
Final Technical Report
Research Project T2695, Task 55
Contract Title: CCTV Phase 3

CCTV Technical Report
Phase 3

D.J. Dailey and F.W Cathey

Department of Electrical Engineering

University of Washington

Seattle, Washington 98195

Washington State Transportation Center (TRAC)
University of Washington, Box 354802
University District Building, Suite 535

1107 N. 45th Street
Seattle, Washington 98105-4631

Washington State Department of Transportation
Technical Monitor

Ted Trepanier, State Traffic Engineer

A report prepared for
Washington State Transportation Commission

Department of Transportation
and in cooperation with

U.S. Department of Transportation
Federally Highway Administration

January 2006

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

WA-RD 635.2

4. TITLE AND SUBTITLE 5. REPORT DATE

THE AUTOMATED USE OF UN-CALIBRATED CCTV January 2006
6. PERFORMING ORGANIZATION CODE CAMERAS AS QUANTITATIVE SPEED SENSORS

—PHASE 3
7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO.

Daniel J. Dailey and Frederick W. Cathey

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

Washington State Transportation Center (TRAC)
University of Washington, Box 354802 11. CONTRACT OR GRANT NO.

University District Building; 1107 NE 45th Street, Suite 535 Agreement T2695, Task 55
Seattle, Washington 98105-4631
12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED

Research Office
Washington State Department of Transportation Final Technical Report

Transportation Building, MS 47370

Olympia, Washington 98504-7370 14. SPONSORING AGENCY CODE

Doug Brodin, Project Manager, 360-705-7972
15. SUPPLEMENTARY NOTES

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway
Administration.
16. ABSTRACT

The Washington State Department of Transportation (WSDOT) has a network of several

hundred closed-circuit television (CCTV) traffic surveillance cameras that are deployed for congestion

monitoring on the freeways and arterials around Seattle. The goal of the first two phases of this project

was to create algorithms that would allow these cameras to make continuous quantitative measurements

of vehicle speed. In the first two phases, a number of algorithms were developed and tested; the most

successful of these was chosen for implementation in this, Phase 3. The goal of this third phase was to

implement the algorithms as prototype software.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Closed-circuit television (CCTV), traffic
surveillance., congestion monitoring, speed
sensors, camera calibration

No restrictions. This document is available to the
public through the National Technical Information
Service, Springfield, VA 22616

19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF. (of this page) 21. NO. OF PAGES 22. PRICE

None None

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for
the facts and accuracy of the data presented herein. The contents do not necessarily
reflect the views or policies of the Washington State Transportation Commission,
Department of Transportation, or Federal Highway Administration. This report does
not constitute a standard, specification, or regulation.

Contents

Executive Summary v

1 Introduction 1

2 Theory 3

2.1 Coordinate Systems and Camera Model 3

2.2 Ground Plane to Image Transformations 6

2.3 Highway Vanishing Point . 7

2.4 No Camera Misalignment . 8

2.5 Straightening . 9

2.6 Complete Camera Calibration . 12

3 Image Processing Algorithms 14

3.1 Calibration Process . 14

3.1.1 Highway Line Detection . 14

3.1.2 Vanishing Point Estimation 19

3.1.3 Straightening Warp Operator 21

3.1.4 Stripe detection and scale factor 23

3.2 Traffic Speed Estimation . 25

3.2.1 Accuracy Considerations . 28

4 Application 31

4.1 Graphical User Interface . 31

4.2 Image Processor . 35

4.2.1 The DAG . 35

4.2.2 Managing the DAG . 38

ii

A Total Least Squares Formula 41

List of Figures

2.1 Highway and camera coordinate frames. 5

3.1 Background image on the left, thresholded edge image on the right. . 16

3.2 A line with parameters θ = 45◦ and p < 0. 17

3.3 Point-wise product of T and Θ on the left, close up of smaller region

on right. 18

3.4 A 3-D leading edge Hough plot on left, detected lines on right. 19

3.5 Warp geometry. 22

3.6 A straightened background image (rotated 90◦). 23

3.7 Autocorrelation on the left, line of stripes on right. 24

3.8 Sequence of straightened images, frame 6 on left and frame 7 on right.

Interframe time is 0.5 seconds. 26

3.9 Cross-correlation to estimate travel distance on the left, cross-section

from frame 7 aligned with cross-section from frame 6 on the right. . . 27

4.1 Screen shot of the CameraView application. 32

4.2 Image processing graph. 36

A.1 Distance from z to ` is |z · vθ − p|. 42

iv

Executive Summary

The Washington Department of Transportation (WSDOT) has a network of several

hundred closed-circuit television (CCTV) traffic surveillance cameras deployed on

the freeways and arterials around Seattle for congestion monitoring. No camera

parameters are known a priori for these cameras; WSDOT operators dynamically

change their focal length (f), pan angle (θ), and tilt angle (φ). The goal of this

project was to create algorithms and prototype software to allow these cameras to be

used to make continuous quantitative measurements of vehicle speed. However, to use

the cameras for quantitative measures, the camera parameters have to be estimated.

In order to measure speeds of vehicles from a series of video images it is not necessary

to completely calibrate the camera; rather, by using the vanishing point of lines in the

image algebraic constraints can be established on the parameters that are sufficient

to straighten the image and compute a scale factor for estimating speed.

Chapter Two of this report contains the mathematics that are the intellectual basis

for a prototype application to perform the quantitative functions described above.

Chapter Three provides details on the calibration process. Chapter Four describes

the prototype Java application created with the algorithms developed. The resulting

application allows a user to select from a list of cameras, examine the camera view,

calibrate the camera, and record speed data to a file. Screen shots of this application

appear in Chapter Four.

Chapter 1

Introduction

This report presents a new computer vision approach to traffic speed estimation using

uncalibrated highway surveillance cameras. Innovative image processing techniques

include the following: (1) use of perspective straightening for image linearization, (2)

an autocorrelation technique for lane stripe detection and estimation of the linear

pixel/foot scale factor, and (3) a cross correlation technique used to estimate mean

traffic speeds and direction of flow.

The Washington Department of Transportation (WSDOT) has a network of sev-

eral hundred closed-circuit television (CCTV) traffic surveillance cameras deployed

on the freeways and arterials around Seattle for congestion monitoring. Approximate

location information is provided for each camera, such as highway name, cross-street,

and position relative to the highway (north, south, east, west, median, or center), but

no calibration parameters are provided. Camera height (h) above ground is unknown,

and WSDOT operators can change the focal length (f), pan angle (θ), and tilt angle

(φ) at will by remote control.

In surveillance situations with favorable geometry, traffic speeds can be measured

from a series of video images without the calibration parameters h, f, θ or φ, actually

being determined(assuming that they are constant for the series). Attention is re-

stricted to cameras that surveil approaching and/or receding traffic: the line of sight

must be directed slightly downward and more or less along the highway, rather than

across it. Highway lanes and lane boundaries must also be approximately straight in

the region of surveillance near the camera. Under these conditions, the highway lines

will appear straight in a camera image and will have a recognizable vanishing point.

Given the highway vanishing point, a straightening transformation is defined that

1

maps lines parallel to the highway to vertical image lines. Moreover, the highway-to-

image scale factor is constant for each such line. It can be determined by measuring

the vertical dimension of an image feature with known length along the highway, such

as lane stripe period. Because traffic pixel speed can be estimated by cross correlating

lines in successive pairs of straightened images, speeds on the highway can be readily

estimated by using the scale factor.

This report covers three main topics. First are presented the mathematics of

straightening and its application to camera calibration. Next are presented image

processing algorithms for highway vanishing point estimation and image straighten-

ing, as well as scale factor and speed estimation. In addition, a software application

of these concepts and algorithms that interfaces with the WSDOT camera system is

described.

2

Chapter 2

Theory

This section presents the mathematical theory behind perspective straightening. The

theory is based on a standard pin-hole perspective camera model and depends on

properties of vanishing points, which are described. The mathematics prove that the

composite transformation from highway ground plane coordinates to straightened

image coordinates is a projective shear preserving vertical lines, as well as, in fact, an

affine shear, provided the camera has zero roll angle with respect to the ground plane.

In the latter case, explicit formulas are given for the camera parameters in terms of

the vanishing point coordinates, and the horizontal and vertical highway-to-image

scale factors. In practice, only the vanishing point and the vertical scale factor are

estimated, since the horizontal factor is not needed for speed estimation. 1

2.1 Coordinate Systems and Camera Model

This section reviews coordinate system conventions and the pin-hole camera model

presented by Cathey and Dailey (2004).

