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EXECUTIVE SUMMARY 
 

Animal-vehicle collisions (AVCs) have been increasing nationally, with increases 

in both animal populations and motor vehicle miles of travel, and AVCs have 

become a major safety concern nationwide and in Washington state. State Farm 

Insurance reported that deer and vehicle collisions in Washington state increased 

by 15 percent over the five years from 2002 to 2007. Therefore, a good 

understanding of the relationship between AVCs and their associated factors, such 

as roadway geometry and traffic characteristics, is important in order for 

transportation agencies to select effective countermeasures against AVCs. High 

quality AVC data and reasonable explanatory models are essential for scientific 

investigations of this issue. 

Collision Report (CRpt) data and Carcass Removal (CR) data are often 

used in AVC studies. However, previous studies have found that these two 

commonly used datasets are very different from each other. This implies that both 

datasets are incomplete records of ground-truth AVCs, and analyses based solely 

on the CRpt data or the CR data may result in biased results. Therefore, this data 

issue must be properly addressed in AVC modeling and statistical analysis. Two 

approaches to deal with the data problem were studied in this research. The first 

approach was to combine the two datasets to obtain a more complete dataset that 

could be used by conventional econometric models for AVC analysis. The second 

approach was aimed at developing a modeling structure that could use both 

datasets simultaneously.  

In the first approach, a fuzzy logic-based mapping algorithm was 

developed for merging the two datasets. This proposed mapping algorithm can 

identify the intersections of the two datasets so that duplications can be avoided. 

Additionally, because records at the intersection of the two datasets contain more 

information about the same accidents, this more detailed AVC dataset can enable 

more thorough analyses. For the selected period of the study routes, about 27 

percent to 37 percent of the CRpt data could be matched to the CR data. The 
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union of the two datasets contained more samples than either of the two original 

datasets. In comparison to the original CR dataset, the combined dataset increased 

the number of records by 13 percent to 22 percent. The proposed fuzzy logic-

based mapping algorithm also matched records in a manner consistent with that of 

experts, as found in an evaluation survey. The survey was conducted at the 

Washington State Department of Transportation (WSDOT), where experts were 

asked to provide their judgment about whether the selected data pairs matched. 

The verification results showed that the accuracy of the proposed algorithm was 

approximately 90 percent for the limited pairs of data included in the survey. The 

fuzzy logic-based mapping algorithm was proved appropriate for enhancing the 

quality of AVC data. The improved dataset will definitely benefit AVC risk 

modeling and statistical analysis. 

Using the recovered data from the fuzzy logic-based mapping algorithm, 

descriptive statistical analysis and hypothesis testing were conducted to achieve a 

better understanding of the characteristics of AVCs and the explanatory variables 

significantly associated with AVCs. Impacts due to location and season, roadway 

geometric factors, traffic features, and animal distribution characteristics were 

analyzed in greater detail. Some factors, such as speed limit, annual average daily 

traffic (AADT), percentage of trucks, and animal distribution, were found to have 

significant impacts on AVCs. The statistical analysis results identified six 

segments as high-risk locations worthy of immediate attention: 

• US 2 between mileposts 297.42 and 297.97 

• US 12 between mileposts 356.61 and 356.94 

• US 90 between milepost 84.15 and 84.35 

• US 97 between mileposts 284.2 and 295.81 

• US 395 between mileposts 214.35 and 217.62. 

 
Econometric models are frequently used to evaluate the impacts of 

explanatory variables on AVC risks. However, most existing AVC risk studies 

have not considered human factors or the spatial distribution of animal population 
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(habitat), although they play a crucial role in the probability of an AVC 

occurrence. Therefore, a microscopic probability (MP) model, consisting of the 

probability of a driver’s ineffective response and the probability of encountering 

an animal, was applied in this study. Nineteen explanatory variables, including 

speed limit and shoulder width, were considered in this MP model. Variables such 

as number of lanes and whether a highway section routed through animal habitats 

were found to be significantly associated with the probability of encountering an 

animal. Increasing median width was found to be significantly associated with 

decreases in the probability of an animal’s failing to avoid the collision. Two of 

the variables, speed limit and percentage of trucks, were found to be significantly 

correlated with an increase in the probability of a driver’s ineffective response.  

In the second approach, a diagonal inflated bivariate Poisson (DIBP) 

regression model simultaneously takes into account both the CR and AVC 

datasets in our modeling work. Our models’ estimation results indicated that the 

DIBP model outperformed the double Poisson (DP) model, bivariate Poisson (BP) 

model, and zero-inflated DP (ZIDP) model. Functionally, the DIBP model was 

able to handle not only under- or over-dispersed count data but also to model 

paired datasets with correlation.  

The principal findings from applying the MP and DIBP regression models 

can be used to develop countermeasures against AVCs. The findings are 

summarized as follows: 

• Animal priority habitat areas, particularly for white-tailed deer, are 

significantly associated with the probability of animal crossings. 

• Roadway segments with a speed limit higher than 50 mph correspond to a 

higher rate of AVCs, which may be due to drivers’ failure to react quickly 

enough to animal crossings. 

• There is a correlation between increased highway access control of and 

reduced probability of AVCs.  

• The probability of drivers’ reaction failure becomes lower when the 

percentage of trucks is higher than 5 percent. 
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• The probability of collision with a crossing animal decreases when the 

number of lanes increases. 

• Increased median width decreases the occurrence of AVCs. 

 

On the basis of the modeling results and the geospatial data, this study further 

identified AVC hot spots for all study routes. The investigation used the online 

State Route (SR) Web tool developed by WSDOT and found that rural area 

roadway sections and deer habitat areas had a higher AVC frequency. Roadway 

design, such as shoulder width, could be a controllable factor related to AVCs that 

could be used to mitigate such collisions. 

Overall, the research team would like to make the following 

recommendations to WSDOT: 

• For the purpose of improving AVC data, it would be helpful to include 

specific animal types in the CRpt. With this information, the CRpt data and 

the CR data can be better matched. Beginning in 2010, WSDOT is using 

descriptions for deer, elk, and moose in its collision database. 

• Plans for new highways should avoid bisecting high quality animal habitats. 

Highways that through animal habitats have negative effects on animal 

activities and ecology. In addition, animal movements between bisected 

habitats increase highway-crossing activities and hence increase the 

probability of AVCs. 

• For existing highways that pass through high-density animal habitats, 

engineering solutions can be applied to reduce AVC risk. These solutions 

should focus on reducing either animal-vehicle interactions or the 

probability of drivers’ failure in responding to animal presence.  

• Solutions aimed at reducing the probability of encountering animals are 

desirable. These solutions include preventing animal crossing movements 

with fence or grade separation at hot crossing spots. 

• Solutions are also needed to reduce the probability of drivers’ failure to 

react. These solutions include installing warning systems that can alert 
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• This study also found that when the percentage of trucks is above 5 percent, 

AVC risk is lower. This is likely related to the fact that when more trucks 

are present, traffic speed is typically slower and/or drivers are more careful 

in driving. Other factors such as increased noise or visual effects may also 

play a role by deterring wildlife crossing attempts. However, more data and 

analysis are desirable to confirm this finding. 
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CHAPTER 1. RESEARCH BACKGROUND 
 

1.1 RESEARCH BACKGROUND 

The national number of animal-vehicle collisions (AVCs) has been rising year after year 

with continuing increases in both deer populations and motor vehicle traffic (Curtis and 

Hedlund, 2005). Romin and Bissonettee (1996) reported that at least 500,000 deer-

vehicle collisions occurred nationwide in 1991. In Washington state, approximately 3,000 

collisions with deer and elk occur annually on state highways (Wagner and Carey, 2006). 

The number of insurance claims resulting from AVCs has grown correspondingly, 

indicating that the losses from these accidents have grown. Identifying potential 

countermeasures against AVCs has become a complex, worldwide, interdisciplinary issue 

with important implications for traffic safety and the environment.  

Over the past two decades, biologists, engineers, and others have gained a better 

understanding of the impacts of transportation facilities on wildlife. Studies have 

determined that one of the best solutions to preventing AVCs is to avoid separating 

animal habitats when new roads are constructed. Although it may not always be possible 

to create a transportation network without habitat segmentation, care should be taken 

with regard to the highest density habitats. To reduce the effects of transportation on 

habitat areas, environmental impact analysis on habitat is now frequently incorporated 

into the planning stages of transportation facilities. However, the planning and 

construction of most existing highways did not include the preservation of habitat 

connectivity.  The consequent lack of connectivity may cause the animals to interact with 

vehicles when animals move between habitat fragments, and these movement conflicts 

may become AVCs (WSDOT, 2007).  

The increasing number of AVCs suggests that countermeasures against AVCs are 

immediately needed. Over the past decades, many countermeasures have been attempted 

to reduce AVCs in the U.S. These countermeasures include expensive engineering 

solutions to connect fragmented habitats and cost-effective ways to warn drivers or 

animals when potential conflicts are detected. For example, the U.S. Highway 93 
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improvement project (between Evaro and Polson, Montana) employed the context-

sensitive design concept and serves as a great example of how engineering solutions can 

connect fragmented habitats. According to Frazier (2001), 42 animal crossings and 14 

miles of fence were planned over the 56-mile corridor to channel animal movements and 

reduce their conflicts with highway traffic. Of course, the construction and maintenance 

costs for such proposed installations are high. 

In addition to roadway and environmental factors, human factors are also relevant 

to AVCs. Most AVCs could have been avoided if drivers had been vigilant. A watchful 

driver can often see an animal at the roadside or on the road soon enough during the 

daytime. However, human detection of emerging animals becomes more difficult when 

the light is dim, especially at night. Because of this and the fact that many animals are 

most active during the evening and early morning hours, approximately 90 percent of 

deer-vehicle collisions happen between dusk and dawn (TranSafety, 1997). To help 

reduce such collisions, automatic detection-based warning systems have been developed 

and implemented for AVC mitigation. There are two types of warning systems (Huijser 

and McGowen, 2003): one warns drivers when animals are detected within the conflict 

range and the other repels wildlife by means of sounds, lights, or scent when vehicles are 

present. Depending on operating principles and effective distances, these systems may 

also require the installation of fencing along substantial portions of the affected road 

segments. 

No matter which approach is adopted, it is essential to understand where the high-

risk AVC locations are and which roadway factors are associated with AVCs in order to 

effectively allocate the limited safety improvement resources. Data analysis and 

statistical modeling based on real-life data are common techniques for dealing with these 

issues. However, data quality has been a great concern for analysts because of various 

data collection procedures. Typically, two types of data are available for AVC studies:  

Collision Report (CRpt) data and Carcass Removal (CR) data. Ideally, these two sets of 

data should correspond exactly. However, previous studies (for example Knapp et al., 

2007 and Huijser et al., 2007) found that these two datasets are significantly different. 

These differences imply that not all animal carcasses were removed and reported by 

transportation agencies. Additionally, not all collisions resulted in submitted reports 
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(reports are only required if a specific threshold of property damage has been reached). 

For these reasons, either dataset would underestimate the actual number of AVCs to some 

extent. However, if AVC data can be fully recovered by combining these two datasets, or 

if a collision model is able to consider both datasets together, then AVC analysis can be 

more accurately conducted and the analysis results can be more reliable. Another issue 

researchers have to face is choosing suitable statistical models for analyzing AVCs and 

identifying their causal factors. Generalized linear models (GLMs) have been used to 

model collisions in many studies (see for example, Miaou, 1994 and Kim et al., 2007). 

However, most accident modeling studies have not considered human factors, which are 

known to play a critical role in the crash event (Wang et al., 2003). Moreover, few studies 

have considered the effects of the spatial distribution of animal populations along the 

highway.  

In summary, there are two major challenges in identifying high-risk AVC 

locations: the first is to recover the AVC data from the two datasets, and the second is to 

develop probability models for quantifying the relationships between explanatory 

variables and AVC risk. This research project used the Collision Report (CRpt) data and 

Carcass Removal (CR) from the Washington State Department of Transportation 

(WSDOT) to describe the process of identifying high-risk AVC locations.  

 

1.2 RESEARCH OBJECTIVE 

In this project, we developed a data mapping methodology for recovering AVC data and 

then used the recovered data for AVC risk models. A probability model that considers the 

driver’s response and presence of an animal was developed and calibrated by using 

different regression forms, including Poisson and negative binomial. High AVC risk 

locations were identified on the basis of the results from both the descriptive statistical 

analyses and AVC risk modeling. Roadway factors associated with AVCs were also 

identified from the probability models. More specifically, the objectives of this study 

were as follows: 

 Design a data mapping approach to maximally recover AVC data from the CRpt 

and animal CR datasets. 
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 Build a relational database that stores the recovered AVC data, highway 

geometric data, traffic data, and animal habitat data. 

 Develop new modeling approaches that can consider the occurrence mechanisms 

of AVCs to quantify the relationships between AVCs and roadway and 

environmental variables.  

 Identify high AVC risk locations on selected Washington state highways. 

 

 

1.3 REPORT ORGANIZATION 
There are nine chapters in this report. The remainder of this report is organized as follows:  

Chapter 2 reviews related research on accident data quality and accident modeling. 

Chapter 3 introduces the AVC study routes in Washington State and our data collection 

plan. This is followed by Chapter 4, which presents methodologies for database design, 

data recovery, statistical analysis, and risk modeling. In chapters 5 through 7, details of 

our data recovery, statistical analysis, and risk modeling efforts are described, 

respectively; these are based on data from the study routes in Washington state. The high 

AVC risk locations are identified in Chapter 8. Finally, Chapter 9 provides research 

conclusions and summarizes recommendations. 
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CHAPTER 2. STATE OF THE ART 

 

AVC data recovery and risk modeling were the two major challenges in this research 

project. This chapter reviews the existing studies relevant to these two challenges. 

2.1 DATA RECOVERY 

In most AVC studies, two types of AVC data are usually used: the CRpt data and the CR 

data, as described in a National Cooporative Highway Research Program (NCHRP) 

report by the Western Transportation Institute (Huijser et al., 2007). Since the records 

compiled in the two datasets are collected by different agencies (in Washington state, the 

Washington State Patrol and WSDOT) using different methods, data integration and 

interpretation are issues. Therefore, most previous AVC studies have used either the 

CRpt data or the CR data, treating the two datasets separately. For example, Hubbard et 

al., (2000), Malo et al., (2004) and Seiler (2005) conducted their AVC analyses on the 

basis of the CRpt data, whereas Reilley and Green (1974), Allen and McCullough (1976), 

and Knapp and Yi (2004) employed the CR data in their research. 

In a survey conducted by the research team in 2009, carcass removal 

professionals at the WSDOT estimated that over 90 percent of the carcasses removed 

from the road were likely involved in traffic accidents. Therefore, these two sets of data 

should have significant overlap. However, previous studies (Romin and Bissonette, 1996; 

Knapp et al., 2007; Huijser et al., 2007) have found that they are significantly different. 

