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1.0 Executive Summary 

The prevalence of mobile devices and the associated location positioning technologies that are 
needed to enable network connection at any time and any place have led to an explosion of 
studies that have used the resulting data (often big) for understanding travel patterns and to 
potentially guide policies. Such data are typically termed “passively solicited data.” These are 
different from the actively solicited data that result from a rigorously designed, probabilistic 
sampling process with a known target population. Instead, they are the secondary product of 
primary activities such as billing or operations (e.g., facilitating phone calls or use of mobile 
apps). Hence the passively solicited data underlying the data generation process are 
often unknown, uncontrolled, and non-probabilistic, raising questions regarding 
representativeness, accuracy, and stability of the estimates derived from such data. 

One of the major objectives of this research is to demonstrate the importance of knowing your 
big data before any application, especially in the context of generating origin and destination 
patterns. In contrast to the vast majority of the studies that have used big data to derive trip-
related statistics (e.g., trip rates), this study focused on understanding passively solicited data 
by developing a three-order analysis framework in which three groups of statistics were 
calculated. These statistics relate to the data themselves (zeroth order), single locations or trip 
ends (first order), and a pair of locations or trips (second order). Two types of passive data were 
analyzed: mobile phone data triggered primarily from phone calls with locations identified 
through cellular triangulation, and app-based data generated primarily from apps usage, with 
locations identified through a mix of positioning technologies including GPS and cellular 
triangulation. These two types of data reflect the evolution of technologies being used to 
generate such data. Within the two-month study period of the app-based data, an additional 
technology change in capturing the data occurred, resulting in a roughly 33 percent increase in 
the number of observations per device. This offered another opportunity to understand how the 
stability of the first- and second-order properties (those relating to trip ends and trips) may be 
affected by changes in technologies used to generate the data. More specifically, the study 
sought to answer six specific questions (see Section 1.1 below) relating to the data themselves, 
their implications for deriving trip-related characteristics such as trip rates and origin-destination 
(OD) patterns, and how we should leverage different types of data—big and small. 

1.1 Research Questions and Findings 
1. What analysis framework and associated metrics can be used to capture various properties 
of the passively solicited data? 

As briefly noted earlier, a three-order analysis framework was proposed to capture the 
properties associated with the data themselves (zeroth order), single locations or trip ends (first 
order), and a pair of locations or trips (second order). This framework captures all related 
characteristics in a complete and logical way (for details, please refer to Table 1).  

2. What is our current understanding of passively solicited data through the proposed three-
order analysis framework? 

October 2018 13 
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The two most important zero-order properties of the data relate to how well the device is 
identified in spatial and temporal spaces. The spatial dimension is captured by “locational 
accuracy,” referring to the uncertainty involved in the positioning of the device (the smaller the 
better); its temporal dimension is captured by “temporal sparsity,” referring to the spread of the 
observations over a day (the more spread the better). From the mobile phone data to the 
app-based data, we observed a significant improvement in locational accuracy (the 85th 
percentiles for the mobile phone and apps data were 700 and 100 meters, respectively, as 
shown in Figure 42) because of the prevalent usage of GPS-based navigation apps. On the 
temporal dimension, improvement also occurred, although at a smaller magnitude; in 
comparison to locations in the mobile phone data, about 20 percent more location trajectories in 
the app-based data were revealed during the time period of 00:00 to 06:00 AM (see Figure 40). 
Additionally, two peaks (morning and afternoon) emerged in the apps data, as opposed to a 
single afternoon peak in the mobile phone data, although the two peaks were delayed in 
comparison to the traffic peaks in the region. 

The zeroth-order properties have important implications for the first- and second-order 
characteristics. In particular, the temporal sparsity and location accuracy noted above were 
found to directly impact the accuracy of the identified activity locations, thus determining 
the activity (i.e., first order) and trip (i.e., second order) related characteristics. The technological 
improvement in capturing locations and the more dispersed app usage throughout a day (as 
compared to phone calls) allowed better capturing of home census tracts1 and trip rates. The 
change from mobile phone data to app-based data resulted in data that more closely resembled 
the household travel survey data for trip rates (3.23 from apps data vs 4.40 from PSRC travel 
survey data, compared to 1.78 from mobile phone data vs 3.89 from Buffalo travel survey data). 
And correlation with population density at the census tract level increased from 0.43 to 0.91. 
However, the verdict on other statistics, such as activity duration, departure time, and OD 
patterns, was much less clear. This indicates that more in-depth analysis among the zeroth- and 
first- and second-order statistics needs to be done to gain a systematic understanding about 
how the data properties affect our ability to derive trip-related characteristics. 

3. As the underlying data generation process changes, leading to changes in spatial and 
temporal properties as well as changes in trip-related metrics, how shall we interpret the 
resulting changes? 

Clearly, improvement in data quality, both in terms of locational accuracy (Figure 4) and 
temporal sparsity (Figure 12), benefited more accurate calculation of metrics such as home 
census tracts and trip rates. But questions still remain: for frequency of observations, is more 
always better? Or is there a threshold after which the bias of under-estimation becomes 
that of over-estimation? Within the apps data, we also observed that when there was a 33 
percent increase in the number of observations per device and consequently an improvement in 
temporal sparsity, the average trip rate consequently increased from 3.11 to 3.47, edging closer 
to the 4.4 from the household travel survey. However, the difference was not apparent for other 

1 For privacy issues, inferred home locations are presented at census tract level throughout the report. 

October 2018 14 
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metrics such as activity duration, departure time, or trip length. We therefore conclude the 
following: 

1) When temporal sparsity is relatively low (which is the case for both mobile phone data 
and app-based data) and locational accuracy is low (which is the case for mobile phone 
data), improvement in both will likely move metrics closer to the ground truth. 

2) However, as temporal sparsity continues to increase, the marginal benefit decreases. In 
fact, beyond a certain threshold, we suspect the positive benefit may even become 
negative, although this will require future research. 

3) Improvement in different metrics may vary, as shown by trip rate, activity duration, 
departure time, and trip length. 

4. Can we be more proactive in estimating trip-related metrics as the technologies and other 
circumstances underlying the big data generation process change over time? 

The technologies used to generate the big data will inevitably change. Consequently, it will be 
worthwhile to ask whether we can be ahead of changes by being able to predict the 
consequences of the changes, i.e., how will a sudden increase in locational accuracy and 
temporal sparsity affect our estimates of trips? As shown in our answers to questions 2 and 
3 above, this study demonstrated the inherent relationship between zeroth-order properties of 
the data themselves and the first- and second-order characteristics of trip ends and trips. More 
in-depth analysis is required to gain a systematic understanding of the nature of these 
relationships, which would certainly empower us the predictive capability. 

5. How do we deal with the issue that big data lack ground truth? 

As noted by Chen et al. (2014, 2016), because of the uncontrolled data generation process 
associated with big data, validation of the inferred statistics from the data is critically 
important. And yet, there are no ground truth data to be validated against for most of the 
trip-related metrics. Therefore, frequently household travel surveys are used for validation 
purposes. Although this represents a very important first step in the right direction, it is worth 
noting that the inferred results can have a great number of errors at the individual level, even 
though a high level of accuracy may be observed at the aggregate level. A number of 
approaches may be utilized to counter this lack of ground truth, including, for example, the use 
of simulation data (Chen et al., 2014), collection of small sample GPS/survey data, and using 
experiments and models to understand the effects of data properties (e.g., locational accuracy 
and temporal sparsity) on the metrics of interest (e.g., trip rate). Further investigations are 
critically needed to validate the results generated by big data sources. 

6. How do we make useful data via big and small data fusion? 

It is clear that there are advantages and disadvantages of big and small data, as well as 
different types of big and small data. In fact a unique aspect of big data is their continuous and 
dynamic nature, meaning that they are potentially available at any time and at any place. This is 
in stark contrast to the small travel survey data that are static, capturing travel patterns on a 
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typical day once every 5 to 10 years2. The static nature and small sample size of travel survey 
data limit their usefulness for long-term (usually 20- to 30 years) demand forecasts, as well as 
for assessing many short-term and equally important policy and operations scenarios that arise 
from time to time. 

As an example, understanding anonymous travel patterns in corridor management is critical not 
only for operations purposes (e.g., evaluating the effectiveness of tolling and other control 
strategies such as ramp metering) but also for policy evaluation and adjustment (e.g., 
understanding how different users and communities are affected by the control strategies 
provides a basis for policy evaluation and adjustment).  Big data, because of their dynamic and 
continuous nature, can be leveraged to provide answers to these important questions. This is 
the case especially when the big data are integrated with other data, including, for example, 
household travel survey data, census data, flow data (e.g., travel volumes and speeds from loop 
detectors), and license plate data that are already collected by state or local departments of 
transportation (DOTs). This data fusion exercise will not only result in useful data that leverage 
the advantages of diverse data sets, but will also move us toward more rea- time, continuous 
management of our transportation facilities on the basis of the principles of efficiency, equity, 
and safety. The realization of this vision requires the development of sound data fusion 
frameworks and methodologies and their validation (beyond a simple combination of the 
datasets from different data sources), which are currently lacking. 

1.2 Recommendations 
The ubiquity of passively generated data promises to transform the landscape of transportation 
planning, from understanding travel patterns to transportation model development and policy 
evaluation. There has been an explosion of studies using big data to tackle problems in 
transportation planning. Transportation agencies across the country increasingly find 
themselves having to make various decisions regarding the purchase and use of big data and 
their derived products. However, there is a dearth of information about the data themselves 
(such as data accuracy and representativeness). While every case is different and likely 
requires a unique evaluation on its own, we offer some general short-term and long-term 
recommendations based on the analysis conducted in this research. 

Ask Questions 

This study showed that it is critical to understand the data and their properties, as they directly 
affect variables of our interest, such as trip rates and OD patterns and the interpretation of 
analysis results. It is important to ask data providers questions about how the data were 
generated, what positioning technologies (or a combination of them) were used to locate the 
devices, what events triggered the recording of the data, and whether there are any reports 
available on the properties of the data (e.g., locational accuracy and temporal sparsity, among 
the zeroth-order metrics proposed in this study). 

2 Most travel surveys are conducted once every 10 years. 
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Conduct Pilot Tests 

Ask for a sample data set from the provider so that analyses can be done on the sample data to 
further understanding of the data and their derived metrics. The three-order analysis framework 
proposed in this study can be used to calculate various characteristics. Results from the pilot 
tests can be compared with those from other studies (such as those from this study) for better 
understanding of consistency and stability. 

Create Benchmark Data Sets and Test Results on the basis of a Common Framework 

The use of big data for transportation planning purposes is at its infancy stage. Data 
representativeness is of critical importance for various types of transportation studies. 
Therefore, a broad, systematic understanding of such data is urgently needed for big data to 
reach their full promise in transportation planning. 

Develop a common framework 

One way to achieve this is to establish a central inventory database in which various benchmark 
data sets can be created on which metrics can be calculated on the basis of a common 
framework. This will allow comparisons across different data sets in different geographies, 
enhancing our understanding of different applications. 

Reconciliation of various data sources 

While this report does not touch upon other important datasets that are often used in 
transportation planning applications (e.g., data on traffic flows and transit ridership data), it is 
important to recognize each dataset (big or small, conventional or emerging) captures a 
particular view of a transportation phenomenon at a particular scale (both temporally and 
spatially). In other words, not a single data set will have all the advantages that trump all other 
datasets, big or small. As an example, it is clear that big data, like the ones studied in this 
research (from mobile phones and apps), lack the rich behavioral and socio-demographic 
information that traditional small data sets (e.g., household travel survey data and census data) 
have. Without this information, it is impossible to answer critical questions related to 
geographical or socio-demographic equity. Therefore, any decision on which datasets to be 
used and how they may be reconciled together hinges upon knowing what particular 
transportation phenomenon to be captured and what datasets will help capture aspects of the 
phenomenon of interest. In some cases, rigorous data fusion techniques will need to be 
developed in order to integrate various data sets together by leveraging their unique 
advantages. In other cases, individual datasets can be used to capture different aspects, which 
together form a complete story explaining a transportation phenomenon of interest. 

Investigate and understand the evolutionary nature of big data and the impact of 
changes on the use of big data 

It is of paramount importance that we recognize the evolving nature of big data. As 
demonstrated in our study, as technologies evolve, the nature of big data (as measured by 
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properties such as the zeroth order ones) changes, too. And this can directly affect the 
estimation of trip-related characteristics. Technologies will continue to evolve. The advent of 
autonomous and connected vehicles, for instance, will provide a whole suite of new data related 
to the car, its driver and passengers, surrounding traffic, and the immediate environment. The 
new data will not only help us gain new insights into transportation planning, operations, and 
safety analyses, but will also raise new questions about the data themselves, their properties, 
and how they may affect the derived trip-related characteristics, analysis results ensuring 
representativeness, equity and fairness, and impacts on our policies 
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2.0 Introduction 

2.1 Disclaimer 
The views expressed in this document do not represent the opinions of FHWA and do not 
constitute an endorsement, recommendation, or specification by FHWA. 

2.2 Acknowledgments 
The FHWA would like to acknowledge the assistance of two metropolitan planning organizations 
(MPOs) that generously agreed to share their models and provide some of their time for this 
study: the Greater Buffalo Niagara Regional Transportation Council and the Puget Sound 
Regional Council. Chenxi Liu from the University of Washington also contributed to early 
versions of Chapter 4 of this report. 

2.3 From Travel Survey Data to Passively Generated Emerging Data 
Since the 1950s, household travel surveys, as an important source for transportation planning 
applications, have gone through significant changes in survey instrumentation, methods of 
survey administration and sampling, and consequently response rates and sample sizes 
(Stopher, 1996). The earliest travel surveys were conducted via personal interviews, with a 
response rate of between 80 and 90 percent (Stopher, 1996), followed by mail-out and mail-
back surveys and telephone interviews via random digit dialing. The last two decades have 
witnessed a rise of web-based surveys or a combination of paper-, web-, and phone-based 
surveys. In recent years, the prevalence of smart mobile devices has prompted the 
development of smart phone-based travel survey applications (Cottrill et al., 2013; Fan et al., 
2013; Liao et al., 2017) . The response rates for travel surveys have dropped to about 25 
percent in the last decade (Stopher and Greaves, 2007), with sampling rates ranging from less 
than 1 percent for large urbanized areas to less than 3 percent for small ones (Stopher and 
Greaves, 2007). 

Since travel surveys are actively solicited and rely entirely on self-reporting by respondents, it is 
widely recognized that short trips, trips made by non-motorized modes, and/or first- and last-
mile trips are often ignored (Wang et al., 2019). There is also increasing nonresponse, either 
because targeted households do not respond to an entire survey or to specific items in a survey. 
Related to the nonresponse issue is the non-representative concern (Wang et al., 2019). The 
fact that nearly all surveys capture only a tiny fraction of the population also adds to the non-
representative concern. 

The above concerns have greatly motivated interest in using passively solicited data to 
supplement or even replace household travel surveys (Chen et al., 2010). As defined by Chen 
et al (2016), passively solicited data are those generated by non-transportation-application 
related primary purposes (e.g., billing, app use) but that can be potentially used for 
transportation planning. Examples include mobile phone data, vehicle GPS data, app-based 
data, social media data, etc. All such data include spatial and temporal information, which forms 
the basis for identifying people’s mobility patterns; they differ significantly from travel surveys (or 
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actively solicited data) in a number of aspects.3 Therefore, it is naturally expected that the 
resulting data will have unique characteristics that distinguish them from survey data. In fact, 
because different kinds of passively solicited data (e.g., mobile phone, vehicle GPS, app-based 
data) are generated through different processes, all likely possess their own characteristics. 

This report continues from a previous report by the authors (Chen et al., 2017) in which 
characteristics associated with mobile phone data and vehicle GPS data were investigated and 
compared with household travel survey counterparts. More specifically, we investigated the 
characteristics of an emerging passively solicited data set: app-based data. Unlike mobile 
phone or vehicle GPS data generated through a single-sourced positioning technology (cellular 
triangulation for the former and GPS for the latter), app-based data are multi-sourced, meaning 
that a combination of technologies (GPS, WiFi, cellular triangulation, Bluetooth, etc) are used to 
position the devices. This suggests that different methodologies must be used to extract travel 
patterns. The study also showed that the app-based data differed significantly in a number of 
ways from the mobile phone data and vehicle GPS data, as well as data from household travel 
surveys. 

The rest of this report is organized as follows. In Section 3, analysis of emerging data source 
collected via mobile apps (app-based data) is discussed. The app-based data were compared 
with travel survey data that were collected in the same study region and time. Discussions of the 
characteristics of the app-based data, as well as recommendations on their use, are provided. 
Section 4 provides a summary of other data sources from emerging technologies and systems 
in transportation and their potential applications. These include data from connected and 
automated vehicles (CAVs) and new shared mobility services. With an understanding of these 
emerging data sources, Section 5 provides a discussion of the development of a data fusion 
framework, with a goal of producing better quality data and/or more complete data for given 
transportation planning or operational applications. 

