITS data sources and
applications. In our framework, each process on the network is capable, with some
adjudication, of communication with any other process without regard to its status as a
source, intermediary process, or consumer of data. Thus, in Figure 3, each of the
client/server processes represented by rectangles can communicate with any other.

This peer-to-peer concept implements a network-wide mechanism for
intercommunication. Peers exist independently of agency and jurisdictional boundaries.

This allows ITS application developers to access data at any level of complexity, from raw

10



sensor data to information resulting from data fusion. In addition, applications can access
data from any agency or organization willing to share all or some portion of the data they
use internally. Because the reward for sharing data is access to everyone else's (as well. as
to fusion processes and user applications on the network), and because data can be shared
without changing the way they are internally used, the principle of “enlightened self-
interest” will assure a wide range of data sources and users.

A third key aspect of this network model is peer location using a distributed
database of names. In our framework, data sources are advertised on the backbone using a
name space paradigm. To gain access to a specific type or instance of data, an application
requests the network address of data from a name server. The name server responds with
the address of the adjudicator for that service. The adjudicator performs the necessafy
handshake to establish the peer-to-peer connection between the requester and the requested
service. In addition to providing access, this mechanism also provides security because
autonomous agencies can filter which data are publicly available by restricting the names
supplied to the name server. Even if the name is available, the adjudicator can provide a
second level of security by checking an approved access list. In addition to security, this
approach also provides a mechanism for data availability on a local, regional, or national
scale.

A fourth key aspect of this network model is the use of a client/server concept for
inter-application communication. This concept identifies the source and destination of
information and data for any specific transaction but does not enforce this definition outside
the transaction considered; hence, a particular process can have both client and server
attributes. For example, a type server that agglomerates data from probe vehicles is a client
of the instance servers that actually obtain the information from the individual vehicles, but
it is also a server for downstream applications that use the consolidated probe vehicle data

to present a picture of congestion.

11



The importance of the client/server model is that it provides autonomy for both the
data providers and the application developers. An application developer need only know
the format of the data expected from the server and some mechanism to find this server on
the network. In system terms, this provides a layer at v;fhich data structures for inter-
process communication are defined. In terms of higher-level goals, new sensors and
applications can easily be added. Innovative development is encouraged because
developers have a clear model of how to get data and what those data will look like,
without having severe limitations placed on what they are allowed to do.

We concludeAthis general description of our ITS conceptual framework by
reviewing some of the higher-level goals that are central to its design. The framework
supports existing investments in ITS infrastructure by providing a clear mechanism for
integrating past, current, and future developmental efforts. Additional sensors or
applications, both existing and yet-to-be-developed, can either implement a network
interface internally or use the instance server abstraction to provide a bridge to the ITS
backbone. |

Our framework also encourages inter-agency and multi-jurisdictional data sharing
by providing, in return, the benefits of a global view of traffic and access to numerous
other resources and applications. Equally important, a mechanism is provided for agencies
. to add themselves to the network at minimal cost and with no disruption of internal
operations. Thus, the expense of joining this ITS network is slight in comparison with the
value received, thereby providing financial incentive for voluntary membership in the ITS
environment.

This framework is also compatible with the national trend regarding information
flow. That trend is toward a computing environment that is fully interconnected by a
national data highway. Our framework recognizes this trend and proposes to explicitly take
advantage of existing resources in this area by providing a clear, distributed computing

framework for the development of networked ITS applications. In addition, the use of

12



i

Internet protocols leverages the huge investment the government has made in this network
technology. The viability of using this framework is demonstrated both by the existence of
a large community of academics and business people who use Internet resources as an
indispensable part of their day-to-day activities and by the instantiation presented in the next

section.

13



4. ITS BACKBONE PROJECT

To apply this idea for a communication framework, we have designed and
constructed a Backbone System that takes occupancy and volume data from the Traffic
Systems Management Center (TSMC) in the Puget Sound region, combines this
information‘to generate speed estimates, and distributes it across a communication

backbone to many different clients. The Backbone project has two goals: (1) to combine

VMS Memory
< > RTDB
MSUW Segment
broadcast
LAN subnet 192.02 llisten

loop
rebroadcast

T1 link

loop
repeater

Internet

Trafnet Loop Other
server server server

Figure 4. Fusion system architecture

14



i

traffic congestion information from all available sources and produce an estimate of traffic
speed and (2) to demonstrate the effectiveness of the backbone architecture described in
Section 2. Like the other ITS prototype architectures described in Section 1, our
framework is implemented in several layers to achieve modularity. The current architecture
of the fusion system is illustrated in Figure 4.

There are four major servers - one in each layer - in the system architecture: the
TMSUW server, the Loop Rebroadcast server, the Loop Repeater server, and the Loop
server. The first server, TMSUW, collects the available loop data and broadcasts those
data to the Traffic Systems Management Center's local area network (LAN). Loop
Rebroadcast, the second server, collects the data that are broadcast on the LAN and sends
the data packet across a T1 link to the Loop Repeater server. The third server, called Loop

Repeater, receives data from Loop Rebroadcast and sends the data to the Loop Server. In

this action, the Loop Repeater server accomplishes two things: it reduces the load of Loop

Rebroadcast, and it allows the transmission between the T1 link to stay within capacity
limitations. The last seﬁer in the Backbone system is the Loop Server; it transmits
occupancy and volume data for each loop and station, and it also transmits the average
speed and length for each speed trap. The clients that receive this server's information may

actually be other servers that use the data to satisfy the requirements of different end users.