This suggests that the two sets of data complement each other and should be combined to 

improve the quality of AVC data. Analyses based solely on the CRpt data or the CR data 

may result in biased results.  

The fuzzy logic-based data-mapping algorithm has proved to be an effective way 

to deal with problems related to linguistic vagueness and human factors (Zhao, 1997). 

Fuzzy logic mapping algorithms have been widely used in various fields of transportation 

engineering, such as ramp metering (Taylor and Meldrum, 1998), speed control systems 

(Rao and Saraf, 1995), and map matching issues (Syed and Cannon, 2004; Mohammed et 
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al., 2006). Generally, the fuzzy logic-mapping algorithm involves three major steps 

(Chen and Pham, 2001): (1) fuzzification: converting the quantitative inputs into natural 

language variables, (2) rule evaluation: implementing the mapping logic, and (3) 

defuzzification: converting the qualitative rule outcomes into a numerical output. Here, 

our fuzzy logic-based mapping algorithm will be explained in Section 4.2 AVC Data 

Recovery.  

 
2.2 ACCIDENT MODELING 

Most traffic collision models have been developed on the basis of statistical regression 

techniques. Different regression models are developed depending on the diverse 

characteristics of collision data in different situations. As one of the most traditional and 

basic methods, the Poisson regression model has been widely used for collision count 

data analysis (e.g., Jovanis and Chang, 1986; Miaou et al., 1992; Miaou and Lum, 1993; 

Miaou, 1994). However, despite having a significant advantage in accurate modeling 

capability (Maher and Summersgill, 1996), Poisson models are inadequate for handling 

over-dispersed data, which have a variance greater than the mean (Maycock and Hall, 

1984). A well-recognized issue with the Poisson regression model is that the Poisson 

regression model should be reserved for use in situations where the sample variance is 

approximately equal to the sample mean.  

Other models, including Poisson-lognormal models (Miaou et al., 2005; Lord and 

Miranda-Moreno, 2008; Aguero-Valverde and Jovanis, 2008) and negative binomial (NB) 

regression (or Poisson-gamma) (Miaou, 1994; Shankar et al., 1995; Poch and Mannering, 

1996; Maher and Summersgill, 1996; Milton and Mannering, 1998; Chin and Quddus, 

2003; Wang et al., 2003; Lord, 2006; El-Basyouny and Sayed, 2006; Donnell and Mason, 

2006; Malyshkina and Mannering, 2010; Daniels et al., 2010) have been proposed for 

over-dispersed collision data. 

Besides the overdispersion phenomenon, a collision dataset may occasionally be 

underdispersed, i.e., the variance is smaller than the mean. Under-dispersion may exist in 

a dataset with a very low sample variance (Oh et al., 2006). Gamma regression models 

(Winkelmann and Zimmermann, 1995; Oh et al., 2006) have been proposed to fit the 
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under-dispersed data. Additionally, the Conway–Maxwell–Poisson (COM-Poisson) 

distribution was introduced for modeling either over- or under-dispersed count data 

(Shmueli et al., 2005; Kadane et al., 2006; Lord et al., 2007). 

Another issue in collision data is the phenomenon of an apparent excess of zeros. 

In this situation, zero-inflated models (Poisson and NB) have been suggested for 

modeling collision data with excessive zeros in the observations (Shankar et al., 1997; 

Garber and Wu, 2001; Lee and Mannering, 2002; Kumara and Chin, 2003; Miaou and 

Lord, 2003; Rodriguez et al., 2003; Shankar et al., 2003; Noland and Quddus, 2004; Qin 

et al., 2004; and Lord et al., 2005). Recently, several innovative accident models, 

including random parameter models, finite-mixture/Markov switching models, neural 

networks, Bayesian neural networks, and support vector machines, have been used in 

accident analysis research. A comprehensive review of the accident models mentioned 

above can be found in the paper by Lord and Mannering (2010). 

Most of the regression models described above share one common characteristic: 

they are univariate Poisson- (or Gamma-) based models. Recently, multivariate Poisson 

(MVP) regression models (Miaou and Song, 2005; Ma and Kockelman, 2006; Park and 

Lord, 2007), multivariate zero-inflated Poisson (MVZIP) regression models (Li et al., 

1999), or multivariate Poisson-lognormal regression models (Lord, 2007; Karim and 

Tarek, 2009) have been proposed for modeling different count data that are correlated. As 

a special case of MVP regression models, bivariate Poisson (BP) regression models can 

be used for paired count datasets. However, BP and other MVP regression models cannot 

handle over- or underdispersed count data. In order to concurrently utilize both AVC and 

carcass removal data while also providing a better model to describe AVCs, a diagonal 

inflated bivariate Poisson (DIBP) regression model (Karlis and Ntzoufras, 2005) was 

applied to AVC modeling in this research. 

These regression models have been used to model collisions in many previous 

studies. However, another issue is that most previous accident modeling studies have 

failed to consider factors related to human behavior, despite its critical role in crash 

events (Wang et al., 2003). Furthermore, when these models have been applied to AVC 

analysis, few studies have considered the effects of animal population distribution along 
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the highway. Therefore, to get a better understanding of AVCs and their associated 

factors, a microscopic probability (MP) model that can explicitly consider human factors 

and the spatial distribution of animal population is desirable. When the DIBP regression 

model and the MP model are used in conjunction, they can provide a more detailed 

explanation of AVCs from different perspectives. 
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CHAPTER 3. STUDY ROUTES AND DATA 
 

3.1 ROUTE SELECTION 

Ten highway routes (US 2, SR 8, US 12, SR 20, I-90, US 97, US 101, US 395, SR 525, 

and SR 970) with varying AVC rates in the past five years were chosen as the study 

routes following recommendations from WSDOT. 

 

3.2 DATA TYPES 

Data from different sources used in this research and are listed as follows. 

(1)  COLLISION REPORT DATA 

Reported collisions between vehicles and non-domestic animals were extracted 

from the traffic accident records maintained by WSDOT. This dataset was also extracted 

from the Washington state accident files provided by the Highway Safety Information 

System (HSIS) (HSIS, 2009). However, since a significant portion of accidents is not 

reported, this dataset is only a subset of actual animal-vehicle accidents. Collision reports 

are only required for incidents that cause damage values greater than a particular 

threshold.  The threshold value is high enough that only large animal collisions are likely 

to be reported. 

(2) CARCASS REMOVAL DATA 

WSDOT maintenance employees record the location— by milepost, date, weather, 

animal type, sex, and age— of every deer and elk carcass removed from state highways 

(Myers et al., 2007). Given that carcasses may also be removed by un-authorized parties 

and that some animals leave the right-of-way after a collision, this dataset is also a subset 

of all animal-vehicle accidents and may complement the CRpt dataset to some extent. 

(3) HIGHWAY GEOGRAPHIC INFORMATION SYSTEM (GIS) MAP 

This dataset contains locations and curvatures of state highways in the GIS format. 

(4) DEER DISTRIBUTION DATA 
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Data were supplied by the Washington Department of Fish and Wildlife through 

WSDOT. This data contain GIS-based species distribution data for Mule Deer (Mule 

Deer Foundation, unpublished Data), Elk (Rocky Mountain Elk Foundation, unpublished 

Data), and White-tailed Deer (Washington Gap Analysis Project, 1997). 

(5) SURVEY DATA 

The research team conducted two surveys to collect input from WSDOT 

maintenance employees. The first survey was used to determine threshold values for the 

CRpt and CR data. The other survey was used to verify the quality of the data recovery 

algorithm. 

(6) PRIORITY HABITAT AND SPECIES DATABASE 

This database contains location data for deer and elk habitats in Washington state. 

These data were provided by the WDFW.  

(7) WEYWILD: A COMPILATION OF WILDLIFE HABITAT INFORMATION FOR THE PACIFIC 
NORTHWEST 

This dataset is a compiled database derived from 20 sources of species habitat 

information for southwestern Washington. 

(8) WILDLIFE HABITAT MATRICES 

This tool, derived from the Johnson and O’Neil (2001) assessment of wildlife 

habitat relationships for Washington and Oregon, provides tabular data on the vegetation 

types, vegetation structures, important habitat elements, population structures, and 

historical trends of all terrestrial vertebrates in the state. 

Data sources (1) through (5) were mainly used for the analysis, whereas data 

sources (6) through (8) were used for reference. Table 3-1 shows the years of data 

covered by each of the five major data types used in this research.  
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Table 3-1: Data collection information 

Data Data Time 
Covered Date Received Providing Agency 

Collision Report Data 2000-2006 Apr. 2008 (Jan. 2009 
update) HSIS 

Roadlog Data 2002-2006 Apr. 2008 (Jan. 2009 
update) HSIS 

Carcass Removal Data 1999-2007 Jul. 2008 WSDOT 

Survey Data  Feb. 2008-Mar. 2009 WSDOT 

Deer Distribution Data  Jul. 2009 WSDOT & 
WDFW 
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CHAPTER 4. METHODOLOGY 
 

4.1 DATABASE DESIGNS 

For this research, most of the original data were received in the Microsoft Excel format. 

To manage the data efficiently, Microsoft SQL Server 2008 was employed. Before data 

were imported into the data server, the database had to be designed to ensure storage and 

operational efficiencies. The Entity/Relationship (E/R) diagram method (Garcia-Molina 

et al., 2002) was used to design the two AVC study databases, one for the CRpt data and 

the other for the CR data. The designed E/R diagrams of these two databases were then 

converted to relational schemas. Structured Query Language (SQL) was used to 

manipulate the data.  

 
4.1.1 Reported AVC Data 

The E/R diagram of the CRpt data is shown in Figure 4-1. Relational schemas of the 

CRpt database were converted from the E/R diagram design. This database consisted of 

three tables: vehicle, accident, and road. These relational tables included the actual 

variables, and each variable was referred to as an attribute. If an attribute or a set of 

attributes had a unique value for each row in a table, then this attribute or set of attributes 

was qualified to serve as a key for the table. The primary key for each table is underlined 

in the E/R diagram (Figure 4-1). A dictionary of all the attributes is provided in the 

Appendix. 
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Figure 4-1: The E/R diagram for CRpt data 
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Each row in the CRpt table, e.g., the accident table, corresponded to a collision 

that occurred on a segment of one of the study routes. Each accident was uniquely 

identified by its case number (caseno). Thus, caseno served as the primary key for the 

accident table. Similarly, the combination of route number (rte_nbr) and beginning 

milepost (begmp) was chosen as the primary key for the road table, and vehicle number 

(vehno) was chosen for the vehicle table. The relationship HappenedOn linked the 

accident and road tables, while involved linked the accident and vehicle tables. The 

following relational schemas were converted from the E/R diagram, with the primary key 

attributes underlined: 

Vehicle (vehno, bodytype, vehtype, veh_use, drv_actn, miscact, drv_sex, drv_age, 

event, vrd_type, cmconfig, com_body, cmaxles, caseno) 

Accident (caseno, rd_inv, milepost, sr_adid, rodwycls, month, daymth, time, 

acctype, vehdircde, vehevent, impact, tot_inj, tot_kill, numvehs, loc_type, rd_char, rdsurf, 

light, coltype, object, gps_latx, gps_laty, gps_latz, xrdclass, ac_srmp, weather, com_dir, 

rte_nbr, begmp) 

Road (rte_nbr, begmp, endmp, road_inv, aadt, access, func_cls, lshldw, lshl_typ, 

medbarty, medwid, medxngty, med_type, no_lane, rd_qual, rshldw, rshl_typ, rururb, 

seg_lng, st_func, lanewid, surf_typ, rdwy_wd, terrain, trf_cntl, spd_limt, trkpcts, mvmt, 

rodwycls) 

 

4.1.2 Carcass Removal Data 

The E/R diagram of the CR data is shown in Figure 4-2. The CR database consisted of 

two tables: animal and road. The primary key of each table is underlined in the E/R 

diagram (Figure 4-2). The attributes explanation is provided in the Appendix. 
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Figure 4-2: The E/R diagram for CR data 

 

Each row in the CR database table corresponded to one animal that was picked up 

from a segment of one of the studied routes. Similar to the CRpt database, the 

combination of rte_nbr and begmp was chosen as the primary key for the road table; 

AnimalNo served as the primary key for the animal table. The relationship pickupOn 
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linked the animal and road tables. The following relational schemas are produced from 

the E/R diagram, with the primary key attributes underlined: 

Animal (animalno, species, sex, age, day, month, year, weather, light, 

com_dir, rte_nbr, begmp) 

Road (rte_nbr, begmp, endmp, road_inv, aadt, access, func_cls, lshldw, lshl_typ, 

setting, fencing, medbarty, medwid, medxngty, med_type, no_lane, rd_qual, rshldw, 

rshl_typ, rururb, seg_lng, st_func, lanewid, surf_typ, rdwy_wd, terrain, trf_cntl, spd_limt, 

trkpcts, mvmt, rodwycls) 

 
4.2 FUZZY LOGIC-BASED AVC DATA RECOVERY 

High quality AVC data were crucial for this project. However, as mentioned earlier, 

previous studies (Romin and Bissonette, 1996; Knapp et al., 2007; Huijser et al., 2007) 

found that CRpt data and CR data are significantly different. This suggests that the two 

sets of data complement each other and could be combined to improve the quality of 

AVC data.  

Whether two datasets match is not a question that can be answered with precise 

quantitative techniques. Rather, it requires both qualitative and quantitative inferences. 

Fuzzy logic-based data matching has proved to be an effective way to deal with such 

problems related to linguistic vagueness and human factors (Zhao, 1997). Generally, the 

fuzzy logic-based approaches involve three major steps (Chen and Pham, 2001):  

• Fuzzification: converting the quantitative inputs into natural language 

variables 

• Rule evaluation:  implementing the mapping logic  

• Defuzzification: converting the qualitative outcomes into a numerical 

output. 

 
 
 
 
4.2.1 Fuzzification 
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Three attributes were used in the data mapping process: animal type, collision time, and 

collision location. The animal categories for reported AVC data and CR data were a little 

different. The “non-domestic” animal type reported in the AVC data was matched with 

the three deer types and elk in the CR data. After the animal types had been matched, this 

algorithm considered only “date difference” and “location difference” as the inputs. 