The highway coordinate system is a right-handed Cartesian system with origin

in the ground plane below the camera. We let X = (x, y, z) denote the coordinate

vector for a variable point with respect to this system. The x-axis is parallel to the

highway direction, tangent to the road surface and oriented so as to make an acute

angle with the camera line of sight (the camera is looking “down” the road). The

y-axis is also tangent to the road surface, while the z-axis points down. Thus, sighting

down the positive x-axis, the positive y-axis points to the right.

1However, see the remark at the end of section 3.2.

3

The camera coordinate system is a right-handed Cartesian system with origin

at the camera eyepoint. We let X̄ = (x̄, ȳ, z̄) denote the coordinate vector for a

variable point with respect to this system. The positive x̄-axis is directed along the

camera line of sight. The ȳ- and z̄-axes are oriented parallel to the central row and

column of the image surface respectively.

The camera and highway coordinates for a point are related by the following

(invertible) affine transformations:

X = A X̄ + B (2.1)

X̄ = AT (X − B), (2.2)

where

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =

0
0
−h

 . (2.3)

A is a rotation matrix (i.e., an orthogonal matrix with determinant = 1). The columns

of the matrix A give the highway coordinates for the unit vectors along the camera co-

ordinate system axes. B is the coordinate vector for the camera eye-point in highway

coordinates, and h is the perpendicular height of the camera above the road.

The centered image coordinates corresponding to a point X̄ in the field of

view of the camera are defined by a simple projective transformation:

u = f ȳ/x̄ (positive direction to the right) (2.4)

v = f z̄/x̄ (positive direction downward),

where f > 0 is a scale factor that depends on the focal length of the camera. The

origin of this coordinate system lies on the camera line of sight.

Actual image data are provided as a rectangular array of “pixels” or samples

of image intensity. The location of a pixel in the image is specified by its pixel

coordinates, (c, r), the column and row indices of the pixel in the array. We follow

the convention that indices start at 0, so the origin of the pixel coordinate system

(0, 0) is at the upper left corner of the image. To impose centered image coordinates

on an actual image, we need to know the pixel coordinates of the optical center, (c0, r0)

(i.e., where the camera line of sight axis pierces the image). Then uv-coordinates are

4

h

�
�

�
�	

��

y

- x

?
z

�
�

�
�

���

�
��

ȳ

�
�

��+

��

z̄

PPPPPPq

PP

x̄

Figure 2.1: Highway and camera coordinate frames.

5

a simple translation of the cr-coordinates defined by u = c− c0 and v = r − r0. Note

that the optical center may not be the center of the image and that the values c0 and

r0 may not be integral.

The composition of transforms (2.2) and (2.4) constitutes the pin-hole perspective

camera model for projecting 3-dimensional space (with highway coordinates) onto a

2-dimensional image plane (with centered image coordinates). In detail,

u = f
a12x + a22y + a32(z + h)

a11x + a21y + a31(z + h)

v = f
a13x + a23y + a33(z + h)

a11x + a21y + a31(z + h)

. (2.5)

Because any rotation matrix is specified by three Euler angles, we see that the model

has five independent parameters.

2.2 Ground Plane to Image Transformations

The following results are easily derived from equations (2.1) through (2.5) (see, e.g.,

Cathey and Dailey 2004). The forward and inverse transformations between the

highway ground plane (z = 0) and the image plane are given by

u = f
a12x + a22y + a32h

a11x + a21y + a31h

v = f
a13x + a23y + a33h

a11x + a21y + a31h

(2.6)

and

x = h
a11f + a12u + a13v

a31f + a32u + a33v

y = h
a21f + a22u + a23v

a31f + a32u + a33v
.

(2.7)

These are special cases of 2-dimensional projective transformations. For example,

(2.6) can be expressed in the standard form with homogeneous coordinates

λu
λ v
λ

 = M

x
y
1

 , (2.8)

6

where M is the invertible matrix defined by

M =

f a12 f a22 f a32 h
f a13 f a23 f a33 h
a11 a21 a31 h

 . (2.9)

2.3 Highway Vanishing Point

The image coordinates of the vanishing point (u∞, v∞) for lines parallel to the x-axis

are found by holding y constant and letting x → ∞ in (2.6):

u∞ = f a12/a11 (2.10)

v∞ = f a13/a11. (2.11)

The following identities are consequences of the orthonormality of rows of A:

a11f + a12u∞ + a13v∞ = f/a11

a21f + a22u∞ + a23v∞ = 0

a31f + a32u∞ + a33v∞ = 0

(2.12)

and

f2 + u2
∞ + v2

∞ = (f/a11)
2. (2.13)

The latter identity is exploited in the analysis of complete camera calibration de-

scribed in section 2.6.

Using (2.12), we can rewrite the image to highway transformation (2.7) in the

form

x = h
a12(u − u∞) + a13(v − v∞) + f/a11

a32(u − u∞) + a33(v − v∞)

y = h
a22(u − u∞) + a23(v − v∞)

a32(u − u∞) + a33(v − v∞)
.

(2.14)

Letting m = (u − u∞)/(v − v∞) denote the slope of the line passing through (u, v)

and (u∞, v∞), and letting ξ = 1/(v − v∞) results in

x = h
a12 m + (f/a11) ξ + a13

a32 m + a33
(2.15)

y = h
a22 m + a23

a32 m + a33
. (2.16)

7

Conversely,

m = −a33 y − a23 h

a32 y − a22 h
(2.17)

ξ =
a11

h f
(a32 m + a33)x − a11

f
(a12 m + a13) (2.18)

= −a11

f

A11 x + A21 y + A31 h

a32 y − a22 h
, (2.19)

where Ai1 is the cofactor of ai1 in the matrix A,

A11 = a22 a33 − a23 a32

A21 = a13 a32 − a12 a33

A31 = a12 a23 − a22 a13.

(2.20)

Formulas (2.18) and (2.19) follow directly from (2.15) and (2.17) and the fact that

a32 m + a33 =
−hA11

a32 y − a22 h
. (2.21)

Note that equations (2.16) and (2.17) show that each line through the vanishing

point (m = constant) corresponds to a highway line parallel to the x-axis (y =

constant). Equations (2.15) and (2.19) show that for each line through the vanishing

point (m = constant), there is a linear dependence between x and ξ. Evidently the

transformation (u, v) → (m, ξ) is a “straightening” transformation, but this is not

the one exploited in this paper.

2.4 No Camera Misalignment

Consider the ideal situation 2 in which the road surface is level and there is no

camera misalignment (the camera frame has no roll with respect to local level). Let

the camera line-of-sight point downward from the local level with an angle φ < 0

and let the vertical plane containing the line-of-sight make angle θ with the highway

x-axis, where the sign of θ is determined by the right-hand rule. Then the rotation

matrix A is given by

A =

cos φ cos θ − sin θ sinφ cos θ
cosφ sin θ cos θ sinφ sin θ
− sin φ 0 cos φ

 (2.22)

2The results hold in the more general case when the camera y′-axis is parallel to the highway
x y-plane (not necessarily local level), with appropriate modifications to the definitions of φ and θ.

8

Note that a32 = 0. This is a necessary and sufficient condition for the “no misalign-

ment/zero roll” situation.

Formulas (2.10), (2.11), and (2.13) become

u∞ = −f secφ tan θ (2.23)

v∞ = f tan φ (2.24)

f2 + u2
∞ + v2

∞ = (f secφ sec θ)2. (2.25)

By using (2.23) and (2.24), we can solve for φ and θ in terms of f, u∞, and v∞.

Indeed, setting w =
√

f2 + v2
∞, we have the following formulas for the sines and

cosines of φ and θ:

cos φ =
f

w
sinφ =

v∞
w

(2.26)

cos θ =
w√

w2 + u2
∞

sin θ =
−u∞√
w2 + u2

∞
. (2.27)

Hence,

A = A(f, u∞, v∞) =

f√
w2+u2

∞

u∞√
w2+u2

∞

v∞√
w2+u2

∞
−u∞f

w
√

w2+u2∞

w√
w2+u2∞

−u∞v∞

w
√

w2+u2∞

−v∞
w

0 f
w

 (2.28)

2.5 Straightening

For certain image processing applications, such as lane stripe detection and traffic

speed estimation, it is desirable to “straighten” a given region of interest by applying a

projective transformation like that defined by (2.7). A straightened image corresponds

to a sheared top-down view of the highway.