4.1 TMSUW SERVER

The first server, TMSUW, is located on a VMS machine at TSMC called
HARLEY. To obtain TSMC's data, the TMSUW server must first understand the structure
of the Traffic Management System (TMS) reporting system. The TMS is also running on
the VMS machine called HARLEY at TSMC, and upon starting, it builds the following
three global databases: a real-time database (TMS_RTDB), a ramp-meter database
(TMS_RMD), and a five-minute database (TMS_FMDB). (See Figure 5.) All of these

global databases are accessible, but the loop information that is used in the Backbone

15



operation
action

ramp real
minute meter time
data . data data
base base base
FMDB RMDB RTDB

Figure 5. Startup process for TMS

project is obtained only from the Real Time Data Base(RTDB), which is updated every 20
seconds. The other two databases hold the same basic data that are stored in the RTDB,
but the data in these databases are normalized for different purposes.

The RTDB contains two parts: a name table and data records. The name table
consists of name, type, length, and offset fields. The name field contains all of the loop
names currently available in the RTDB; each name is a combination of the specific loop
name and the name of the cabinet to which the loop belongs. For example, the name,
ES090D:- MN___ 1,0 indicates that the loop is located in cabinet OES090DO and is on a
mainline (M) road going north bound (N) in lane number one (1). The second field in the
name table, the type field, distinguishes between the three types of loops that collect data:
loop, station, and speed trap. Because the different loop types are different sizes, the
length field is needed to specify the length of each loop. Finally, the offset field points to
the position of the loop data in relation to the other loops in each 20-second data record.

The second part of the RTDB consists of 181 separate data records. Each record

holds the data collected by all of the loops during a 20-second period. With 181 individual

16

[l



o

TR

data block
pointer
New
Current
Current -20 '
Oldest
Name Table \ 4 A4
Namej 5 8|3 date date date date
8| 5| & | time [T time [T time > time
[ o

[
- ~N e
> 3 > 5 > & — 8
z .= s |- - o
@] 3
3 o

Figure 6. Data structure of RTDB

20-second data records, the RTDB holds one hour's worth of data (181 = 60 min. x 3
blocks of twenty sec. +1). To keep the RTDB updated with data from the most recent

hour, the oldest data record is discarded when a new data record is obtained. Specifically,

the data record just received from the traffic reporting system is put in the new data block,

and all of the other data records shift one slot over, indicating that each data record is an
additional 20 seconds older than the newest data. Wheﬁ a data record becomes the oldest
record in the RTDB and a new data record is received, the oldest data record is discarded; it
is essentially rotated out of the database. To indicate that a new data record has been
stored, the RTDB increases the rotation scroll number in global memory. See Figure 6 for
an illustration of the two parts, the name table anvd data records, of the Real Time DataBase.
With knowledge of the RTDB's structure, the TMSUW server uses the name table

to access data records. To begin, the TMSUW server reads the name table from the RTDB

17



P broadcast
. restart info
v
read p| check scroll ' T
name table . value -
from wait for
RTDB l TMS
* restart
write ?
name table scroll release
to file increase virtual
? memory
>
A4 Yes
map to
global section
RTDB collect
¢ 20 sec data
set event flag I
to 20 sec [ broadcast
data
release
virtual
memory

Figure 7. Flow chart of TMSUW

global memory and writes it to a file. Then the server starts the data collection cycle. The
cycle begins when the server maps to the global section of the RTDB and sets up the
corresponding pointers for each block holding a data record. At the start of the cycle, the
server sets the event flag to 20 seconds, the duration of each collection period. In that 20-
second cycle, the server checks the global scroll value in the RTDB to determine whether
the data records have rotated. If a data record rotation has occurred, it indicates that a new
data record has been received and is in the new data block. If a data record rotation has not
occurred, the TMS has been reset. |

In the first case, when a new data record has been put into the new data block, the
server coilects the new data record, broadcasts it on the LAN in TSMC, and finishes the
collection cycle. At the end of that 20-second cycle, it begins a new coll;ction cycle by

checking the global scroll value in the RTDB. In the second case, when the server

18



discovers that the system has been restarted, it waits a few minutes to ensure that the TMS
successfully restarts and then broadcasts a special packet to the LAN. This packet tells the
Loop Rebroadcast server that the TMS has been restarted and the file that holds the name
table mﬁst be updated. Figure 7 shows the flow chart of the process managed by the
TMSUW server.

4.2 LOOP REBROADCAST SERVER

The Loop Rebroadcast serQer resides on a machine called Loops, which is hooked
into the TSMC LAN (subnet 192.0.2). The server was placed on the Loops computer
rather than TSMC’s HARLEY computer to avoid disturbing TSMC’s system and slowing
down its process. This server listens to the LAN to determine whether a data packet has
been broadcast by the TMSUW sérver, captures any TMSUW data packets, and then sends
those data packets across a T1 link to the Loop Repeater server, which is geographically

distant from TSMC. The system architecture of the Loop Rebroadcast server is shown in

Figure 8.
LAN 192.02 listen
child #1 send data to
for child process #3
o ok < : relgé?ter
reg;g:g:a“ child #2 request Edata server

send [socket '

info '

child #3  |(g— =t
—_
&=

Figure 8. Loop Rebroadcast server system architecture

19



To accomplish the retrieval and transmission of the data, the loop rebroadcast server
initiates three different “child” processes: the first child process monitors the TSMC LAN
and retn'eves'data sent by the TMSUW server; the second child process establishes the
connection with the Looleepeater server; the third child process transmits data to the Loop
Repeater server. Of course, before the third child process can send data, it must obtain
information that the first and second child processes have gathered, i.e., the loop data and
the connection information. Communication among the child processes occurs through a
Unix internal socket pipe.

Although the Loop Rebroadcast server sends data to only the Loop Repeater server,
it is capable of accepting other connection requests. To handle additional requests, the
Loop Rebroadcast server must initiate all three child processes, avoiding conflicts between
requests for data and data transmission. For example, while a process is sending the
requested data to the client, another client may request a connection at the same time. This
second client will not get any response until the process has finished sending the first data
request. If the data transmission is long, the second data request could be lost. Therefore,
three child processes are required: one to capture loop data, one to listen for requests from

clients, and one to transmit the data to the clients.