3 Since passively solicited data are not generated through probabilistic sampling plans, terms such as response rate 
and sample size are no longer meaningful. 
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3.0 App-Based Data 
This section discusses the analysis of an emerging data source collected via mobile apps. The 
analysis followed the framework developed by the project team in the first phase of the project 
(Chen et al., 2017) to analyze data properties of different orders. (“Order” here refers to the 
number of activity locations, so that zeroth order properties refer to those related the data 
themselves with no activity location derived, and first and second orders refer to single- and 
two-activity location(s) (or trips), respectively.) More details of such properties for the zeroth, 
first, and second orders can be found in Table 1.4 

Table 1. An overview of the analysis framework. 

Order Properties Contents Variations 

Zeroth 
Order General description 

Time period/counts of 
observations/counts of unique 
IDs/spatial distribution of data 

N/A 

Zeroth 
Order Location accuracy Statistics of location accuracy of all 

data 
Distribution and 

cumulative distribution 

Zeroth 
Order 

Temporal distribution of 
observations 

Distribution of observations across 
one day/number of observations/ 
number of observations per ID 

Daily and weekly 

Zeroth 
Order 

Inter-day temporal 
sparsity 

Distribution of the number of days 
observed/distribution of life span of 
unique IDs 

N/A 

Zeroth 
Order 

Intra-day temporal 
sparsity 

The temporal resolution of a 
trajectory/number of trajectories 
revealing their locations across a 
day 

Daily and weekly 

First Order 
Comparison between 
inferred home census 
tracts and census data 

Spatial comparison and correlation 
analysis between inferred home 
census tracts and census data 

N/A 

First Order Activity duration Distribution of observed times at 
inferred activity locations N/A 

First Order Spatial distribution of trip 
ends 

Spatial distribution of extracted trip 
ends 

Weekdays vs 
weekends 

Second 
Order Trip rates Distribution of trip rates per day per 

anonymous user Daily variations 

Second 
Order Departure/arrival times Distribution of departure/arrival 

times of trips 

Time of the day; 
weekdays vs 
weekends 

Second 
Order Trip length/Travel times Distribution of trip length/travel 

times 

Cumulative 
distribution; weekdays 

vs weekends 

Second 
Order 

Origin-destination 
demand 

Correlations between estimated OD 
demands and PSRC OD demands; 
spatial distribution of OD demands 

N/A 

4 Note that the list of properties is not identical to that in the first phase of the project (Chen et al., 2017), as some 
properties were no longer applicable to the data sources analyzed in this project. 
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3.1 General Description (Zeroth Order) 
The app-based data analyzed in this study was provided by Cuebiq, location intelligence and 
measurement company that supplies software development kits (SDKs) to mobile app 
developers, providing a privacy-compliant path for anonymous users to opt in to share location 
data. The kits allow developers’ apps to use “Location-Based Services.” About 180 apps were 
included, with functions such as shopping, travel, and navigation. The data provider was said to 
collect app-based data from 61 million monthly active anonymous smartphone users (about 20 
percent of the U.S. population) who opted in to share location data. Each observation in the 
data set contained the device ID of an encrypted anonymous mobile device, a time stamp, a 
location record (in the form of a pair of latitude and longitude coordinates), and the associated 
location accuracy in meters. Table 2 gives a synthetic sample of the observations. 

The time interval between two consecutive observations varied, depending on the usage pattern 
of the mobile phone applications that contributed to data generation, as well as the data 
collection frequency set by the data provider. The location accuracy of observations varied as 
well, depending on the positioning technology used when the data were collected. This could 
range from a few meters when the GPS chip was on to more than 20 meters when apps 
recorded locations using Wi-Fi proximity, assisted GPS (AGPS), Bluetooth proximity, etc 
(Schewel, 2017). In the extreme case scenario, the accuracy could be hundreds or even 
thousands of meters off when observations were recorded using cellular towers. 

Table 2. A synthetic sample of app-based data 

Time stamp Device ID Latitude Longitude Location accuracy
(meters) 

1491398264 4ab844ff98c206b8d7 47.9205809 -122.2535626 5 

1491403834 4ab844ff98c206b8d7 47.9229781 -122.2903396 25 

1491403961 4ab844ff98c206b8d7 47.9222743 -122.2998663 60 

1491412669 4ab844ff98c206b8d7 47.8994576 -122.2915348 60 

1491412963 4ab844ff98c206b8d7 47.8856073 -122.2908753 300 

1491413263 4ab844ff98c206b8d7 47.8850917 -122.2806468 1399 

The app-based data used in this report were collected between April 4, 2017, and June 5, 2017 
(63 days). These data were spread out within the Puget Sound region (PSR) among four 
counties: King, Kitsap, Pierce, and Snohomish. Figure 1 shows the spatial distribution of 
observations on a sample day (May 9, 2017). It can be observed that the majority of the 
observations were on the west side of this region (the Seattle area) because of its higher 
population density. 

Figure 2 provides a zoom-in view of the observations in the central PSR on a typical weekday 
during the evening peak (17:00 PM to 18:00 PM), showing clusters of observations along major 
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highways. This suggests that observations during peak hours were closely linked to travel 
activities because of the way the data were collected; according to the data provider, 
anonymous users’ locations were sampled more frequently when they were moving than when 
they were static. 

Figure 1. Map. Spatial distribution of observations 

Source: World Topographic Map 
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Figure 2. Map. A zoom-in view of the central PSR during the evening peak of a typical weekday 

Source: World Topographic Map 

Spanning 63 days, the data set contained 462,401 unique device IDs producing 563,038,663 
observations. This 462,401 number was equivalent to about 12.8 percent of the population in 
the Puget Sound region (3,798,902 persons), if each device were considered a resident. Note, 
however, that the underlying population of this data set would also contain many non-residents, 
such as those who visited or passed by the region, as well as those who carried multiple 
devices. 

Figure 3 shows the distribution of the time intervals between two consecutive observations (of 
one ID within a day). Observe that the majority of the observations (84 percent) had time 
intervals of less than 60 seconds, sharing some similarity to vehicular GPS data (Chen et al., 
2017). 
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Figure 3. Graph. Time interval distribution between two consecutive observations 

3.1.1 Location Accuracy 
As mentioned earlier, observations were generated by using various positioning technologies. 
Figure 4 shows the distribution of locational accuracies in the data set and Figure 5 is the 
cumulative distribution. One quarter of the observations had an accuracy of less than 5 meters; 
about 85 percent of the observations had an accuracy of less than 100 meters; 93 percent of 
the observations had an accuracy of less than 1,000 meters; and a small percentage of 
observations (about 2 percent) had an accuracy level exceeding 2,000 meters. 
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Figure 4. Graph. Distribution of location accuracy 

Figure 5. Graph. Cumulative distribution of location accuracy 
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3.1.2 Temporal Distribution of Observations 

Temporal Daily Distribution of Observations 

Figure 6 shows how observations were distributed over a day, with comparisons across different 
days of a week. Two peaks were observed (morning peak and evening peak) on weekdays, and 
one mid-day peak was seen on weekends. In addition, the morning peaks on weekdays were 
lower than the evening peaks, suggesting a lower level of apps usage in the morning. The 
distribution of observations for Fridays was higher after 10:00 AM than on weekdays. 

Figure 6. Graph. Distribution of observations within a day (the Week of April 17th) 

Temporal Weekly Distribution of Observations 

On average, there were more observations on weekdays than on weekends (Figure 7). Fridays 
had the most number of observations, while Sundays had the lowest, except for Memorial Day 
on May 29th. 

Figure 7 also shows that the number of daily observations suddenly increased on May 9, 2017. 
This may be attributed to the increase in the number of mobile apps from which data were 
collected. More discussion on this can be found in Section 3.4, May 9th Data Shift. 
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Figure 7. Graph. Weekly pattern of observations (Sundays are in open box) 

Location Frequency Update 
As shown in Figure 3, the time interval between two consecutive observations could be several 
seconds, hours, or even days, suggesting that the update frequencies of anonymous users’ 
locations were not uniform. How regularly anonymous users’ locations were updated within a 
day was then investigated. First, a day was evenly divided into multiple time intervals, each 30 
minutes. For each time interval, we then checked to see whether an ID/trajectory revealed its 
location at least once. Figure 8 shows the distribution of the presence of IDs/trajectories at 
different times of a day. These were called location updates. 

Weekdays shared similar patterns of having three peaks during a day: morning, noon, and 
evening. This suggests that on weekdays, the locations of the IDs were more likely to be 
revealed during these peak hours than during other times. More IDs were also observed on 
Fridays than on other weekdays. On the other hand, weekend days followed a unimodal 
distribution, peaking in the early afternoon. 

The location update patterns in Figure 8 are similar to the temporal distribution of observations 
shown in Figure 6. However, the comparison between the two figures does show one clear 
difference: the morning and evening peaks in Figure 8, with location updates, are less striking 
than those in Figure 6, with only observations, especially for the morning peak. This suggests 
that some anonymous users’ locations were updated at a high frequency during the morning 
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and evening peak periods, leading to the magnified peaks in Figure 6. As shown later in Section 
3.3.2, this phenomenon also affects the departure time distribution within a day. 

Figure 8. Graph. Percentage of trajectories with their locations revealed at a time of the day, 
comparing different days in a week. 

The evolving pattern of a holiday was also investigated (Memorial Day, May 29,2017), as shown 
in Figure 9. The holiday temporal pattern was clearly different from the weekday one, showing a 
unimodal distribution that peaked around noon. 

Figure 9. Graph. Percentage of trajectories with their locations revealed at different times of a 
holiday. 
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3.1.3 Temporal Sparsity 
In comparison to actively solicited data (e.g., household survey data), passively generated data 
such as app-based data rely on anonymous users’ activity patterns and the update frequency of 
the data provider (that collects the data), and therefore they can be temporally sparse. 
Specifically, for the app-based data, observations are collected only when the apps are running. 
In this report, temporal sparsity was investigated via two measures: inter-day and intra-day 
sparsity, quantifying how an anonumous user’s observations were distributed across different 
days and across different times within a day. 

Inter-Day Temporal Sparsity 

Two factors potentially contributed to inter-day sparsity: 1) visitors or passersby may have 
appeared in the data set for only a short period of time (one day or a few days); and 2) residents 
in the region may not have continuously used the included apps or may have travel out of the 
region during the study period. Figure 10 shows the distribution of the life span of each 
anonymous user (ID), which was defined as the difference between the first and last day that an 
ID was observed. For example, an ID that had its first observation on May 1st and its last 
observation on May 3rd had a life span of three days. It can be observed that 33 percent of IDs 
had a life span of only one day, and 53 percent of IDs had a life span of less than one week. 
This implies that a significant fraction of anonymous users in the data set were either not 
residents or were residents who did not use their apps frequently. On the other hand, 10 percent 
of IDs had a life span for the entire study period (63 days). 

Figure 10. Graph. Inter-day sparsity (distribution of life span of unique IDs) 
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Figure 11 shows the distribution of the number of days observed for each ID. As seen in the 
figure, most of the IDs were observed for only a few days: 66 percent of IDs were observed 
fewer than seven days. Differences between the distribution of life spans and the number of 
observed days can also be observed, suggesting that most anonymous users did not use their 
apps continuously. For example, although 12 percent of IDs had a full life span (63 days), only 3 
percent of IDs had observations every day5. Additionally, while 12 percent of anonymous users 
were observed for two days, only half of them had a two-day life span. This means that the 
other half of anonymous users had a life span of longer than two days (e.g., an anonymous user 
may have had her first and last observation on May 1st and 3rd, but no observations on May 2nd, 
resulting in a three-days life span and two observation days). 

Figure 11. Graph. Inter-day sparsity (distribution of number of days observed) 

Intra-day Temporal Sparsity 

For the days with data observations, we further investigated how these observations were 
distributed within each day. Figure 3 shows that most time intervals (84% percent) between two 

5 A spatial distribution of these users is provided in Appendix C. 
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consecutive observations were less than 1 minute. However, this does not necessarily mean 
that anonymous users’ locations were being recorded continuously throughout the day. Instead, 
as shown in Figure 6, observations were likely to cluster during the morning and evening peak 
hours while being absent during other times. 

To capture the potential data sparsity within the day, a day was divided into 48 time-slots (30 
minutes for each slot). For trajectoryid (the sequence of observations of user i on day d), we 
defined its temporal resolution φ id as the number of time slots in which this user was observed 
at least once (i.e., φ id∊[1,48]). Note that only the days with observations were considered. 
Figure 12 shows the distribution of φ id, for all trajectories. Here, one user may have contributed 
more than one trajectory, depending on the number of days that he/she was observed. The 
median was 10 slots, indicating that half of the trajectories had no more than 5 hours, with their 
locations revealed on average within a day. Only 0.4 percent of trajectories had their locations 
observed at each time slot (i.e., every 30 minutes). 

Figure 12. Graph. Distribution of temporal resolution of all (daily) trajectories. 
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3.2 First-Order Properties 
In this section, the properties of stays identified from the data are further explored, including the 
time spent at stays (activity durations), their spatial distribution, and associated departure times. 
Passively generated for non-transportation purposes, app-based data need to be processed to 
identify stays6. In this study, the properties of extracted stays and trips were compared with 
those from a household travel survey data. The survey data were collected by the Puget Sound 
Regional Council (PSRC) during the same period that the app-based data were generated in 
the spring of 2017. The survey data contained 6,254 persons residing in 3,285 sampled 
households in the Puget Sound region (Michalowski, 2017). 

3.2.1 Identifying Home Census Tracts 
Since the PSRC household travel survey was a sample of residents only, the non-residents in 
the app-data needed to be removed first for comparison. The home census tract for an 
anonymous user was defined as the census tract with the most frequent visits during the 
evening (22:00 PM to 6:00 AM the next day). In this study, this was defined as at least eight 
visits during the entire two-month study period, representing an average of at least one visit per 
week. Figure 13 shows that the spatial distribution of inferred home census tracts was similar to 
the population estimated by the American Community Survey (2015 American Community 
Survey). With a Pearson correlation coefficient of 0.91 at the census tract level, Figure 14 
shows that the estimated density of home census tracts scaled well with the population 
represented by the census. 

6 Details on how to identify stays and extract trips from the app-based data are provided in Appendix A.1 
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Figure 13. Map. Comparison between home census tracts inferred from the app-based data and 
the population from the census. (a) Inferred home density at census tract level and (b) Census 

population density. 
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Figure 14. Graph. Correlation between inferred home census tracts and census population at 
census tract level. 

Among all the anonymous users in the app-based data, about 24 percent of them (110,889) had 
a home census tract inferred, equivalent to about 3 percent of the population in the Puget 
Sound region. This is much higher than the 0.21 percent sampling rate for the PSRC household 
travel survey. The sample sizes can be further compared at the census tract level. For each 
tract, the sample size of the app-based data was calculated as the ratio between the number of 
inferred residents and the population residing in that tract. Figure 15 compares the distribution 
of tract-level sampling rates for the app-based data with the distribution from the survey data. It 
shows that for most tracts, the sampling rates for the app-based data were larger than those of 
the survey data. More specifically, 84 percent of the sampling rates for the app-based data 
ranged between 1 percent and 5 percent. On the other hand, about 89 percent of the sampling 
rates for the survey data were less than 1 percent. Interestingly, the sampling rates for the app-
based data showed an extended triangle distribution. 
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Figure 15. Graph. Distribution of scaling factor 

3.2.2 Activity Duration 
Users’ trajectories are typically filled with travel activities on the road and stays at activity 
locations. Activity duration describes how long a subject stayed at certain place for an activity. 
Because of the temporal sparsity discussed above, as demonstrated in Figure 16, the observed 

𝑖𝑖 𝑖𝑖arrival time �̂�𝑡 from one activity location 𝑇𝑇 may not be the actual arrival time 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 . This is also 𝑎𝑎𝑎𝑎𝑎𝑎 
𝑖𝑖true for the observed departure time 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑̂ . Therefore, the observed activity duration, which is 

defined as the time difference between the observed departure and arrival time, could 
potentially be an inaccurate estimation of the actual activity duration (often an underestimation, 

𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖𝑖as (�̂�𝑡 − �̂�𝑡 )). For the same reason, the estimation of travel time is also not 𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 

accurate (often an overestimation), as is shown in Section 3.3.3. 

Figure 16. Illustration. Activity duration and a demonstration of the biased estimation. 
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Figure 17 gives the distribution of activity durations inferred from the data and compared with 
those from the PSRC survey data. Both distributions showed a consistent decay for activity 
durations of less than 8 hours. Three observations can be made. First, short stays (of less than 
an hour) were more represented in the apps data than in the survey data. Second, stays of 
medium duration (between 3 and 6 hours) were also more pronounced in the apps data than in 
the survey. Third, stays of long duration (more than 8 hours) were more under-represented in 
the apps data than in the survey. Several factors may have been at play: 

1) Short trips (e.g., visiting a coffee shop) during a long stay (e.g., at a workplace) may 
have been under-reported in the survey data (Wolf et al., 2003). 