A straightening transformation, (u, v) → (x′, y′), is defined by using (2.7), but

with suitable fictitious parameter values f ′, h′, and a′
ij substituted for the true but

unknown values. It is assumed that the vanishing point (u∞, v∞) for the highway

lines is known3 and a zero-roll rotation matrix is used, A′ = A(f ′, u∞, v∞), as defined

in section 2.4. Here, f ′ is determined from (2.24) so as to correspond to the nominal

depression angle φ′ (say −10◦). The value for h′ can be arbitrary at this point. (In

section 3.1.3 of image processing algorithms, h′ is selected to produce a straightened

image with a specific width.)

3An algorithm for computing the vanishing point is given in section 3.1.2.

9

The formulas for the forward and inverse transformations are analogous to (2.6)

and (2.7):

u = f ′ a′
12x

′ + a′
22y

′

a′
11x

′ + a′
21y

′ + a′
31h

′

v = f ′ a′
13x

′ + a′
23y

′ + a′
33h

′

a′
11x

′ + a′
21y

′ + a′
31h

′

(2.29)

x′ = h′ a′
11f

′ + a′
12u + a′

13v

a′
31f

′ + a′
33v

y′ = h′ a′
21f

′ + a′
22u + a′

23v

a′
31f

′ + a′
33v

.

(2.30)

Like the true highway-to-image transformations, lines parallel to the x′-axis corre-

spond to image lines through the vanishing point (u∞, v∞). It follows that when the

straightening transform (2.30) is composed with the true highway-to-image transfor-

mation (2.6), lines parallel to the x-axis correspond to lines parallel to the x′-axis.

The discussion below proves that the points on each pair of corresponding lines are

linearly related and that the composite highway to straightened image transform is

in fact affine, provided that the camera is not misaligned. These properties are what

make straightening a useful tool and allow for meaningful use of correlation techniques

on a straightened image.

Theorem 1. (a) The composition of the true highway-to-image transformation (2.6)

and the straightening transformation (2.30) is a projective shear of the form

x′ =
c11 x + c12 y + c13

c32 y + c33

= r1(y)x + r0(y) (2.31)

y′ =
c22 y + c23

c32 y + c33

= r2(y) (2.32)

for certain constants cij and where each ri(y) is a fractional linear form in y. It

follows that the “vertical scale factor” r1(y) is independent of x on any highway line.

(b) If the camera is not misaligned (i.e., has zero roll angle with respect to the

ground plane), then r1(y) is constant and r2(y) and r0(y) are linear. In this case, the

transformation from highway to straightened image coordinates is an affine shear of

the form

x′ = β11 x + β12 y + β13

y′ = β22 y + β23

(2.33)

10

for certain constants βij. The scale factors β11 and β22 are given by

β11 =
h′ f ′ a11 a33

h f a′
11 a′

33

, β22 =
h′ a′

22 a33

ha22 a′
33

. (2.34)

Proof. (a) Because the composition of two projective transformations is projective,

the transformation from the xy-plane to the x′y′-plane must have the form

(x′, y′) =

(
c11 x + c12 y + c13

c31 x + c32 y + c33
,

c21 x + c22 y + c23

c31 x + c32 y + c33

)

for certain constants cij. In this case, the transformation maps lines that are parallel

to the x-axis to lines that are parallel to the x′-axis. Because x′ → ∞ as x → ∞, it

follows that c31 = 0, and because y constant implies y′ constant, it also follows that

c21 = 0. Hence,

r0(y) =
c12y + c13

c32y + c33

, r1(y)=
c11

c32y + c33

, r2(y) =
c22y + c23

c32y + c33

.

There is a more constructive method to derive (a) which leads directly to a proof

of (b). For the straightening transformation there are equations analogous to (2.15)

and (2.16),

x′ =
h′

a′
33

(a′
12 m +

f ′

a′
11

ξ + a′
13) (2.35)

y′ =
h′

a′
33

(a′
22 m + a′

23). (2.36)

Then (a) follows by substituting for m and ξ using (2.17) and (2.18). Explicit expres-

sions for r0(y), r1(y), and r2(y) are given by

r0(y) =
h′

a′
33

(a′
12 m + a′

13 −
f ′ a11

f a′
11

(a12 m + a13)) (2.37)

r1(y) =
h′ f ′ a11

h f a′
11 a′

33

(a32 m + a33) (2.38)

r2(y) =
h′

a′
33

(a′
22 m + a′

23) (2.39)

where

m = −a33 y − a23 h

a32 y − a22 h
. (2.40)

11

(b) If the camera coordinate frame has zero roll angle with respect to the highway

coordinate frame, then a32 = 0. Then m is a linear function of y, resulting in

r1(y) =
h′ f ′ a11 a33

h f a′
11 a′

33

constant (2.41)

r2(y) =
h′ a′

22 a33

ha22 a′
33

y +
h′ a′

22

a′
33

(a22 a′
23 − a23 h) linear in y. (2.42)

2.6 Complete Camera Calibration

A consequence of Theorem (1)(b) is the following calibration result.

Theorem 2. Assume the vanishing point (u∞, v∞) of the highway lines is known and

that a straightening transformation has been defined as above. Assume that the camera

orientation has zero roll angle with respect to the highway plane so that Theorem (1)

(b) holds true. Finally, assume that the scale factors β11 and β22 are known. (For

example, β11 may be determined as the ratio of image lane stripe period to actual lane

stripe period, and β22 as the ratio of image lane width to actual lane width.) Then

it is possible to completely calibrate the camera. That is, we can determine the focal

length, f , height, h, of the camera above the road, and the camera orientation angles

θ and φ:

f =

√
1

2
(d2 − 2(u2

∞ + v2
∞) + d

√
d2 − 4u2

∞) (2.43)

φ = arctan
v∞
f

(2.44)

θ = arcsin
−u∞

f2 + u2
∞ + v2

∞
(2.45)

h =
h′ a′

22

β22 a′
33

cos φ

cos θ
(2.46)

where

d =
β22

β11

f ′

a′
11 a′

22

. (2.47)

12

Proof. From (2.34) it follows that

f

a11 a22
=

β22

β11

f ′

a′
11 a′

22

= d (2.48)

where the right hand side is known. Using (2.28), produces

f2 + u2
∞ + v2

∞√
f2 + v2

∞
= d.

This leads to a quadratic equation in f2 with two possible solutions

f2 =
1

2
(d2 − 2(u2

∞ + v2
∞) ± d

√
d2 − 4u2

∞). (2.49)

We must choose the solution with the positive root in order to preserve the identity

(2.13). This can be seen as follows. First, factor d out of the square root in (2.49)

and rearrange the result to obtain

f2 + u2
∞ + v2

∞ =
1

2
d2 (1 ±

√
1 − 4(u∞/d)2). (2.50)

Using equations (2.6), (2.10), and (2.28) results in

u∞

d
= a12a22 = − sin θ cos θ = −1

2
sin 2θ,

and hence √
1 − 4(u∞/d)2 = cos 2θ (where |θ| < π/2).

Thus, equation (2.50) becomes

f2 + u2
∞ + v2

∞ =
1

2
d2 (1 ± cos 2θ).

Because 1
2
d2 (1+cos 2θ) = (d cos θ)2 and d cos θ = d a22 = f/a11 by (2.6), the desired

identity (2.13) holds if we choose the + sign in (2.49). (If we choose the solution with

the − sign, then (2.13) holds only if θ = ±45◦, in which case the two solutions are

the same.)

Now that f is known, (2.26) through (2.28) can be used to compute the orientation

angles φ, θ and the matrix coefficients aij, and (2.34) can be used to compute h.

13

Chapter 3

Image Processing Algorithms

This section describes image processing algorithms for estimating the highway line

vanishing point, straightening an image, and estimating the vertical image-to-highway

scale factor. An application of these algorithms is referred to as the “calibration

process.” This chapter also describes algorithms for estimating traffic speed given a

successful calibration.

Throughout this section let {I`, ` = 1, . . . , L} denote a sequence of time-tagged

monochromatic (i.e., grayscale) images.

3.1 Calibration Process

There are four main phases in the calibration process: (1) highway line detection, (2)

vanishing point estimation, (3) construction of image straightening warp operator,

and (4) computation of the highway-to-image scale factor.

It is possible for the calibration process to fail at some stage. For example, the

line detection algorithm may fail to detect enough highway lines, the vanishing point

estimation algorithm may fail to converge and hence no warping operation can be

defined, or the stripe detection algorithm may fail. In some cases these failures can

be eliminated by adjusting certain control parameters.

3.1.1 Highway Line Detection

Highway line detection consists of thresholding an edge-detected background image

and then applying a modified Hough/Radon transform.

14

1. Compute background: The “background map,” B = 1
L

∑
I`, is the average of

the image sequence. Averaging has the effect of suppressing the traffic and

enhancing the road lines and stripes.