Date difference referred to the difference between the date when the carcass was 

collected and the date when the collision was recorded in the CRpt dataset. Note that the 

date recorded in the CR dataset should have been the same date or later as that in the 

CRpt database because a carcass cannot be collected until after the collision has 

happened. Therefore, the date difference was mathematically defined as: 

Date difference = Date in the CR dataset – Date in the CRpt dataset  (4-1) 

Location difference was the milepost difference between the CRpt location and 

the location where the carcass was collected. The route numbers in a data pair had to be 

identical before mileposts could be compared. Therefore, the location difference was 

defined as the absolute difference between the milepost in the CRpt dataset and the 

milepost in the CR dataset: 

Location difference = | Milepost in the CRpt dataset – Milepost in the CR dataset |  (4-2) 

These inputs were then translated into four fuzzy classes based on the level of 

difference: small, medium, big, and very big (S, M, B, and VB). The categories small to 

big were used to avoid confusion with the output class that uses low to high and would 

result in overlapping abbreviations such as L and VL and the introduction of ambiguity.  

VB represented the situation in which the input exceeded the critical range. For example, 

if the location difference was only considered within 3 miles, a 5-mile difference would 

be marked as VB. 

A membership function for each class needed to be determined during the 

fuzzification step. A membership function calculates describes the membership degree, 

defined as the association level of a datum with a predefined category. . The value of 

membership degree ranges from zero to one. Most research (Taylor et al., 1998; Nikunja, 

2006; Naso et al., 2006) has assumed the membership function to be a triangle for 
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simplification and has designed it on the basis of subjective experiences. However, the 

triangular membership function may be too simple to accurately reflect reality. Therefore, 

this study adopted a survey-based method (Li and Yen, 1995) to determine the 

membership functions for the fuzzy classes. Details about the determination process of 

membership function will be described later. 

 

4.2.2 Rule Design 

Fuzzy logic rules are needed for mapping inputs to outcomes. Eleven rules, shown in 

Table 4-1, were designed for this algorithm. The default rule weights reflected the 

relative importance of the rules. As mentioned earlier, the two inputs were milepost 

difference and date difference. The matching degree (MD) between the CRpt and the CR 

datasets was the outcome that was represented by six fuzzy classes: very very low (VVL), 

very low (VL), low (L), medium (M), high (H), and very high (VH). For example, VVL 

represented the situation in which MD as very close to zero, and the candidate data pair 

was too different to be a possible matching pair. 

The MD decreased with an increase in milepost difference or date difference. 

Rules 1 through 9 covered normal matching conditions. For example, Rule 9 could be 

interpreted as follows: if the milepost difference is large, and the date difference is large, 

then their mapping degree is very low. Rules 10 and 11 set MD to VVL if either of the 

inputs was outside the range limits. 

 
4.2.3 Defuzzification 

The defuzzification process converts the qualitative rule outcome into a numerical output. 

The centroid defuzzification method (a.k.a. Center-of-Area, or gravity method) (Runkler, 

1996; Taylor and Meldrum, 1998) was used to determine the MD in this research: 
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where wi was the rule weight representing the importance of rule i; ci was the centroid of 

the output class i; and Ii was the implicated area of the output class i. The centroid of each 

output class is defined in Table 4-2. Note that if the output classes included VVL, the 

output MD was set to zero. In this study, a data pair was regarded as a match if MD ≥0.5. 

  

Table 4-1: Rule base for fuzzy mapping algorithm 

Rule 
Default 

Rule Weight 
Rule Premise MD 

Classes Milepost Difference Date Difference 
1 1 S S VH 
2 1 S M H 
3 1 S B M 
4 1 M S H 
5 1 M M M 
6 1 M B L 
7 1 B S M 
8 1 B M L 
9 1 B B VL 
10 1 VB – VVL 
11 1 – VB VVL 

 
 

Table 4-2: Centroid value for output classes 
 VH H M L VL VVL 
ci 1 0.8 0.6 0.4 0.2 0 

 
 

4.3 STATISTICAL ANALYSIS 

Descriptive statistics for AVCs on the study routes during a five-year period from 2002 to 

2006 are summarized in Chapter 6. Non-parametric analyses and t-tests were conducted 

to identify factors that have significant impacts on AVC risks. The AVC distributions 

were analyzed in four groups—spatial and temporal characteristics, roadway geometric 

characteristics, traffic characteristics, and animal distribution characteristics—and are 

described in Section 6.2. 

Statistical hypothesis testing is used to decide whether a difference in a population 

parameter, e.g., mean, variance, or proportion, between two or more groups is significant 
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(Washington et al., 2003). In this study, the t-test was used to compare the means of two 

groups and ANOVA (or F-test) was used to compare the means of more than two groups.  

 

4.4 RISK MODELING 
4.4.1 Microscopic Probability Model 

In this study, a microscopic probability (MP) modeling approach developed by Wang 

(1998) was applied. An important advantage of this approach is its capability to consider 

the mechanism of accident occurrence in risk modeling. This approach has been 

successfully applied in many studies of accident risks (see for example Siddique, 2000; 

Wang et al., 2003; Kim et al., 2007) and has achieved favorable results. 

A representative AVC process is difficult to accurately model and interpret 

because of the multiple subjective and objective factors involved and limited data 

supports. However, a simplified process can be formulated by considering two significant 

AVC contributors: failed responses from drivers, such as insufficient deceleration, or 

swerving, and failed responses from animals, such as freezing or running in the wrong 

direction. These two factors interact with each other so that an AVC may be caused by 

either one or both. An AVC is avoidable if a driver applies early and strong deceleration 

or an animal has an instant and powerful reaction. Additionally, when vehicles travel 

along roadways, animals’ crossing or following presence could be another important 

component for modeling an AVC process. Therefore, the occurrence of an AVC is 

conditioned on the presence of an animal in the roadway, the ineffective response of the 

arriving driver, and the animal’s failure to escape. The MP AVC risk model included 

three components, following the approach of Wang (1998): the probability of a hazardous 

crossing of an animal (Po), the probability of the animal failing to escape (Paf), and the 

probability of an ineffective response by the driver (Pvf). The probability for a randomly 

selected vehicle to have an AVC on a certain roadway section would then be the product 

of Po, Paf, and Pvf: 

AVC o af vfP P P P= ⋅ ⋅      (4-4) 
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Since Po, Paf and Pvf are not directly observable, we needed to estimate Po, Paf, 

and Pvf, respectively. 

4.4.1.1 Paf and Pvf Formulations 

It is assumed that a driver cannot avoid a collision if his/her necessary perception 

reaction time (NPRT) is longer than the available perception reaction time (APRT). The 

APRT refers to the time available to a driver to complete his/her perception and response 

under a given condition. The NPRT is the ability-oriented minimum required 

perception/reaction time. The NPRT typically varies from person to person. Both the 

APRT and the NPRT are random variables and are assumed to follow normal 

distributions. Since a normal distribution does not have a closed form for cumulative 

probability calculation, the Weibull distribution was used instead. The NPRT was 

assumed to follow the Weibull (α, λ) distribution, and the APRT was assumed to follow 

the Weibull (α, γ) distribution. Therefore, λ and γ were the scale parameters for the 

NPRT and APRT distributions, respectively. The Weibull distribution shape parameter α 

was chosen to be 3.25 in this study because it has been empirically verified that when 

α=3.25, the Weibull distribution is a very good approximation to normal distribution 

(Kao, 1960; Plait, 1962). By using the assumed distributions for the APRT and the NPRT, 

Pvf could be calculated as: 

1
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where tav was the variable used to represent the APRT. Equation (4-5) shows that Pvf is 

only dependent on λ/γ and has no relationship to α. Since the parameters λ and γ are 

positive variables, λ/γ can be related to various factors by using an exponential link 

function, as shown in Equation (4-6). Correspondingly, Pvf can be written in the form of 

Equation (4-7). 

λ
γ

v ve−= h hxβ       (4-6) 
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xP
e β=

+
     (4-7) 

In Equations (4-6) and (4-7), βvh and xvh are vectors of unknown parameters and 

explanatory variables, respectively, related to Pvf. Variables affecting drivers’ task load 

and action complexity need to be included in xvh. 

Similarly,  Paf can be written in the form of Equation (4-8). 

-1 ah ahaf
1

xP
e β=

+
     (4-8) 

In Equation (4-8), βah and xah are vectors of unknown parameters and explanatory 

variables, respectively, related to Paf. Variables affecting animals’ actions need to be 

included in xah. 

4.4.1.2 Po Formulation 

An animal becomes an obstacle for vehicles if its highway-crossing movement 

interrupts the smooth movement of vehicles. Only when a highway-crossing movement 

occurs within a certain period may the animal become an obstacle to the arriving vehicle. 

This period is called “effective time.” As the arrival of an obstacle is discrete, 

nonnegative, and random, it is assumed to have a Poisson arrival process. In such a 

process, intervals between arrivals are independent and follow the same exponential 

distribution (Pitman, 1993). Let us consider a disturbance, j, whose arrival rate is ηdj and 

effective time is t. Then, its density function is: 

tdjetf ηη −=)( dj       for t>0    (4-9) 

According to the memoryless property of the exponential distribution (Pitman, 

1993), the probability of having disturbance j within tdj is independent of the time waited. 

Therefore, the probability for an arriving vehicle encountering disturbance j within tdj can 

be calculated by Equation (4-10). 
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The risk of an AVC is the sum of the risk of individual vehicles encountering 

obstacle animals.  Since any of the disturbances occurring in tdj may result in an AVC, 

the per vehicle probability of encountering an obstacle animal, Po, is equivalent to the 

probability that at least one disturbance occurs within the effective period. Therefore, Po 

can be formulated as: 

1

1 (1o
j

P
=

= − −∏      (4-11) 

Replacing Pdj with Equation (4-10), a Po becomes: 

∑−= j
o eP 1

− djdj tη

ooxβet =∑ η

oxoβe−

     (4-12) 

In Equation (4-12), ∑jηdjtdj should always be positive and dependent on a set of 

variables. Thus, an exponential link function can be employed to reflect the effects of the 

explanatory factors, as shown in Equation (4-13). 

j djdj      (4-13) 

Po then becomes: 

o eP −=1       (4-14) 

In Equations (4-13) and (4-14), βo and xo are vectors of unknown parameters and 

explanatory variables of disturbance frequency, respectively. βo does not change with 

location, while xo does. Animal habitat integrity, size, and animal population are very 

likely contributing variables to xo. 

4.4.1.3 Integrated AVC Risk Model 

Substituting Equations (4-7), (4-8),  and (4-14) into Equation (4-4), and adding 

subscripts denoting roadway section (i) to the variables, yields an integrated AVC risk 
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model formulation, as shown in Equation (4-15). The model contains not only road 

environment related factors, but also factors related to human and animal behaviors. The 

inclusion of human and animal factors is one of the major distinctions of the proposed 

approach in comparison with most existing accident risk models. Obviously the human 

and animal factors are very macroscopic, as details of individual collisions are not 

generally available. 

1
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4.4.1.4 AVC Risk Model Estimation 

To simplify the problem, it is assumed that individual vehicles within a traffic 

flow have a consistent AVC risk, PAVCi. Thus, the number of AVCs occurring within this 

flow follows binomial distribution: 
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where fi is annual traffic volume that can be calculated from the annual average daily 

traffic (AADT) of roadway section I and  ni is the number of AVCs occurring within fi. 

Since it is very rare for an AVC to occur, PAVCi should be very small while traffic 

volume fi is very large for the given span of time. Thus, the Poisson distribution is a good 

approximation to the binomial distribution (Pitman, 1993): 
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    (4-17) 

with the Poisson distribution parameter: 

AVCiiii ⋅=)(     (4-18) =

The Poisson distribution model has commonly been used to predict the number of 

accidents. It is usually the first choice when modeling traffic accidents because of the 

nonnegative, discrete, and random features of accidents. Since Poisson distributions have 
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only one distribution parameter, the mean and variance need to be the same. However, in 

most of the cases, accident data are over-dispersed, and the applicability of the Poisson 

model is therefore limited. An easy way to overcome this difficulty is to add an 

independently distributed error term, εi, to the log transformation of Equation (4-18). That 

is: 

iAVCiii Pfm = + ε)ln(ln    (4-19) 

We assume that exp(εi) is a Gamma distributed variable with mean 1 and variance 

δ. Substituting Equation (4-19) into Equation (4-17) yields 

!
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iAVCii
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nP ε =
))exp(())exp(( nPf Pfe iiAVCii εε ⋅−

   (4-20) 

Integrating εi out of Equation (4-20), we can directly derive a negative binomial 

distribution model as the following: 
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=  (4-21) 

where θ=1/δ. The expectation of this negative binomial distribution equals the 

expectation of the Poisson distribution shown in Equation (4-18). The variance is now: 

)](1)[()( nEnEnV ikikik +δ=     (4-22) 

Since δ can be larger than 0, the constraint that the mean be equal to the variance 

in the Poisson model is removed. Thus, the negative binomial distribution can deal with 

the over-dispersed data. 

4.4.2 DIBP Regression Model 

4.4.2.1 Bivariate Poisson Regression Model 

Figure 4-3 shows the relationships between two types of data, the reported AVC 

data (left circle) and the CR data (right circle) typically collected by transportation 
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agencies. There are three regions of interest: Z1, Z2, and Z3.  Z1 represents the CRpt with 

no corresponding CR data. Z2 represents the CR data with no counterparts in the CRpt 

data.  The records contained in both the CRpt data and the CR data are represented by Z3. 

This area is the overlapping portion of the two datasets.  

 

 
Figure 4-3: Relationship between the reported AVC and CR datasets 

 

Let us assume that the count datasets Z1, Z2, and Z3 follow independent Poisson 

distributions with parameters (means) λ1, λ2, and λ3, respectively. Then the reported  

CRpt dataset X = Z1+Z3 and the carcass removal dataset Y = Z2+Z3 follow a bivariate 

Poisson distribution, BP (λ1, λ2, λ3), with a joint probability mass function defined as  

follows (Karlis and Ntzoufras, 2005): 

1 2 3

min( , )
( ) 31 2

1 2 3
0 1 2

( , | , , ) ( )( ) !( )
! !

x y x y

BP
i

x y
f x y e i

i ix y
λ λ λ λλ λλ λ λ

λ λ
− + +

=

= ∑           (4-23) 

The BP distribution is appropriate for modeling two random variables with 

positive dependence, which is the case for the CRpt and CR datasets. Its marginal 

distributions of X and Y follow Poisson distributions with E(X) = λ1+λ3 and E(Y) = λ2+λ3, 

respectively. Moreover, COV(X, Y) = λ3, and hence λ3, is a measure of dependence 

between the CRpt dataset and the CR dataset. 
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In the BP model, λ1, λ2, and λ3 can each be related to various explanatory 

variables by using exponential link functions.  Therefore, the BP regression model can 

take the following form: 

1 2 3( , ) ~ ( , , ),

ln( )
i i i i i

T
ij ji j

X Y BP λ λ λ

λ =ω β
                    (4-24) 

where i = 1, . . . , n, is the roadway segment number, jiω is the vector of explanatory 

variables for roadway segment i, jβ  is the corresponding coefficient vector for Zj, and j = 

1, 2, and 3. In this study, the roadway segments were separated by consistent geometric 

factors. 