2) Signaling noise in the app-based data may have been falsely identified a single stay as 
multiple stays with movements between them. 

3) Underestimated activity duration may have been due to the lack of observations at true 
activity starting times and ending times (see Figure 16), which was especially the case 
for the third observation stated above. 

The third factor also explains the reason why long trips (in terms of travel times) were over-
represented in app-based data (see Section 3.3.4, Figure 25). For the app-based data, no clear 
differences could be observed in the distribution of activity duration between weekdays and 
weekends. 

Figure 17. Graph. Activity duration observed from PSRC survey and app-based data 
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3.2.3 Spatial distribution of extracted trip ends 
this subsection shows the spatial distribution of the extracted trip ends. In this report, terms such 
as trip ends and stays are interchangeable, as we defined a trip as a pair of two consecutive 
stays. Figure 18 illustrates the spatial distributions of trip ends on a typical weekday morning, 
showing travel demands concentrated in city centers such as downtown Seattle, Tacoma, and 
Bellevue. 

Figure 18. Graph. Spatial distribution of trip ends on a weekday morning. 
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Figure 19 illustrates the differences in trip ends between weekdays and weekends. More trip 
ends were observed in downtown Seattle, Bellevue, Everett and Tacoma on weekdays than on 
weekends (shown in red dots). 

Figure 19. Graph. Spatial distribution illustrating where more trip ends are observed on 
weekdays than that on weekends (in TAZ) 

Source: World Light Grey Base 
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3.3 Second-Order Properties 
Once trip ends had been identified, their connections, or a trip, could be inferred. Furthermore, 
by deriving individual trips, the origin and destination could be established for each trip. They 
could then be aggregated to estimate the travel demand for a region. 

3.3.1 Distribution of Trip Rates 
Trip rate was defined as the number of trips a person conducts in a day. Figure 20 shows the 
trip rate distribution inferred from the app-based data in comparison to that from the PSRC 
survey data. It can be observed from the app-based data that 14 percent of users did not 
generate any trips while approximately 36 percent of users generated one to two trips per day. 
In comparison, the PSRC survey data showed that: 1) a trip rate of 2 was most frequently 
observed; and 2) 11.5 percent of user-days had zero trips and about 1.8 percent had one trip. 

The mean trip rate was 3.23 for the app-based data, less than the 4.4 estimate from the survey 
data. Those conducting a single or no trip in a day were overestimated by using the app-based 
data, while those conducting more than one trip were underestimated. This was likely due to the 
temporal sparsity issue of the app-based data as discussed in Section 3.1, as some of the trips 
were not captured in the data (i.e., missing trips). Short trips, whose trip ends were close in 
space, may also have been missed because of location uncertainty. 

Figure 20. Graph. Distribution of trip rates 

The average daily trip rates of the app-based data are shown in Figure 21. Consistent weekly 
patterns can be observed. 1) From Mondays to Thursdays, the average numbers of trips per 
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person-day were similar. 2) More trips were observed on Fridays. 3) Weekends had fewer 
numbers of trips, with Sunday having the least. Additionally, fewer trips were made on holidays 
(e.g., Memorial Day). 

Figure 21. Graph. Weekly trip rate pattern 

3.3.2 Trip Departure Times Distribution 
Figure 22 compares the distribution of departure times inferred from the app-based data and 
that obtained from the survey data. The PSRC distribution showed two peaks (8:00 to 10:00, 
16:00-18:00), corresponding to morning and afternoon peak commute periods. The distribution 
from the app-based data showed that both morning and evening peaks were greatly mitigated. 
On the other hand, the weekend distribution for the app-based data was single-peaked and 
extended into the afternoon. The arrival time distributions are not presented in this report, as 
they were similar to the departure time distributions. 

October 2018 41 



   
  

 
 
 

    

 

 

  

   
      

   
          

    
 

   
        

     
   

     
        

       

Promises of Data from Emerging Technologies for Transportation Applications: 
Puget Sound Region Council Case Study 

Figure 22. Graph. Departure time distribution 

3.3.3 Trip Length and Travel Time 
Figure 23 shows the distributions of trip distances (in kilometers) for the app-based and PSRC 
survey data. The two are quite consistent with each other despite the much larger variance for 
the PSRC curve because of its small sample size. This figure again shows that there was more 
over-representation of short trips (of less than 500 meters) in the apps data than in the survey 
data. In addition to the reasons discussed previously (e.g., under-reporting of short-trips in the 
survey data; or some signaling noises in the apps data that may have been mistakenly identified 
as trips), the issue could also have been due to the fact that trip distances were calculated as 
Euclidean distances in this study, which typically are shorter than real-world trip distances in a 
road network (e.g., those recorded in the survey data).  

From the cumulative curve (Figure 24), it can be observed that about 70 percent of trips were 
shorter than 10 kilometers, while nearly 50 percent of trips were between 1 and 10 kilometers. 
Distributions on weekends are not presented, as they were not distinguishable from weekdays. 
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Figure 23. Graph. Distribution of travel distance 

Figure 24. Graph. Cumulative distribution of travel distance 
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Figure 25 shows the distribution of trip times. Short travel times (of less than 25 minutes) tended 
to be under-represented, and longer travel times (longer than 25 minutes) tended to be more 
over-represented in the apps data than in the survey data. The difference is more pronounced in 
Figure 26. This was consistent with the results of activity durations and trip rates, which can be 
explained by Figure 16. 

Figure 25. Graph. Distribution of travel times 
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Figure 26. Graph. Cumulative distribution of travel times 

3.3.4 Estimated travel demand 
When individual trips are aggregated to the zone level, then origin-destination patterns can be 
analyzed. Note that the OD trips observed directly in the app-based data were not comparable 
with the metropolitan planning organization (MPO) OD trips, as the latter attempts to capture all 
trips in a region, whereas the former represented only users who appeared in the data. 
Therefore, a scale-up OD estimation method was developed to estimate the OD demand for all 
trips from the app-based data (see Appendix B). The MPO OD matrix used in this research was 
obtained from SoundCast (2014 base year), which is a travel demand model built for the Puget 
Sound region. This OD matrix contained only the internal trips (trips completed within the PSR) 
by residents. 

Figure 27 shows the spatial distribution of trip origins estimated from the app-based data and 
SoundCast. The traffic analysis zones (TAZs) generating a large number of trips were 
concentrated in several specific areas: major university campuses (University of Washington), 
major airports (Sea-Tac International Airport), downtown areas (Seattle, Bellevue), and major 
high-tech campuses (South Lake Union – Amazon Campus). In comparison to the PSRC model 
results (Figure 27-b), a majority of zones with larger numbers of generated trips correlated with 
the app-based data estimation results, suggesting that the app-based data were able to capture 
regional travel demand to some degree. The spatial distribution of trip destinations was similar 
to that of trip origins and therefore is not presented in this report. 
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Figure 27. Map. Spatial distribution of trip origins. (a) Estimated results from app-based data, (b) 
SoundCast results 

The correlation between estimated values and SoundCast results at the TAZ level is shown in 
Figure 28. Overall, the linear regression between estimated trips and MPO model trips had an 
R-squared value of 0.5049, which is slightly lower than the results generated by vehicular GPS 
data (0.588) (Chen et al., 2017;). Similar observations were found from the correlation for the 
trips heading to TAZs and are therefore not presented in this report. 

Figure 29 shows the correlations between estimated OD demands and PSRC OD demands, 
which is lower (0.3636) than if only origins were compared (0.5049). This suggests that one 
should be cautious when directly using the app-based data for capturing a region’s origin-
destination travel patterns. 
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Figure 28. Graph. Correlations between estimated trip origins and MPO trip origins 

Figure 29. Graph. Correlations between estimated OD demands and PSRC OD demands 
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3.4 May 9th Data Shift 
As mentioned in Section 3.1.3, a sudden change in the data set occurred starting on May 9th. 
We called this phenomenon the “May 9th data shift.” One or more factors may have contributed 
to this phenomenon: (1) As the data were from various apps, the data provider may have 
obtained access to more apps on May 9th. (2) The number of available apps did not change, but 
the number of users contributing to the data may have increased. (3) Neither the number of 
apps nor the number of users may have changed, but apps may have enhanced their services 
by requesting the locations of their users more frequently. (4) Neither the number of apps nor 
the number of users may have changed, but usage patterns may have changed (i.e., users 
started using apps more frequently). The fourth possibility may be quickly dismissed, as it is 
unlikely that all users collectively changed their usage patterns within a day. 

Figure 30 shows the temporal evolution for the daily number of unique IDs. A slight 3 percent 
increase can be observed on May 9th, in comparison to the previous day, May 8th. The number 
of observations per ID by day is shown in Figure 31. In comparison to the previous day, the 
number of observations per ID increased by 33 percent and remained at this level for the rest of 
the study period. Figure 30 and Figure 31 together suggest that the increase in data size 
starting on May 9th was most likely attributed to the data provider obtaining more observations 
from each device. We later confirmed with the data provider that on May 9th, more app 
developers signed up for its SDK, resulting in more apps contributing to its data collection (per 
device). This indicates that big data, such as the app data studied here, are dynamic and 
constantly changing. As a result, their data properties also need to be investigated periodically; 
see the discussion section for more details. 

Figure 30. Graph. Evolution of daily number of unique IDs (zeroth order) 
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Figure 31. Graph. Evolution of daily number of observations per ID (zeroth order) 

Figure 32 shows the temporal evolution of location accuracy, using three statistics: the 1st, 2nd 

and 3rd quartile. While the 2nd quartile showed no change before or after May 9th, the 1st quartile 
decreased and the 3rd quartile increased. Because location accuracy is linked to the 
technologies used for data collection, the broader distribution also suggests an increased 
variety of the data in terms of location accuracy after May 9th. The implications are discussed in 
Section 3.5. 
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Figure 32. Graph. Evolution of location accuracy (zeroth order) 

Figure 33 shows reduced time intervals between two consecutive observations (i.e., denser 
observations) after May 9th. Conversely, Figure 34 shows the evolution of temporal sparsity, 
which is represented by the number of time slots (30 minutes for each slot) that had at least one 
observation. The slight increase in the temporal sparsity suggests that a significant 
increase in data size did not necessarily significantly reduce the temporal sparsity of the 
data. 
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Figure 33. Graph. Evolution of time interval (zeroth order) 

Figure 34. Graph. Evolution of temporal sparsity (zeroth order) 

The rest of this section describes more analyses conducted to examine how the increase in 
data size influenced first- and second-order properties. 
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As shown in Figure 35, no clear difference could be observed between activity durations (first-
order property) before and after May 9th. However, the mean trip rate (second-order property) 
increased from 3.11 before May 9th to 3.37 after May 9th, as shown in Figure 36. The figure also 
shows that after May 9th, the trip rate distribution showed a pattern more similar to the PSCR trip 
rate distribution, e.g., the percentage of higher trip rates increased, and the percentage of lower 
trip rates decreased. This could be due to the fact that some missing trips in the before data 
were now revealed in the after data with more observations. The improvements in trip rates after 
May 9th, however, was not significant, given the significant increase in the number of 
observations (per ID) in the after data set. 

Figure 35. Graph. Comparison of activity duration (firstt order) before and after May 9th 
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Figure 36. Graph. Comparison of trip rate (second order) before and after May 9th 

Figure 37, Figure 38, and Figure 39 compare the distributions of departure time, trip length, and 
travel time before and after May 9th, respectively. No major differences were identified except for 
a slight difference in the distribution of travel times. The distribution of travel times for after May 
9th was closer to that calculated from the PSRC survey data. Again, similar to the trip rate 
distribution in Figure 36, the improvement was fairly mariginal. 

In summary, we conclude that after May 9th, the average oberservations per device increased 
substaintially (about 33 percent, which however led to either unchanged or only minor 
improvements iin properities (especially the first- and second-order properties). For this reason, 
the data properties presented in Sections 3.1 – 3.3 were calculated from the entire data set. 
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Figure 37. Graph. Comparison of departure time distributions (second order) before and after 
May 9th 

Figure 38. Graph. Comparison of cumulative distributions of trip length (second order) before 
and after May 9th 
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Figure 39. Graph. Comparison of cumulative distributions of travel time (second order) before 
and after May 9th 

3.5 Summary 
Connecting to our previous report (Chen et al., 2017), this section provides a summary of the 
major findings based on the five data sets (big and small) that we have analyzed. The five 
datasets included the following: 

• 2002 mobile phone data for the Buffalo-Niagara region; 

• corresponding household travel survey data for the Buffalo-Niagara region; 

• app-based data for the Puget Sound region; 

• the corresponding Puget Sound household travel survey data; and 

• vehicular GPS data for part of the Seattle downtown area. 

Table 3 gives an overview of these data sets7. 

7 The vehicular GPS data were for a small area of the City of Seattle. The analysis results were not very applicable to 
travel patterns for the region. Therefore Table 3 does not include this data set. 
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Table 3. Summary of datasets 

Datasets Study
period Study area Number of 

samples Sampling rate 

App-based
data 

April 4th-
June 5th 
2017 

Puget Sound Region 
(Washington State, 
US) 

462,401 unique 
IDs 

11.9% (# of people 
sampled divided by 
the population, 2015 
PSRC) 

Mobile phone
data April 2014 

Buffalo-Niagara 
Region (New York 
State, US) 

933,508 users 

82.2% (# of people 
sampled divided by 
the population, 2010 
Census) 

2017 PSRC 
household 
travel survey

data 

April-June 
2017 

Puget Sound Region 
(Washington State, 
US) 

3,277 households; 
6,235 persons 

0.16% (# of people 
sampled divided by 
the population, 2017 
PSRC) 

2002 Buffalo-
Niagara 
regional

transportation
survey data 

2002 
Buffalo-Niagara 
Region (New York 
State, US) 

2,779 households; 
6,636 persons 

0.59% (# of people 
sampled divided by 
the population, 2000 
Census) 

We can further summarize the characteristics of the five data sets (also see Table 4) as follows: 

• Big data: passively generated data from billing, app usage, and other primary purposes 
that can be used for transportation planning applications (Chen et al., 2016); large data 
size covers a significant portion of a population in a region. 

o Mobile phone data: traces generated as users make phone calls and 
send/receive text messages; single-sourced positioning technology relying on 
triangulation of cellular towers, with an accuracy level ranging from a few 
hundreds to thousands of meters (Calabrese et al., 2011; Chen et al., 2016; Iqbal 
et al., 2014). 

o Vehicle GPS data: traces generated as vehicles (trucks and passenger cars) 
equipped with GPS operate; single-sourced positioning technology relying on 
GPS, with an accuracy level of a few meters (Chen et al., 2017). 

o Apps data: traces generated as users use various apps on smart phones; multi-
sourced positioning technology relying on GPS, Wi-Fi, and cellular towers. 

• Small data: actively solicited from targeted participants through a probabilistic sampling 
process in a well-defined target population; small sample sizes ranging from 0.5 percent 
to 1 percent. 

o Buffalo-Niagara household travel survey data: respondents were asked to report 
all trips and associated attributes (origins and destinations in exact addresses or 
closest intersections, departure and arrival times, mode of transportation, travel 
times, etc.); single-source positioning technology relying on user-reported 
addresses that were then translated into geo-coordinates. 

October 2018 56 



   
  

 
 
 

    

    
 

   
  

    

   
    

   

 

   

 

 
  

  
 

 
 
 

 

  

   
 

  

 

 
 

 
 

  
 

 
 
 

  

 
 

 

  
 
 

 

 
 
 

 

 

 
    

  
                                                           
     

   
   

   

Promises of Data from Emerging Technologies for Transportation Applications: 
Puget Sound Region Council Case Study 

o Puget Sound region household travel survey data: respondents were asked to 
report all trips and associated attributes (origins and destinations in exact 
addresses or closest intersections, departure and arrival times, mode of 
transportation, travel times, etc.); single-source positioning technology relying on 
user-reported addresses that were then translated into geo-coordinates8. 

As the two small household travel survey data were similar in nature, we grouped them into one 
type, together with the three types of big data. These four types are presented in Table 4, which 
summarizes their unique, key characteristics in pro and con categories. 