4.3 LOOP REPEATER SERVER

The Ldop Repeater server, which runs on a machine located at the University of
Washington, performs a role in the architecture of the Backbone project similar to that
played by the Loop Rebroadcast server; they both receive loop data and pass it on to other
servers. However, the Loop Repeater server sends the loop data to other servers across the
Internet rather than across a Tvl link, and this Internet connection gives the server greater
capacity for handling a large number of clients. The Loop Repeater server is included in

the Backbone architecture primarily to provide this increased capacity. As an added

20



benefit, several loop repeater servers can be cascaded together to handle hundreds of client

requests for data. Figure 9 shows the system architecture of the Loop Repeater server.

noooj\o data

1
o = loop repeater server
2 =
b =
- ' send
< " socket
g reqyest dataj . info
3 ' child child child
5 ‘ #1 #2 #3
o —————P :
(=9
=]
=

send data Internet Socket

Trafnet
server

server

Figure 9. Loop Repeater server system architecture

Just like the Loop Rebroadcast server, the Loop Repeater server Eﬁwﬁom three child
processes: one to receive loop data, one to listen for requests from clients, and one to
transmit the data to the clients. In the Loop Repeater server, child process 1 does not have
to monitor a network to capture the loop data. Instead, child process 1 sends the Loop
Rebroadcast server a request for data, knowing that the Loop Rebroadcast server will
establish a connection and send the loop data to child process 1 as soon as the data have
been captured from the TSMC LAN. Child process 2 387,\8 requests for the loop data
from other servers, including the TrafNet server and the Loop server. As the last step,
child process 3 sends the loop data to all servers with which child process 2 has established

a connection.

21



44 1OOP SERVER

The Loop server is responsible for receiving data from the Loop Repeater server,
fusing the data, and sending the fused data to other interested servers. To receive and send
data, the Loop server uses the same architecture of child processes that is used by the Loop
Rebroadcast. and the Loop Repeater servers. The system architecture of the Loop server is

shown in Figure 10.

loop server

:
]
]
o ! fork fdrk fork
>
1™ ' ’
“ request . socket info send data
5 [&—— child C‘;;zld —— child
g rec:elvel —P
= : loop data /VAV\
]
Iy :
2 : g
] .o
1 -
' bt
: =
Internet! °
Socket o _ T el E o] I A N W L.

loop client

Figure 10. Loop server system architecture

The three child processes in the Loop server architecture function in basically the
same manner as the child processes in the Loop Rebroadcast and the Loop Repeater server
architectures. The first child process requests the raw data packet from the Loop Repeater
server. Upon receiving the data, it sends the data packet to child process 3 via Unix socket
pipes.

The secbnd child process of the Loop server receives all the connection requests

from end users who are interested in the loop data. After granting a connection to an end

22



=]

user, it sends the clients' connection information to child process 3 via Unix socket pipes
and waits for additional data requests.

Child process 3 receives loop data from process 1 and client connection
information from process 2. In addition, the third child process receives requests for
specific data directly from the clients. Clients can ask the process to send them only the list
of particular loops on a specific route, such as all the available loops on Interstate 5. Acting
on all the information that it has gathered, child process 3 sends the requested loop data to

each of the connected clients through an Internet TCP socket.

23



5. GENERAL FRAMEWORK

In the following section, we first present our general framework and then
demonstrate our approach by describing several Intelligent Transportation System (ITS)
applications we have created and deployed. (It is noteworthy that our paradigms fit within
the context of the FHWA ITS Architecture.) (Rockwell, Theory 1995; Rockweli, Physical
1995)

5.1 PREVIOUS WORK

Previous work has shown that structuring mechanisms aid in managing the
complexity of distributed applications. These mechanisms support a number of desirable
functions, including transparent allocation of processes to CPUs, sﬁpport for dynamic
changes in the structure of a distributed application, and support for development in the
form of tools for common management functions.

The approach presented here provides basic sﬁpport for the development of a
general class of distributed-computing applications that use only widely available system
support. Previous work has focused on designing new system support for distributed
applications; however, this new support has required the implementation of a significant

“amount of new, operating system-specific code to make the proposed environments
available on every platform. We compare and contrast our approach to three previous
efforts: (1) the POLYLITH Software Bus, (2) the Regis environment, and (3) the
ConicDraw system. ‘

The POLYLITH Software Bus (Purtilo 1994) is a system developed to allow
modules implemented in different languages to run on heterogeneous architectures,
interconnected by varying communication media. POLYLITH was introduced in 1985.

The goals of POLYLITH are (1) to separate the specification of an application's
structure (the modules present) from the implementation of its component modules, (2) to

separate the application's geometry (where modules run) from the implementation of

24



modules, and (3) to allow the specification of how modules communicate without
modification of the modules at the source level.

The first POLYLITH goal is met by providing a Module Interconnection Language
(MIL) for specifying the structure of an application. Modules may be implemented in the
designer's language of choice. The MIL also allows control of the app'liéation geometry,
meeting the second goal. Default guidelines allow the designer to omit explicit specification
of the geometry. The third goal is met by a mechanism called a software bus, an agent that
encapsulates run-time interfacing concerns for an application. Changes in the bus are all
that are required to change the inter-process communication (IPC) method.

The approach presented in this report meets the first two goals of the POLYLITH
system in different ways and with far lower system support requirements. Our approach
creates distributed applications from compohent parts. The compohents consist of
executable images and configuration data, and each component acts as an agent for the
execution of other components on a host. The application geometry is contained in the
configuration information. We depend on only widely available inter-process
communication (IPC) paradigms to build our components and, thus, the components do
not readily change the IPC methods.

The Regis programming environment (Magee 1994) is a successor to its
developers' earlier CONIC (Magee 1989) and REX (Kramer 1992) systems. It provides a
configuration language known as Darwin that allows specification of the structure of a
distributed application and allows for dynamic instantiation of computational components.
It restricts components to implementation as C++ objecfs, something its predecessor REX
did not require. CONIC required that computational components be implemented in
Pascal. |

In comparison, our configuration language is represented in tabular form, and the
tables consist of tuples of component name, site for execution, and configuration

information to define connectivity. These tuples are dynamically created and used to

25



initialize a new application. Our applications are dynamically created but, once instantiated,
operate in a static configuration. However, any single component may be dynamically
assigned to a portion of several application programs at the time the application is
configured.