2. Compute gradient: Compute the background image gradient, G = (∂uB, ∂vB)

by convolving B with the Sobel kernels 1 Ku and Kv given by

Ku =

1 0 −1
2 0 −2
1 0 −1

 , Kv =

1 2 1
0 0 0
−1 −2 −1

 .

Thus, ∂uB = B ∗ Ku gives an estimate at each point of the rate of change of

intensity in B in the u direction (to the right). Similarly, ∂vB = B ∗ Kv is an

estimate of the rate of change of intensity in the v direction (downward).

Compute the magnitude map M = |G| =
√

(∂uB)2 + (∂vB)2) and the angle

map Θ = arg(G). Here, −180 ≤ Θ(u, v) < 180 is the angle that the gradient

vector at (u, v) makes with the u-axis.

Typically, M(u, v) is “large” on the edges of high contrast features, in which

case the gradient is perpendicular to the edge. The purpose of the next two

steps is to determine a “largeness” threshold for detecting highway edges.

3. Crop magnitude: In this step, a rectangular subimage M ′(the region of interest

(ROI)) is extracted in the interior of M . The boundary of this subimage is

chosen so that unwanted edge artifacts are excluded that could adversely affect

the threshold level computed in the next step. (The idea here is that too many

high magnitude non-highway edges give rise to a threshold that is too high to

detect highway lines.) In this case, the strong text edges that appear at the top

of M and the artificial vertical line on the left produced by the black stripe2 ever

present in our images are excluded. (See Figure 3.1.) Also, since we have no

interest in detecting near horizontal edges, we zero the magnitude at any point

in M ′ where the gradient angle is near ±90◦. (We use a nearness threshold of

22.5◦.)

1These kernels often appear in the literature rotated by 180◦ degrees. This is evidently due to
some confusion as to whether they are actually convolved with the image or simply applied as masks.

2This is a “feature” of the video capture card.

15

4. Edge detect (threshold): Compute an “optimal” threshold level for the cropped

magnitude map M ′ by using Otsu’s algorithm (Otsu 1979). This threshold

divides the pixels into two classes in a way that maximizes their “between-class

variance.” (See also Fukunaga 1972.) Next, compute a thresholded image T ,

where a point in T has value 0 or 1 depending on whether the corresponding

point in M ′ is above or below the threshold level.

Figure 3.1: Background image on the left, thresholded edge image on
the right.

5. Hough (Radon) transform: Apply a modification of the standard Hough trans-

form (Leavers 1992) which is described below. First, the theory of the standard

Hough transform, sometimes referred to as the discrete Radon transform is

reviewed.

Recall that every straight line in the uv-plane can be expressed uniquely in the

normal form

p = u cos θ + v sin θ (3.1)

where −90◦ ≤ θ < 90◦ is the angle of a unit normal vector pointing into the

right half-plane, and −∞ < p < ∞ is the signed distance from the line to the

origin. (See Figure 3.2.)

The domain of a Hough map, H, consists of a discrete selection of points (θ, p).

p is assumed to be an integer, −w/2 ≤ p < w/2, where w is the width of T , and

the angle discretization step size is assumed to be dθ = 180/w. This gives a

w×w square grid in the θ p-plane. The value H(θ, p) is the number of nonzero

16

v

u

p

Θ

Figure 3.2: A line with parameters θ = 45◦ and p < 0.

points in T that satisfy the rounded version of (3.1):

H(θ, p) =
∑

(u, v)∈`

T (u, v) (3.2)

` = {(u, v) : p = bu cos θ + v sin θ + 1/2c}. (3.3)

Large Hough counts indicate the presence of long lines. The Hough procedure

for computing (3.1) is the following: for each point (u, v) for which T (u, v) = 1

and for each discrete value of θ compute p = bu cos θ + v sin θ + 1/2c and

increment the count H(θ, p).

A modification of the standard Hough algorithm is made that takes into account

the image gradient angle. It produces two maps: H1(θ, p) for “leading edge”

lines and H2(θ, p) for “trailing edge” lines. The reason for doing this is that

each highway boundary line is usually edge detected as a “ribbon” (i.e., two

sets of points with approximately opposite gradients). The matrix shown below

is a portion of the masked gradient angle shown in Figure 3.3:

128 0 0 0 0 0 0 0
124 123 0 0 0 0 0 0
0 122 123 124 0 0 0 0

−56 0 121 123 127 0 0 0
−56 −57 −55 0 124 122 122 0
0 0 −55 −56 0 0 120 123
0 0 0 −53 −52 0 0 120
0 0 0 0 −52 −56 −56 0

17

Reading from left to right shows that when the gradient magnitude rises above

threshold, the gradient points upward to the right at an angle near −55◦ (the

leading edge of the stripe). It then points downward to the left at an angle

near 125◦ (the trailing edge of the stripe) before the magnitude falls below

threshold. Because of discretization errors, points on both sides of a ribbon can

contribute to the same Hough count, indicating a line that is not actually present

in the image. The following modification to the Hough algorithm prevents this

undesirable feature.

Figure 3.3: Point-wise product of T and Θ on the left, close up of
smaller region on right.

Define the “leading edge” value H1(θ, p) as in (3.2) but additionally require

that the points on the line (3.3) have a gradient angle near θ:

|Θ(u, v)− θ mod 360| < ∆θ

(say ∆θ = 22.5◦). Similarly, define the “trailing edge” H2(θ, p) in terms of the
opposite gradient angle,

|Θ(u, v) + 180 − θ mod 360| < ∆θ.

Highway boundary lines should register at least once in each Hough map with

approximately the same line parameters.

6. Line detect: For each of the two Hough maps, find the set of lines parame-

ters, (θ, p) for which the Hough count is greater than a specified threshold (say

Hi(θ, p) > 100 for an image of half height 120 pixels). Order the set lexico-

graphically and partition it into subsets of angular width no greater than a

18

specified limit (say 5◦). Each subset may contain more that one line as a re-

sult of discretization, pixel size, road curvature effects, and other errors. Select

the line with greatest count from each subset. Figure 3.4 shows a leading edge

Hough map and the detected lines.

Figure 3.4: A 3-D leading edge Hough plot on left, detected lines on
right.

It is possible that in some surveillance scenes long lines in the image will be

detected that are not highway lines. For example, a tall light pole in front

of the camera may be detected. Sometimes undesirable divergent ramp lines

are also detected. By limiting the Hough domain θ values, these lines may be

suppressed. Spurious lines are also removed with a sub-sampling technique used

in the vanishing point estimation step described below.

3.1.2 Vanishing Point Estimation

The vanishing point (common intersection) of the highway lines is estimated by using

a linear least squares method. (Compare with Masoud et al. 2001.) The maximum

RMS error in the solution must not exceed a specified threshold, and some constraints

are imposed on the number of lines and their position in the image.

1. Constraints. At least three lines are required,

{pi = u cos θi + v sin θi, i = 1, . . .m} m ≥ 3. (3.4)

Initially, all of the lines detected in the preceding step are used. In addition,

the intersection of these lines with the horizontal baseline of the ROI, v =

vmax, must span an interval of length at least one third of the width of the

ROI. (Note that the u-coordinates of the intersection points have the form

19

ui = pi sec θi − vmax tan θi, so that the span interval has a length equal to

max{ui} − min{ui}.)

2. Least Squares. Write the system of equations (3.4) in matrix form, b = M w,

where

b =

p1
...

pm

 M =

cos θ1 sin θ1
...

...
cos θm sin θm

 w =

(
u
v

)
. (3.5)

Then, the least squares solution to the system is given by

w = MT M MT b, (3.6)

and the RMS error is

ε =
|M w − b|√

m
. (3.7)

If this error is less than a specified threshold (say two pixels), then the solution

is assumed to be an estimate of the true vanishing point.

3. Recourse. If the error is too large, and there are more than three lines, a sub-

sampling procedure is used. Select a sample size, k, at which 3 ≤ k < m.

For each subset of lines of size k3 try to solve for the vanishing point by using

the procedure described above (steps 1 and 2). If solutions exist, choose one

based on some criterion, such as least RMS error or largest baseline span. If

no solutions are found, then try again with a smaller value of k. If this is not

possible, the calibration process fails.

4. Refinement of Solution. The line parameters contributing to a solution found

in step 2 lie on the discrete grid that is the Hough domain. As suggested by

Leavers (1992), the parameter values can be improved by a line fitting technique.