4.4.2.2 Diagonal Inflated BP (DIBP) Regression Model  

A major disadvantage of the BP model is that its marginal distributions cannot handle 

over-dispersed or under-dispersed data because its marginal distributions are Poisson 

distributions that require the mean and the variance to be equal (Karlis and Ntzoufras, 

2005).  The DIBP model proposed by Karlis and Ntzoufras (2005) can be used to fix this 

problem. This model uses a more general form developed on the basis of zero-inflated 

models, and the probabilities of the diagonal elements are inflated in the probability table. 

Note that the BP model and the ZIDP model are special cases of the diagonal inflated 

model (Karlis and Ntzoufras, 2005). The DIBP model can be defined on the basis of the 

BP regression model as follows:  

1 2 3

1 2 3

(1 ) ( , | , , ),
( , )

(1 ) ( , | , , ) ( | , ),
BP

IBP
BP D

p f x y x y
f x y

p f x y pf x J x y
λ λ λ

λ λ λ θ
− ≠⎧

= ⎨ − +⎩ =
            (4-25) 

where ( | , )Df x Jθ  is the probability mass function of a discrete distribution D(x; θ). D(x; 

θ) can be a Poisson, geometric, or a simple discrete distribution. That is, the data process 

has a probability of 1-p to follow a BP distribution. Note that when p=0, the DIBP model 

is simply the BP model. fD(x | θ,J) can be defined as 
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where . If J = 0, then the model in Equation (4-25) become a zero-inflated 

model. The marginal distributions of a DIBP regression model are mixtures of 

distributions with one Poisson component. For example, the marginal distribution of X is 

0
1J

xx
θ

=
=∑

0 1 3( ) (1 ) ( | ) ( | )IBP P Df x p f x pf xλ λ θ= − + +                       (4-27) 

where fPo(x | λ) is the Poisson probability mass function with parameter λ1+λ3. The 

marginal distributions of the DIBP regression model can model either under-dispersed or 

over-dispersed count data, depending on the definition of D(x; θ). For example, if J=1, 

λ1+λ3=1 and p=0.5, then the resulting distribution is under-dispersed. If J=0 (the simplest 

case of zero-inflated models), then the resulting distribution is over-dispersed. This 

implies that the DIBP regression model is more flexible than the BP regression model 

and hence a clearly better choice for modeling the AVC data in this study. 

4.4.2.3 Model Estimation Using the EM Algorithm 

The parameters in most MVP or related models are difficult to estimate because of the 

computational issues involved in their applications (Karlis and Ntzoufras, 2005; Ma and 

Kockelman, 2006).  However, recent developments in statistical software models and 

computer hardware have provided several ways to estimate BP models. In this study, the 

Expectation-Maximization (EM) approach (Dempster and Rubin 1977) was investigated 

for estimating the parameters in the DIBP regression model.  

EM is an algorithm for estimating the maximum likelihood (ML) values of model 

parameters when data that contain missing values are used. The basic idea of the EM 

method is to alternately perform an expectation (E) step and a maximization (M) step 

until the best set of parameters is obtained. An E step calculates the expectation of the 

likelihood by including the latent variables, while an M step calculates the maximum 

likelihood estimates of the parameters by maximizing the expected likelihood derived 
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from the E step (Borman, 2009). Details of the EM algorithm can be found in (Karlis, 

2003; Karlis and Ntzoufras, 2005). 

 

4.4.3 Goodness of Fit Measures 

To evaluate the explanatory and predictive power of a model, three measures of goodness 

of fit were adopted here for model comparison: ρ2 (Ben-Akiva and Lerman, 1985), 

Akaike's information criterion (AIC) (Akaike, 1974) and Bayesian information criterion 

(BIC) (Schwarz, 1978; Liddle, 2007). These three measures are described as follows. 

ρ2 (rho-squared) is the log-likelihood ratio index and is used to evaluate a model’s 

goodness of fit for random, discrete, and sporadic count data (Ben-Akiva and Lerman, 

1985; Chin and Quddus, 2003). The index is formulated as  

2
ˆln ( )1

ln (0)
L
L

ρ = −
β

                                                        (4-27)
 

where ˆ( )L β  is the maximum likelihood estimation of the compared model and (0)L  is 
the initial maximum likelihood estimation of the same model with only the constant term. 

AIC is another measure of goodness of fit for a statistical model (Akaike, 1974). 

AIC is often used for model selection. The model with the lowest AIC is considered the 

best model. In general, AIC is formulated as follows:   

2 2 ln( )AIC k L= −                                                    (4-28) 

where k is the number of parameters in the model and L is the model’s maximum 

likelihood estimation.  

BIC (Schwarz, 1978) is also a criterion used for model selection among a group 

of models with different numbers of parameters. In comparison to AIC, BIC has a 

stronger penalty for additional parameters. Similarly, the model with the lowest BIC is 

considered the best model. BIC is calculated as follows:  
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2 ln( ) lnBIC L k N= − +                                                   (4-29) 

where N is the number of observations in the data and L represents the model’s maximum 

likelihood estimation. 

 These three measures are consistent in most cases. They can be used individually 

or jointly in model selections. In this study, AIC was used to quantify goodness of fit for 

the MP model. and all the three measures were used for the DIBP model. 
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CHAPTER 5. AVC Data Recovery 

As mentioned in Research Background, high-quality data are essential for meaningful 

data analysis and risk modeling. This chapter focuses on the implementation of a fuzzy 

logic-based mapping algorithm for recovering the AVC data from the CRpt and CR 

datasets.     

Figure 5-1 shows the total numbers of records in each dataset over the five-year 

period for each study route. Apparently, the CRpt and CR datasets are different. The 

number of CR records is typically more than the numbers of CRpt data on each route 

except for US 101. Hence, using the CRpt data or the CR data alone is likely to 

underestimate the frequency of AVCs. 

 

 
Figure 5-1: Comparison of the total number of AVCs between the CRpt and the CR datasets for each 

study route from 2002 to 2006 
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 To improve overall data quality, combining both datasets is required. The fuzzy 

logic-based mapping algorithm introduced in Section 4.2 was used for data recovery. 

“Recovery” refers to the procedure to combine the two datasets to form a more complete 

dataset for AVC research. In the following sections, the determination of membership 
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functions in fuzzy logic is first introduced. This is followed by the mapping results. 

Finally, verification of the algorithm by an evaluation survey is described. 

 
5.1 DETERMINATION OF MEMBERSHIP FUNCTION 

The CR and CRpt datasets differ significantly and have different sources, so it is difficult 

to find people familiar with both datasets. Because the CRpt data are more precise in 

location and date, as well as more physically and directly tied to incident location, the 

CRpt data were chosen as a baseline for comparison to the application of fuzzy logic to 

the CR data.  Therefore, the decision was made to survey only people with expertise in 

the CR data. Before the fuzzy logic-based mapping algorithm was applied, the 

membership functions had to be determined. To determine some threshold values for the 

membership functions, a survey was conducted of WSDOT employees who had collected 

CR data for more than three years to obtain information about how experts made their 

judgments about the corresponding variables. The survey was conducted from February 5 

to March 3, 2009. The survey contained eight questions, including four questions directly 

related to the determination of the fuzzy membership function. Questions included, 

“What is the average location difference between the carcass and the actual collision?” 

and “What is the largest location difference between the carcass and the actual collision?” 

Similar questions about the date difference were also included. 

Forty-eight of the 54 responses received were valid. Incomplete questionnaires 

were considered invalid. From each expert’s input, we were able to understand how he or 

she judged the date and location differences and the corresponding threshold values he or 

she used. Figure 5-2 illustrates the fuzzification process of an expert. For example, if a 

location difference was smaller than the expert’s expected location difference, then the 

current data pair’s location difference was small, in this expert’s opinion. The location 

difference of this same data pair may have been considered as big in another expert’s 

view. The measured differences in experts’ judgment offered a solid foundation for 

building the membership functions. 
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Figure 5-2: Determination of fuzzy classes 

 

The degree of membership of input value u in fuzzy class Ai (i=1, 2, 3, 4, 

representing the classes of S, M, B, VB, respectively) can be calculated by using the 

membership function for class Ai. In this study, u was the value of date difference or 

location difference. The membership function was constructed as shown in Equation (5-1) 

by using the survey inputs from the WSDOT experts. 

,( ) i u
i

n
f u

K
=            (5-1) 

where ni,u is the number of observations of u ∈Ai for class i  and K is the total number of 

observations (valid survey responses) for all classes (K = 48 in our study). 

The results for the constructed membership functions are shown in figures 5-3 to 

5-5. Figure 5-3 shows the membership function for location difference between the AVC 

and CR datasets. For example, approximately 56 percent of the employees regarded 1 

mile as a Big difference, while 38 percent thought that it was a Medium difference, and 

about 6 percent regarded it as a Small difference. 

Figures 5-4 and 5-5 show the membership functions for date differences on 

weekdays and weekends, respectively. When an AVC happens during a weekend, the 

carcass is often collected on the following Monday or Tuesday. The date differences were 

slightly larger on weekends. 
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Figure 5-3: Membership function for location difference 
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Figure 5-4: Membership function for time difference on weekdays 
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Figure 5-5: Membership function for time difference on weekends 
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5.2 MAPPING RESULTS 

The fuzzy logic-based mapping algorithm described in Section 4.2 was immediately 

applicable to combining the two datasets with the calibrated membership functions. Five 

years of reported AVC and CR data for the ten study routes were combined by using this 

approach. However, to merge the two datasets, we needed to identify their intersections 

so that the same accidents would not be recorded twice in the combined dataset.  

As shown in Table 5-1, the fuzzy logic-based mapping algorithm identified 

matches at between 27 percent and 37 percent for each year. Thus the union of the two 

datasets expanded the data breadth. In comparison to the original CRpt dataset, the union 

dataset contained about 310 percent to 420 percent more records, as shown in the 

Improved Percentage column. 

 
Table 5-1: Data mapping results for the study routes in five years (2002~2006) 

Year 
Total Number of Records Matched 

Data Pairs 
Matching 

Percentage 
Union 

Datasets 
Improved 
PercentageCRpt data CR data 

2002 529 1989 158 29.9% 2360 346% 
2003 508 1935 163 32.1% 2280 349% 
2004 529 1800 145 27.4% 2184 313% 
2005 544 2484 198 36.4% 2830 420% 
2006 533 2112 162 30.4% 2483 366% 
 
 
5.3 ALGORITHM VERIFICATION 

After the proposed algorithm had been implemented, a major step was to verify whether 

the algorithm was able to reasonably imitate the experts’ decision process and produce a 

quality combined dataset. However, because no ground-truth AVC data were available, it 

was nearly impossible to validate the performance of the algorithm by using the existing 

datasets. Therefore, an evaluation survey was conducted from March 5 to March 23, 2009. 

Again, the survey subjects were WSDOT employees who had collected CR data for more 

than three years. Each survey subject was asked to judge whether the data pairs listed on 

the questionnaire matched. The disparity between the experts’ results and the algorithm 

results was a measure of the credibility of the proposed algorithm. 
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Thirteen data pairs were extracted from the CRpt and CR datasets and included in 

the survey questionnaire. These pairs were considered representative of both the day and 

location differences between the two datasets. As shown in Table 5-2, information about 

Route, Milepost, Weekday, Month, and Day from the data pairs was also provided on the 

survey questionnaire. Experienced WSDOT highway maintenance staff were invited to 

fill in the questionnaire. The matching degree for each of the 13 data pairs was computed 

on the basis of the expert’s input and then compared to the fuzzy logic-based mapping 

algorithm’s output. The last three columns of Table 5-2 show the matching degrees for 

both the survey results and the fuzzy logic-based mapping algorithm, as well as the 

percentage of error between matching results. In the Matching Degree column, the gray 

cells indicate that the data pair should refer to the same collision (the matching degree of 

a data pair should be 50 percent or higher to be marked as a match). 

 
Table 5-2: Survey and algorithm matching percentages for different data pairs 

No Route 
 CRpt Data Carcass Removal Data 

Matching 
 Degree (%) ei* 

Milepost Weekday Month Day Milepost Weekday Month Day Survey Algorithm
1 2 302.1 Thu Oct. 20 302 Thu Oct. 20 100 96 0.04
2 2 327.2 Wed May 25 325 Mon Jun. 20 8 25 0.17
3 12 118.14 Mon Feb. 14 118 Tue Feb. 15 88 86 0.02
4 20 24.77 Wed Oct. 26 24.1 Wed Oct. 26 58 74 0.16
5 20 8.1 Thu Nov. 10 5.5 Fri Nov. 18 0 24 0.24
6 90 257.27 Sun Sep. 25 257 Thu Sep. 29 69 51 0.18
7 90 55.2 Sun Jul. 31 56 Mon Aug. 1 88 64 0.24
8 90 32.88 Thu Mar. 31 34 Sat Apr. 2 50 52 0.02
9 97 25.5 Wed Jul. 20 24 Mon Jul. 25 46 31 0.15
10 97 299.02 Sun Sep. 10 299.7 Mon Oct. 3 35 35 0 
11 195 84.53 Mon Nov. 14 83 Thu Nov. 17 54 40 0.14
12 395 231.44 Fri Apr. 29 233.8 Thu May 12 12 24 0.12
13 970 2.21 Tue Nov. 22 2 Wed Nov. 23 96 82 0.14
* ei is the absolute percentage of error between the matching results 

The table shows that the survey and algorithm results agreed in all cases except 

data pair No. 11, which the experts concluded was a match but the algorithm rejected. If 

the survey results are assumed accurate, then the accuracy rate (AR) for the proposed 

algorithm is as follows: 
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 accurate

total

AR
N

=
N

=12/13=92.3%     (5-2) 

where Naccurate is the number of data pairs correctly matched by the algorithm, and Ntotal is 

the total number of the data pairs evaluated. The matching rate of 92.3 percent is 

considered to be a very encouraging result, given the complexity of this issue. 

The Mean Absolute Error (MAE), a quantity used to measure how close forecasts 

or predictions are to the eventual outcomes (Morris, 1986), was used as the error 

indicator. The MAE of the proposed algorithm can be calculated by using Equation (5-3): 

1 1
( )i i i

i i

1 1n n

MAE f y e
n n= =

= − =∑ ∑ =12%    (5-3) 

where fi is the result estimated by the fuzzy logic-based data mapping algorithm; yi is the 

ground truth matching degree values calculated from the survey result; and ei is the MAE 

between the algorithm result and the survey result. The calculated error for each surveyed 

data pair is listed in the last column of Table 5-2. 
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CHAPTER 6. DATA ANALYSIS 

Descriptive analysis and hypothesis testing were applied to identify factors that may have 

significant impacts on the AVC risk. Descriptive analysis is separated into four categories: 

spatial and temporal factor analysis, roadway geometry analysis, traffic characteristic 

analysis, and deer distribution analysis. The combined data from Chapter 5 are used in 

the analysis of the first three categories whereas CR data and animal habitat data are 

applied in the deer distribution analysis since the CRpt data does not provide detailed 

animal type information. In the statistical analysis testing, a t-test is used to compare the 

means of two groups. 