~ ConicDraw (Kramer 1989) is a graphical front-end to the CONIC system that '
allows specification and modification of distributed application geometry at run-time. -
ConicDraw provides a graphical interface that allows construction of distributed
applications from pre-defined module types. Support for diagram layout is provided
(rudimentary planar graph drawing). |

We specify our configuration geometry using a simple planar graphing application

written in tcl/tk to generate the configuration tuples. Icons representing individual
components are selected and placed on a pallet, and the connectivity between components is -
defined by drawing directed lines between them. The configuration is specific before
initialization and remains static during the execution of an application. The same
configuration tool is used to provide monitoring and status information on individual
components and elements of the components in real time. The tool can also be used to halt
or restart individual components as deemed necessary by the application architect. A more

detailed description of our structured environment follows.

26



=

6. THE DEVELOPMENT ENVIRONMENT

In this section, we describe a development environment in which (1) real-time data
are available asynchronously from various geographically distributed and technologically
independent sources; (2) real-time data are provided to vérious geographically separated
clients on an as-needed basis; (3) real-time data fusion is used to produce additional “value-
added” data streams; (4) clients are added through an efficient scaling mechanism that
maintains desired security; and (5) the data dictionary of the real-time data changes slowly
over time, and these changes are handled in a principled manner.

Our development.environment consists of four components, and we define an
application as an appropriate configuration of the components. The components constitute
a toolkit that implicitly handles messages and communication, freeing developers to deal

with the flow and interpretation of data streams.

6.1 COMPONENTS

In this section, we provide an overview of the functions of each component type.
Section 6.2 then describes how components are linked to form applications.

Our development environment is composed of software components that can be
configured and linked to construct applications. Each component is (1) autonomous, i.e.,
components are distributed across computing platforms; (2) independent, i.e., components
can operate in parallel; (3) a peer of any other component, i.e., components can be placed
into an evolving hierarchical matrix with great flexibility; and (4) reusable, i.e., coding is
efficient, and much of the application design is reduced to configuring available
componeﬁts.

There are four types of components, each of which affects the ﬂow of data. (See
Figure 11.) The component types are (1) a Source Component, which makes a data stream
available; (2) a Redistributor Component, which obtains a data stream from one component

and redistributes it to one or more other components; (3) an Operator Component, which

27



Ll 1
CTTT T

Figure 11. Components

obtains data streams from one or more components and creates a new data stream for
distribution to one or more components; and (4) a Sink Component, which obtains data
streams from one or more components. Redistributors and Operators function both as
client and server, whereas Sources are servers, and Sinks are clients.

We use the existing network inter-process communication (IPC) facilities as a base
for implementing the components that make up the building blocks of our application
development environment. Unlike previous work that required extensive software for each
participating operating environment, we require only a socket interface to an IPC library to
implement applications on a wide variety of operating systems at low cost. Our approach
uses three IPC mechanisms: (1) the ability to connect to a specific service at a specific
location on the network, (2) the ability to answer requests for service from remote clients,
and (3) the ability to maintain connections between the components of our applications for

data transfer.

6.1.1 Elements of a Component

Before describing these four components in greater detail, we will first describe
three elements that are key, reusable pieces of these components. Three of our four

components (Source, Redistributor, and Operator) are built from these three specific

28



Requests
from Clients
for Data

Build IPC
Descriptor

Wait for Connection
Request

Pass IPC
Descriptor to
Output
Multiplexer

IPC Data Path

Available
input

Listen
for Data

Send
Data to
List of
Clients

" Pass
Data to
Output
. Multiplexer

Receive
Data

Data
from Network
Sources

Data to
Network Clients

Figure 12. State diagrams for the elements in a redistributor

reusable elements. The elements, and a state diagram for each element, are shown in
Figure 12.

The “Connection Daemon” element waits for and accepts asynchronous IPC
requests across a network. These requests are for either data or administrative functions.
It services these requests by first establishing the authorization of the requester and then
either aécepting a connection from a client requesting data or executing an administrative
function, such as “restart.” Once network connectivity and authentication have been
established, the information about the IPC connection to the client is passed to the “Output
Multiplexer.’;

The “Output Multiplexer” element maintains a list of connected clients and

multiplexes the data stream to all active clients. It also maintains state information in the

29



form of a data dictionary structure, which is the first information passed to a newly
connected client. This data dictionary definition allows the client to interpret the data
stream. The data stream to be multiplexed is received asynchronously from the element
labeled “Input Buffer.”

The Input Buffer initiates and maintains connectivify with a data source and also
receives available data from a data source. This element provides a data buffer for the data
from a source and forwards the data to the Output Multiplexer. This process guaramntees
that the component remains synchronized with the data stream from a data source. This
synchronization is necessary because the data stream from sensors is sent in a frame and
each frame has a fixed length (defined in the beginning of the frame). If synchronization is
lost, this element terminates the connection to the data sources and then reestablishes the
connection to re-synchronize the data stream. Multiple input buffers may exist in a single
component to receive data from several sources.

The Connection Daemon, Input Buffer, and Output Multiplexer all exist on one
computer, communicate with each other asynchronously, and operate in parallel. This
parallelism is obtained by using operating system support for multiple processes that may
time slice one CPU or execute each process on parallel CPUs. The parallel operation of
these elements is necessary because of the asynchronous nature of the tasks performed by
~ each element. The elements - Connection Daemon, Input Buffer, and Output Multiplexer -
make up the heart of the reusable code in our approach, and three of the four components
(the Operator, Redistributor, and Source) use these three elements as building blocks. A
more detailed description of each component type and its construction follows.