Table 4. Pros/cons of different data 

Data type Pros Cons 

App-based 
data 

Large size; higher observational 
frequency; mixed GPS, WiFi, Bluetooth, 
and cellular tower positioning; presence 
of trace information; inexpensive; 
continuous 

Non-probabilistic samples; missing 
trips/activities; no demographics 
information; unknown underlying 
population 

Mobile 
phone 
data 

Large size; presence of trace 
information; inexpensive; continuous 

Lower observational frequency; lower 
positioning accuracy; Non-probabilistic 
samples; missing trips/activities; no 
demographics information; unknown 
underlying population 

Vehicular 
GPS data 

Large size; higher observational 
frequency; high positioning accuracy; 
presence of trace information; 
continuous 

Non-probabilistic samples; missing 
trips/activities; no demographics 
information; unknown underlying 
population; only for vehicular travels 

Household 
travel 
survey 
data 

Probabilistic but small samples; 
designed to be representative; rich 
information on activity and travel 
patterns; with demographics and 
attitudinal information 

Lack of trace information on routes; 
Lack of information for non-residents; 
expensive; infrequent data collection; 
static information 

Clearly, small data are often collected via a rigorously designed sampling/collection process 
targeting a specific population. In other words, they are designed to be representative of the 
underlying population. Big data, however, are mostly the by-product of certain primary 

8 There was a separate, much smaller, GPS-only sample in which respondents were asked to download a GPS app 
onto their phones, and the app recorded all traces and interacted with respondents to verify trip-related attributes. At 
the time of the writing of this report, this sample had not yet been obtained and therefore was not included in this 
report. It may be analyzed in future phases. 
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purposes, which usually do not follow any well-designed data collection process, and hence the 
collected data are often not representative. On the other hand, small data are often static (i.e., 
collected every 5 to 10 years), cover a tiny fraction of the underlying population, and lack trace 
information on routes, whereas big data surpass the small survey data with their volume and 
continuity, and can contain more complete information on short trips and routes that are often 
neglected in survey data. Another unique feature of big data is that they are good at showing 
“what happened” but not “why that happened,” whereas small data are behaviorally much richer 
and can help explain the fundamental reasons underlying observed travel phenomena. 

The above differences between big data and small data contribute to the overall properties of 
the data (i.e., zeroth order) and the travel-related metrics derived from the data (i.e., first and 
second order). Below we first summarize the similarities and differences across the data sets 
regarding the zeroth order. Again the results from the vehicular GPS data are not included here 
because of the limited study area. 

- Sampling rate. Both big data sets (i.e., mobile phone data and app-based data) had a high 
sampling rate in comparison to the region’s population (e.g., 11.9 percent for app-based 
data and 82.2 percent for mobile phone data), while the sampling rates for the survey data 
were much smaller (0.16 percent for the PSRC travel survey and 0.59 percent for the 
Buffalo travel survey). Note that the “sampling rates” for big data are not statistical sampling 
rates; rather, they should be interpreted as some form of “market penetration” of the 
devices. It is also important to note that the underlying populations for big data are likely 
very different from the resident populations for household travel surveys; the vast majority of 
users in our big data were observed only for very short periods, suggesting that they may 
not have been residents or may have been residents but not actively using their mobile 
phones or mobile apps. 

- Intra-day temporal sparsity. As shown in Figure 40, on weekdays, the app-based data had 
three small peaks within a day, whereas the mobile phone data showed two peaks. From 
midnight to early morning, the fraction of IDs in the app-based data was much larger than 
that of the mobile phone data. This is inherently related to the underlying data generation 
process: app-based data are derived from apps usage whereas mobile phone data are from 
phone calls and text messages. During the night and early morning, the number of phone 
calls and text messages largely subsided while app use was still substantial (around 25 
percent). In addition, one can observe that most usages in the app-based data and mobile 
phone data (either weekdays or weekend) occurred between 9:00 AM and 8:00 PM, 
whereas traffic usually has distinct early morning and afternoon peaks. This indicates that if 
the derived patterns from big data are used for travel pattern analysis, one needs to be 
cautious because mobile apps or mobile phone data show only device usage, not 
necessarily user travel intensity. It is clear that the temporal sparsity feature of big data has 
direct impact on the accuracy of the activity locations (stays) derived from big data, and the 
resulting travel patterns estimated from the data (see Figure 16). 
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Figure 40. Graph. Fraction of IDs with their locations revealed at time of a day (both big data 
sets) 

- Weekly pattern of the number of observations. Both big data sets showed a consistent 
weekly pattern, as shown in Figure 41, suggesting that both data sets were good candidates 
for weekly trend analysis. Generally, weekdays had more observations than weekends, and 
Sundays had the least. In addition, the drops in phone calls were slightly more severe than 
those for app use. The drops of the two curves imply that on weekends people tended to 
make fewer phone calls, send fewer messages, and make less use of mobile apps. 
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Figure 41. Graph. Fraction of observations within the week (both big data sets) 

- Location accuracy. The location accuracy of the app-based data was generally much higher 
than that of the mobile phone data, according to the cumulative distribution of data location 
accuracy (see Figure 42). For example, the 85th percentile of location accuracy for the app-
based data was 100 meters, while this statistic for the mobile phone data was about 700 
meters. From 700 to 2400 meters, the two curves increase at a similar rate, indicating that 
both data sets had similar distributions for data accuracy in the range of 700 to 2400. This is 
probably due to the fact that both data sets were the produce of similar positioning 
technology at this accuracy range (e.g., cellular tower technology). 

The overall properties of big data, especially the temporal sparsity and location accuracy, 
largely determine how accurate the identified activity locations from the data can be in 
comparison to ground truth or certain benchmarks (e.g., those from travel surveys). As shown in 
Figure 16, because of temporal sparsity and inaccurate location information, certain activity 
locations may be missed or the arrival/departure times may be incorrectly identified. This leads 
to underestimation of activity durations and trip rates and overestimation of trip travel times. As 
for OD demands, because big data are not expected to represent the underlying population 
well, the correlation between big data-derived OD demands and the benchmark OD demands 
are mediocre in most cases. More detailed comparisons regarding the first- and second-order 
properties are summarized as follows: 
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Figure 42. Graph. Cumulative distribution of data location accuracy (both big data sets) 

- Activity duration. The app-based data set yielded about 48 percent of the durations of less 
than one hour, corresponding to about 40 percent from the PSRC travel survey. The reverse 
seemed to be true for the mobile phone data: about 32 percent of activities were identified 
from the mobile phone data lasting less than one hour, corresponding to 40 percent from the 
Buffalo travel survey. In addition, there seemed to be an over-estimation of activities lasting 
between 2 and 6 hours for the app-based data and an underestimation of activities lasting 
between 7 and 14 hours for the mobile phone data in comparison to their corresponding 
survey data. The deviations of activity durations estimated from app-based and mobile 
phone data sets may be attributed to several factors, including the temporal sparsity of the 
two data sets, representativeness issues of the data (i.e., only the data from specific 
population were collected), and the fact that big data sources can help identify short trips 
(e.g., a trip to a coffee shop near the work place) that are typically not reported in travel 
survey data. 

- Home census tract correlation. Correlation between the number of inferred residents from 
both big data sets and the population statistics at the census tract level were 0.91 for the 
app-based data and 0.43 for the mobile phone data. The higher correlation of app-based 
data demonstrates their better capability to infer home census tracts which is crucial for 
regional travel pattern analysis, than mobile phone data. The difference between the two 
may be due to the following two reasons: 1) the generally lower accuracy of mobile phone 
data makes it harder to correctly identify home census tract; and 2) app-based data is also 
temporally less sparse than mobile phone data. 
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- Trip rate. For both big data sets, the estimated trip rates were significantly lower than those 
obtained from survey data. For the app-based data, the estimated mean trip rates (per day) 
were 3.23 for weekdays in comparison to 4.40 from the PSRC survey data. For the mobile 
phone data, the estimated mean trip rates (per day) were about 1.78 for weekdays in 
comparison to 3.89 from the Buffalo travel survey data for weekdays. Both big data sets 
experienced under-estimation bias, although to a lesser degree for the app-based data. 
Note that although survey data are not “ground-truth,” they are believed to have less 
significant bias issues than big data because of their distinct, controlled data collection 
process. Hence they were used as a benchmark for comparison. 

- Departure time. Both surveys clearly showed three peaks in the morning at 8:00 AM, at 
noon, and in the afternoon between 3:00 and 5:00 PM, reflecting peaks in travel patterns 
(morning commute peaks, noon for lunch breaks, and afternoon commute peaks). For both 
big data sets, they were consistent with the surveys only in the afternoon peak. 

- Travel time. The cumulative percentage of trips from both surveys shared similar patterns in 
terms of travel times, as shown in Figure 43. For shorter travel times (0-100 minutes), the 
two survey curves grow much faster than those of the app-based data and mobile phone 
data, indicating that a much smaller percentage of users in the survey data had long travel 
times, or survey participants tended to ignore/forget shorter trips when participating in the 
survey, or both. Substantially more short-time trips were captured by the app-based data 
than by the mobile phone data. This finding is consistent with much the lower trip rate 
derived from the mobile phone data than the app-based data and the higher levels of 
temporal sparsity observed for the mobile phone data. 
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Figure 43. Graph. Cumulative distribution of travel times (four data sets) 

- Correlation between MPO OD and estimated OD. The correlation between the estimated 
OD of the app-based data (0.36) and the MPO OD was less than that for the mobile phone 
data (0.66) (Chen at al., 2017). Both are considered low, indicating that the estimated OD 
demands from big data do not sufficiently represent MPO demand matrices. Therefore, it is 
not advisable to use OD demand matrices developed directly from big data sources. More 
research and investigations are needed to further study the data properties and develop 
more sophisticated OD estimation methods to produce better representative OD matrices 
from big data sources. 

3.6 Discussion 
Within the short, one-year period from the last study (Chen et al., 2017), during which mobile 
phone and vehicle GPS data were studied, to this study in which apps data were studied, the 
technologies used for data generation evolved in at least two aspects. First, the scope of user 
activities greatly expanded from just phone calls and text messages for mobile phone data to 
the use of many different apps for app-based data. Second, the positioning technology also 
evolved from being single-sourced (e.g., either cellular towers or GPS) for mobile phone or 
vehicle GPS data to multi-sourced (cellular towers, GPS, WiFi, and Bluetooth) for the apps data. 
Consequently, as shown in our last and this report, both spatial and temporal properties 
associated with the data, in particular, locational accuracy and temporal sparsity, improved. 
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Changes in these properties allowed us to connect to the underlying population better and to 
capture travel patterns in a more accurate and complete way, as reflected by the high 
correlation between inferred residents and the census population density (0.91 in Figure 14), an 
estimated average trip rate that was much closer to that of the household travel surveys (3.23 
from apps data vs 4.40 from PSRC travel survey data, in comparison to 1.78 from mobile phone 
data vs 3.89 from Buffalo travel survey data), and the identification of both morning and 
afternoon peaks in the apps data (although delayed) in comparison to a single afternoon peak 
shown in the mobile phone data. Despite these improvements, however, the analyses in this 
report also showed that significant discrepancies still exist in comparing the travel patterns (e.g., 
trip rates, OD demands, etc.) estimated from big data (e.g., app-based data) and those from 
other, potentially more representative, data sources (such as survey data, as shown in Table 4). 

It is clear that the changes in the technologies used to generate the big data and consequently 
their associated spatial and temporal characteristics (zeroth order properties) have an important 
effect on a set of metrics we are interested in for planning purposes (first and second order 
properties). Consequently, four important questions arise, and they are discussed in the 
remainder of this section. 

As the underlying data generation process changes lead to changes in spatial and temporal 
properties, as well as changes in trip related metrics, how shall we interpret the resulting 
changes? 

As noted earlier, the change from mobile phone data to app-based data resulted in a closer 
resemblance to household travel survey data for trip rates (3.23 from apps data vs 4.40 from the 
PSRC travel survey data, in comparison to 1.78 from mobile phone data vs 3.89 from the 
Buffalo travel survey data). And correlation with population density at the census tract level 
increased from 0.43 to 0.91. Clearly, improvement in data quality both in terms of locational 
accuracy (Figure 4) and temporal sparsity (Figure 12), resulting in more accurate calculation of 
metrics such as home census tracts and trip rates. But questions still remain: for frequency of 
observations, is better? Or is there a threshold after which the bias of under-estimation 
becomes that of over-estimation? In our discussion on the May 9th data shift (Section 3.4), we 
showed that from before to after May 9th, there was a 33 percent increase in the number of 
observations per ID (Figure 31) and consequently an improvement in temporal sparsity (Figure 
34). The average trip rate consequently increased from 3.11 to 3.47, edging closer to the 4.4 
from the household travel survey data. However, the difference was not apparent for activity 
duration (Figure 35), departure time (Figure 37), or trip length (Figure 38) distributions9. Given 
these observations, we provide a few responses to the above question. First, when temporal 
sparsity is relatively low (which is the case for both mobile phone data and app-based data) and 
locational accuracy is low (which is the case for mobile phone data), improvements in both will 
draw metrics closer to the ground truth, and this is in particular the case for locational accuracy. 
Second, however, as temporal sparsity continues to increase, the marginal benefit decreases. 
In fact, beyond a certain threshold, we expect the positive benefit can turn negative, although 

9 The cumulative distribution for trip length (Figure 39), however, also indicated that the curve after May 9th was 
closer to that of the PSRC survey data. 
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this will require future research. Third, improvements in different metrics may vary, as shown in 
trip rate, activity duration, departure time, and trip length. 

Reversely, one may also wonder about the likelihood that the improvement in trip rate 
estimation using data after May 9th (as compared to data before May 9th) was due to chance 
instead of increases in the number of observations and thus temporal sparsity. On the basis of 
what we learned from both the mobile phone data and the app-based data, it is extremely 
unlikely that the improvement observed in trip rate estimation was due to pure chance. From 
both data sets, we observed that first, under-estimation of trip rates is common in big data sets 
because of the temporal sparsity issue; and second, an initial increase in trip rate is present as 
temporal sparsity improves. It is worth noting that this assessment specifically applies to trip rate 
estimation, as the effects on other metrics are more complex. As shown in our analyses, 
increases in the number of observations appear to have little to no impacts on other metrics. 

Can we be more proactive in estimating trip-related metrics as the technologies and other 
circumstances underlying the big data generation process change over time? 

As evidenced from the sudden increase in the number of observations per ID after May 9th in 
the app-based data, the technologies used to generate the big data will inevitably change. 
Consequently, the associated data properties will change, as well as the estimated metrics we 
are interested in. While it is important to monitor how they may change over time, it is also an 
interesting question to ask whether we can be ahead of the changes by predicting the 
consequences of the changes, such as what we observed in the May 9th phenomenon. This 
question points to important future research directions that seek to establish linkages between 
zeroth order properties (data properties such as locational accuracy and temporal sparsity) and 
first- and second-order properties. Understanding the nature of these linkages will give us 
predictive capability. 

How do we deal with the issue that big data lack ground truth? 

As noted in Chen et al. (2014, 2016), because of the uncontrolled data generation process 
associated with big data, validation of the inferred statistics from the data is critically important. 
And yet, there is no ground truth data for most of the trip-related metrics. Therefore, frequently 
household travel surveys are used for validation purposes. Although they represent a very 
important first step in the right direction, note that the inferred results at the individual level can 
have large errors even though a high level of accuracy is observed at the aggregate level. The 
paper by Chen et al (Chen et al., 2016) discussed a number of ways to accomplish additional 
validation, including the use of simulation data (Chen et al., 2014), collection of small sample 
GPS/survey data, and using experiments and models to understand the effects of data 
properties (e.g., locational accuracy and temporal sparsity) on the metrics of interest (e.g., trip 
rate). Further investigations are critically needed for the validation of results generated by big 
data sources. 

How can we make better data via integration of big and small data? 

Besides being big, a very unique aspect of the big data is their continuous and dynamic nature, 
meaning that they are potentially available during any time and at any place. This is in stark 
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contrast to the small travel survey data that are static, capturing travel patterns on a typical day 
once every 5 to 10 years10. The static nature of the travel survey data renders them only useful 
for long-term (usually 20 to 30 years) demand forecasts but nearly useless in assessing many 
short-term and equally important policy and operation scenarios that arise frequently from time 
to time. As an example, understanding user profiles and their associated travel patterns in 
corridor management is critical not only for operation purposes (e.g., evaluating the 
effectiveness of tolling and other control strategies such as ramp metering) but also for policy 
evaluation and adjustment (e.g., understanding how different users and communities are 
affected by the control strategies provides basis for policy evaluation and adjustment).  Big data, 
because of their dynamic and continuous nature, can be leveraged to provide answers to these 
important questions. This is the case especially when the big data are integrated with other data 
including, for example, household travel survey data, census data, flow data (e.g., travel 
volumes and speeds from loop detectors), and license plate data that are already collected by 
state or local DOTs. This data fusion exercise will not only result in better data that leverage the 
advantages of diverse data sets, but will also move us toward more real-time, continuous 
management of our transportation facilities based on the principles of efficiency, equity, and 
safety. The realization of this vision requires the development of data fusion frameworks and 
methodologies and their validation, which are currently nearly non-existent. In Section 5 of this 
report, a data fusion framework, including goal, objectives, and major considerations, is 
presented. Development and comprehensive testing of more specific, detailed data fusion 
methodologies are also highly recommended for future research. 