Leavers (1992) suggested the following procedure: given a line with parameters

(θ, p) in the Hough domain, (1) collect a band of points around this line, (2)

rotate the band so it is near horizontal, (3) compute an ordinary least squares

line fit, and (4) use the result to correct (θ, p).

3Generating subsets of size k from a set of size m amounts to generating increasing subsequences
(i1, i2, . . . , ik) of length k from the sequence (1, 2, . . . , m). This is easy to do recursively, starting with
(1, 2, . . . , k). Indeed, having generated (i1, i2, . . . , ik), the next subsequence in the lexicographical
ordering is obtained as follows: find the last subscript j ≤ k such that ij < m − k + j and form the
subsequence (i1, . . . , ij−1, i′j, . . . , i

′
k), where i′j = ij + 1, i′j+1 = i′j + 1,

20

Here, a more direct method is used. For each selected line (θi, pi), form the

“band” bi of above-threshold points (u, v) such that |u cos θi+v sin θi−pi| < ∆p

(say ∆p = 3) and such that the gradient angle Θ(u, v) is consistent with the

Hough image in which the line was found. Using the method of Total Least

Squares (see Appendix A), find the line with parameters (θ̃i, p̃i) that minimizes

the sum of squares of “true” perpendicular distances

J(θ, p) =
∑

(u,v)∈bi

(u cos θ + v sin θ − p)2. (3.8)

Now compute a final estimate for the vanishing point (u∞, v∞) in terms of the

(θ̃i, p̃i)’s by using the least squares method described in step 2 above.

3.1.3 Straightening Warp Operator

At this stage our objective is to define an operator that can “warp” an image region

inscribed in a triangle with the apex at the vanishing point onto a prescribed rectangle.

Let p∞ = (u∞, v∞) denote the vanishing point estimate computed in the previous

step. Let v = vmax define the horizontal baseline of the ROI defined in the cropping

step discussed above, and let p1 = (u1, vmax) and p2 = (u2, vmax), two points on this

baseline such that u1 < u2 (for example, the intersections with the baseline of two

extreme lines found in section 3.1.2). The objective is to warp a trapezoidal region

inscribed in the bottom of the triangle with vertices p∞, p1, p2 onto a rectangle that

has a prescribed width W and height H. (See Figure 3.5.) Generally, the width

should be W ≈ u2 − u1 and the height, H, should be 512 or 1024.4

The definition of the warp operator proceeds as follows.

1. Straightening transformation. Define a straightening transformation as de-

scribed in section (2.5). Choose a nominal depression angle (say φ′ = −10◦)

and set the corresponding focal length f ′ = v∞ cotφ′ and orientation matrix

A′ = A(f ′, u∞, v∞). Initially, set the height parameter h′ = 1. Apply trans-

formation (2.30) to the baseline vertices p1 and p2 to obtain corresponding

points q1 = (x′
1, y′

1) and q2 = (x′
2, y′

2). Redefine the height parameter to be

4The correlation methods used later are based on an implementation of the Discrete Fourier
transform that requires data size to be power of 2.

21

h′ = W/(y′
2 − y′

1). This completes the definition of the straightening transfor-

mation.

2. Rectangle. Recompute the coordinates of the points q1 and q2. It follows now

that y′
2 − y′

1 = W . Let y′
min = y′

1 and y′
max = y′

2. Set x′
min to the maximum of

x′
1 and x′

2 and set x′
max = x′

min + H. Then the rectangle with corners

(x′
min, y′

min), (x′
min, y′

max), (x′
max, y′

min), (x′
max, y′

max) (3.9)

has the prescribed dimensions. Also, the inverse of the straightening transform

(2.29) maps this rectangle onto a trapezoid inscribed in the triangle.

3. Warp operator. The straightening warp operator is defined as follows. Let I

denote a source image and initialize an empty destination image SI of width W

and height H. For each point in the domain of SI with pixel coordinates (c, r),

form the point

(x′, y′) = (xmax − r, ymin + c), (3.10)

which lies in the rectangle (3.9). Use the inverse of the straightening transform

(2.29) to map this to a point (u, v) in the domain of I. Define SI(c, r) by the

formula

SI(c, r) = I(u, v). (3.11)

Use bilinear interpolation (see Ballard and Brown 1982) to compute the right

hand side since u and v are not integral. Figure 3.6 is a sample straightened

background image.

v

u

VP

P1 P2

x

yQ1
Q2

Xmax

Xmin

Ymin Ymax

Figure 3.5: Warp geometry.

22

Figure 3.6: A straightened background image (rotated 90◦).

3.1.4 Stripe detection and scale factor

The final stage of the calibration process is estimation of the vertical highway-to-

image scale factors. For simplicity, we assume that there is no camera misalignment,

and, hence, by Theorem (1)(b) the scale factor is constant across the image.

The process searches a straightened background image for highway stripes, es-

timates the image stripe period, and depends on a priori knowledge of true stripe

periods to estimate the scale factor β11. The algorithm has the following steps.

1. Straighten background. Rescale the background map, B, so that the intensities

lie in the unit interval [0, 1) and compute the straightened background image,

SB, by using the warp operator described above. Use column-row (c, r) pixel

coordinates for points in SB, where 0 ≤ c < W and 0 ≤ r < H.

2. Autocorrelate. For each column c of SB, compute the autocorrelation

Cc(k) =
∑

r

(SB(c, r + k) − µc) (SB(c, r) − µc) (3.12)

=
∑

r

SB(c, r + k)SB(c, r) −H µc, (3.13)

where

µc =
1

H

∑

r

SB(c, r) (3.14)

is the mean value for column c.5 The summation in (3.13) is circular in the

sense that row index r + k is taken to be modulo H. The reason that the

autocorrelation is computed is that it is useful for detecting periodic structure.

Indeed, (3.13) should be regarded as the inner product of the data in column c

5We use a Fast Fourier Transform (FFT) technique to compute the autocorrelation. First FFT the
column and set the amplitude at frequency 0 equal to 0 (which effectively removes the mean). Next,
square the amplitude at each frequency and inverse FFT the result. This gives the autocorrelation.

23

50 100 150 200 250
k

-5

5

10

C

100 200 300 400 500
row

75

100

125

150

175

200

intensity

Figure 3.7: Autocorrelation on the left, line of stripes on right.

with a copy of itself shifted upward k steps. If the data are periodic with period

K, then Cc(k) will assume its maximum value exactly when k is a multiple of

K. (This follows from the Schwartz inequality for inner products.)

Because Cc is symmetric about the midpoint, k is limited to the interval 0 ≤
k < H/2. Figure 3.7 illustrates the autocorrelation for a line in a straightened

background where there are lane stripes.

3. Find maxima. For each column c, Cc(k) is maximum when k = 0. If enough

stripes lie on column c, then the stripe period can be measured by locating the

value of the shift k = kmax(c) corresponding to the first local maximum value

beyond k = 0. The following stripe detection criterion is used: values Cc(k)

must first decrease to a local minimum below some negative threshold (say -2),

then increase to a local maximum above some positive threshold (say 2), and

then decrease again to a local minimum below the negative threshold.

4. Image stripe period. Adjacent columns that satisfy the condition above are

grouped together and deemed to represent a line of stripes on the road. The

image stripe period is set for this line equal to the shift kmax(c), which gives

the largest value for Cc(kmax(c)). If there is more than one line of stripes, one

of them with a period corresponding to the strongest autocorrelation value is

selected.

5. Scale factor. The vertical highway-to-image scale factor β11 is obtained by

dividing the image stripe period by the known true stripe period.

24

3.2 Traffic Speed Estimation

By using cross correlation of vertical line intensities in successive pairs of straightened

images, moving traffic can be detected and speed and direction of motion (receding

from or approaching toward the camera) can be measured. By using the calibrating

scale factor, line by line measurements of traffic speed are obtained. Clustering this

line data gives average lane speeds. Note that this method of speed estimation does

not require the tracking of individual vehicles, and, hence, does not generally suffer

from the splitting/merging target occlusion problems faced by a vehicle tracker when

traffic is congested.

Usually, a sequence is collected of about 20 frames grabbed at rate of 5 or 10 Hz.

The sequence may be the same one used for the calibration process or one collected

at some later time. In the latter case, the camera focal length and orientation have

to be checked for changes since the time of the calibration. To do this, a reference

copy, T0, of the threshold image computed at calibration time is saved. Then, the

threshold image, T , of the new image sequence is computed and matched with T0; if

T · T0

|T | |T0|
<

1

2
, (3.15)

we must try to recalibrate (or start over with a different camera selection).

Now, given a sequence of time-tagged images {I`} and a background B, the fol-

lowing operations are performed for each subscript `.