6.1.2 Source

A Source component exists for each sensor technology and makes the data stream
from that technology available on the network. It does this by (1) interfacing with the
seﬂsor technology, (2) using knowledge of the content of the data stream to build a self-

describing data dictionary into that data stream, and (3) making the data stream available to

30



rem

other components on the network. Note that the Source component does not include the
technology that generates the data stream but, rather, is a tool that allows developers to
ignore the nature of that technology. Sensor technologies range from a single sensor with a
single, simple data type to computer systems providing rich streams of complex data.
Whatever the nature and complexity of the data-generating technology, the related Source
component packages its stream of data to give it a peer status with other data streams on the

network.

é Sensbr v )

Specific
Implementation Source
Component
\ 4
Connection Input Output
Daemon Buffer >»{ Multiplexer
7y | A
\ y

Request Data

Figure 13. Elements of source component

The Sourée component type adds one element to the three basic elements just
described, namely a process specific to the sensor/system that is the originator of the data
stream. (See Figure 13.) This additional pr'occss communicates directly with the
sensor/system to obtain data and infoﬁnation about the format, contents, and meaning of
the data stream. It builds data structures - to deﬁn_e format, contents, and meaning - that are

provided to clients as an initial data dictionary before it transmits the sensor data. These

31



constructs produce a self-defining data stream with an initial dictionary and following data.
As the information coming from the sensor changes in format, content, and structure, this
component builds a new data dictionary and passes it on to “downstream” components.

6.1.3 _Redistributor

A Redistributor takes data from one component and multiplexes it to other
components. Each Redistributor is client to a particular data-providing corhponent and
allows the data stream from that component to “fan out” to each of its own client
components. The Redistributor component has two basic functions: (1) scaling and (2)
authorization. In our structured development environment, scaling is achieved by linking
redistributors in a hierarchical fashion. Because each Redistributor services N clients, M
layers of Redistributors service N x M clients. Because components are autonomous,
Redistributors can reside on any computer and operate in parallel. In this way, scaling can
be economically achieved in fixed-size blocks through the addition of Redistributors

operating on parallel computing platforms. (See Figure 14.)

Source

l

v v

Redistributor ses  eee Redistributor

l 1

A J v Yy Y

Redistributor | <*+ | Redistributor Redistributor | <=+ | Redistributor

N

Figure 14. Hierarchical scaling mechanism

32



The Redistributor also authorizes data access. The Redistributor maintains a
dynamic client list and, whenever they are available, passes new data on to clients on that
list. When a request for data comes from a coinponent not currently on the client list, the
client is checked against an authorization list. This authorization list is part of thé
initialization information for each Redistributor and may remain as simple as a static list or
may include dynamic queries to a remote database. The dynamic or static authorization list
and authorization mechanism are part of the configuration information. Similar
authorization is performed by Operator and Source components as well.

The Redistributor component type is constructed from the three elements described
above, as well as from configuration information, including the data source network
location and authorization information listing allowable clients. Figure 15 and a table of

configuration information represent the Redistributor component type.

Data
Source

Redistributor Component
Connection Input OQutput
Daemon Buffer » Multiplexer
A | A
Request ' Data
Data
Sink

Figure 15. Redistributor component elements

33



6.1.4 Operator

The Operator component type comprises the three basic elements plus a data fusion
activity that operates on the data content as the data are passed from the input buffer to the
Output Multiplexor. (See Figure 16.) An Operator receives data streams from one or more

components, performs functions on those data streams, and makes available a single,

Data - Data

Source Source
[ Y Operator Component
Input
Connection v Buffer > Fusion .|  Output
Daemon Input »| Operation Multiplexer
yy l Buffer T
\
Request ' Data
Data

Figure 16. Elements of the operator component

newly created data stream to one or more components. Its general purpose is “data
fusion,” coﬁverting data from the form provided by the serving components to a form
desired by the eventual clients.

Each Operator component is associated with a specific data fusion activity. These
activities can range from combining like types of data to creating new information from a
variety of data sources. Like the Redistributor, the Operator also performs authorizes data
access.

6.1.5_ _ Sink

The Sink component is the portion of our approach that is commonly viewed by a

user as an application. It is the component that typically either has a user interface or

34



performs an activity that affects the environment. It usually obtains data from one or more
components (such as an Operator, or a Redistributor that is downstream from an Operator).
Examples of several types of Sinks are provided in Section 6.4.

6.1.6 Summary

These four component types: (1) Source, (2) Sink, (3) Redistributor, and (4)
Operator, are the basis for creating our distributed applications as described in the next

section.

6.2 APPLICATIONS FROM COMPONENTS

In our approach, applications afe constructed from components by connecting
Sources, Redistributors,' Operators, and Sinks in a hierarchical structure. An application is
composed of all the structures necessary to take original sources of data, fuse the data, and
distribute the resulting information to the data sinks. These structures include the
individual component types, structural information about the path for data flow through the
application, and information necessary to allow the Operators and the Sinks to use the data.

For example, the simplest application is a single-client, single-server model in
which a data sink operates on the original source data (e.g., the data sink displays the
sensor status or output). This application is composed of two components, a Source and a
Sink. The elements of these two components use (1) connection information that allows
the sink to connect to the source, (2) authorization information that allows the source to
send the data to the sink, and (3) a shared definition of the interpretation of the data stream.
Such an application is shown in the shaded area labeled (1) in Figure 17 and is similar to
the single-client, single-server notion of distributed applications. In our approach,
however, most applications are composed of nﬁmerous components.

A common application scenario would include (1) multiple, data-specific sources
that are geographically and technically disparate, (2) a Redistributor for each source, (3) an

Operator for each type of data, (4) an Operator for each type of information that will be

35



created from available data products, (5) a Redistributor for each block of sinks, and (6)

multiple, special purpose Sinks that require access to data streams to achieve their purpose.

Source

Redistributor Redistributor Operator

!