10 Most travel surveys are conducted once every 10 years. 
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4.0 Other Emerging Data Sources and Applications 
This section provides a summary of other data sources from emerging technologies and 
systems in transportation, and their potential applications. These include data from connected 
and automated vehicles (CAVs) and new shared mobility services. Notice that these emerging 
technologies, as well as the data they provide and the applications they support, are currently 
under rapid development. This section aims to provide a brief discussion of the technologies, 
the data they can provide, and the applications they can support. A more comprehensive and 
detailed survey of these technologies, their data, and applications are beyond the scope of this 
project. 

4.1 Data from Connected Vehicles 
Connected vehicles (CVs) are vehicles that can communicate (i.e., send and receive messages) 
with the surrounding environment, including other vehicles (defined as vehicle to vehicle (V2V) 
communication), infrastructures (defined as vehicle to infrastructure (V2I) communication), 
pedestrians (defined as vehicle to pedestrian (V2P) communication), and other entities (defined 
as vehicle to everything (V2X) communication). In 2011, the USDOT published the performance 
goals of the CV system (Campolo and Molinaro, 2013) based on the results from pilot 
deployment tests. The report showed that CV systems could save 1083 lives annually (Lee and 
Lim, 2012), and reduce up to 27 percent of time delays (Vinel, 2012) and 20 percent of gas 
emissions by deploying just two safety applications. These findings indicate that CV systems 
could be an effective solution for safety, mobility, and environmental problems in the current 
transportation system. 

To enable CV, multiple communication technologies have been applied, such as dedicated 
short-range communications (DSRC), cellular networks (i.e., 3G/4G/5G), Wi-Fi, and radar. 
Figure 44 provides an illustration of the DSRC architecture, supported by a number of IEEE and 
SAE standards. The top layer, i.e., the Application Layer, concerns CV data and related 
applications. In particular, two SAE standards (J2735 and J2945.1) define the message 
sublayer of CV, which are the data items transmitted between vehicles and the surrounding 
environment (other vehicles, infrastructure, pedestrians, etc.). Safety and other applications can 
then be built on the CV data sets. For other communication technologies, the Application Layer, 
especially the message sublayer, remains the same. In the following, important CV message 
sets are introduced with some sample data provided. CV-related applications are be discussed. 
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Figure 44 Graph. Layered architecture of dedicated short-range communications (DSRC) [12] 

4.1.1 CV Data 
Table 5 lists all the messages (15 messages in total) defined in SAE J2735_201603 (i.e., the 
latest version of J2735) (Dedicated Short Range Communications (DSRC) Message Set 
Dictionary, 2016). Every message shown in Table 5 can provide data for one major application 
area in the CV system. Additionally, the combination of messages can provide more 
information. For example, Basic Safety Message (BSM) and Map Data provide vehicle status 
information and road network information separately. However, the combination of BSM and 
Map Data can offer services such as left-turn assistance. 

The table clearly shows that, in comparison to other “big data” from mobile devices (such as 
cellular data, GPS data, or app-based data), CV data provide much richer information about not 
only the location and speeds of individual vehicles (or other users such as pedestrians if V2X 
data are available), but also vehicle status (such as emissions), road maps, infrastructure data 
(such as signal timing), and hazards information, among others. As a result, a much wider range 
of applications can be supported by CV data, as presented in Section 4.1.2. More importantly, 
the data generation process of the CV data is much clearer and transparent to users than that of 
other big data sources, leading to a better understanding of the CV data. However, some of the 
important issues identified for big data (Section 3 of this report or the report by Chen et al. 
(2017)), such as representativeness of the underlying population, may also apply to CV data 
and thus need to be properly investigated and addressed. This will be especially true during the 
transition process of CV technology, when the penetration of CV-enabled vehicles will be low 
and which may take one or a few decades to complete (Lin, 2015). 
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In this subsection, to further show the detailed CV data set, two CV message sets, BSM and 
signal phase and timing (SPaT) data are presented. Some sample data are provided in the 
appendices. 

Table 5.Messages defined in SAE J2735_201603 (Dedicated Short Range Communications 
(DSRC) Message Set Dictionary, 2016) 

Message set 
Order # Message set Description 

1 Basic Safety 
Message (BSM) Exchange safety data regarding vehicle state 

2 Map Data (MAP) Convey many types of geo-road information 
3 SPaT Convey current status of one/more signalized intersections 

4 Common Safety 
Request (CSR) 

Provides a means: a veh participating in the exchange of BSM can 
unicast to other vehs for additional information 

5 Emergency Vehicle 
Alert (EVA) 

Broadcast emergency veh related warning message to surrounding 
vehs 

6 
Intersection Collision 
Avoidance (CICAS-
V) 

Limited to stop signs and traffic signal violations 

7 NMEA corrections Encapsulate NMEA 183 style differential corrections for GPS/GNSS 
radio navigation signals 

8 Probe Data 
Management (PDM) The type of data collected and sent by OBUs to the local RSU 

9 Probe Vehicle Data 
(PVD) 

Exchange status about a vehicle with other DSRC devices to allow 
the collection of information about typical vehicle traveling behaviors 
along a segment of road. 

10 Road Side Alert 
(RSA) Send alerts for nearby hazard to travelers 

11 RTCM corrections Encapsulate RTCM differential corrections for GPS and other radio 
navigation signals 

12 Signal Status 
Message (SSM) 

Relate the current status of the signal and the collection of 
pending/active preemption/priority requests acknowledged by the 
controller. 

13 Traveler Information 
(TIM) 

Send various types of information (advisory and road sign types) to 
equipped devices 

14 Personal Safety 
Message (PSM) 

Broadcast safety data regarding the kinematic state of various types 
of Vulnerable Road Users (VRU) 

15 Test Message Provide expandable messages for local and regional deployment 
use. 

Source: www.sae.org 

Basic Safety Message 

BSMs are transmitted between infrastructure and vehicles at high frequency (typically 10 Hz), 
which allows safety critical applications such as collision avoidance. Table 6 (Araniti et al., 2013) 
shows the data format of the core BSM defined in SAE J2735 with brief descriptions of each 
data element (the extension BSM (Xu et al., 2017) is a supplement of the core BSM, which will 
not be discussed in the report). Appendix A.4.1 shows the sample data of core BSMs collected 
by the University of Michigan’s Transportation Research Institute (UMTRI) in 2012. 
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Table 6. Data frame of core Basic Safety Message (BSM) (Wyoming CV Pilot Basic Safety 
Message One Day Sample) 

Field Name Units Description 

FileID None Reference number to locate the source of the data in its original 
file 

TxDevice None ID (number) of the device transmitting the BSM 

Gentime milliseconds 
A more secure form of Epoch time, which is influenced by 
1609.2 of the IEEE 1609 family of standards-related network 
management and security 

TxRandom None Randomly assigned ID to mask the device ID of the transmitting 
device for security purposes 

MsgCount None Message ID that gets incremented by one with each BSM 
DSecond Deciseconds Time in deciseconds since ignition started 
Latitude Degrees Current latitude of the vehicle 
Longitude Degrees Current longitude of the vehicle 
Elevation Meters Current elevation of the vehicle according to its GPS 
Speed m/sec Vehicle speed 
Heading Degrees Vehicle heading/direction 
Ax m/sec2 Longitudinal acceleration 
Ay m/sec2 Lateral acceleration 
Az m/sec2 “Vertical” acceleration 
Yawrate Deg/sec Vehicle yaw rate 

PathCount None 
Number, between 1 and 23, representing a group of points that 
communicate a vehicle’s position and motion. Each group of 
points is of non-uniform size. 

RadiusOfCurve Centimeter 

Estimation of the radius of a curve being negotiated, which is 
derived from a number of systems and sensors. Positive and 
negative values reflect right and left turns, respectively, and +/-
32767 for straight paths. 

Confidence Percent 

Signals the accuracy and non-steady state and steady state of 
curvature estimate. In steady state (straight roadways or curves 
with the constant radius of curvature), a high confidence value is 
reported. 

Source: data.transportation.gov 

Signal Phase and Timing Data 

A SPaT message is a bidirectional transmission message between infrastructure (traffic signals 
in this case) and vehicles. Traffic signals send this message to surrounding vehicles to inform 
them about the status of signal phasing and timing. Such information can help vehicles estimate 
travel times and select the most efficient routes. Meanwhile, vehicles can also send messages 
to nearby infrastructure (traffic signals in particular) to report their travel velocities and positions, 
which can assist a signal to detect traffic flow status within the neighborhood of the signal. As a 
result, signal systems can take actions on the basis of this given information to adjust their 
timing plan to improve the flow of traffic and reduce congestion. The data format of SPaT, 
defined in J2735_201603 (Dedicated Short Range Communications (DSRC) Message Set 
Dictionary, 2016), is shown in Table 7 (Araniti et al., 2013), with brief descriptions of each data 
element. Appendix A.4.2 provides some SPaT sample data. 
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Table 7. Data format of SPaT Messages 

Field Name Description 
Name Name of the intersection; to be used only in debugging 

ID 
A globally unique value set, consisting of a region ID and 
intersection ID assignment. Provides unique mapping to 
the intersection MAP in question, which provides complete 
location and approach/move/lane data 

Revision 
Status General status of the controllers 

Moy Minute of current UTC year, used only with messages to 
be archived 

Timestamp The mSec point in the current UTC minute that the 
message was constructed 

EnabledLanes 
A list of lanes where the Revocable bit has been set which 
are now active and therefore part of the current 
intersection 

States State name for the movements, to be used only in 
debugging 

ManeuverAssistList 

MovementName 

SignalGroup An index used to map the differences between the internal 
state machine of one or more signal controllers 

State-time-
speed Consisting of ets of movement data 

AssistList Flow or traffic for the lanes and maneuvers in question 

ConnectionID The common connectionID used by all lanes to which --
this data applies 

QueuelLength Unit = 1 meter, 0 = no queue 

WaitOnStop 
If "true", the vehicles on this specific connecting --
maneuver have to stop on the stop-line and not enter the 
collision area 

PedBicycleDetct True if ANY ped or bicycles are detected crossing -- the above lanes 
Source: Data.gov 

4.1.2 Applications 
In the last decade, a few dozen CV-related applications have been developed. In particular, the 
USDOT sponsored the CV Pilot Deployment Program that grouped the applications into six 
categories: Safety Applications (both V2I safety and V2V safety), Agency Data, Environmental 
Applications, Dynamic Mobility Applications, Road Weather, and Smart Roadside (Intelligent 
Transportation Systems - CV Pilot Deployment Program), as shown in Table 8. 
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Table 8. The applications selected by the USDOT to utilize in a CV Pilot Program 

V2I Safety Environment Mobility 
Red Light Violation Warning Eco-Approach and Departure Advanced Traveler Information 
(RLVW) at Signalized intersection System 

Curve Speed Warning Eco-Traffic Signal Timing Intelligent Traffic  Signal System (I-
SIG) 

Stop Sign Gap Assist Eco-Traffic Signal Priority Signal Priority (transit, freight) 
Spot Weather Impact 
Warning Connected Eco-Driving Mobile Accessible Pedestrian Signal 

System (PED_SIG) 

Reduced Speed/Work Zone 
Warning 

Wireless 
Inductive/Resonance 
Charging 

Emergency Vehicle Preemption 
(PREEMPT) 

Pedestrian in Signalized 
Crosswalk Eco-Lanes Management Dynamic Speed Harmonization (SPD-

HARM) 
Warning(Transit) Eco-Speed Harmonization Queue Warning (Q-WARN) 

V2V Safety Eco-cooperative Adaptive 
Cruise Control 

Cooperative Adaptive Cruise Control 
(CACC) 

Emergency Electronic Brake 
Lights (EEBL) Eco-Traveler Information Incident Scene Pre-Arrival Staging 

Forward Collision 
Warning(FCW) Eco-Ramp Metering Guidance for Emergency Responders 

(RESP-STG) 

Intersection Movement Assist LOW Emissions Zone 
Management 

Incident Scene Work Zone Alerts for 
Dryers and Workers (INC-ZONE) 

Left Turn Assist(LTA) AFV Charging/Fueling 
Information 

Emergency Communications and 
Evacuation (EVAC) 

Blind Spot/Lane Change 
Warning (BSW/LCW) ECO-Smart Parking Connection Protection (T-CONNECT) 

Do Not Pass Warning 
(DNPW) 

Dynamic Eco-Routing (light 
vehicle, transit, freight) Dynamic Transit operations (T-DISP) 

Vehicle Turning Right in Front 
of Bus Warning (Transit) 

ECO-ICM Decision Support 
System Dynamic Ridesharing (D-RIDE) 

Agency Data Road Weather Freight-Specific Dynamic Travel 
Probe-based Pavement 
Maintenance 

Motorist Advisories and 
Warnings (MAW) Planning and Performance 

Probe-enabled Traffic 
Monitoring Enhanced MDSS Drayage Optimization 

Vehicle Classification-based 
Traffic Studies 

Vehicle Data Translator 
(VDT) Smart Roadside 

CV-enabled Turning 
Movement & Intersection Weather Response Traffic Wireless Inspection 
Analysis 
CV-enabled Origin-
Destination Information (WxTINFO) Smart Truck Parking 

Work Zone Traveler 
Information 

Source: www.its.dot.gov 
Most of the applications in Table 8 have been tested in the real world (e.g., using CV testbeds) 
or in simulation studies, with their benefits and lessons learned summarized. The most 
noticeable study was probably the Safety Pilot Deployment Program by UMTRI, sponsored by 
the USDOT (Safety Pilot: Model Deployment). Both V2V and V2I applications were tested and 
demonstrated by the Safety Pilot Deployment Program. To illustrate, we briefly summarize two 
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V2V applications, including Intersection Movement Assistance (IMA) and Forward Collision 
Warning (FCW), and one V2I application on Red Light Violation Warning (RLVW). IMA is meant 
to warn a driver not to enter an intersection when high risks are detected by the sensors on 
his/her vehicle. For example, if a red light violation suddenly occurred at the intersection, the 
IMA feature would alert the driver of the danger via V2V communications. FCW is designed to 
detect risks and alert drivers to avoid possible collisions with front vehicles through appropriate 
actions. FCW warns drivers or takes automatic emergency actions when impending rear-end 
collisions are detected by the sensors from the rear vehicle. RLVW is a V2I application that 
enables a CV when it approaches a signalized intersection to receive information from the 
infrastructure regarding the geometry of the intersection and the signal timing. Along with the 
vehicle information of speed and acceleration, it is feasible to determine the likelihood with 
which the vehicle will run into a red light when it enters the intersection. If the violation seems 
highly likely to occur, then a warning can be provided to the driver (Red Light Violation 
Warning). 

To help resolve the specific safety, mobility, and environment issues of agencies, the US DOT 
ITS Joint Program Office introduced the basic steps for the selection and implementation of CV 
application (CV102: Participant Workbook Sept 2015). There are three main steps in general to 
select and implement a CV application, as illustrated in the figure below, which are also briefly 
explained in this report. 

Figure 45 Graph. Process to select applications 

Source: CV102: Participant Workbook Sept 2015 

Step 1: Identify Local Needs 

This step addresses the problems and challenges in the local transportation system that an 
agency manages. It could range from extreme weather condition, emission concerns for certain 
areas in the city, to heavy congestion on a corridor, or intersection safety. For instance, a road 
section with sharp turns might require CV applications to help reduce the probability of car 
accidents. 

Step 2: Set Performance Goals 

After needs and issues have been identified, the purpose of step 2 is to set measurable goals 
for quantifying the target improvement the agency aims to achieve. Below are some examples 
of performance goals. 

• Reduce crashes by 10 percent; injuries by 20 percent; and fatalities by 30 percent 

• Reduce pedestrian-vehicle conflicts by 50 percent 

• Ensure that transit vehicles are on schedule 90 percent of the time 
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• Increase peak period output by 8 percent 

• Reduce emissions by 20 percent 

• Reduce fuel costs associated with operating a transit fleet by 10 percent. 

For specific agencies and issues, some or all of the above performance goals may apply with 
proper modifications, or additional performance goals may need to be developed. 

Step 3: Select Applications 

Step 3 is to select a specific CV application or a combination of CV applications from the list in 
Table 5 to meet the performance goals identified in Step 2 for solving the issues identified in 
Step 1. The selection process analyzes the issues each CV application aims to address, 
compares them with the local issues identified in Step 1, and identifies/compares the benefits of 
the selected applications to determine whether the performance goals identified in Step 2 can 
be satisfied. This process is expected to be interactive with Step 1 and Step 2, and iterative, 
with possible revisions and refinements to the local needs in Step 1 and the performance goals 
in Step 2 before the selection of the set of CV applications can be finalized. 