 

6.1 DESCRIPTIVE ANALYSIS 
6.2.1 Spatial and Temporal Factor Analysis  

The spatial and temporal distributions of AVCs were analyzed by counting the number of 

AVCs that occurred on each of the ten study routes during different periods (year, month, 

and weekday). 

Figure 6-1 shows the number of AVCs that occurred from 2002 to 2006 by route. 

Figure 6-2 presents the number of AVCs per mile by route for the same period. From 

these two figures, one can see that US 97, followed by US 12 and US 2, had the highest 

number of AVCs, while SR 970 had the highest AVC rate (number of AVCs per mile) 

during the same five years. 

Figures 6-3 through 6-5 show the total number of AVC records in relation to time 

(year, month, and weekday). Figure 6-3 shows that the number of collected AVC records 

for the different study routes did not follow a predictable pattern. Interestingly, the 

numbers of records for US 2, US 97, and I-90 followed a climbing trend and reached 

their maximums in 2005 but dropped in 2006. The reasons for this need further study.  

In Figure 6-4, October and November have more AVC records than other months. 

This could be because of treacherous driving conditions and higher deer activities in 

autumn. Even though roadway condition during winter can be worse than in autumn, 
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drivers tend to be more vigilant, and animal activity level is usually lower. Given these 

factors, autumn could be the most AVC-prone season.   

Figure 6-5 shows the number of AVC records by weekday. The results show that 

Mondays are associated with more AVC records. This may be because many deer killed 

on Fridays, Saturdays, and Sundays are not picked up and recorded until the following 

Monday. 
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Figure 6-1: Total number of AVCs, by route (2002-2006) 
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Figure 6-2: Average AVC rate (number of AVCs per mile), by route (2002-2006) 
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Figure 6-3: Total number of AVCs, by year (2002-2006) 
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Figure 6-4: Total number of AVCs, by month (2002-2006) 
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Figure 6-5: Total number of AVCs, by weekday (2002-2006) 

 

6.2.2 Roadway Geometry Analysis 

For this analysis, roadways were separated into different segment units. Each 

segment unit was consistent in terms of certain characteristics, such as lane width, 

shoulder type, and median width, and a new section was defined each time any of the 
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characteristics changed (HSIS, 2009). Then the associations of AVCs with different 

roadway geometric characteristics, such as grade, number of lanes, and terrain type, were 

analyzed. Two figures were produced for each characteristic type: one showing the total 

number of AVCs (figures 6-6 through 6-8) and the other illustrating the total number of 

AVCs divided by the total segment length (figures 6-9 through 6-11). The latter 

procedure, called “normalization,” allowed comparisons of different groups while 

controlling for segment length. For comparison purposes, the normalized figures provide 

more intuitive inference than the non-normalized ones, but this report contains the non-

normalized figures (figures 6-6 through 6-8) for readers’ reference.  
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Figure 6-6: Total number of AVCs, by grade (2002-2006) 
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Figure 6-7: Total number of AVCs, by number of lanes (2002-2006) 
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Figure 6-8: Total number of AVCs, by terrain type (2002-2006) 

 

Figure 6-9 shows no clear trend in the statistical results for grade. However, when 

the grade is greater than 5 percent, the number of AVCs starts to decline. This could be a 

result of the vertical grade’s impacts on vehicle speed and stopping sight distance. It 

could also be caused by animals’ preference to move on gentler slopes.  The tendency to 

build roads on the shallowest available slopes may put animals and vehicles in the same 
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location. Figure 6-10 shows that the impact of the number of lanes on AVC rate does not 

create a constant trend. Interestingly, six-lane roadways are associated with the lowest 

number of AVCs per mile. Figure 6-11 shows that rolling terrain tends to have higher 

numbers of AVCs. This may be a result of drivers’ sight restrictions caused by rolling 

terrain.  In addition, the higher AVC rate may be with a product of more deer activity in 

rolling terrain areas, as indicated by the deer distribution data.  
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Figure 6-9: AVC rate (number of AVCs per mile), by grade (2002-2006) 
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Figure 6-10: AVC rate (number of AVCs per mile), by number of lanes (2002-2006) 
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Figure 6-11: AVC rate (number of AVCs per mile), by terrain type (2002-2006) 

Note that the sample sizes for level terrain, rolling terrain, and mountainous terrain were 

1915, 7542, and 1009 records, respectively 

 
 
 
6.2.3 Traffic Characteristic Analysis 
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The relationships of AVCs to various traffic characteristics, including the speed limit, 

annual average daily traffic (AADT), and percentage of trucks, were also analyzed. 

Similarly to Section 6.1.2, figures 6-12 through 6-14 show the total number of AVCs for 

each type of traffic characteristic, while figures 6-15 through 6-17 plot the results 

normalized by the total segment length.   

Some key points were concluded from the results shown in figures 6-15 through 
6-17: 

• As a general trend, the AVC rate increases with speed limits until 60 mph (as 

shown in Figure 6-15). The only exception is a 50 mph speed limit. This could be 

caused by random variation or biases where 50 mph speed limits are used. The 

AVC rates for speed limits of 65 mph and 70 mph are not as high as those for the 

60 mph speed limit. The reason is likely related to the enhanced access control for 

high speed roads with 65 mph or higher speed limits.  

• As shown in Figure 6-16, the AVC rate is relatively low when AADT is lower 

than 4,000 and shows a declining trend after AADT=25,000, except for the 

AADT range between 50,000 and 55,000 because of smaller sample size. Further 

research is needed to collect more data to investigate this issue.  

• Figure 6-17 shows that the AVC rate decreases when the percentage of trucks 

becomes higher than 5 percent. This may be because more trucks slow traffic 

speed or make more noise that drives animals away from highways. Moreover,  

drivers tend to drive more carefully when more trucks are present. 

46 



 

   

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

20 25 30 35 40 45 50 55 60 65 70

N
um

be
r 
of
 A
V
Cs
 

Speed Limit (mph)

Figure 6-12: Total number of AVCs, by speed limit (2002-2006) 
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Figure 6-13: Total number of AVCs, by AADT (2002-2006) 
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Figure 6-14: Total number of AVCs, by percentage of trucks (2002-2006) 
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Figure 6-15: AVC rate (number of AVCs per mile), by speed limit (2002-2006) 
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Figure 6-16: AVC rate (number of AVCs per mile), by AADT (2002-2006) 
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Figure 6-17: AVC rate (number of AVCs per mile), by percentage of trucks (2002-2006) 

 

6.2.4 Deer Distribution Analysis 

The geographic distributions of carcass pickups and their relationship to deer habitats 

were analyzed. Because of a lack of detailed information about deer types in the CRpt 
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data, only CR data were geographically compared with deer population distribution 

(habitat) data retrieved from WSDOT and WDFW.   

Table 6-1 shows the carcass pickup records for different deer types from 2002 to 

2006. Figure 6-18 shows the distribution of mule deer carcass pickup locations and mule 

deer habitat areas in Washington state. Note that black-tailed deer are a subspecies of 

mule deer and are therefore included in the mule deer map.  

Table 6-1: Carcass records for different deer types (2002-2006) 

Animal Type 
Carcass Records 

2002 2003 2004 2005 2006 Total 
Mule Deer 1307 1339 1282 1528 1201 6657 

Black-tailed Deer 850 753 874 903 723 4103 
White-tailed Deer 867 915 795 1368 1335 5280 

Elk 90 93 97 135 101 516 
 

 
Figure 6-18: Comparison between the mule deer carcass pickup locations and their habitat                         

 

Figure 6-19 shows the white-tailed deer habitat areas in Washington state. Figure 

6-20 illustrates the overlap between the distribution of white-tailed deer carcass pickup 
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locations and white-tailed deer habitat areas1 in Washington state. Similarly, Figure 6-21 

shows the pickup locations of elk carcasses and elk habitat areas in Washington state. 

From figures 6-18, 6-19, and 6-21, one can see that the habitat areas of the three types of 

animals cover all of the locations with high carcass pickups. Most carcasses were found 

and picked up in the deer habitat areas. This indicates that the AVC records are strongly 

related to  animal population distribution. 

 

 
Figure 6-19: White-tailed deer habitat areas 

 

                                                 
1 The GIS map in Figure 6-20 was converted from the raster image in Figure 6-19, since GIS data for the 
white-tailed deer habitats were not available from WSDOT. The other maps were created directly from GIS 
data.  
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Figure 6-20: Comparison between white-tailed deer carcass pickup locations and their habitat areas 

 

 
Figure 6-21: Comparison between the elk carcass pickup locations and their habitat areas 
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6.2 STATISTICAL ANALYSIS 

For this analysis, a t-test was used to compare the means of two groups. The combined 

data from Chapter 5 were used in this analysis. 

 

6.3.1 Tested Variables 

Table 6-2 shows the analysis variables used for the t-test. All the variables in this table 

are dummy variables. The dummy value is described in the last column. 

 
Table 6-2: Tested variables 

Independent Variable Variable Description Dummy value 

rururb Rural area 1 yes; 0 no 

rolling Terrain type: rolling 1 yes; 0 no 

mountainous  Terrain type: mountainous 1 yes; 0 no 

spd_limtlevel Posted speed limit>50mph 1 yes; 0 no 

trkpctslevel Percentage of trucks>5% 1 yes; 0 no 

ver_curve Grade percentage>3%: 1 yes; 0 no 

hor_curve Horizontal curve degree>3% 1 yes; 0 no 

White-tailedArea white-tailed deer habitat 1 yes; 0 no 

MuleArea mule deer habitat 1 yes; 0 no 

ElkArea elk habitat 1 yes; 0 no 

 

6.3.2 t-Test 

For each segment, the number of AVCs was divided by the segment length to compute 

the AVC rate. Given the dummy variables listed in Table 6-2, all the segments were 

separated into two groups based on the criteria being tested. The mean value of each 

group was examined with a t-test to determine whether the two group means had a 

significant difference. Table 6-3 shows the t-test results. Only those significant at the 

p=0.05 significance level are listed in Table 6-3.  

Table 6-3: t-test results 
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Variable Groups N Average AVC rate 
(AVCs per mile) p-value 

Rururb 
Rural 7933 2.50 

0.00 Urban 2534 1.07 

terrain_rolling 
Rolling 7542 2.50 

0.00 
Others 2925 1.27 

terrain_mou 
Mountainous 1009 1.65 

0.02 
Others 9458 2.21 

spd_limtlevel 
>50mph 7208 2.86 

0.00 
Others 3259 0.59 

trkpctslevel 
Percentage of trucks>5% 8014 1.21 

0.00 
Others 2453 5.24 

White-
tailedArea 

Yes 3259 3.61 
0.00 

No 7208 1.50 

 

The results shown in Table 6-3 can be interpreted as follows: 

• The average AVC rate for rural areas is significantly higher than that in urban 

areas. This is likely because the animals’ habitats are mostly in rural areas. 

• The average AVC rate for rolling terrain is significantly higher than that of other 

terrain types. However, the AVC rate of mountainous terrain is significantly lower 

than that of other types.  

• Higher speed limit segments tend to have higher average AVC rates. This may be 

because drivers’ perception and reaction times, as well as animals’ escape time, 

are shortened when vehicle speed is higher. 

• When the percentage of trucks is low, the collision rate tends to be high. This 

result is similar to the conclusions drawn from Figure 6-17:  trucks tend to reduce 

traffic speed and make louder noise that may drive animals away.   

• The average AVC rate of the white-tailed deer habitat areas is significantly higher 

than that of other habitat areas. This indicates that the white-tailed deer habitat 

locations are more strongly related to AVC rates. This may because white-tailed 
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deer have higher densities in these areas, and possibly that they prefer valley 

bottoms, where roads are often located.  
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CHAPTER 7. ACCIDENT FREQUENCY MODELING  

 

Two accident modeling approaches were used. The first approach was the fuzzy logic-

based method, introduced in Section 4.2, which combined the CRpt and the CR datasets 

and then applied the combined data to the MP models introduced in Section 4.4.1 to 

quantify the relationships between explanatory variables and AVC frequency.  The 

second approach employed the DIBP regression model, introduced in Section 4.4.2, to fit 

both data sources simultaneously without combining the two datasets. A comparison of 

the MP model and DIBP regression model results can be found in Section 7.4.  

An open source statistical analysis package, R (http://www.r-project.org/, 2009), 

was used to estimate the models. A popular tool, R provides effective programming 

capabilities for developing customized functions to estimate various econometric models. 

Additionally, the R community at large can create and distribute modules for use in 

specific applications. 

   

7.1 DATA DESCRIPTION 

Table 7-1 lists all explanatory variables used in the modeling process. Most of the 

quantitative and dummy variables were selected from or created on the basis of the 

observed data, such as AADT. Some variables, such as legal speed limit (z3), were 

divided into two types, discrete and continuous. Variable z3 was a dummy variable that 

took the value 1 when the posted speed limit was greater than 50 mph and was 0 

otherwise. Either the dummy value of the legal speed limit or its quantitative value was 

used in the modeling process. Variable z5 is a dummy variable indicating whether the 

width of the median is greater than six feet.  This variable is important because median 

width is relevant to the refuge space needed for deers or elks to escape from AVCs. 

Variables such as z14, z15, and z16 were created to represent habitats of different animal 

types.  
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The minimum, maximum, mean, and standard deviation (S.D.) of each variable 

are also included in Table 7-1. One can see that both the CRpt data and the CR data were 

over-dispersed, as indicated by the variance being higher than the mean.   

Table 7-1: Description of explanatory variables in the models 
 Variable Min Max Mean S.D. 