Operator Operator ' Operator Redistributor

bl

" Sink Sink _ Sink

Figure 17. Construction of applications from components

Applications are composed of several of our base components and are initiated with
remote procedure calls that start individual components on local or remote computers and
initialize these components with their data sources. Section 6.4 presents some examples of

applications we have built using the paradigm presented here.

6.3 TOOLS FOR APPLICATION CREATION AND MONITORING

We have created a set of tools to be used within our framework to develop and
manage applications. The applications are developed and managed with a set of graphical
tools to assemble the hierarchy of components that make up an applicatior_x, and the same
type of graphical tool is used to identify the status of elements within operating

components.

36



]

l’w‘:ﬂ

To support the implementation of management tools, each of the elements within a

component has monitoring facilities that report status to a “simple control and monitoring

daemon” (SCMPD) over a connectionless channel. This status consists of static data such

as (1) the Source and Sink ports and (2) the address of the server from which it receives

data. It also consists of dynamic data such as (1) the time of the last message processed by

the component, (2) the status of the component (such as a heartbeat indicator), (3) the

present state of the component (initializing, running, shutting down), and (4) the time of

the most recent change of state. The SCMP daemon logs this information and also

supports connections by a console application.

The console application creates a connection to an SCMP daemon and produces two

windows. The first is an acyclic planar graph representing the connections between the

components that makes up the applications that are reporting to this SCMP daemon. The

second window provides a detailed account of the status of the elements within the

components reporting to that SCMP daemon. (Examples of these windows are shown in

Figure 18.)

Graphic Representation

Server Monitor

TMSUW
|
. Iminor_error
LOOPS_FORWARD
= . socoher
- LOOPS_FANOUT
LOOP_SERVER |

receiver forwarde M
! TR_20 TR TR TR_20 .
Iracomrlhomn@ fistener lvoceiverl orwarder] | listener receiver | [forwi ||iﬂmov| |ncoiver| fistener
S — »v

Configure SCMPD Trace

Server Name: TR.20
Server Address:  128.95.32.50
Parent Addrass:  128.95.29.50
Current State: running
Curreni massage received tima:
Last message received time:
Most recent state change tima:
Heart Beat Status:

Last message priority:  routing
Last message:

Current message:

Type: listener

PID: 2688
Setver Port: 8001

Parent Port: 9004

Last State:  running

Wed Oct 4 11:05:59 1995

Wed Oct 4 11:05:29 1995

Wed Oct 4 11:07:29 1995

Heart Beat Period (sec):

Current message priority:  routine
heartbeat

heartbeat

Figure 18. Application console




An application similar to the console is used to cfeate the control tables that
instantiate each of the components and to create the connections between the components.
An application is created by starting a set of components whose intercomponent
communication is defined in terms of the Source and Sink address and port numbers.

Examples of ITS applications created using this approach are presented in the next section.

6.4 ILLUSTRATION USING ITS DATA

To illustrate the implementation of our approach, we describe several Intelligent
Transportation System (ITS) applicaﬁons we have constructed using our paradigm. ITS
applications are good examples of the type of remote sensor problems for which our
approach is appropriate. In ITS applications, there are typically large numbers of sensors
that are geographically diverse and controlled by autonomous political and fiscal entities.
However, the applications need access to data from a variety of sensors widely deployed
and owned by other entities. These sensors typically have update rates on the order of
milliseconds to seconds. Two examples of ITS data sources are congestion monitoring
| systems and probe vehicles.

Congestion monitoring is implemented with a variety of sensor types. In our
demonstration applications, we use two types of sensors, inductance loop sensors and
- CCTV cameras. The inductance loop sensors are thousands of wire loops buried in
freeways and arterials, including their associated electronics, that can identify properties of
vehicles passing over the loops. These properties include the passage of a vehicle, the
duration a vehicle is present, count-per-unit time, the average speed of a vehicle, the length
of a vehicle, and the type of vehicle. The properties measured vary depending on the
available electronics. The CCTV cameras provide a video image of roadways at a variety
of locations throughout a large geographic area.

In our demonstration applications, we also use probe vehicles. Probe vehicles are

geolocated in real time to provide second-by-second tracking of the vehicle fleet. This type

38



==

of fleet management is done by both the public and private sectors (e.g., transit
management or delivery fleet management). -

In the next two sections we describe our instantiation of servers from top to bottom,
which is the direction of data flow in Figure 19. The paralielism between the server
structures to support the applications described is clearly visible in Figure 19, with TrafNet
on the left and BusView on the right.

6.4.1 TrafNet

We use two types of data sources to build a variety of applications using our
development environment. The first example is an application we call TrafNet, which
provides real-time updates of traffic conditions to Internet users.' In Figure 19, the left
side of the diagram represents the architecture of TrafNet, and the data source is a Traffic
Management System (TMS) operated by the Washington State Department of
Transportation (WSDOT), which polls several thousand inductance loops every 20
seconds. WSDOT, which funds the collection of these data, uses the data for traffic
management; however, this type of information has potential value to travelers and shippers
as well. We make these data, and products derived from them, available on the Internet
using the paradigms proposed here.

The Source component in this application eavesdrops on the loop data while the

. loops are being polled and maintains a data dictionary that describes the structure of the

loop data. This structuré includes information about loop locations and loop type (e.g., the
type of measurement and units of the measurement). The Source is connected to a network
and responds to requests for loop data by first sending the data dictionary and then

following that with the updated set of sensor values as soon as they become available. This

process is actually implemented on the computer that runs the WSDOT TMS system and is
named TMSUW.

The executable for TrafNet can be obtained from http://www.ivhs.washington.edu/trafnet.