4.2 Data from Automated Vehicles 
Wikipedia defines automation as “the technology by which a process or procedure is performed 
without human assistance.” Automated vehicles (AV) are one subcategory of automated 
technology, as “self-governing” vehicles can navigate themselves through inputs of information 
collected from their surrounding environments without any human assistance (Xu et al., 2017). 
However, because of current technological limitations, scientists cannot completely automate 
vehicles. To officially measure the degree of automation in vehicles, SAE published J3016 to 
standardize the levels of driving automation and specify the definition of each level 
(“J3016_201806,”), as shown in Table 9. NHSTA also defines similar levels of automation 
(Automated Vehicles for Safety, 2017). 
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Table 9. Levels of driving automation (NHSTA & SAE) 

Level 
(NHTSA/SAE) Name (SAE) Definition (NHTSA) Definition (SAE) 

0 No driving 
automation 

Zero autonomy; the driver 
performs all driving tasks 

The performance by the driver of the 
entire DDT, even when enhanced by 
active safety systems. 

1 Driver 
assistance 

Vehicle is controlled by the 
driver, but some driving assist 
features may be included in 
the vehicle design 

The sustained and ODD-specific 
execution by a driving automation 
system of either the lateral or the 
longitudinal vehicle motion control 
subtask of the DDT (but not both 
simultaneously) with the expectation 
that the driver performs the 
remainder of the DDT 

2 
Partial 
driving 
automation 

Vehicle has combined 
automated functions, like 
acceleration and steering, but 
the driver must remain 
engaged with the driving task 
and monitor the environment 
at all times 

The sustained and ODD-specific 
execution by a driving automation 
system of both the lateral and 
longitudinal vehicle motion control 
subtasks of the DDT with the 
expectation that the driver completes 
the OEDR subtask and supervises 
the driving automation system. 

3 
Conditional 
driving 
automation 

Driver is a necessity, but is not 
required to monitor the 
environment. The driver must 
be ready to take control of the 
vehicle at all times with notice. 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT with the expectation that the 
DDT fallback-ready user is receptive 
to ADS-issued requests to intervene, 
as well as to DDT performance 
relevant system failures in other 
vehicle systems, and will respond 
appropriately. 

4 High driving 
automation 

The vehicle is capable of 
performing all driving functions 
under certain conditions. The 
driver may have the option to 
control the vehicle. 

The sustained and ODD-specific 
performance by an ADS of the entire 
DDT and DDT fallback without any 
expectation that a user will respond 
to a request to intervene. 

5 Full driving 
Automation 

The vehicle is capable of 
performing all driving functions 
under all conditions. The 
driver may have the option to 
control the vehicle. 

The sustained and unconditional 
(i.e., not ODD specific) performance 
by an ADS of the entire DDT and 
DDT fallback without any expectation 
that a user will respond to a request 
to intervene. 

Source: www.sae.org 

Presently, the technologies for AVs are under rapid development. Many industry leaders such 
as Google (Waymo), Uber, Tesla, GM, and Ford are working on AV technologies, testing, and 
user cases. They are collecting huge amounts of data, which are however rarely shared with 
researchers or the public. Furthermore, different from CV data, no data standards have been 
developed for AV data. A current project, “IEEE Standard: WG2040 - Standard for Connected, 
Automated and Intelligent Vehicles: Overview and Architecture Working Group” (Campolo and 
Molinaro, 2013), may touch on AV data standards issues. Before such standards are officially 
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released, one might expect that AV data may be similar to CV data as discussed above 
(possibly with additional data such as Lidar data and video data); if this is the case, then the AV-
related applications and potential issues may also be similar to those of CV data. However, 
such expectations can only be proved true (or wrong) when official AV data standards and 
applications are released. 

The only data set that is currently available for AVs is the AV-related accident database, which 
is released as requested by government agencies for safety reasons. For example, some AV 
accident data are publicly available as requested by Caltrans (California Department of 
Transportation) (Report of Traffic Collision Involving an Autonomous Vehicle (OL 316) ). Table 
10 shows the main data fields used when describing accidents involving AVs (Lee and Lim, 
2012). A.4.3 in Appendix A.4 shows a sample of the accident data from one accident report. 

Table 10. Autonomous vehicle accident data format [8] 

Variables Description 
Time Accurate time of the accident happened 
Date The date when the accident happened 
Brand The brand of the vehicle 
Location The location where the accident happened 
Speed The velocity of the vehicle when the accident happened 
Accident Type The type of accident 
Police Called Whether the vehicle called the police 
Injured Injuries from the accident 
Responsibility Was the accident caused by human interaction 
State The State to which the testbed belong 
Note Some notes for the accident 
Source: Lee and Lim, 2012 

4.3 Data from New Shared Mobility Services 
This section summarizes some of the currently available data sources related to new shared 
mobility services, including data from ridesourcing and bike-sharing. The summary here does 
not mean to be exhaustive but provides some examples with formats and samples of the 
available data sets from these services. 

First, the term of shared mobility, which can be traced back to the 1990s in North America, 
includes various forms of bike-sharing, carsharing, ridesharing (carpooling and vanpooling), and 
ridesourcing services. It is known as an innovative transportation strategy for users to have 
short-term access to transportation services as needed (Shared Mobility: Current Practices and 
Guiding Principles). The emerging forms of these services (i.e., new shared mobility services) 
are featured in app-based platforms, matching users and services to satisfy “on-demand” 
requests (e.g., the use of bikes or cars or ride services). In practice, there are several other 
terminologies defined for ridesourcing—the use of a platform to “source” rides from a driver pool 
(Shaheen et al., 2017)—such as transportation network company (TNC), e-hailing, ridehailing, 
e-booking, etc. To avoid confusion, in this report, the term “ridesourcing” is used, which is also 
recommended by the recent SAE standards on emerging shared mobility services (Shared and 
Digital Mobility Committee, 2018). 
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There is also some confusion regarding the differences between ridesourcing and ridesharing. 
Conceptually, ridesourcing is distinct from ridesharing. Ridesharing indicates that drivers are 
travelers who share similar origins/destinations with their riders for a common purpose of 
conserving resources, saving money, or saving time. Ridesourcing, on the other hand, is a for-
hire commercial service and operates much like taxi services. 

The use of app-based platforms help generate massive data sets related to new shared mobility 
services, including at least two types: those related to the requests of services (also called 
“order data”) and those related to the locations and movements of service vehicles or bikes 
(also called “trajectory data”). Because of the privacy concerns of users/drivers and the 
protection of their competitive advantages, new shared mobility providers have not been very 
enthusiastic about sharing their data. Therefore, available shared mobility data are quite limited 
at the current stage. In the following, we summarize the available data as those provided 
directly by the service providers (e.g., Uber, Lyft, Didi) and those via public data sharing 
platforms (e.g., Kaggle, GitHub). 

4.3.1 Lyft Data 
Instead of building a user interface for data sharing, Lyft established an application 
programming interface (API) for users so that they can request and receive Lyft data, including 
the operation area, geographic information (latitude and longitude), and the possible time 
durations for a selected trip (shown as Figure 46).To successfully operate Lyft API, users need 
to acquire a key by signing into the Lyft Developer platform and are also required to have basic 
programming capabilities (e.g., Java Script, Python). 

To request data from Lyft API, users need to provide a csv file with needed information (e.g., 
pick-up locations, origins and destination) to the API and to develop a script to obtain the data 
they need. For instance, to request data for pick-up locations, including ride type, pick-up time 
estimate and nearby drivers, the input should be the latitude and longitude of the pick-up 
location. 

Figure 46. Lyft API 

Source: https://developer.lyft.com/ 
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4.3.2 Uber Data 
In contrast, with consistent feedback from cities to use aggregated data for urban planners, 
Uber launched Uber Movement in 2017. Regarded as a planning tool, the initial goal of Uber 
Movement is to share historical traffic flow data (anonymized) for urban design to increase the 
efficiency of urban traffic. The data covered several cities across the world, including North 
America, Central and South America, Europe, Africa, Asia, Australia and New Zealand (e.g., 
Seattle, Bogota, London, Nairobi Mumbai, Sydney, Taipei, etc.). The user interface is similar to 
Figure 47. 

Figure 47. Uber Movement user interface 

Source: https://movement.uber.com/ 

There are three main types of data sets in general from Uber Movement for users to download: 
FILTERED DATA, ALL DATA, and GEO BOUNDARIES (Uber Movement: Let’s find smarter 
ways forward). 

To request the FILTERED DATA, as the name implies, a user needs to indicate where and 
when the data they would like to request by selecting the city, zone type (census tracts, traffic 
analysis zones), the date-time range (covering day of week: from Monday to Sunday, and time 
of day: daily average, AM peak, midday, PM peak, evening and early morning), and the origin 
and destination. 

When the selection step has been completed, three data sets can be downloaded (sample data 
are shown in Appendix A.5.1): 
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1) Origin to all destinations: The data set includes the aggregated mean and range of travel 
time from the starting zone to all other zones. 

2) Daily time series: Based upon the selected origin zone and destination zone, the data 
set covers means and ranges of travel times for: all day, AM peak, midday, PM peak, 
evening and early morning. 

3) Chart data: On the basis of the selected origin zone and destination zone, the data set 
includes aggregated mean and range of travel times for ‘day of week’ and ‘time of day’. 

The ALL DATA category covers the arithmetic mean, geometric mean, and standard deviations 
for aggregated travel times over the selected data-range between each OD zone pair in the city. 
As of recently, the data can be downloaded from the first quarter in 2016 to the first quarter in 
2018. The following data set files will be generated: 

● Hourly Aggregate (all days) 
● Hourly Aggregate (weekdays only) 

● Hourly Aggregate (weekends only) 

● Weekly Aggregate 
● Monthly Aggregate (all days) 

● Monthly Aggregate (weekdays only) 

● Monthly Aggregate (weekends only). 
The data formats for all the data files are very similar, as shown in Table 11 (Data Sample 
displayed in Appendix A.5.2). 

Table 11. Data format 

Field Type Description 
sourceid String Origin zone ID 
dsid String Destination zone ID 

month/hod Number Month of a year/Hours of 
a day 

mean_travel_time Seconds (Arithmetic) Mean travel 
time 

standard_deviation_travel_time Seconds (Arithmetic) Standard 
deviation of travel time 

geometric_mean_travel_time Seconds Geometric mean travel 
time 

geometric_standard_deviation_of 
_travel_time Seconds Geometric standard 

deviation of travel time 
Source: movement.uber.com 

For GEO BOUNDARIES, a file with JavaScript Object Notation (JSON) format (JSON File), 
including geometric boundaries information for tract zones (with ID number addressed for each 
zone), is provided. The data can be viewed in GIS software packages (e.g., ArcGIS, QGIS). 
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It is clear that the data currently from Uber Movement are aggregated at the TAZ or census tract 
level to provide information of travel times and total demand, while individual order or trajectory 
data are not included. Such data would be useful for certain urban planning applications that do 
not require detailed individual information. 

4.3.3 DiDi Data 
DiDi Chuxing is a China-based ridesourcing service provider (Homepage - DiDi official website). 
The GAIA Initiative (The Gaia Initiative) is the data sharing platform for DiDi, which aims to 
advance transportation research and promote the application of scientific research, and to 
strengthen the ties among industry, government agencies, and university researchers. Unlike 
Uber data, which require no application for users to obtain access for data, DiDi data are only 
accessible for academic research and require an application for access. 

Currently, four data sets are available on the GAIA website, which are from two major cities in 
China: Xi’an and Chengdu during the month October and November 2016. Generally, there are 
two types of data from the GAIA Initiative for each city: route (trajectory) data and ride request 
(order) data. The trajectory data format is shown in Table 12 (sample data are provided in Table 
20 of DiDi Data in the appendices). The measurement interval of the track points is about 2 to 4 
seconds. 

Table 12. Data format (Trajectory Data) 

Field Type Comment 
Driver ID String Anonymized 
Order ID String Anonymized 
Time Stamp String Unix timestamp, in seconds 
Longitude String GCJ-02 Coordinate System 
Latitude String GCJ-02 Coordinate System 
Note: The origin-destination data of the mentioned area are insignificant in comparison to the data of the 
whole city. In addition, they fail to reflect city-wide supply and demand. 
Source: outreach.didichuxing.com 

The format of Didi’s order data is shown in Table 13. In comparison to the trajectory data, the 
order data are only accessible for the city of Chengdu for November 2016. The data cover the 
GPS information (latitude and longitude) of pick-up and drop-off locations, order IDs, and ride 
start/end times. The sample data can be viewed in Table 21 in the appendices. 

Table 13.Data format (Order Data) 

Field Type Comment 
Order ID String Anonymized 
Ride Start Time String Unix timestamp, in seconds 
Ride Stop Time String Unix timestamp, in seconds 
Pick-up Longitude String GCJ-02 Coordinate System 
Pick-up Latitude String GCJ-02 Coordinate System 
Drop-off Longitude String GCJ-02 Coordinate System 
Drop-off Latitude String GCJ-02 Coordinate System 

Source: outreach.didichuxing.com 
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4.3.4 Public Open Data Sets 

Kaggle Data 
Known as the ‘AirBnB’ for data scientists, Kaggle is the largest community of data scientists 
and machine learners around the world, offering a crowd-sourced platform for data training, 
challenge, and competition. Ridesourcing and bike-sharing are the two main categories of 
shared mobility data that can be found in Kaggle. There are also ridesourcing data for Lyft and 
Uber services; however, only origins (with timestamps and GPS information) for each trip are 
provided, which appears to be more limited than what Uber and Lyft provide directly and 
therefore are not discussed in this report. 

Various data resources for bike-sharing can be found in Kaggle. This project selected bike-
sharing data as an example to show the data format Kaggle provides. The data source selected 
here was the Capital Bikeshare program in Washington, D.C. The format of the chosen data set 
in Kaggle is shown below, with the sample data displayed in Appendix A.5.4. 

Table 14. Data format (Bike Sharing Demand | Kaggle) 

Type Comment 
datetime String Hourly date + timestamp 

season Number 1 = spring, 2= summer, 3 = fall, 
4 = winter 

workingday String Whether the day is neither a 
weekend nor holiday 

weather String 

1: clear, few clouds, partly 
cloudy 
2: mist + cloudy, mist + broken 
clouds, mist + few clouds, mist 
3: light snow, light rain + 
thunderstorm clouds, light rain + 
scattered clouds 
4: heavy rain + ice pallets + 
thunderstorm + mist, snow + fog 

temp Number Temperature in Celsius 

atemp Number ‘feels like’ temperature in 
Celsius 

humidity Number Relative humidity 
womdspeed Number Wind speed 

count Number Number of non-registered user 
rentals initiated 

registered Number Number of registered user 
rentals initiated 

count Number Number of total rentals 
Source: www.kaggle.com 

GitHub Data 
GitHub (Intro of GitHub) is known as a website and cloud-based service assisting developers in 
storing and managing their code, as well as tracking and controlling changes, with version 
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control as a connected principle. GitHub has a summarized, currently available bike-sharing 
data set as well. As the format of the bike-sharing data provided in GitHub is very similar to that 
in Kaggle, details of the data format and sample data are not listed here. Bike-sharing data from 
eleven different countries around the world, including the U.S. and Australia, are available from 
GitHub (Bike sharing, 2018). 

4.3.5 Applications 
With the emergence and rapid development of new shared mobility services, numerous data 
have been generated, bringing tremendous potential to many areas, including transportation 
applications. This section briefly summarizes a few examples of how new shared mobility data 
can be applied to transportation applications. 

First, the data from shared mobility can help transportation researchers and policy makers to 
better explore and understand urban travel/traffic patterns. The increasing availability of data in 
urban traffic networks will increase the possibility to examine traffic flow patterns on a large-
scale roadway network, as well as to observe the evolution of regional travel patterns through 
data mining (Ma et al., 2015). For example, Alexander and González (2018) assessed the 
impact of ride-sharing on city-wide congestion using the mobile data by extracting average daily 
OD trips from mobile phone records and estimating the proportion of the non-auto and auto 
travelers among the trips. Altshuler et al (2017) proposed a dynamic travel network approach for 
modeling and estimating potential ridesharing utilization over time. They concluded that the 
significant volatility of the utilization of ridesharing over time indicated the reliability of estimating 
the impacts of ride-sharing with dynamic network analysis. Li et al. (2017) conducted a 
different-in-different analysis to explore the impact of Uber on urban congestion. There is no 
doubt that applying ‘big data’ from shared mobility to explore and understand larger-scale traffic 
network patterns (e.g., city-wide congestion patterns) has the potential to initiate a revolution in 
urban mobility planning. 