X* Number of reported AVCs per segment # 0 22 0.24 0.81 
Y** Number of carcasses per segment # 0 95 0.94 3.88 
z1 Annual average daily traffic (in thousands) 0.31 148.8 13.85 19.76
z2 Restrictive access control (Yes: 1; No: 0) 0 1 0.24 0.43 
z3 Legal speed limit (mph) 20 70 52.76 10.79
z3’ Speed level (>50mph: 1; otherwise: 0) 0 1 0.69 0.46 
z4 Truck percentage (%) 0 52.28 14.05 8.29 
z4’ TruckPerLevel (>5%:1; otherwise: 0) 0 1 0.77 0.42 
z5 Median width (> 6 feet: 1; others: 0) 0 1  0.34 0.48 
z6 Total number of lanes 1 9 2.79 1.24 
z7 Roadway length (feet) 0.01 6.99 0.22 0.4 
z8 Terrain type (Rolling: 1; Otherwise:0) 0 1 0.720 0.45 
z9 Terrain type (Mountainous:1; Otherwise:0) 0 1 0.096 0.30 
z10 Lane width (feet) 10 20 12.5 1.88 
z11 Left shoulder width (feet) 0 18 2.44 2.04 
z12 Right shoulder width (feet) 0 20 4.03 3.52 
z13 Rural area (Rural:1; Urban:0) 0 1 0.758 0.43 
z14 White-tailed deer habitat (Yes: 1; No: 0) 0 1 0.31 0.46 
z15 Mule deer habitat (Yes: 1; No: 0) 0 1 0.51 0. 50
z16 Elk habitat (Yes: 1; No: 0) 0 1 0.31 0. 46
z17 Horizontal curve (Curve degree>3: 1; otherwise: 0) 0 1 0.16 0.36 
z18 Vertical curve (Grade percentage>3%: 1; otherwise: 0) 0 1 0.22 0.42 

* Specific to  CRpt data only; ** Specific to  CR data only; # Dependent variable; Min: Minimum; Max: 
Maximum. 

 

Table 7-2 is a cross-tabulation for the AVC data. The columns are the numbers of 

reported AVCs on a roadway segment, and the rows are the number of carcasses picked 

up from a roadway segment. A cell at row m and column n represents the number of 

roadway segments that have m picked-up carcasses and n reported AVCs in the five-year 

study period. From this table, one can see that most roadway segments had zero records 

in both datasets. That is the (0, 0) cell has the largest number. This indicates that for most 

segments, no AVCs were observed during the study period. Among segments with at 

least one record in both the CRpt and CR datasets, the (1, 1) and (2, 1) cells contain the 

largest numbers of segments. Similarly, among the segments with at least two records in 
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each dataset, the (2, 2) cell contains the most records.  Therefore, the diagonal cells, cells 

(0, 0), (1, 1), and (2, 2) should be expected to play important roles in the datasets. 

 
Table 7-2 Cross-tabulation for AVC and CR data 

  Number of Reported AVCs Cumulated 
Record   0 1 2 3 4 5 6 >6 

N
um

be
r o

f C
ar

ca
ss

es
   0 6698 361 77 21 10 3 2 2 7174

1 301 67 22 10 6 3 0 1 410
2 228 69 28 5 6 2 2 0 340
3 81 35 9 7 1 0 0 1 134
4 63 26 10 5 1 2 1 0 108 

5 35 17 8 1 2 1 0 2 66
6 26 17 7 7 0 0 2 0 59
7 15 14 7 4 1 1 2 0 44
8 17 8 7 4 2 0 0 0 38

>8 81 64 43 31 22 13 10 16 280
Cumulated 

Record 7545 678 218 95 51 25 19 22 8653

 

7.2 RESULTS OF MP MODEL 
7.2.1 Estimation Results 

Table 7-3 shows detailed information about the three fitted models: the first two models 

were MP models estimated with Poisson regression, the last one was the best-fitted MP 

models estimated with negative binomial regression. Variables significantly associated 

with the probability of encountering an animal, Po, the probability of an animal’s failure 

to escape from being hit by the vehicle, Paf, and the probability of a driver’s ineffective 

response, Pvf, were chosen as the explanatory variables in the models. Psi and NBi 

represented the fitted Poisson and negative binomial regression models, respectively. i 

was the indicator for the base model (i=0) or non-base model (i=1). A base model can 

easily be obtained from the non-base model by setting all parameters to zero except the 

constant term. The AIC for each model was calculated and is shown in the last column of 

Table 7-3.  

 
Table 7-3: Details of fitted models 

  Model details Evaluation Criterion
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P0 Paf Pvf Par. AIC 
1 Ps0 -1 -1 1 2 46892 
2 Ps1 -1, z2,z6,z13, z14 -1, z5  1, z3’,z4’ 8 29894 
3  NB1

* -1, z2,z6,z13, z14 -1, z5 1, z3’,z4’ 9 20772 
*Best-fit model. Notes:  “—“ indicates no value; Par. is the number of parameters; “-1” indicates no 
constant term; “1” refers to the existence of a constant term. 

 

Given the AIC values, the negative binomial regression models outperformed the 

corresponding Poisson regression models. Table 7-4 shows the estimated coefficients and 

test results for the explanatory variables of Po, Paf, and Pvf in both models Ps1 and NB1. 

All of the listed variables in the Ps1 and NB1 models were significant at the p=0.05 

significance level. The function dispersiontest() in the R package AER can be used to test 

equidispersion in Poisson against the alternative of overdispersion (Cameron and Trivedi, 

1998; Kleiber and Zeileis, 2008).  The hypothesis test using dispersiontest() assumed the 

δ value in equation (4-21) to be 0. The estimate results, δ value is 0.99 and the p value is 

0.00, showed that δ was significantly greater than 0. 

Because δ was significantly greater than 0, the combined AVC data were over-

dispersed. In this case, Ps1 could not be used because, as a Poisson model, it assumed that 

the mean and variance of the AVC data were the same. NB1 was the suitable choice for 

this study. According to the AIC values in Table 7-3, NB1 fit the AVC data better than 

Ps1. Hence, the following discussion and analysis are mainly based on results of the NB1 

model.  

The estimated coefficients and p-values in Table 7-4 show the degree of 

association between the explanatory variables and AVCs. The sign of each coefficient 

indicates the increasing (positive sign) or decreasing (negative sign) impacts on the AVC 

risk.  

Seven variables were found to significantly affect AVCs. Among these variables, 

two of them, i.e., z3 and z4, were associated with the probability of drivers’ ineffective 

response. The only variable that affected Paf was z5. The remaining four variables had 

significant impacts on the probability of encountering a disturbance animal: z2, z6, z13, 

and z14.  
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Table 7-4: Estimated coefficients for explanatory variables in NB1 model  

  Variable description  Coef. Std. 
error t value p 

value 

P0 

z2 Restrictive access control (Yes: 1; No: 
0) -0.521 0.168 -3.107 0.002 

z6 Total number of lanes 
-0.714 0.051 

-
14.074 0.000 

z13 Rural area (Rural:1; Urban:0) 1.082 0.142 7.618 0.000 

z14 White-tailed deer habitat (Yes: 1; No: 
0) 1.036 0.153 6.791 0.000 

Paf z5 Median width (> 6 feet: 1; others: 0) -0.654 0.259 -2.523 0.012 

Pvf 
Con. Constant  

-13.535 0.199 
-

68.118 0.000 
z3 Speed level (>50mph: 1; otherwise: 0) 1.260 0.105 12.025 0.000 
z4 TruckPerLevel (>5%:1; otherwise: 0) -0.453 0.132 -3.432 0.001 

 Notes: Coef.: coefficients 

 

7.2.2 Interpretation of Po Results 

As shown in Table 7-4, the four variables found to affect Po significantly were z2 

(restrictive access control), z6 (total number of lanes), z13 (Rural or Urban), and z14 

(white-tailed deer habitat). z2 and z6 were dependent on roadway design, while z13 and 

z14 were related to animal activities. 

Among the roadway design factors, total number of lanes was found to have a 

very significant decreasing impact on Po (Coef.= -0.714, t=-14.074). This may be because 

roadway sections with more travel lanes are typically wider, and an animal’s crossing 

movement is more likely to be impeded by vehicles’ motion, lights, and noise. Hence, 

animals are more hesitant to cross over a wider roadway.  

Restrictive access control was found to have a decreasing effect on Po  

(Coef. = - 0.521, t=-3.107). This implies that AVC frequency is lower for roadways with 

access control. This may be because fencing and barriers along access-controlled 

roadways may effectively prevent animals from crossing the roadway at random 

locations.  
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Among the factors related to animal activity areas, the estimated coefficient of 

z13 indicated that if a highway section is in a rural area, then Po tends to increase 

(Coef.=1.082, t=7.618). This may be due to higher animal populations and activity levels 

in rural areas.  In addition, if a highway section bisects white-tailed deer range, a driver 

on this section will have a higher probability of encountering a  deer. White-tailed deer 

habitat was the most significant variable among the three animal habitat variables 

(Coef.=1.036, t=6.791). In comparison with white-tailed deer habitats, the range of mule 

deer habitats is much broader, covering most of Washington state, which may be the 

reason that the variable for mule deer distribution was not significant. The variable elk-

area (elk habitat) was also not significant in the model. This may be because the total 

number of collisions with elk was a small portion of the AVC records for the study period. 

 

7.2.3 Interpretation of Paf  Results 

Among the factors affecting the probability of an animal’s failure to avoid the collision, 

Paf, a median width of greater than 6 feet was found to have a significant decreasing 

effect on Pf (Coef.=-0.654, t=-2.523). This indicates that it may be easier for the animals 

to evade oncoming vehicles if the median is broader.  Wider medians may also affect an 

animal’s perception of the space as safe and as a destination to run toward to avoid a 

collision.   

 

7.2.4 Interpretation of Pvf  Results 

Among the factors affecting the probability of drivers’ ineffective response, Pvf, two 

explanatory variables that were found to affect Pvf significantly were z3 (speed limit level) 

and z4 (truck percentage level). The speed limit level had a positive sign for the estimated 

coefficient (Coef.=1.260, t=12.025). This implies that when a highway segment has a 

speed limit of greater than 50 mph, the probability of a driver’s ineffective response will 

increase. An explanation may be that drivers tend to drive faster under a higher speed 

limit. A vehicle running at a higher speed requires a longer stopping distance. Hence, 

when an animal is perceived, reaction time for a faster vehicle is shorter.  
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The truck percentage level was found to have an increasing impact on the 

probability of a driver’s effective response (decreased failure to avoid collision Coef.=-

0.453, t=-3.432). This can be explained in several aspects. Presumably, drivers pay more 

attention and drive at a lower speed when truck volume is more than 5 percent of total 

traffic. Routes with high truck percentages are likely to be busy routes with other 

protective features such as fences. Additionally, trucks tend to have taller profiles, which 

provide drivers longer sight lines and animals have more time to spot them in return. 

Another possible reason may be that trucks usually make more noise, which may drive 

animals away from the roadway; however, more research will be necessary to confirm 

this finding and the mechanism by which it functions.  

 

7.2.5 Summary 

Among all the significant variables, speed limit, rural area, and white-tailed deer habitat 

have increasing effects on AVC frequency. The remaining three variables, restrictive 

access control, truck percentage, and total number of lanes reduce the probability of 

AVC risk when the variable values increase. These results from this model may help 

elucidate the causes of AVCs and enable development of countermeasures against such 

collisions.  

 

7.3 RESULTS OF THE DIBP MODEL 
7.3.1 Estimation Results  

To help compare different models, the model details and evaluation criterion for DP, BP, 

DIBP, and ZIDP are listed in Table 7-5. In order to compare the effects of different J 

values on the DIBP model, three models—DIBP0, DIBP1, and DIBP2—with different J 

values were also estimated.  

The BP model had a better fit than the traditional DP model. The DIBP and ZIDP 

models generally had better fits because they considered the zero inflated portion. Overall, 

the DIBP1 model was considered the best-fitted model because it had the highest ρ2, 

lowest AIC, and lowest BIC. In comparison with DIBP1, DIBP2 did not show any 
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improvement in its log-likelihood, even when the J value was larger. That is because the 

number of records in the (2, 2) cell of Table 7-2 was relatively small. Therefore, the 

control of the parameter J depends on the diagonal cell values in the AVC-CR cross-

tabulation, as well as goodness-of-fit measures. The mixing proportions (p) in the last 

column indicate that the data in the diagonal of the AVC cross-tabulation should be over 

66 percent. This result accorded with the statistical result in Table 7-2, where the sum of 

the diagonal value is about 79 percent of the total data.   

Table 7-6 shows estimated values of θ and λ in the DIBP models; θ values 

indicate the proportion of the corresponding diagonal cells in the mixing proportion data; 

λ values indicate the proportion of the three regions in Figure 1. All models show θ0 > 

0.99, indicating that more than 99 percent of the mixing proportion data had zero AVC 

records and less than 1 percent of the mixing proportion data had at least one AVC record 

for both datasets. This result is a direct consequence of the statistics in Table 7-2, where 

both datasets show large numbers (more than 6698) of zero-accident roadway segments. 

Note that the value of λ3 represents the average number of overlapped records per road 

segment. For the DIBP1 results, the overlapping percentage in the reported AVC data is 

about 13 percent (0.0664/(0.0664+0.4605)). Table 7-7 shows the coefficient, standard 

deviation, t-value, and p-value for each explanatory variable for λ1, λ2, and λ3. All the 

listed variables are statistically significant at a 5 percent significance level. 

 



 

 

Table 7-5: Details for the six fitted models 
 Model details Evaluation Criterion  
 λ1 λ2 λ3 J Para. LL ρ2 AIC BIC p 

DP -z5-z10-z14-z15 -z1- z5-z10-z15-z16 — — 25 -21802 0.313 43654 43852 — 
BP -z5-z10-z14-z15 -z1- z5-z10-z15-z16 -z5- z6-z10-z12-z15 — 37 -21173 0.333 42421 42715 — 

DIBP0 -z5-z10-z14-z15 -z1- z5-z10-z15-z16 -z5- z6-z10-z12-z15 0 38 -17283 0.456 34642 34944 0.6612
DIBP1* -z5-z10-z14-z15 -z1- z5-z10-z15-z16 -z5- z6-z10-z12-z15 1 39 -17275 0.456 34628 34938 0.6637
DIBP2 -z5-z10-z14-z15 -z1- z5-z10-z15-z16 -z5- z6-z10-z12-z15 2 40 -17275 0.456 34630 34948 0.6637
ZIDP -z5-z10-z14-z15 -z1- z5-z10-z15-z16 — — 27 -17415 0.451 34884 35099 0.6659

*Best-fitted model; -z10 represents variable z10 is not used in the model; (—): the parameter is set zero; LL: Log-likelihood; Par.: 
number of parameters; p: mixing Proportion. 