39



The next component, labeled Loops_forward, is an Operator that receives the data
dictionary and data from TMSUW. Tb these data it adds information about the route and
milepost marker locations for each of the items found in the data dictionary, and, thus, this
Operator corﬁponent is engaged in “data fusion.” This component operates on a computer
that is located at WSDOT's Traffic Systems Management Center (TSMC), and the

significance of the physical location is that this data fusion server can control what data are

State and Connection

AVL_Rebroadcast Maintenance
v v
. Y
-«————— Data Dictionary + Data Schedul
. i chedule
. AVL_Trip = Information
Loops_Fanout State and Connection ' ¥ ¥ ¥
- Maintenance (SCMPD)
YyYvy Y Bl IR
y ) . anned Routes
(scmep ) l l . L_ AVL_Position | <—— _ =+
3 y~<— Data Dictionary + Data 7 7 Digital Maps
Geographic Positionin
Loop_Server g F;c - 9 v
l l 9 AVL_Fanout
\ -«—— Requested Data v v
\ 4
Application
TR_Server AVL_ITS ~— Secific
) Formatting
-«—— Atomic Data
A 4 \ 4 A 4 i v Y i \ 4

BusView BusView BusView

TrafNet TrafNet

TrafNet

Figure 19. TrafNet and BusView applications

40



allowed (by agreement with WSDOT staff) to leave WSDOT's premises. This control over

“access to the data provides agency autonomy and network security. There are two firewalls
between the TSMC subnet and the Internet that protect WSDOT internal computers from
the Internet community. The firewalls allow only certain computers at specific TCP ports
to connect to this computer.

The component labeled Loop_Fanout in Figure 19 is a Redistributor component that
makes the loop data and data dictiopaxy available to a larger number of clients. It maintains
connectivity with Loops_forward while accepting and authenticating requests for data
connections. This is the last component in the hierarchy where the original data as recorded
by the sensors are available; downstream servers modify the original data stream.

The component labeled Loop_Server is an Operator that fuses data by adding
geoposition in latitude and longitude to the data dictionary on the basis of the loop identifier
and the mile post information. It further scales the data to known units (e.g., vehicle
counts converted to vehicles per hour).

The next server component, labeled TRServer, is another Operator component that-
combines data from individual loops to make congestion estimates. It then packages the
resulting information in a specific format and order to be used by the presentation Sink
component labeled TrafNet. The connection between this server and the TrafNet Sink can

. potentially employ slower media, so this component minimizes thé amount of data that need
to be sent per update of the TrafNet screen.

To make the TrafNet data stream available to large numbers of users, we can add
Redistributors downstream of this component. However, to date, that has not been
necessary.

The TrafNet program (the Sink at the bottom) is a Microsoft Windows 3.1
application that uses the Winsock network interface. The end user looking at the TrafNet
screen sees only the graphic representation of the freeway system with congestion

indications updated every 20 seconds. The user can select entrance and exit ramps to

41



request information about specific trips. This is the first example of how our approach
facilitates the creation of value-added applications and also makes intermediate forms of the
data available for other uses.

6.4.2 BusView

A second example of a distributed application created within our framework is
BusView, which uses probe vehicles - in this case transit coaches - to create an Advanced
Traveler Information System (ATTS) application that displays the location of the transit
coaches on a digital map in real time.

BusView, shown in the right-hand column of Figure 19, uses a transit carrier's
automatic vehicle locaﬁon system as the sensor for the Source component. In this case, the
Source component (labeled AVLUW) eavesdrops 'on communication between components
of a proprietary AVL system used by the transit carrier's operations staff to measure
schedule adherence and to provide traffic managers geolocation specifics in the event of an
incident. The data, in this case, constitute distance along a planned path, which, with
knowledge of the routes and several coordinate transformations, can be used to estimate
geolocation.

Like the component Loops_forward in the previous example, AVL_AVLUW is an
operator located on a computer in the AVL operations center of the transit carrier, and, like
the previous example, it limits the information that can be sent out of the agency. In this
case, the numerical identification of the driver is in the data received by AVLUW but is
removed for privacy reasons before the data are allowed out of the physical control of the
transit agency. This component is also behind firewalls that protect the transit AVL system
from Internet users. Once again, this Operator component provides for network security
and agency autonomy, while also removing information from the data stream.

The raw data, a distance along a known path, is multipleXed by a Redistributor
(labeled AVL_Rebroadcast). Like the component Loops_fanout in the previous example,

AVL_Rebroadcast multiplexes the original raw data to make them widely available.

42



The data from AVL_Rebroadcast are passed to an Operator (labeled AVL_Trip),
which uses information in the AVL data packet to associate a specific vehicle with a specific
trip in the transit schedule. The data from the AVL system arrives at an average rate of 11-
coaches-per-second, and a 20,000 record database of scheduled trips is searched for each
coach to obtain the schedule correspondence. This trip information is added to the record
for each coach and made available to downstream clients.

The data from AVL_Trip is passed to an Operator (labeled AVL_Position), which
can use the data, information about planned routes, and digital maps, and then coordinate
transformations to calculate a latitude and longitude value for the transit (probe) vehicles.
The calculation of geoposition requires (1) identifying the particular coordinate lists in one
of 2500+ files that represent every possible vehicle route, (2) selecting the segment within
the list on which the vehicle is estimated to exist, and (3) using a Newton's method to
perform an inverse Lambert projection from the proprietary coordinate system of the AVL
system at a rate of 11-vehicles-per-second. The ability of a component to operaté on
independent CPUs, which is designed into our apprqach, makes it possible to select a CPU
of appropriate power for each of the designated tasks. This Operator, for example, takes
the entire resources of one computer to keep up with the data ﬂoW, so it does not coexist on
a CPU with the other Operators mentioned in these examples.

Downstream of the AVL_Position server is a Redistributor labeled AVL_Fanout
which multiplexes the data stream containing vehicle geopositions to a variety of users.
This Redistributor frees the upstream process from multiplexing so that it can focus on
determining the positioning solution.

The server component labeled AVL_Ivhs creates a customized data stream for the
BusView presentation. Like TRServer in the previous example, the connection between

this server and the BusView Sink can potentially employ slower media. This component

43



minimizes the amount of data that needs to be sent, per update of each transit vehicle, on
the BusView screen.’