1. Straighten. Form normalized images I ′
` = I` − B and I ′

`+1 = I`+1 − B with

intensity values rescaled to lie in the unit interval [0, 1). Apply the warp operator

to get straightened images S` = SI ′`
and S`+1 = SI ′`+1

. A pair of straightened

images (no normalization) are shown in Figure 3.8.

2. Cross correlate. For each column index c, compute the cross-correlations

CCc(k) =
∑

r

(S`(c, r + k) − µc, `) (S`+1(c, r) − µc, `+1) (3.16)

=
∑

r

S`(c, r + k)S`+1(c, r) − H µc, ` µc, `+1, (3.17)

where µc, ` and µc, `+1 are the means for the cth columns of S` and S`+1, respec-

tively.6

6As in the previous section, an FFT technique is used to compute (3.17). Apply the FFT to

25

The reason the cross correlation is computed is that it is useful for detecting

translation in structure between image frames. Indeed, (3.17) should be re-

garded as the inner product of the data in column c of S` shifted upward k steps

with the corresponding unshifted column of S`+1. Figure 3.9 at the left shows

the peak in the cross-correlation function that identified the distance traveled

between frames shown in figure 3.8. In the right of figure 3.9, rows from the

sequential images are aligned by the offset identified from the cross-correlation

function, demonstrating the similarity of the signals.

3. Threshold. For each column index c, find the shift k = kmax(c) giving the

maximum cross-correlation value. Threshold this array of numbers, that is, form

the list of pairs {Dc = (c, kmax(c))} such that the correlation value CCc(kmax(c))

is above a given threshold. (A nominal threshold of 6 is used but may be lowered

if the contrast is poor.) Each Dc represents a detection of traffic motion in the

corresponding column. If kmax(c) < H/2, the motion is upward in the image,

and, hence, away from the camera; otherwise, motion is toward the camera.

4. Cluster. Order the list of detections by column index and partition into clusters

according to the following criteria: two consecutive detections Dc and D′
c are in

the same cluster if and only if c′ − c and the shift difference |kmax(c
′)− kmax(c)|

are both small. (smallness limits of 5 and 10 are used respectively.) To help

reduce false alarms, any clusters that are small (say fewer than 5 detects) are

discarded. Remaining clusters correspond to a lane of traffic. However, there

may be more than one cluster per lane.

each of the two corresponding columns, zero the amplitudes at frequency 0, multiply the first by the
complex conjugate of the second, and then inverse FFT the result. This gives the cross-correlation.

Figure 3.8: Sequence of straightened images, frame 6 on left and frame
7 on right. Interframe time is 0.5 seconds.

26

200 400 600 800

-10

10

20

30

Frame 7-6 cross correlation
Peak at 275, 35.0532

200 400 600 800

100

150

200

250

Frame 7 rotated right by 275

Figure 3.9: Cross-correlation to estimate travel distance on the left,
cross-section from frame 7 aligned with cross-section from frame 6 on
the right.

5. Report. Finally, form a cluster report for each cluster of detections. Each report

includes the following:

t time-tag of image `

∆t time difference between images ` and ` + 1

n number of detections in the cluster

w cluster width (cmax − cmin)

c̄ column mean

k̄ mean of the kmax-values

σ2(k) variance of the kmax-values

v mean speed

σ2(v) variance of speed

Speed is computed as follows. Let α = 1/β11 denote the vertical image-to-

highway scale factor. If k̄ < H/2, set v = α k̄/∆t; otherwise, set v = α (k̄ −
H)/∆t. In the latter case, the speed is negative, indicating motion toward the

camera. In either case, let σ2(v) = α2 σ2(k)/∆t2.

This concludes the processing for a pair of successive images.

The processing described above is performed for all image pairs I` and I`+1, ` =

1, 2, . . . , L − 1, and a list is formed of all reports generated at each stage. Also

27

generated is a summary report of overall speed statistics for approaching and receding

traffic. These statistics consist of the total detection count, nT , overall mean speed,

vT , and variance σ2(vT). These are computed with a recursive procedure applied to

the list of reports. It is not necessary to collect up all detections generated from all

pairs in the image sequence to compute the overall statistics. The recursion depends

on the following combination rule.

Lemma 1. Let A be a set of numbers of size m, mean µ, and variance σ2. Let A1, A2

be a partition of A such that A1 has size m1, mean µ1 and variance σ2
1, and A2 has

size m2, mean µ2, and variance σ2
2. Let λ1 = m1/m and λ2 = m2/m. Then

m = m1 + m2

µ = λ1 µ1 + λ2 µ2

σ2 = λ1 σ2
1 + λ2 σ2

2 + λ1 λ2 (µ1 − µ2)
2.

To compute the overall statistics for receding traffic (approaching traffic is handled

in a similar way), let Pr be the set of reports with positive speed. Suppose there are

k such reports, and form the list of triples (nj , vj, σ2(vj)), j = 1, . . . , k.

If k = 1, let (nT , vT , σ2(vT)) = (n1, v1, σ2(v1)), and that is all. Otherwise,

recursively compute (n′
T , v′

T , σ2(v′
T)), the overall statistics corresponding to the first

k − 1 reports, and apply the lemma:

λk = nk/(n
′
T + nk)

λ′ = n′
T /(n′

T + nk)

nT = n′
T + nk

vT = λ′ v′
T + λk vk

σ2(vT) = λ′ σ2(v′
T) + λk σ2(vk) + λ′ λk (v′

T − vk)
2

3.2.1 Accuracy Considerations

The standard deviation of traffic speed given in a cluster report is σ(v) = ασ(k)/∆t,

where α = 1/β11 is the image-to-highway scale factor. If there is no error in α or

∆t, then this may be regarded as the accuracy of the reported speed. Assuming this

for the moment, and using typical values ∆t = .25 sec, σ(k) < 1 pixel, and α < 1

ft/pixel, then σ(v) < 4 ft/sec < 3 mph.

28

In general, for a point moving on the highway (say receding from the camera)

differential calculus gives the formula

d v = d(α
k̄

∆t
) =

k̄

∆t
d α + α (

∆t d k̄ − k̄ d∆t

∆t2
)

= (
dα

α
− d∆t

∆t
) v + α

d k̄

∆t

= (
dL

L
− d `

`
− d∆t

∆t
) v + α

d k̄

∆t

(3.18)

where α = L/`, L is the stripe period on the highway, and ` is the image stripe

period. A first order estimate of the variance is

σ2(v) =

(
(
σ(L)

L
)2 + (

σ(`)

`
)2 + (

σ(∆ t)

∆ t
)2

)
v2 + (α

σ(k)

∆ t
)2. (3.19)

Assume that the stripe period, L, is approximately 40 feet with an error on the order

of 1 foot; assume that the image stripe period, `, is greater than 40 pixels with an

error on the order of one pixel; and assume that the timing error is less than five

milliseconds. Also, assume as before that ∆t = .25 sec and σ(k) < 1 pixel. Then

σ(v) <

√(
(

1

40
)2 + (

1

40
)2 + (

.005)

.25
)2

)
v2 + 32

< .04 v + 3 mph.

(3.20)

This result is for speed in the highway plane: the vertical image-to-highway scale

factor α is measured at ground level. However, the cross-correlation lags, k̄, may cor-

respond to vehicle points that are several feet above the road. Indeed, during daylight

hours the correlation lags generally correspond to features such as the bumper, hood,

or roof that may be 2 to 5 feet above the road, rather than shadows cast on the road.

It may, therefore, be necessary to introduce a correction for α that corresponds to an

appropriate height above the road.

This correction can be made with an estimate of the height, h, of the camera

above the road. Indeed, because α is directly proportional to h, as shown in the

first formula of (2.34), we can write α = c h, where c is independent of h. If a

scale factor α′ appropriate for an elevation δh above the road is necessary, then let

α′ = c (h− δh) = α (1− δh/h). By using α instead of α′ speed is overestimated with

a relative error of
v − v′

v′ =
α k̄/δt − α′ k̄/δt

α′ k̄/δt
=

δh/h

1 − δh/h
. (3.21)

29

With δh = 3 feet and h = 50 feet, this relative error is approximately 6 percent.

30

Chapter 4

Application

A distributed application has been developed in Java for traffic video image acquisi-

tion, camera calibration, and speed estimation. A server program, Capture, (running

in the WSDOT local network) has access to the CCTV camera video switch that

grabs and serves video image sequences. A client application program, AutoCalSpd,

(in the University of Washington ITS local network) obtains and processes the image

sequences. Communication between server and client is through a “controlled proxy”

program, which prevents unauthorized users from accessing the server.