 

 
Table 7-6: Estimated values of θ and λ in DIBP models 

Models 
θ estimation Mean of parameter λ 

θ0 θ1 θ2        λ1    λ2      λ3 
DIBP0 1 — — 0.4608 1.9205 0.0659 
DIBP1* 0.9976 0.0023 — 0.4605 1.9359 0.0664 
DIBP2 0.9976 0.0023 0.0000 0.4606 1.9359 0.0664 
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Table 7-7: The DIBP1 model for AVC 
 

Explanatory variables λ1 λ2 λ3 
 Coef. st.err t-value p-value Coef. st.err t-value p-value Coef. st.err t-value p-value

Constant -2.904 0.093 -31.067 0.000 -3.164 0.101 -31.369 0.000 -26.763 2.769 -9.665 0.000 
Annual average daily traffic 
(in thousands) 0.013 0.001 13.556 0.000 — — — — 0.069 0.005 14.827 0.000 
Restrictive access control 
(Yes: 1; No: 0) -1.141 0.032 -35.753 0.000 -0.986 0.062 -15.973 0.000 -2.036 0.136 -14.988 0.000 
Legal speed limit (mph) 0.043 0.001 30.302 0.000 0.060 0.002 33.129 0.000 0.068 0.007 10.298 0.000 
Truck percentage (%) -0.049 0.001 -39.589 0.000 -0.011 0.003 -4.055 0.000 -0.069 0.004 -16.417 0.000 
Total number of lanes -0.198 0.020 -9.761 0.000 -0.395 0.017 -22.882 0.000 — — — — 
Roadway segment length (feet) 0.499 0.009 58.069 0.000 0.471 0.028 17.042 0.000 0.912 0.030 30.785 0.000 
Terrain type (Rolling: 1; 
Otherwise: 0) -0.302 0.029 -10.543 0.000 0.105 0.044 2.417 0.016 -1.925 0.096 -20.152 0.000 
Terrain type (Mountainous: 1; 
Otherwise: 0) -0.958 0.037 -25.646 0.000 -0.182 0.066 -2.755 0.006 -2.027 0.182 -11.159 0.000 
Left shoulder width (feet) 0.036 0.004 9.718 0.000 0.038 0.004 8.836 0.000 0.092 0.012 7.416 0.000 
Right shoulder width (feet) 0.034 0.003 12.466 0.000 0.032 0.003 11.340 0.000     
Rural or Urban (Urban:0; 
Rural:1) 0.560 0.046 12.114 0.000 0.780 0.049 15.790 0.000 19.984 0.232 86.172 0.000 
White-tailed deer habitat (Yes: 
1; No: 0) — — — — 0.973 0.088 11.005 0.000 1.607 2.743 0.586 0.558 
Elk habitat (Yes: 1; No: 0) 0.203 0.018 11.162 0.000 — — — — 1.417 0.078 18.102 0.000 



 

 

7.3.2 Model Interpretation  

Table 7-7 shows the DIBP1 model results, indicating the potential factors contributing to 

AVCs. In contrast to regular Poisson accident models, the DIBP model contains three 

dependent variables, λ1, λ2 and λ3. λ1 and λ2 consider the effects on the CRpt and the CR, 

respectively, whereas λ3 accounts for the combined effects on the overlapping CRpt and 

the CR datasets. The significance and interpretation of the explanatory variables for each 

dependent variable are presented below. 

Among the traffic elements, three variables were found to contribute significantly 

to the occurrence of AVCs. The estimated coefficients showed that speed limit was the 

most significant variable affecting the occurrence of AVCs (λ1: coef.= 0.043, t=30.302; 

λ2: coef.=0.06, t=33.129; λ3: coef.=-2.036, t=10.298). Higher speed limits tend to 

increase the likelihood of AVCs. This may be because drivers travel at higher speeds 

under a higher speed limit, and high-speed vehicles require longer stopping distances. 

Therefore, drivers may not be able to stop quickly enough to avoid colliding with an 

animal on the road. This finding is consistent with most AVC related research that has 

concluded that higher speed limits increase AVC rates (Rolley and Lehman, 1992; Allen 

and McCullough, 1976). 

AADT was found to have an increasing relationship with λ1 (Coef.= 0.013, 

t=13.556) and λ3 (Coef.=0.069, t=14.827) but to not significantly affect λ2. In the 

analysis described in Chapter 6, we found that collisions increase with traffic volume, up 

to a point. After that, higher traffic volumes may actually repel animal attempts to cross 

and may not significantly affect AVCs anymore. Overall, a higher AADT may increase 

the likelihood of AVCs because higher volumes elevate the level of accident exposure. 

This result is consistent with the accident research conducted by Chin and Quddus (2003). 

This explains why the AADT variable was found to significantly contribute to AVC 

occurrences in the overlapping portion of the reported AVC and CR data but to not 

significantly affect λ2.  
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A higher truck percentage was found to decrease AVC for all λ’s. One reason 

may be that drivers are more cautious when more trucks are on the road. Another reason 

may be that trucks are generally louder, which may scare animals away. Trucks also tend 

to have better driver visibility forward, which could provide more time for drivers to 

react.  This result is similar to the motor vehicle accident research by Milton and 

Mannering (1998), which identified a decreasing relationship between truck percentage 

and accident probability.     

Among the geometric design elements, five variables were significantly 

associated with the occurrence of AVCs. Roadway segments with restrictive access 

control tend to have lower accident risks, with a t-ratio of -35.753 for λ1, -15.973 for λ2, 

and -15.973 for λ3. This is not surprising because animals may find it more difficult to 

access highways protected by physical obstructions.  

The variable total number of lanes was found to be statistically significant at a 5 

percent significance level for λ1 (t=-9.761) and λ2 (t=-22.882) but not for λ3. A roadway 

becomes wider with more lanes. On wider roads, drivers have a better ability to see 

roadway-crossing animals earlier and more room to avoid AVCs. In addition, wider 

roadway sections are typically associated with higher traffic volumes and more noise, 

which are likely to keep animals away. A lower animal crossing frequency, together with 

enhanced driver vision and enlarged reaction space, are likely reasons for the reduction in 

AVC risk.  

Increasing roadway segment length was found to proportionally increase the 

occurrence of AVCs (λ1: coef.= 0.499, t=58.069; λ2: coef.=0.471, t=17.042; λ3: 

coef.=0.912, t=30.785).  This is not surprising because the longer the roadway segment is, 

the more likely it is to divide a habitat into small areas between which animals need to 

interact.  Similarly, when more vehicle-miles are traveled on longer segments for the 

same traffic, number of lanes, etc., the risk of an AVC occurring on the segment will 

increase.   

Both left and right shoulders were found to have an increasing impact on AVCs 

for λ1 (t=9.718 for the left, t=12.466 for the right) and λ2 (t=8.836 for the left, t=11.340 
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for the right). Generally, drivers have broader views on roadways with shoulders. 

However, drivers also tend to drive faster when shoulders are present. This estimation 

result implies that the net impact of shoulder width is to increase AVCs.  

 In terms of area types, three variables were found to have significant impacts on 

the occurrence of AVCs: rolling, mountainous, and rural. In comparison with level terrain, 

rolling areas are associated with low numbers of reported AVCs (λ1: coef=-0.302, t=-

10.543) and AVCs in the overlapping portion of the reported AVC and CR datasets (λ3 : 

coef.=-1.925, t=-20.152). However, rolling areas were found to be associated with a 

higher number of CRs (λ2: coef.=0.105, t=2.417). The contradiction in coefficient results 

may be caused by drivers being less likely to report AVCs when they hit animals in 

rolling areas, which may hide collision sites from view.  

In comparison with level terrain, mountainous areas tend to have a low likelihood 

of AVCs and CR (λ1: coef.= -0.958, t=-25.646; λ2: coef.=-0.182, t=-2.755;λ3: coef.=-

2.027 t=-11.159). This may be because in mountainous areas, people drive more carefully, 

and vehicles are also slower. Another possible reason is that carcasses may not be easily 

found or require removal when they come to rest in areas off of roadways. Moreover, the 

valleys and tunnels in mountainous areas may impede animals’ movements because these 

geometric characteristics may physically separate different habitats. 

In comparison to highways in urban areas, those in rural areas were found to have 

more reported AVC and CR records in both datasets (λ1: coef=0.560, t=12.114; λ2: 

coef=0.780, t=15.790; λ3: coef=19.984, t=86.172). This was unsurprising because 

animals are expected to be more active and populous in rural areas. However, looking at 

the overlapping portion of the two datasets makes this “rural effect” more obvious (λ3: 

coef=19.984, t=86.172). This result highlights rural AVCs as a potential focus for future 

AVC research.  

In terms of high-density animal distribution areas, white-tailed deer habitat areas 

were found to be associated with a higher λ1 (t=11.005). Elk habitat was also found to 

have an increasing impact on λ1 (t=11.162) and λ3 (t=18.102). It makes sense that the 

areas with higher density animal distributions tend to have a higher AVC rate. However, 
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mule deer habitat was not found to significantly affect the likelihood of AVCs. One main 

reason may be that the mule deer populations are distributed relatively uniformly and 

widely in Washington state, covering a large portion of the study routes.  

In summary, speed limit, restrictive access control, and roadway segment length 

were the most significant explanatory variables affecting all λ’s (the absolute values of 

their t ratios were over 10). Therefore, in areas where the highway crosses the habitat of 

non-domestic animals, especially deer, transportation agencies should further examine 

speed limit and access control options to develop suitable countermeasures. Constructing 

fences and crossing infrastructure (e.g., tunnels and bridges) along and within the hot 

spots would be helpful for connecting segmented animal habitats and preventing animals 

from interacting with vehicles in areas with frequent AVCs (Donaldson, 2007). 

 

7.3.3 Summary  

This section describes the application of a DIBP regression model to fit two datasets 

concurrently. With the lowest AIC and BIC, the DIBP model outperformed other models, 

such as the DP model, BP model and ZIDP model, in this study. The overlapping portion 

(13 percent) of the two datasets in this study can facilitate a deeper investigation into the 

occurrence of AVCs.   

The DIBP model identified the factors contributing to AVCs. Three dependent 

variables (λ1, λ2 and λ3) were each linked with a group of explanatory variables, 

including traffic elements, geometric design factors, and geographic characteristics 

associated with AVCs. Speed limit and AADT were found to have an increasing effect on 

the likelihood of AVCs. Among geographic characteristics, wider shoulder widths and 

rural area segments tended to be associated with higher numbers of reported AVCs. 

Areas with dense animal distributions, such as white-tailed deer and elk habitats, were 

also found to increase the probability of AVC occurrence.  
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7.4 MODEL DISCUSSION 

The results of the MP model and DIBP regression model were similar. Most variables 

significant in the MP model were also significant in the DIBP model. Moreover, these 

significant variables had similar impacts on the AVCs, whether increasing or decreasing. 

However, the two models had some differences, as stated below.   

First, the input dataset for the MP model was a combined dataset, whereas the 

input dataset for the DIBP regression model used two separated datasets, the reported 

AVC data and CR data. In other words, the DIBP regression model was able to model 

these two datasets concurrently and did not require the data recovery process. 

Second, both models had different significant variables. For example, the terrain 

type and shoulder width variables were significant in the DIBP model but not in the MP 

model. This may be because of the difference in dataset integrity.  

Last, the interpretation principles of these two models were different. The MP 

model was based on the idea that AVCs are caused by three components: the hazardous 

crossing of an animal, the ineffective response of an animal to avoid the collision, and the 

ineffective response of the driver. The MP model therefore sought variables significantly 

related to these three components. On the other hand, the DIBP model considered the two 

datasets as three components: λ1 (the CRpt data portion), λ2 (the CR data portion), and 

λ3 (the overlapping portion). The DIBP regression model was thus able to effectively 

explore the variables significantly related to these three components. 

Overall, the MP model and the DIBP regression model can provide a more 

detailed explanation from different perspectives. The MP model is a better choice if only 

one dataset is available, whereas the DIBP regression model is a better choice if both the 

CRpt and  CR datasets are available (but not combined). 
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CHAPTER 8. IDENTIFICATION OF HIGH AVC RISK 
LOCATIONS 
 

Identifying AVC-prone areas can help better allocate limited resources to reduce AVC 

accidents. This chapter focuses on identifying hot spot locations on the basis of two 

datasets: the CR data and the combined data. In this research, a hot spot location was 

defined as a segment having a number of collisions that exceeded a specified threshold. 

This value was set as the “number of records” at the 99th percentile of all the non-zero 

records.  

 

8.1 HOT SPOT IDENTIFICATION BY DEER TYPE   

The CR data contained information for identifying high deer-mortality locations by deer 

type. The threshold values used to determine hot spots for mule deer, white-tailed deer, 

and elk were 79, 90, and 13, respectively. Tables 8-1, 8-2, and 8-3 list all the locations 

where the number of carcass pickups for each deer type was greater than the 

corresponding threshold value. This information will assist WSDOT transportation 

engineers in identifying the hot spots for specific types of AVCs.  

 
Table 8-1: High mule deer carcass locations 

Route 
Segment Location*  

Records Route 
Segment Location  

Records 
BARM EARM BARM EARM 

2 122.23 132.91 98 97 284.20 289.82 275 
97 14.45 21.94 243 97 289.82 294.86 313 
97 21.94 30.76 154 97 295.81 299.86 152 
97 149.01 166.01 193 97 306.59 315.62 111 

* BARM: Begin Accumulated Route Mileage; EARM: End Accumulated Route Mileage 

Table 8-2: High white-tailed deer carcass locations 

Route 
Segment Location*   

Records Route
Segment Location 

Records
BARM EARM BARM EARM 

20 425.02 436.00 128 395 220.33 228.09 151 
395 214.35 217.62 147     

* BARM: Begin Accumulated Route Mileage; EARM: End Accumulated Route Mileage  
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Table 8-3: High elk carcass locations 

Route 
Segment Location*   

Records Route
Segment Location 

Records
BARM EARM BARM EARM 

12 123.24 127.58 21 12 167.67 176.27 13 
12 128.67 131.06 22     

* BARM: Begin Accumulated Route Mileage; EARM: End Accumulated Route Mileage  

 

8.2 HOT SPOT IDENTIFICATION BY OVERALL AVCS 

The combined dataset introduced in Chapter 5 was used for identifying hot spots for all 

animal types.  The geographical distribution of AVCs in the combined datasets for the ten 

study routes are plotted in Figure 8-1. One can easily observe that portions of SR 97 had 

more AVCs along the route, indicating the severity of the AVC problem along this 

corridor.  

As in Section 8.1, the value of 99th percentile of all the non-zero records was 

used to establish the threshold value for hot spot identification for all animal types. This 

threshold was 105. Table 8-4 lists the segments with record numbers higher than this 

threshold.  

 

 

Figure 8-1: AVC location distribution for the ten study routes 
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Table 8-4: High AVC record locations 

Route 
Segment Location* 

Records Route
Segment Location 

Records
BARM EARM BARM EARM 

2 122.23 132.91 116 97 149.01 166.01 215 
2 297.97 302.08 112 97 284.20 289.82 277 
2 316.28 320.45 156 97 289.82 294.86 325 
20 425.02 436.00 136 97 295.81 299.86 155 
90 246.75 251.24 105 97 306.59 315.62 194 
97 14.45 21.94 259 395 214.35 217.62 157 
97 21.94 30.76 167 395 220.33 228.09 162 

* BARM: Begin Accumulated Route Mileage; EARM: End Accumulated Route Mileage 

 

To compare segments of different lengths, “number of AVC records per mile” 

was more suitable than “total number of records” Table 8-5 lists all of the segments with 

higher numbers of AVCs and AVCs per mile. The criteria here for selecting a hotspot 

were (1) Minimum records=10 and (2) Minimum records per mile =35. In this way, 1 

percent of segments (25 out of a total 2548 segments) was selected. The segments in 

Table 8-5 are ranked by the AVC records per mile. 