A digital map and vehicle location information, along with schedule information,
are displayed graphically on the BusView screen, creating an information system for transit
riders. BusView is a second example of how our approach can be appliéd to create
distributed applications that use real-time data from a single source. In the next section, we
describe a hybrid system that takes data from both of the server stacks that have just been
described. -

6.4.3 Hvbrid Example: SWIFT

A third instantiation of our paradigms is a hybrid of the previous two applications.
This hybrid application' is known as Seattle Wide-area Information for Travelers (SWIFT),
an operational test sponsored by the Federal Highway Administration (FHWA). This
project combines data from the sources used for both TrafNet and BusView to create new
information. Traffic congestion and probe vehicle information described above are used to
estimatevspeed (and travel times) on freeway links, and that information, in turn, is
provided to a commercial wireless carrier, which broadcasts it to subscribers. These
subscribers receive the information via three principle devices: (1) a Seiko Receptor ™
watch, (2) a Delco car radio, and (3) an IBM portable computer. Each of the receiving
platforms represents a potential value-added resale of the information. Figure 20 shows the
collection of components that create the information source for the SWIFT application.
Note that many of the corﬁponents that were part of the other two applications are also used
in the SWIFT application, and this simultaneous usage does not affect the operation of the

other applications.

Request for access to the BusView URL can be sent to busview @ivhs.washington.edu.

44



o ‘Radio 'fj
T : Control:
* r7 S
y
" |Loops_Forward " sl AVL_Rebroadcast
Y v
Loops_Fanout AVL_Trip | Schedule
- Information

! vl

L Y

Geographic
Posntiomng Loop_Server AVL_Position Planneci Routes
Scaling : I 1 Digital Maps
y <
Application
Specific —>»| TR_Server AVL_Fanout
Formatting
— ' —— || |
3 ) y ¥ A 4
SWIFT <__Applica'tion
TrafNet TrafNet Data Fusion AVL_ITS Specific
(Link Speed) Formatting
A4
SWIFT SWIFT
BAP BAP A 4
Server Server

BusView BusView

FM
Subcarrier

Figure 20. SWIFT application in the context of TrafNet and BusView

45



7.  CONCLUSION

The approach described in this paper embodies several specific features, which
include (1) an architecture that will deliver real-time data to a large number of consumers
while maiﬁtaining a mechanism for authorization; (2) a definition of distributed applications
that includes an entire set of components arranged in an hierarchical structure; aﬁd B)a
clear mechanism for building “value-added” applications that use a generally available data
stream. In this report, we have described in detail a set of paradigms to implement such
distributed applications and have discussed several actual implementations in the domain of
ITS.

We have presented a conceptual framework for ITS development and have shown
how this framework solves numerous high-level problems associated with ITS
development. A sample instantiation, the Backbone project, further demonstrates the
viability of our unified ITS conceptual framework and shows that such a framework can be

implemented at reasonable cost and with a high likelihood of successful operation.

46



REFERENCES

Albus, James S., Maris Juberts, and Sandor Szabo. A Reference Model Architecture for
Intelligent Vehicle and Highway Systems. Proceedings of the Intelligent Vehicles
‘92 Symposium, Detroit, Michigan, June 29-July 1, 1992, pp. 378-84.

Chadwick, Jim, and Vijay Patel. A Communications Architecture Concept for Intelligent
Vehicle Highway Systems (IVHS). Proceedings of the Intelligent Vehicles '92
Symposium, Detroit, Michigan, June 29-July 1, 1992, pp. 359-64.

Chen, Kan, and Bemnard Galler. An Overview of Intelligent Vehicle-Highway Systems
(IVHS) Activities in North America. Proceedings of the 5th Jerusalem Conference
on Information Technology (JCIT), Jerusalem, Israel, October 1990, pp. 694-701.

Hsin, Victor J. and Paul T. R. Wang. Modeling Concepts for Intelligent Vehicle Highway
Systems (IVHS) Applications. 1992 Winter Simulation Conference Proceedings,
Arlington, Virginia, December 13-16, 1992, pp. 1201-09. '

Kramer, J., J. Magee, M. Sloman, and N. Dulay. Configuring Object-Based Distributed
Systems in REX. IEEE Software Engineering Journal, 7(2):139-49, March 1992.

Kramer, Jeff, Jeff Magee, and Keng Ng. Graphical Configuration Programming. IEEE
Computer, 22(10): 53-8, 62-5, October 1989.

Laraqui, Kim, Magnus Lengdell, Frank Reichert, and Adreas Fasbender. Implementation
of Communication and Management Protocols for the Integrated Road Transport
and Traffic Environment. 1994 IEEE 44th Vehicular Technology Conference,.
Stockholm, Sweden, June 8-10, 1994, pp. 379-83, vol. 1.

Magee, Jeff, Naranker Dulay, and Jeff Kramer. Regis: A Constructive Development
Environment for Distributed Programs. Distributed Systems Engineering Journal,
1(5):304-12, September 19%4. ,

Magee, J., Jeff Kramer, and M: Sloman. Constructing Distributed Systems in Conic.

IEEE Transactions on Software Engineering, 15(6): 663-75, June 1989.

Purtilo, James M. The POLYLITH Software Bus. ACM Transactions on Programming
Languages and Systems, 16(1):151-74, January 1994.

Rockwell International Joint Architecture Team, Loral Federal Systems. Physical
architecture. ITS Architecture, October 1995.

Rockwell International Joint Architecture Team, Loral Federal Systems. Theory of
operations. ITS Architecture, October 1995.

Schill, A. Distributed Application Support: Survey and Synthesis of Existing Approaches.
Information and Software Technology, 32(8):545-58, October 1990.

Varaiya, Pravin, and Steven Shladover. Sketch of an IVHS Systems Architecture. Vehicle

Navigation and Information Systems Conference Proceedings, Dearborn,
Michigan, October 1991, pp. 909-22, vol. 2.

47