Second, instead of using data to reveal traffic network flow and travel patterns, with diverse 
shared mobility appearing in daily transportation, some scholars have begun research to obtain 
a deeper understanding of travel and choice behavior in terms of ridesoursing, bikesharing, etc. 
Shaheen et al, compared the variance in usage patterns between ridesourcing and taxis and 
found that younger users were inclined to choose ride-sourcing. Shaheen et al. (2016) used 
survey data to examine the motivation and behavior of casual carpoolers in San Francisco to 
understand how user characteristics (e.g., demographic information, users’ attitudes toward 
carpooling services) affected their choices in comparison to taxis. Zhang et al. (2018) applied 5-
months of trip data from bike-sharing users in Zhongshan, China, to understand their travel 
behaviors. They identified that most bike trips are part of a trip chain of multiple trips. With a 
sound understanding of travel behavior in choosing shared mobility options, a more 
comprehensive view can be obtained for urban planners and designers to develop more 
efficient multimodal transportation network systems, including transit and new shared mobility 
modes. 

Third, traffic signal control, which has mainly relied on manually collected data from traffic 
counts and/or sensor data from infrastructures (e.g., video cameras, loop detectors, radar 
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detectors), may have the ability to be revolutionized by the large amount of shared mobility data. 
For example, DiDi Chuxing, the largest ridesourcing service provider in China, has been 
working on ways to use transportation big data analytics and artificial intelligence (3 ways Didi’s 
big data is improving China’s traffic · TechNode, 2017) to solve global transportation and urban 
and environmental challenges. One of their focus areas is to optimize urban traffic signals by 
using ridesourcing data, especially the trajectory data from ridesourcing vehicles. Different from 
conventional detector data, trajectory data from ridesourcing vehicles serve as a low-cost, 
continuous, and reliable data source, which can help greatly improve conventional, detector-
based signal control methods (Zheng et al., 2018). Over the last two years, their trajectory-
based traffic signal control and optimization algorithms have been applied to hundreds of 
signalized intersections in a number of Chinese cities, leading to reduced congestion and 
improved travel  times (Didi Chuxing CTO Keynotes Symposium). Such trajectory-based traffic 
signal timing optimization methods can also be co-developed with connected/automated 
vehicles (Li and Ban, 2018) to help build a more intelligent, efficient, and sustainable 
transportation system. 

Fourth, apart from just addressing traffic mobility issues, shared mobility data can also be 
applied to improve roadway safety. For instance, the SIN (safety in numbers), mentioned by 
Jacobsen (2003), explored correlations among collision accidents with walkers and cyclists. 
Such research results can be combined with bikesharing and ridesharing data to explore their 
impacts on road safety. For example, Fishman and Schepers (2016) examined the influence of 
bikesharing programs on cycling safety with a combination of injury data, ridership data, and 
crash data. They concluded that bikesharing users are associated with fewer bicycle crashes 
(fatal/injury) than are private riding cyclists (using their own bikes). Morrison et al (2018) 
explored the correlation between ridesharing and motor vehicle crashes by using time-series 
analysis in four U.S. cities (Portland, Las Vegas, Reno, and San Antonio), considering time-
sequential impacts from the usage of Uber and Lyft. They found that ridesharing may increase 
the total number of crashes; however, it may also reduce vehicle accidents due to drunk driving. 

In summary, data from new shared mobility services will be helpful and useful for understanding 
the traffic/travel patterns of road networks and travel behaviors, and for improving traffic control 
and traffic safety. With more research efforts conducted using data from new shared mobility 
services, a more comprehensive view and understanding of the transportation system can be 
produced, which will help establish a more efficient, intelligent, and sustainable transportation 
ecosystem. 
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5.0 Development of A Data Fusion Framework 
The analysis results of the app-based data in this report, as well as the results based on mobile 
phone data and GPS data in the team’s previous research (Chen et al., 2017), clearly 
demonstrate that big data, despite their great value for travel pattern analysis, do have their own 
issues, most noticeably uncertainty in the data generation process and related 
representativeness issues with respect to the underlying population. Indeed, both big data and 
small data have their unique characteristics, and therefore advantages and limitations, as 
summarized in Table 4 and briefly discussed in the last section. Table 15 presents more details 
about the characteristics of various types of big data and small data, further illustrating the 
values and pros/cons of different data sources. 

More importantly, different datasets may complement each other. For example, small data (such 
as travel surveys) are often static (i.e., collected once a few years), whereas big data are mostly 
dynamic (able to be collected almost continuously); most big data show just traces of devices 
(or people), whereas small data often contain much richer information (such as the 
demographics of the underlying population). Therefore, it would be more beneficial to properly 
integrate big data and small data from different sources to create data with better quality (e.g., 
to alleviate bias issues). At the same time, different types of data may also have commonalities 
that can serve as the basis to link data sets for data fusion. Figure 48 shows the commonalities 
and differences among big data, small data (travel surveys in particular), and traditional flow 
data (e.g., from loop detectors). The figure shows the general relationships among different 
categories of data, while more specific commonalities and differences should be identified when 
actual data sets are encountered. 

Big Data 

SES, Attributes, 
detailed trip-level 
characteristics 

Common variables 
- Home 
- Work 
- Travel patterns 
- BE 

Common measures 
- Observed flow / usage of 
facilities 
- Travel times 
- Other flow measures 

Continuous/Longitudinal 
travel patterns 

Total flow / usage 
of facilities 

Traditional traffic flow data 

Household Survey
(small data) 

Figure 48 Graph. Integration of big data and small data 
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Table 15. Characteristics of different data sets 

Datasets Level Variables Modes Properties Types 

Locations SES Trip/ 
activity BE Locational 

accuracy 
Temporal 
patterns 

Small 
data: HHS 

Person-
level Yes Yes Yes Yes All N/A N/A 

Cross-
sectional/ 
panel 

Big data: 
mobile 
phone 

Person-
level Yes No No No All Coarse Sparse Continuous 

Big data: 
app-based 

Person-
level Yes No No No All 

Mixed 
(coarse and 

fine-
grained) 

Less 
sparse, 
clustered 
on 

roadways 

Continuous 

Big data: 
probe 
vehicle 

Vehicle-
level Yes No No No Vehicle 

only 
Fine-
grained Dense Continuous 

Big data: 
CAVs 

Vehicle-
level Yes No No No Vehicle 

only 
Fine-
grained Dense Continuous 

Traditional 
flow data 

Aggr. 
level Yes No No No All Mixed Dense Continuous 
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In this section, a preliminary data fusion framework is proposed to combine big data and small 
data. The proposed framework is preliminary because it contains only the goal, objectives, basic 
principles, and important considerations for data fusion. Ways to develop more specific data 
fusion methods will requires more in-depth investigation, which will be left for future research. 

5.1 Goal and Objectives of Data Fusion 
The main goal of data fusion is to produce better quality data and/or more complete data for 
given transportation planning or operational applications. Specific objectives of data fusion may 
be as follows:  

• Improved data quality: Data from a single source may be subject to errors and/or biases, 
which can often be corrected or alleviated by merging data from multiple sources. 

• Filling data gaps: Single-sourced data often have limited spatial coverage or observation 
periods (e.g., travel surveys conducted only for a few months), or the collected data are 
restricted for certain populations (e.g., vehicular GPS data are only for vehicles, while 
transit smart card data are only for transit users). Combining data from multiple sources 
can help provide data with more complete coverage (spatially, temporarily, or the user 
population). 

• Validation: Data from different sources can help validate each other. This is particularly 
so when “ground truth” data are not available or are difficult to obtain. For example, 
travel surveys may be used to validate the trip-related analysis results from app-based 
data, as illustrated in Section 3. 

• Analysis: Data fusion may help analysts better understand and interpret analysis results 
(given a lack of ground-truth data). 

5.2 Principles of Developing Data Fusion Methods 
There are a few considerations in developing data fusion methods. First, data fusion method 
should be developed on the basis of the target application. There is rarely a pure data fusion 
method without considering any application, since the purpose of data fusion is to provide better 
data for certain application. This application-centric view is important since in some cases, it is 
possible that a simple combination of the datasets from different sources may be sufficient (e.g., 
by providing data for different aspects of the problem), in which case a rigorous data fusion 
method (as we propose here) may not be necessary. 

Second, according to the specific application, key performance measures should be defined to 
assess the performance/success of the application. For example, travel time and reliability may 
be used for a tolling project of a key urban corridor, while the percentage of single occupancy 
vehicle (SOV) travelers may be used for a project of adding a new transit line. 

Third, proper data quality metrics should also be defined to help quantify the quality of each 
data source. The metrics may be defined to measure the data quality in terms of accuracy, 
timeliness, spatial/temporal coverage, representativeness, etc. Depending on the objectives and 
performance measures of the specific application, different data quality metrics may need to be 
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defined for the same data source. The application, performance measures, and data quality 
metrics can together establish certain data standards that can help assess the data needs of the 
given application and its associated data requirement. 

The fourth step is to analyze the properties of each data source (especially emerging big data 
sources) to have an in-depth understanding of the properties of the data, their pros and cons, 
and the quality of the data based on the defined data quality metrics. For example, for regional 
travel pattern analysis using big data, one may apply the analysis framework in Section 3 to 
analyze the properties of each big data source. This step is critical to develop proper data fusion 
methods that can leverage the advantages of all data sources, while at the same time 
controlling their limitations to acceptable levels. 

Furthermore, the following aspects may also be useful when data fusion methods are 
developed: 

• Understanding use profiles, such as where people live and work and where they come 
and go, can be extremely important for some applications. 

• To address bias issues, synthetic data may be helpful (Rodriguez et al., 2018), and in 
certain cases, more rigorous bias modeling and correction methods (Zagheni and 
Weber, 2015) need to be developed to address data biases more effectively 

• Validation of the data fusion methods is important. For this, ground truth data (or 
benchmark data if ground truth data are not available) are crucial for validation 
purposes. Here benchmark data can be understood as data sources that are known to 
have relatively higher quality in certain aspect (e.g., location accuracy, 
representativeness, etc.). 

• The field of transportation has been extensively studied in the past, resulting in well-
established theories and models (collectively referred to as “transportation knowledge” in 
this report). Data, big or small, are not expected to fundamentally change most of such 
knowledge; rather they should reflect the knowledge (or help reveal new knowledge in 
certain cases). Data fusion methods therefore should adequately consider both data and 
proper knowledge of the application. On the one hand, to deal with massive, often 
heterogeneous data sources, data-driven methods are crucial, including machine 
learning algorithms and especially recent deep learning based methods. On the other 
hand, to respect established knowledge in transportation, suitable models may also 
need to be integrated with data driven methods. Such data-driven, model-based 
methods can be important alternatives for developing transportation data fusion methods 
in the future. 

• Ultimately, data fusion is just one way to address data related issues and to improve 
data quality. It is certainly not the only way, and in some cases, may not even be the 
best way. Therefore, understanding the data and application is of paramount 
importance to whether and how to develop data fusion methods. 
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Appendixes 

A.1 Appendix A—Extracting Trips from the App-based Data 
We develop a ‘Divide, Conquer and Integrate’ (DCI) framework to extract trips from app-based 
data. In this appendix, we describe three steps of the DCI framework to extract trips from the 
app-based data: (1) Partition the data into data sets each of which contains smaller variance in 
spatiotemporal properties; (2) Extract trips from each data set independently by applying 
methods in accordance with the characteristics of the data set; (3) Combine trips extracted from 
all data sets by designing and applying a novel algorithm. 

A.1.1 Partition data into low-variance sets 
A stay is usually identified if the device does not move (e.g., more than 5 meters for GPS data 
and 1000 meters for cellular data) in a certain amount of time (e.g., 5 minutes).  However, the 
variations embedded in a multi-sourced data suggest the definition of stays shall be variable as 
well: given the bimodal distribution of location accuracy in the app-based data, there exists no 
universal spatial constraint to define a stay. This can be illustrated in Figure 49, where one 
individual visited three places (l0, l1 and l2). Observations recorded at l2 have worse location 
accuracy than those at l0 and l1 and therefore appear dispersed in space. To identify the stay at 
l2, one may want to define a stay as the device does not move farther than R1 within, for 
example, 5 minutes. However, if the same definition is applied to l0 and l1, the two stays could 
be mistaken as one when R1>2R0. 

Figure 49. Graph. Illustration of variable definitions for stay identification 

The data is partitioned such that each partition has small variance, based on which methods 
can be developed and applied to each data set. We observe that the app-based data is 
dominated by observations of high location accuracy, which appears similar to the GPS data 
and could be handled by a GPS-data-based method. Therefore, we partition the app-based data 
into two sets: one set contains observations with location accuracy no worse than a threshold p 
and the other set takes the remaining observations. In our study, we use p=100 meters which 
follows the distribution of location accuracy. 

A.1.2 Extract trips from each data set independently 
The partition step results in two data sets. The first one is similar to GPS data that can be 
processed using GPS-data-based methods. The second one contains observations with 
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location accuracy distributing around 1000 meters, which resembles cellular data. This 
observation is consistent with the data generation process, where cellular towers were used to 
locate a device when other technologies were not available. We thus propose to address the 
second data set using methods that are developed for cellular data. For clarity, hereafter, we 
refer to the first data set as the “GPS data set” and the second one as the “cellular data set”. In 
the following sections, the two data sets are processed independently to extract trips. 

Extract trips from the GPS set 

A commonly-used trace-segmentation method (Hariharan and Toyama, 2004; Ye et al., 2009) is 
applied to extract stays from the GPS set. For each trajectory of one user {d1(t1; lng1, lat1), 
d2(t2; lng2, lat2), …, di(ti; lngi, lati)} (t1 ≤ t2<…≤ ti), we extract stays by scanning through the 
trajectory and segmenting it into multiple sequences of observations with two parameters: signal 
roaming distance ∆𝑙𝑙𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟 and the stay duration ∆𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎 . A stay is extracted as a sequence of 
observations {dm(tm; lngm, latm), dm+1(tm+1; lngm+1, latm+1), …, dn(tn; lngn, latn)} (t1 ≤ tm≤ 

tm+1<…< tn≤ ti) satisfying both parameters: the distance between any two observations in the 
sequence should be shorter than ∆𝑙𝑙𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟 and the duration (i.e. the time difference between the 
last and the first observation of this sequence tn – tm) must be no less than ∆𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎 . This can be 
achieved by following the algorithm proposed in (Hariharan and Toyama, 2004). In our study, 
we use 200 meters and five minutes as ∆𝑙𝑙𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟 and ∆𝑡𝑡𝑑𝑑𝑑𝑑𝑎𝑎 , respectively. This five-minute 
threshold follows the rule used in many household travel surveys to define what counts an 
activity (Transportation Research Board, 2005) and is used as an appropriate threshold for an 
activity location in the activity based modeling context (Yin et al., 2017). ∆𝑙𝑙𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟 is set as 200 
meters such that a displacement of 200 meters in five minutes corresponds to half of average 
walking speed 0.7 m/s, which is commonly used to distinguish between a stay and a movement 
(Bernardin, 2017). We replace locations in the sequence with their centroid (lngc, latc). Then, a 
sequence of observations representing a stay is simplified as sc(tm, tm+1, …, tn; lngc, latc). 

We notice that stays representing multiple visits at a single place (e.g., one building) at different 
time are essentially unique in the form of longitude and latitude coordinates (Figure 50b). This 
prevents analyzing travelers’ mobility patterns such as regular returns to certain places (e.g., 
home, workplaces). Therefore, after the stay identification, we find those common stays that 
represent multiple visits to a single place. We achieve this by ignoring the temporal scale of 
stays and aggregating those close in space via an agglomerative clustering algorithm (Jiang et 
al., 2013). Specifically, we put together all stays identified in one user’s trajectories, aggregate 
those close in space into one cluster and replace locations of those stays (i.e. their centroids) 
with the centroid of the cluster (Figure 50c). Then, a stay sc(tm, tm+1, …, tn; lngc, latc) is modified 
as scc(tm, tm+1, …, tn; lngcc, latcc; rcc), where the location (lngcc, latcc) is the centroid of the cluster 
where sc belongs. And rcc records the radii of the cluster (the longest distance from the centroid 
to any stays in the cluster) as the locational uncertainty of scc. The data structure scc(tm, tm+1, …, 
tn; lngcc, latcc; rcc)will be useful in the last step of our DCI framework. In the study, we apply the 
agglomerative clustering starting from each stay as individual cluster and set 200 meters (the 
same as the previous definition of roaming distance ∆𝑙𝑙𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟) as the criterion to stop the 
algorithm. Figure 50 illustrates the process identifying stays from the GPS data set, where one 
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common stay visited on two days, which is identified by aggregating two stays that are found in 
two trajectories. 

Figure 50. Illustration. Illustration of identifying stays from the GPS data set. (a) Raw GPS 
trajectories of two days; (b) Processed trajectories with identified stays; (c) Processed 

trajectories with a common stay being identified. 