This section discusses the implementation of the image processing client appli-

cation AutoCalSpd. The application has two main parts: an image processor that

performs the calculations for calibration and speed estimation and a graphical user

interface that allows camera selection, parameter tuning, and visibility into the vari-

ous image processing stages. There is an interactive mode of operation in which the

user supervises the calibration, and there is an automatic mode in which speed data

are continuously recorded into a file.

4.1 Graphical User Interface

The user interface is implemented with the Java Swing GUI toolkit. It consists of

three principle components: a control panel, an image display desktop panel, and a

camera selector panel. A screenshot of the GUI is shown in Figure 4.1.

When the application is launched, a default camera is selected (# 12 at I-5 and

NE 45th street) and shown highlighted in the camera selector panel. A 320 × 240

snapshot image of the field of view is shown in the display panel. All calibration

31

Figure 4.1: Screen shot of the CameraView application.

32

parameters are set at their default values and the “try calibrate” toggle is set, but no

calibration is attempted until the “load images” button is pressed. The “try speed”

toggle is disabled because no image-to-highway scale factor is known yet. The user

may switch cameras, increase the image size to 640 × 480, and preview images at

any time. For calibration purposes, a camera should be selected with the following

properties:

• The camera should surveil approaching and/or receding traffic, that is, it should

point downward and along the highway rather than across it.

• The view should show straight highway lines in the bottom half of the image as

well as lane stripes.

• The view should be mostly unobstructed by overpasses, large overhead signs,

or divergent lanes of traffic.1

Under these conditions a successful calibration is likely.

To effect a calibration, the user selects the image size, the number of images to

acquire, and the frame rate, and then presses the “load images” button. A request is

sent to the Capture server program with the three aforementioned parameter values,

as well as other (currently uneditable) values for brightness, contrast, compression

type, and color model (grayscale). The response from the server is a sequence of

time-tagged images, or frames, the first of which is presented in a “captured frames”

viewer in the image display desktop. The user can cycle through the images by using

“spinner” buttons attached to the bottom of viewer. Because the “try calibrate”

toggle button is selected, a calibration process is attempted. The user may view

images produced at various stages of the process by pressing labeled buttons under

the desktop. This is useful for confirming the validity of a calibration or diagnosing

and maybe correcting a failure.

If the calibration fails, an error message pops up indicating where the failure

occurred: either no vanishing point was found or no stripes were detected. The

desktop may be used as a diagnostic tool in these cases. Visibility into the image

1This condition may be relaxed in some cases by editing certain control parameters during the
calibration process, for example moving the baseline of the ROI further up into the image, narrowing
the angular limits of the Hough transform, or increasing the height of the straightened image.

33

processing stages prior to the failure point may suggest parameter changes that could

lead to a successful calibration. For example, if the vanishing point could not be found,

it is useful to view the “lines” image, which shows detected lines superimposed on

the background image. If too many or too few lines are shown, the user may edit

the Hough parameters and force a reactivation of the calibration process starting at

the Hough stage. If stripes could not be found, it is useful to view the “straightened

background” image. This may show that not enough stripes are present, in which case

the length of the straightened image may be increased and the calibration process

reactivated beginning with the straightening step. If the stripes are faint, the stripe

detection thresholds may be lowered and the calibration process reactivated beginning

with the stripe detection step.

If the calibration process does not fail, a status message under the desktop indi-

cates “successful calibration,” and the “try speed” toggle button is enabled. However,

before activating a speed computation, the user should view the “stripes” image to

double check that road stripes were actually found rather than some other periodic

structure such as construction barrels. (Also, if an insufficient number of image frames

are collected, traffic can appear as a periodic structure in the background.)

Selecting “try speed” starts a speed estimation process using default values for the

correlation threshold and the stripe period (40 feet). When this process completes,

a status message under the desktop indicates “speeds computed,” and the current

approaching and receding traffic speed estimates are displayed also just below the

desktop. If no speeds are shown, then either there is no traffic (which can verified by

spinning through the “captured frames” viewer) or the cross-correlation threshold is

too high. The user can edit this parameter and reactivate the speed computation. If

the speeds appear unreasonable, then the default stripe period may be wrong (some

highway stripes are spaced at 12- and 15-foot intervals).

Once satisfied with the camera calibration and speed parameter settings, the user

may continue interactively to load images, and as long as “try speed” is selected,

speeds will be computed. The automatic mode of operation may be enabled by

pressing the “record” button. Then the program will repeatedly load images, compute

speed reports, and append them to a file. As indicated in section 3.2, a test is

performed on each cycle to determine if the camera calibration (scale factor and

34

straightening transformation) is still valid. If not, a popup alerts the user that action

needs to be taken: either select “try calibrate” or select a new camera and start over.

4.2 Image Processor

The image processor is the heart of the AutoCalSpd application. It consists of an im-

age processing graph (see Figure 4.2) whose nodes implement the various algorithms

described in section 3 and methods for manipulating the graph. In particular, the

processor manages the loading of source images and the rendering of the graph ac-

cording to the controls and parameter settings imposed by the user. The processor

can be in one of two states, calibrate or compute speed, and regulates rendering of the

graph accordingly.

The image processor is implemented in Java and relies heavily on the Java Ad-

vanced Imaging (JAI) application programming interface.2 The JAI provides a set of

basic image processing operators and a framework for defining and registering custom

operators. Every operator stores an operation name, a ParameterBlock containing

sources and parameters, and a RenderingHints, which contains image rendering hints

such as image size and format.

Programming in JAI generally involves constructing an image processing chain,

or more generally, a directed acyclic graph (DAG) whose nodes are operators. This

is useful in that a chain or DAG may be manipulated dynamically and rendered

multiple times. Thus, for example, the same chain of operations may be applied to

different images, or the parameters of certain operations in a chain may be modified

interactively. It is important to note that image rendering adheres to the pull model,

that is, a node is rendered only when there is a request for actual pixel data.

4.2.1 The DAG

Figure 4.2 shows the basic DAG for the image processor. Operators at levels (1)

through (5) are provided with the JAI distribution, while operators at levels (6)

through (10) are custom. The graph is constructed during the initialization phase

of the program. The operators are created and linked together in top down, left to

2On-line documentation for the JAI is available from Sun. See Programming in Java Advanced
Imaging. http://docs.sun.com/app/docs/doc/806-5413-10

35

image list�(1) add

?
(2) divide by

�
�

�
�	

@
@

@
@R

(3) convolve convolve
@

@
@

@R

�
�

�
�	

(4) cmplx
�

�
�

�	

@
@

@
@R

(5) magnitude phase

?

���������

%

(6) crop

?
(7) threshold

?
(8) hough/vp�

@
@

@
@R

(9) straighten

?
(10) stripes

$

%�

scale factor-

Figure 4.2: Image processing graph.

36

right order with default parameter settings. Once the DAG has been constructed, the

user can request the processor to load source image data or make changes to various

operator parameters.

Operators (1) and (2) taken together implement the “background” algorithm dis-

cussed in section 3.1.1. The image layout parameter for the “add” operation specifies

that the input data type (byte) should be cast to type (double) so that the correct

sum is computed. The parameter for the “divide by” operator must be set to the

length of the input image list.

Operators (3) through (5) implement the algorithm for computing the gradient

in polar form. Parameters for the two “convolve” operators are the appropriate

Sobel masks for computing the gradient components in Cartesian form. The “cmplx”

operator simply combines the two components into a single complex image, while the

“magnitude” and “phase” operators compute the polar components of the gradient.

The “crop” operator (6) implements the “crop magnitude” algorithm described

in section 3.1.1. Parameters are the bounds of the rectangular ROI and the gradient

angle threshold.

The “threshold” operator (7) implements the “edge detect (threshold)” algorithm

described in section 3.1.1. Recall that the threshold level is computed automatically

with Otsu’s method. The parameters for this operator consist of two switches: one to

enable double thresholding and one to enable non-maximal suppression (See Sonka

et al. 1999.). Both of these switches are currently off.

The “hough/vp” operator (8) implements the algorithms for computing Hough

maps and the highway vanishing point detection algorithm of section 3.1.2. Param-

eters consist of the Hough threshold, two domain angle limits, and a “no verticals”

switch. This operator is unique in that its imagery is not used downstream. It com-

putes the vanishing point and baseline needed by the “straighten” operator, which is

its sink.