 The segments in Table 8-4 and Table 8-5 are identified as the hot spots for the 

study routes.  These segments should be priorities for further research into the specific 

factors that contribute to AVCs and potential preventive measures. 

In a preliminary investigation of the causes of the hot spots, the first eight hot 

spots in Table 8-5 were chosen for a more detailed analysis. Figure 8-2 shows the 

locations of the first seven hot spots. Note that the locations ranked second, fourth, and 

sixth were adjacent to each other along US 97 and were therefore regarded as one 

location; the locations ranked seventh and eighth were also adjacent along US 395 and 

also were regarded as one location. Hence, in total, five locations were investigated. 

Figures 8-3 through 8-7 are photos downloaded from the WSDOT’s SR Web (WSDOT, 

2010) of these five locations. 
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Table 8-5: Segments with high AVC records and AVC records per mile 

Rank Route BARM EARM L(mile) Records Records/mi Mule/mi
W-

deer/mi 
B-

deer/mi 
1 2 297.42 297.97 0.55 36 65.45 0 61.82 0 
2 97 289.82 294.86 5.04 326 64.68 62.30 0.60 0 
3 12 356.61 356.94 0.33 21 63.64 3.03 51.52 0 
4 97 294.86 295.81 0.95 57 60.00 60.00 1.05 0 
5 90 84.15 84.35 0.2 12 60.00 45.00 5.00 0 
6 97 284.2 289.82 5.62 278 49.47 48.93 0.36 0 
7 395 214.35 217.62 3.27 158 48.32 0.92 44.95 0 
8 395 217.62 217.89 0.27 13 48.15 0 48.15 0 
9 97 134.72 135.04 0.32 15 46.88 46.88 0 0 
10 90 103.91 104.35 0.44 18 40.91 38.64 0 2.27 
11 12 356.98 358.2 1.22 49 40.16 4.10 34.43 0 
12 2 294.81 296.41 1.6 64 40.00 0 35.00 0 
13 97 204.36 205.66 1.3 52 40.00 39.23 0 0 
14 970 3.73 6.33 2.6 102 39.23 28.08 0 0.38 
15 97 295.81 299.86 4.05 154 38.02 37.53 0.49 0 
16 97 13.16 13.85 0.69 26 37.68 1.45 0 37.68 
17 2 316.28 320.45 4.17 156 37.41 0 33.33 0 
18 90 81.84 82.49 0.65 24 36.92 29.23 0 0 
19 90 81.84 82.49 0.65 24 36.92 29.23 0 0 
20 2 294.56 296.41 1.85 67 36.22 0 31.35 0 
21 90 103.85 104.35 0.5 18 36.00 34.00 0 2 
22 2 314.52 316.28 1.76 62 35.23 0 33.52 0 
23 90 81.04 81.41 0.37 13 35.14 21.62 0 2.70 

* BARM: Begin Accumulated Route Mileage; EARM: End Accumulated Route Mileage; L: section length; 
Records/mi: total AVC records per mile; Mule/L: Mule deer carcass per mile; W-deer/L: white-tailed deer 
carcass per mile; B-deer/L: black-tailed deer carcass per mile 
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Figure 8-2: The locations of the first seven hot spots 

 

As shown in Figure 8-2, the segments ranked No. 1 (on US 2), No. 3 (on US 12), 

and No. 7/8 (on US 395) were within the white-tailed deer habitat areas (see Figure 6-19). 

Not surprisingly, as shown in Table 8-5, the white-tailed deer carcass per mile rate for 

these three segments was high: 61.82 for the No. 1 segment, 51.52 for the No.3 segment, 

and 44.95 for the No.7/8 segment. Similarly, the segments ranked No. 2/4/6 on US 97, 

and No. 5 on I-90 were within the mule deer habitat areas (see Figure 6-18). The mule 

deer carcass per mile rate for these four segments was also high: 62.3 for No. 2 segment, 

60.0 for No. 4 segment, 45.0 for the No. 5 segment, and 48.93 for the No. 6 segment.  

In figures 8-3 through 8-7, one can find some roadway factors that may increase 

the probability of AVCs within these hot spots. Most factors are consistent with the 

modeling results: 
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• These hot spot segments are mostly located in rural areas, which is consistent with 

the findings of the proposed probability models, which show rural areas to have 

an increasing relationship with the AVCs. 

• Most of these hot spot segments have two lanes, except US 2 and I-90 with four 

lanes. This is similar to the discovery of the models discussed in Charter 7: animal 

crossing frequency is lower at wider roadway sections. 

• These hot spot segments seem to have sufficient shoulder widths.  Unfortunately, 

wide shoulder width does not necessarily make AVC risk lower, as may have 

been thought. As discussed in Chapter 7, wider shoulder width enables earlier 

detection of crossing animals but is also associated with  higher speeds. The net 

impact is to increase AVC risk. This finding is similar to the finding from the 

DIBP model that more AVCs may occur at segments with wider shoulders. 

 

  

Figure 8-3: Segment photo at ARM= 297.88, US 2 
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Figure 8-4: Segment photo at ARM= 289.57, US 97 

 

 

Figure 8-5: Segment photo at ARM= 356.77, US 12 
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Figure 8-6: Segment photo at ARM= 84.15, I-90 

 

 

Figure 8-7: Segment photo at ARM= 216.6, US 395 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 CONCLUSIONS 

 The CRpt and CR data are often used for AVC studies. However, these two datasets are 

very different from each other, indicating that neither of the datasets is complete. 

Combining these two datasets together can significantly improve the quality of AVC data.  

In this study, we implemented two approaches to handle the multiple dataset issue and 

interpret the relationships between explanatory variables and AVC risk from different 

perspectives. The first approach was to use a fuzzy logic-based data mapping algorithm 

to combine the two datasets into a more complete set of data. On the basis of these data, a 

microscopic probability-based approach was proposed. The other approach was to use a 

DIBP regression model to fit the two datasets simultaneously. The results were 

encouraging and provided important insights into the causes of AVCs.   

For the first approach, the proposed fuzzy logic-based data-mapping algorithm 

effectively combined the two datasets and avoided duplicating records in the combined 

dataset. For the ten study routes, about 27 percent to 37 percent of the CRpt data were 

matched to the CR data. The union of the two datasets significantly increased the number 

of samples and hence enhanced the quality of AVC data. In comparison to the original 

CR dataset, the new union dataset increased the number of records by 13 percent to 22 

percent.  

The threshold values used by the proposed algorithm were based on expert inputs 

collected through a survey. The effectiveness of the fuzzy logic-based data mapping 

algorithm was also verified by using the expert judgment data obtained from an 

evaluation survey. The verification results showed that the accuracy of the proposed 

algorithm was approximately 90 percent for the limited pairs of data included in the 

survey. The improved dataset will definitely benefit AVC risk modeling and statistical 

analysis. Because the design of the membership functions is adaptive in nature, the fuzzy 

logic-based data mapping algorithm can be easily transferred for data mapping 

applications in other areas. 
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On the basis of the improved dataset, an MP model was developed to assess the 

impacts of explanatory variables on AVC risk. The advantage of this proposed modeling 

approach over most existing ones is that it explicitly takes human factors and the spatial 

distribution of animal habitat into account. Explanatory variables that may affect the 

probability of a driver’s ineffective response, Pvf, the probability of an animal’s failure to 

avoid a collision, Paf, and the probability of an animal’s presence, Po, were estimated by 

the maximum likelihood estimation method. Seven variables were found to be significant. 

For the second approach, a DIBP regression model was developed to 

quantitatively study AVCs by using the CRpt and CR datasets simultaneously. As an 

inflated version of the BP regression model, the DIBP model outperformed other models, 

as indicated by the AIC and BIC scores in this study in comparison to scores from the DP 

model, BP model, and ZIDP model. Functionally, the DIBP model not only can handle 

under- or over- dispersed count data but also can model paired datasets with correlation.    

In this study, the DIBP model was demonstrated to be effective at modeling 

AVCs. The methodology developed in this study is general and may be applied to model 

other types of accidents with two datasets of similar characteristics. Although the DIBP 

model can be used to predict and assess the causal factors of AVCs on the basis of two 

different datasets concurrently, accident causation will need to be further investigated. 

Transferability testing will also be needed when this model is applied to other locations.    

The principal findings from the MP and DIBP regression models can be used to 

develop countermeasures against AVCs. The findings are summarized as follows: 

• In terms of traffic element factors, speed limit and AADT were found to have an 

increasing effect on the likelihood of AVCs, especially, when the speed limit is 

higher than 50 mph. The percentage of trucks was found to have a decreasing 

effect on the likelihood of AVCs.  

• In terms of geometric characteristics, wider shoulder width and rural areas tend to 

be associated with higher frequencies of AVCs.  Restrictive access control, higher 

numbers of lanes, and wider median width were found to be associated with lower 

AVC risks.   
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• In terms of geographic characteristics, areas within animal  habitats, such as white-

tailed deer areas, were found to increase the probability of AVCs occurring. Rural 

areas were also found to have an increasing relationship with the occurrence of 

AVCs. 

 

The study identified AVC hotspots for all study routes. The most severe hotspots were 

interpreted on the basis of the modeling results and geospatial data. The locations of rural 

areas and deer habitat areas were found to have a high correlation with AVCs.  

 

9.2 RECOMMENDATIONS 

On the basis of the findings of this study, the research team would like to make the 

following recommendations: 

• For the purpose of improving AVC data, it would be helpful to record specific 

animal types in the AVC report. With this information, the CRpt data and the CR 

data could be better mapped. 

• Plans for new highways should avoid bisecting high quality animal habitats. 

Highways going through high quality animal habitats have negative effects on 

animal activities and ecology. In addition, animal movements between bisected 

habitats increase highway-crossing activities and hence increase the probability of 

AVCs. 

• For existing highways that pass through high-density animal habitats, engineering 

solutions can be applied to reduce AVC risk. These solutions should focus on 

reducing either animal-vehicle interactions or the probability of driver failure in 

responding to animal presence.  

• Solutions aimed at reducing the probability of encountering animals are desirable. 

These solutions include preventing animal crossing movements with grade 

separation at crossing hot spots and installing devices that can repel animals when 

vehicles are present. 

81 

 



 

• Solutions are also needed to reduce the probability of drivers’ failure to react. 

These solutions include installing warning systems that can alert drivers to pay 

more attention when highway-crossing animals are detected and setting speed 

limits lower than 50 mph to increase drivers’ available perception and reaction 

time when  animals are present.  

• This study also found that when the percentage of trucks was above 5 percent, 

AVC risk is lower. More data and analysis are needed to confirm this finding. 
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APPENDIX. ATTRIBUTE EXPLANATION 
 

The attributes (variables) of vehicles, accidents, roads, and animals in the database 

designs in Chapter 4 are described as follows. 

 

A. Vehicles  

List of variables for vehicle subfile: 

Variable Name Variable Description Variable Type 

bodytype vehicle model Char (3) 

cmaxles comm carrier num of axles Char (2) 

cmconfig comm carrier config Char (1) 

com_body comm carrier cargo body Char (1) 

drv_actn drviver action Char (2) 

drv_age drviver age Char (2) 

drv_sex drviver sex Char (1) 

event sequence of events Char (2) 

miscact drviver misc action  Char (2) 

veh_use vehicle usage Char (2) 

vehno vehicle sequence number Char (8) 

vehtype vehicle type Char (2) 

vrd_type roadway type Char (1) 

 

B. Accidents  

List of variables for accident subfile: 
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Variable Name Variable Description Variable Type 

ac_srmp state route milepost Char (1) 

acctype accident year Char (2) 

caseno accident report number Char (10)  

coltype accident type Char (2) 

comp_dir compass direction Char (2) 

daymth accident day of month Char (2) 

gps_latx GPS x Numeric (8) 

gps_laty GPS y Numeric (8) 

gps_latz GPS z Numeric (8) 

impact impact location Char (2) 

light light condition Char (1) 
loc_type location type Char (1) 

milepost ccum route milepost (arm) Numeric (8) 

month accident month Char (2) 

numvehs number of vehicle Numeric (8) 

object object struck Char (2) 

rd_char roadway characteristics Char (1) 

rd_inv roadway inventory Char (11) 

rdsurf roadway surface Char (1) 

rodwycls roadway class Char (2) 

rte_nbr state route number Char (3)  

sr_adid state route additional Char (3) 

time accident time Char (4) 

tot_inj number of persons injured Numeric (8) 

tot_kill number of persons killed Numeric (8) 

vehdircde vehicle direction Char (1) 

vehevent vehicle movement Char (1) 

weather weather condition Char (1) 

xrdclass cross road class type Char (1) 
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C. Roads  

List of variables for Road subfile: 

Variable Name Variable Description Variable Type 

aadt aver annual daily traffic Numeric (8) 

access access control type Char (1) 

begmp begin milepost Numeric (8)  

endmp calculated ending milepost Numeric (8) 

func_cls federal func class Char (2) 

lanewid lane width Numeric (8) 

lshl_typ left shoulder type Char (1) 

lshldw left shoulder width Numeric (8) 

med_type median type Char (1) 

medbarty median barrier type Char (2) 

medwid median width Numeric (8) 

medxngty median crossing type Char (1) 

mvmt million vehicle miles travelled Numeric (8) 

no_lane number of lanes  Numeric (8) 

rd_qual related road quality Char (8) 

road_inv route type id Char (11) 

rodwycls roadway classification Char (2) 

rshl_typ right shoulder type  Char (1) 

rshldw right shoulder width  Numeric (8) 

rte_nbr route number Char (3)  

rururb rural urban Char (1) 

seg_lng segment length Numeric (8) 

spd_limt legal speed limit Numeric (8) 

Char (2) st_func state function class 

surf_typ surface type Char (1) 
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terrain terrain type Char (1) 

Char (2) trf_cntl intersection control type 

trkpcts truck percentage Numeric (8) 

 

D. Animals  

List of variables for animal subfile: 

Variable Name Variable Description Variable Type 

age animal age Char (1) 

animalno animal number Numeric (8)  

comp_dir compass direction Char (2) 

day collection date Numeric (8) 

light light condition Char (2) 

month collection month Numeric (8) 

sex animal sex Char (1) 

species animal type Char (2) 

weather weather condition Char (2) 

year collection year 

 

Numeric (8) 
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