The “straighten” operator (9) constructs the straightening warp discussed in sec-

tion 3.1.3. This depends on the vanishing point and baseline computed above. The

warp is applied to the background image computed at level (2). Parameters are the

depression angle, φ, and the height of the straightened image (512 or 1024). Because

image data are stored in row major order and autocorrelation is to be performed on

37

columns, the image is rotated 90◦ for ease of data access.

The “stripes” operator (10) implements the autocorrelation algorithm for deter-

mining the scale factor discussed in section 3.1.4. Parameters are the upper and lower

autocorrelation thresholds for stripe detection.

4.2.2 Managing the DAG

The image processor supports a number of methods for user interaction with the

DAG.

1. loadImages. This method sends a user-specified request to the image server for

raw image data. The response includes time-tagged byte arrays of gray-scale

image data. These data are then used to construct JAI image data structures

called TiledImages. The list of images is set as the source for the background

“add” operator, and its length is set as the parameter for the background “divide

by” operator. No image rendering is performed as a result of these changes.

However, all renderings and associated computed values in the graph are cleared.

2. setParameters. Methods are provided for changing the parameters for various

operator nodes. No image rendering is performed, but the current rendering

and any computed values are cleared. In addition, renderings and computed

values associated with downstream nodes are cleared.

3. calibrate. This method implements the calibration process described in section

3.1. It starts by accessing the vanishing point and baseline from the Hough

operator. This forces a rendering of nodes up to and including the Hough node,

if they have not already been rendered. If the vanishing point could not be

computed, an exception is thrown and caught by the GUI. Next, the calibrate

method accesses the image stripe period from the stripes operator. This forces

computation of the straightening warp transformation, if it has not already been

computed, and rendering of the straightened background image, if it has not

already been rendered. An exception is thrown if the image stripe period could

not be computed. If the calibration process is successful, the calibrating scale

factor is computed. The straightening warp is saved for later use, as well as

copies of the background and threshold images.

38

4. computeSpeed. This method implements the algorithm discussed in section 3.2

and is only invoked if calibration has been successful. It first gets the rendering

from the threshold operator and computes the expression (3.15). This forces a

rendering of the nodes up to and including the threshold node, if they have not

already been rendered. If the inequality holds, then a recalibration is required

and an exception is thrown. Otherwise, speeds are computed by using the

straightening warp, background image, and the scale factor computed above.

39

References

[1] Ballard D. H. and Brown C. M., Computer Vision, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1982

[2] Cathey F.W. and Dailey D.J., One-Parameter Camera Calibration for Traffic

Management Cameras, Proceedings of the IEEE 7th International Conference on

Intelligent Transportation Systems, Washington D.C., 4-6 October, 2004

[3] Fukunaga K., Introduction to Statistical Pattern Recognition, Academic Press,

1972

[4] Leavers V. F., Shape detection in computer vision using the Hough transform,

Springer Verlag, London, New York, 1992

[5] Masoud O, Rogers S., Papanikolopoulos, N.P., Monitoring Weaving Sections, ITS

Institute, Univ. Minnesota, Minneapolis, CTS 01-06, Oct. 2001

[6] Otsu N., A threshold selection method from gray-level histograms, IEEE Transac-

tions Systems, Man, and Cybernetics, Vol. SMC-9, 1979.

[7] Sonka M., Hlavac V. and Boyle R., Image Processing, Analysis, and Machine

Vision PWS Publishing, Brooks/Cole Publishing Company, Pacific Grove, Cali-

fornia, 1999

[8] Van Huffel S. and Vandewalle J., The Total Least Squares Problem: Computational

Aspects and Analysis, Philadelphia: SIAM, 1991

40

Appendix A

Total Least Squares Formula

This appendix presents a simple algebraic closed form solution for the 2-dimensional

Total Least Squares problem. As noted in section 3.1.1, this problem arises in connec-

tion with line parameter refinement after detection with the Hough/Radon transform.

This result is apparently new; solutions given in the literature generally involve sin-

gular value matrix decompositions. (See Van Huffel and Vandewalle 1991.)

We are given a list of data points zj = (xj, yj), j = 1 . . . n, and we seek an

equation for the line of Total Least Squares (i.e., the line ` that minimizes the sum of

squares of “true” distances)

J(`) =

n∑

j=1

dist(zj, `)2. (A.1)

The normal equation for any line ` is given by

p = x cos θ + y sin θ, (A.2)

where −π/2 ≤ θ < π/2 and −∞ < p < ∞. Let `⊥ denote the oriented line through

the origin with direction vθ = (cos θ, sin θ) and let z = (x, y) denote an arbitrary

point in the plane. Then the inner product z ·vθ is the signed distance from the origin

to the orthogonal projection of z on `⊥. In particular, |z ·vθ−p| = |x cos θ+y sin θ−p|
is the distance from z = (x, y) to `. (See Figure A.1.)

In terms of the line parameters θ, p, the function (A.1) assumes the form

J(θ, p) =
n∑

j=1

(xj cos θ + yj sin θ − p)2 (A.3)

A closed form for the minimizer of this function is given by the following theorem.

41

v

u

p

z

{

vΘ

Figure A.1: Distance from z to ` is |z · vθ − p|.

Theorem 3. Using the notation above, let

(x̄, ȳ) =
1

n

n∑

j

(xj, yj)

be the data centroid, and define

A =
1

2

n∑

j=1

((xj − x̄)2 − (yj − ȳ)2) (A.4)

B =

n∑

j=1

(xj − x̄)(yj − ȳ) (A.5)

r =
√

A2 + B2. (A.6)

If r > 0, then (A.1) has the unique minimizer given by

cos θ =

√
r −A

2r
(A.7)

sin θ = ±
√

r + A

2r
(A.8)

p = x̄ cos θ + ȳ sin θ (A.9)

where the ± sign in (A.8) is chosen opposite to the sign of B. If r = 0, then (A.9)

minimizes (A.1) for any value of θ.

Proof. To simplify things, translate the coordinate system so that the origin is at the

data centroid. Let uj = xj − x̄ and vj = yj − ȳ for j = 1 . . . n. Then equation (A.3)

42

becomes

J(θ, p) =
n∑

j=1

(uj cos θ + vj sin θ + x̄ cos θ + ȳ sin θ − p)2

=

n∑

j=1

(uj cos θ + vj sin θ)2 + n (x̄ cos θ + ȳ sin θ − p)2.

(A.10)

(The term linear in p cancels out since
∑

j uj = 0 =
∑

j vj.) Clearly, for any fixed

value of θ, the value J(θ, p) is a minimum when

p = pθ = x̄ cos θ + ȳ sin θ. (A.11)

It suffices therefore to find θ that minimizes

J0(θ) =

n∑

j=1

(uj cos θ + vj sin θ)2

=
n∑

j=1

u2
j cos2 θ +

n∑

j=1

v2
j sin2 θ + 2

n∑

j=1

ujvj cos θ sin θ.

(A.12)

Using the trigonometric identities

cos2 θ =
1

2
(1 + cos 2θ)

sin2 θ =
1

2
(1 − cos 2θ)

sin 2θ = 2 sin θ cos θ,

we rewrite equation (A.12) in the form

J0(θ) = A cos 2θ + B sin 2θ + C, (A.13)

where

A =
1

2

n∑

j=1

(u2
j − v2

j), B =

n∑

j=1

ujvj, C =
1

2

n∑

j=1

(u2
j + v2

j). (A.14)

Let (r, θ) be the polar coordinates for (A, B)

(A,B) = r(cosφ, sinφ), , (A.15)

where

r =
√

A2 + B2 and 0 ≤ φ < 2π. (A.16)

43

If r = 0, then any value for θ minimizes J0(θ) = C, so assume r > 0. By using the

double angle formula for cosines, equation (A.13) becomes

J0(θ) = r cos(φ − 2θ) + C. (A.17)

Setting θ = φ/2 − π/2 yields the minimum value J0(θ) = C − r.

Since φ is the unique value in the interval [0, 2π) such that (A.15) holds, so θ is

the unique value in the interval [−π/2, π/2) that minimizes J0. For this value of θ we

have

cos θ = sin(φ/2)=

√
1

2
(1 − cosφ) =

√
r −A

2r
(A.18)

sin θ = − cos(φ/2)= ±
√

1

2
(1 + cosφ) = ±

√
r + A

2r
. (A.19)

The ± sign in (A.19) must be chosen opposite to the sign of B, since cos(φ/2) < 0

when sin φ = B/r < 0.

The special case r = 0 has an interesting interpretation in terms of complex

numbers. Let zj = uj + i vj, j = 1 . . . n. Then

A + iB =
1

2

n∑

j=1

z2
j .

The condition r = 0 is then equivalent to the centroid of the z2
j ’s being 0.

44