Source: Google Map 

Extract trips from the cellular set 

Given the low location accuracy and sampling frequency of the cellular data set, the trace-
segmentation method that is designed for GPS data is not suitable. A framework developed by 
Wang and Chen (2018) for cellular data is applied in the study. The framework addresses the 
locational uncertainty and temporal sparsity of the cellular data with a revised incremental 
clustering method, which takes advantage of the longitudinal nature of the data. Following the 
method, we put together all cellular observations belonging to one user as a list d and the list is 
clustered without regarding their time ordering: 

1) starting from an observation d0, one new cluster C0 is created and d0 is the center; 
2) each observation that has not been clustered will be checked and the one within a 

distance Rc to the center of C0 is clustered into C0 and the center of C0 is 
correspondingly updated; 

3) if no observation could be aggregated in the current cluster, one new cluster is created 
containing a non-clustered observation. 

This procedure repeats itself until all observations in d are clustered. This clustering returns a 
set of clusters, each of which contains observations that are close in space. Then, we come 
back to the time-ordered trajectories where temporal information is used such that a stay is 
identified as a sequence of observations within the same cluster and with duration exceeds a 
given threshold Tc (set as five minutes following the one for GPS data). Similarly, a stay is 
represented by sk(ti, ti+1, …, tj; lngc, latc; rc), where (lngc, latc) and rc are the centroid and the 
radii of the cluster containing the sequence of observations, respectively. Through aggregating 
observations that are close in space but may be far away in time (e.g., several days), this 
method is able to identify common stays visited on multiple days. The spatial constraint Rc in 
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the algorithm is set as 1000 meters following the data characteristic observed in Figure 4, which 
is also used in previous studies on cellular data (Wang and Chen, 2018; Widhalm et al., 2015). 

A.1.3 Integrating trips extracted from all data sets 
We design an algorithm to integrate trips from the two data sets by referring to concepts of 
space-time relationships analyses in Geographic Information System(GIS) (Longley et al., 
2005). Each data set is treat as a layer and identified stays as features in the layer. The time 
and location information (i.e. centroid and radius) of each stay act as the temporal and spatial 
attributes, respectively. Then, features (i.e., stays) from multiple layers (i.e., data sets) are 
combined by measuring their spatiotemporal relationship based on their temporal and spatial 
attributes. 

For the app-based data, we use the predominant GPS data set as the basis. Then, for each of 
the cellular stay, we check its relationship with the processed GPS trajectory (observations of 
the same user on the same day), and decide how to combine it into the GPS trajectory. In the 
following, we define the temporal and spatial relationship, respectively. 

The temporal relationship is defined in three categories: 

1) Temporally separate: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra) and time-
ordered GPS stays {…, b(tb1, tb2, …, tbj; lngb, latb; rb), c(tc1, tc2, …, tck; lngc, latc; rc), …} 
that are neighbors of a in time, we say a is temporally separate with GPS stays if 𝑡𝑡𝑎𝑎1 > 
𝑡𝑡𝑎𝑎𝑏𝑏 and 𝑡𝑡𝑎𝑎𝑖𝑖 < 𝑡𝑡𝑐𝑐1 (Figure 51a). 

2) Temporally contained: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra), if there exists 
a GPS stay b(tb1, tb2, …, tbj; lngb, latb; rb) such that 𝑡𝑡𝑎𝑎1 < 𝑡𝑡𝑎𝑎1 < 𝑡𝑡𝑎𝑎𝑖𝑖 < 𝑡𝑡𝑎𝑎𝑏𝑏 , we say a is 
temporally contained in b (Figure 51b). 

3) Temporally intersected: given a cellular stay a(ta1, t a2, …, tai; lnga, lata; ra), if it satisfies 
neither 1) nor 2), we say a is temporally intersected with GPS stays (Figure 51c). 

Figure 51. Illustration. Demonstration of the spatiotemporal relationship. (a) Temporally 
separate and spatially contiguous; (b) Temporally contained (c) Temporally intersected (cutting 

off ta3 turns a into 𝑎𝑎′ which is temporally separate with b). 

For the spatial relationship, we check whether the cellular stay is spatially contiguous with GPS 
stays or not. Here, two stays are defined spatially contiguous if the difference of their location 
uncertainty is greater than their spatial distance. Figure 52 gives an example where the stay a is 
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spatially contiguous with b, as the difference between their uncertainty radius (i.e. 𝑟𝑟𝑎𝑎 − 𝑟𝑟𝑎𝑎) is 
greater than the distance between centroids of the two stays 𝐷𝐷𝑎𝑎𝑎𝑎. 

Figure 52. Illustration. Definition of spatially contiguous. 

Following these definitions, the spatiotemporal relationship of each cellular stay with GPS stays 
is decided, based on which decision of the integration is made. For a cellular stay a(ta1, t a2, …, 
tai; lnga, lata; ra): 

i) If it is temporally separate with its neighboring GPS stays b and c, a would either be a 
visit to a new place, or be the same visit at b or c but with a coarser location 
representation. This depends on whether a is spatially contiguous with b or c. If not, a is 
added as a new stay; otherwise, a is combined with b or c by replacing the location of a 
with that of b or c, depending on which one a is spatially contiguous with. Figure 51a 
gives an example where a is temporally separate and spatially contiguous with b. 

ii) If it is temporally contained in one GPS stay b, similarly, we check whether it is spatially 
contiguous with b or not. If yes, a is discarded; otherwise, a is inserted as a new stay 
and b could be split into two stays. 

iii) If it is temporally intersected with one (or more) GPS stay b, the intersected time period 
of a is cut off (Figure 51c), resulting into either a temporal separate or contained case. 
Then procedure i) or ii) is followed. The underlying logic of the cutoff is that, for the 
intersected time period, we use location information in b rather that in a, as locations in b 
have better accuracy and are more reliable. As illustrated in Figure 51c, the cutoff 
modifies a to 𝑎𝑎′ , which is temporally separate with b. Therefore, we follow procedure i) to 
combine the new cellular stay 𝑎𝑎′ into GPS trajectory.  

The relation-checking and integration process repeats itself until all cellular stays are processed. 
Since the duration of some stays would change during the integration, we scan through each 
combined trajectory to update the duration of stays. 

A.2 Appendix B—OD Estimation Method for App-Based Data 
The zone-level observed trips from app-based data are usually not a good representation of the 
actual trips by the entire population due to at least two reasons: 1) the app-based dataset was 
not probabilistically-sampled so that it would not represent the pattern of the entire population 
well; and 2) because of the passively-solicited data generation process and data sparsity, app-
based data may not capture all travels generated by the population; in other words, missing trips 
always exist for such datasets. 
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Admitting such issues in the dataset, one could still conduct a preliminary exploration on the OD 
estimation from the app-based data using the zone-level population data as a critical input. The 
steps of the OD estimation process based on the app-based data are briefly described below. 

1) Aggregate residents into the TAZ level 

Residents refer to the users whose home census tracts can be identified from app-based data 
due to frequent visits during night times. For the entire period, the total residents for each TAZ 
will be counted and added it as a new attribute associated with TAZs. 

2) Calculate the scaling factors associated with each TAZ 

The residents identified from the app-based data are samples from the entire population of each 
TAZ. The scaling factors can be calculated by the following equation: 

𝑃𝑃𝑖𝑖𝛼𝛼𝑖𝑖 = 
𝑟𝑟𝑖𝑖 

Where 𝛼𝛼𝑖𝑖 denotes the scaling factor of TAZ i, and 𝑃𝑃𝑖𝑖, 𝑟𝑟𝑖𝑖 correspond to the population and 
number of residents of TAZ i, respectively. All residents associated with TAZ i own the same 
scaling factor, equaling to 𝛼𝛼𝑖𝑖. 

3) Generate OD matrix 

Select the weekday trips generated by residents from the entire trip file. Multiply the trip with 
corresponding scaling factors and then assign it into OD matrix. 

𝑂𝑂𝐷𝐷(𝑎𝑎,𝑎𝑎) = � 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇(𝑖𝑖,𝑎𝑎,𝑎𝑎) ∗ 𝛼𝛼𝑖𝑖 
𝑖𝑖 

Where 𝑂𝑂𝐷𝐷 is a matrix with the dimension of 3,700*3,700 (3700 is the total number of TAZs in 
the Puget Sound Region); 𝑎𝑎 and 𝑏𝑏 denote the trip origin and destination TAZ; and 𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇(𝑖𝑖,𝑎𝑎,𝑎𝑎) 

denotes the number of observed trips between TAZ pair (a, b) as well as generated by the user 
associated with TAZ i. Divide the OD matrix by the total number of weekdays involved, the daily 
OD demand matrix can be derived. 

A.3 Appendix C—Home Distribution of Anonymous Users Observed 
Every Day 

In the Section 3, we show that some IDs have every day observed and some IDs have a long 
life span. In this appendix, we provide more information on these IDs. Figure 53 gives a spatial 
distribution of home census tracts of IDs observed everyday (8,758 IDs). The distribution is 
compared with the population from the census. The comparison yields a correlation coefficient 
of 0.93 (Figure 54). 
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Similarly, Figure 55 gives a spatial distribution) of home census tracts of IDs with life span of 63 
days (41,640 users). The distribution is also compared with the population from the census. The 
correlation coefficient is 0.98 (Figure 56). 

Figure 53. Map. Comparison between home census tracts of IDs observed everyday (8,758 IDs) 
and the population from the census. (a) Home density of IDs observed every day and (b) 

Census population density. 

October 2018 99 



   
  

 
 
 

    

 
     

    

Promises of Data from Emerging Technologies for Transportation Applications: 
Puget Sound Region Council Case Study 

Figure 54. Graph. Correlation between home census tracts of IDs observed every day and 
census population (both at census tract level). 
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Figure 55. Map. Comparison between home census tracts of anonymous users with life span of 
63 days (41,640 IDs) and the population from the census. (a) Home density of IDs with life span 

of 63 days presented at census tract level and (b) Census population density. 
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Figure 56. Comparison of home census tracts of IDs with life span of 63 days (41,640 IDs) at 
census tract level 
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A.4 Appendix D—CV data 

A.4.1 Sample Data of BSM 
FileId TxDevice Gentime TxRandom MsgCount DSecond 

13963 10 278,802,340,808,876.00 0 76 14700 

13963 10 278,802,340,908,860.00 0 77 14800 

13963 10 278,802,341,008,885.00 0 78 14900 

13963 10 278,802,341,108,882.00 0 79 15000 

13963 10 278,802,341,208,958.00 0 80 15100 

13963 10 278,802,341,309,002.00 0 81 15200 

13963 10 278,802,341,408,935.00 0 82 15300 

13963 10 278,802,341,508,966.00 0 83 15400 

13963 10 278,802,341,608,941.00 0 84 15500 

13963 10 278,802,341,708,937.00 0 85 15600 

Latitude Longitude Elevation Speed Heading Ax Ay Az 

42.29717 -83.7013 239.4 0.86 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.72 9.9375 -1.15 0.01 -10 

42.29717 -83.7013 239.4 0.66 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.52 9.9375 -1.07 0.01 -10 

42.29717 -83.7013 239.4 0.46 9.9375 -0.91 0.01 -10 

42.29718 -83.7013 239.3 0.38 9.9375 -0.68 0.01 -10 

42.29718 -83.7013 239.3 0.3 9.9375 -0.52 0.01 -10 

42.29718 -83.7013 239.3 0 9.9375 -0.45 0.01 -10 

42.29718 -83.7013 239.3 0.14 9.9375 -0.29 0.01 -10 

42.29718 -83.7013 239.3 0 9.9375 -0.45 0.01 -10 
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Yawrate PathCount RadiusOfCurve Confidence 

-0.6 11 3276.7 100 

-1.1 11 3276.7 100 

-0.5 11 3276.7 100 

-0.5 11 3276.7 100 

-0.69 11 3276.7 100 

-0.3 11 3276.7 100 

-0.1 11 3276.7 100 

-0.3 11 3276.7 100 

0 11 3276.7 100 

-0.1 11 3276.7 100 

Source: data.transportation.gov 

A.4.2 Sample Data of SPAT 

MovementId SPATID Current State Min Timeremaining Max Timeremaining 

3680586804 3040841724 0x04 362 1018 

3680586824 3040841724 0x04 67 293 

3680586845 3040841724 0x04 208 948 

3680586848 3040841732 0x04 361 1017 

3680586869 3040841724 0x01 147 643 

3680586872 3040841732 0x04 66 292 

3680586890 3040841724 0x40 208 704 

3680586894 3040841732 0x04 207 947 

3680586917 3040841724 0x40 656 1201 

3680586918 3040841732 0x01 146 642 
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YellowState YellowTime Pedestrian Detect Vehicle Pedestrian Count LaneSet 

NULL 0 0 0 0x01010504 

NULL 0 0 0 0x02010701 

NULL 0 0 0 0x03010904 

NULL 0 0 0 0x01010504 

0x02 36 0 0 0x04010B01 

NULL 0 0 0 0x02010701 

NULL 0 0 0 0x06020A02 

NULL 0 0 0 0x03010904 

NULL 0 0 0 0x0802 

0x02 36 0 0 0x04010B01 

Source: Data.gov 

A.4.3 Sample data of AV accident 

Time Date Brand Location Speed Type Police 
Called 

Injure
d 

21:27 1/8/18 GM Intersection 0-20 mph Side-impact 
collision No No 

9:34 12/7/17 GM Road Section 0-20mph Sideswipe 
collisions Yes Yes 

22:05 11/13/17 GM Intersection 0-20 mph Sideswipe 
collisions No No 

AM 8/11/17 Navya Road Section 0-20 mph Sideswipe 
collisions No No 

21:09 10/26/17 GM Road Section 0-20 mph Rear-end collision No No 

9:16 10/20/17 GM Intersection NA Sideswipe 
collisions No No 

16:06 10/18/17 GM Intersection 0-20 mph Rear-end collision No No 
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Responsibility State Note 

No CA With pedestrian 

No CA With motorcycle 

No CA 

No NE 

No CA 

No CA Go through the 
intersection 

No CA 
Source: Lee and Lim, 2012 
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Figure 57. Sample accident report of AV (1) 
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Figure 58. Sample accident report of AV (2) 
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Figure 59. Sample accident report of AV (3) 

Source: DMV 
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A.5 Appendix E—Shared Mobility Data 

A.5.1 Uber Movement FILTERED DATA 
Table 16. Origin to All Destination 
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259 CT 75 1 CT 220.06 

1/1/2018 -
1/31/2018, 
Every day, 
Daily Average 1570 1309 1882 

259 CT 75 6 CT 322.10 

1/1/2018 -
1/31/2018, 
Every day, 
Daily Average 1614 1357 1919 

259 CT 75 9 CT 323.13 

1/1/2018 -
1/31/2018, 
Every day, 
Daily Average 1339 1106 1619 

CT: Census Tract 

Source: movement.uber.com 
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Table 17. Daily time series (evening selected) 
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Source: movement.uber.com 
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Table 18. Chart data (day of week, from 1/1/2018-1/31/2018) 
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259 
CT 
75 259 CT 75 

Daily 
Average 145 72 295 
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259 
CT 
75 259 CT 75 

Daily 
Average 134 67 266 

W
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CT 
75 259 CT 75 

Daily 
Average 127 60 265 
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CT 
75 259 CT 75 

Daily 
Average 155 76 313 
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CT 
75 259 CT 75 

Daily 
Average 178 93 342 
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259 
CT 
75 259 CT 75 

Daily 
Average 219 105 458 
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259 
CT 
75 259 CT 75 

Daily 
Average 175 80 383 

CT: Census Tract 

Source: movement.uber.com 
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A.5.2 Uber Movement ALL DATA 
Table 19. ALL DATA (month aggregate) 

sourceid dstid month 
mean_tra 
vel_time 

standard_ 
deviation_t 
ravel_time 

geometric_m
ean_travel_ti 
me 

geometric_s
tandard_dev 
iation_travel 
_time 

755 647 3 715.64 383.47 642.25 1.59 
755 685 1 1974.41 701.39 1883.32 1.33 
746 775 1 1303.87 509.32 1233.46 1.37 
Source: movement.uber.com 
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A.5.3 DiDi Data 
Table 20. Raw data of trajectory data from DiDi (city of Xi’an, China, 2016/10/30) 

Driver ID Order ID Time Stamp Latitude Longitude 
44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787824 108.91585 34.26921 
44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787809 108.91379 34.26921 
44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787839 108.91792 34.26921 
44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787827 108.91626 34.26921 
44a84fc6096312dc5337a91908526384 0498947be30efc2de7af11e6fb01e67a 1477787806 108.91346 34.26922 
Source: outreach.didichuxing.com 

Table 21. Raw data of order data from DiDi (city of Chengdu, China) 

Order ID Ride Start 
Time 

Ride Stop
Time 

Pick-up
Longitude 

Pick-up
Latitude 

Drop-off 
Longitude 

Drop-off 
Latitude 

mGJrlls.gxjjuafoswAysnom-pwapu8o 1478366285 1478367137 104.07247 30.65341 104.05063 30.69255 
nJIhjrf9ttgum5cqowyFjkfk7nmooubq 1478368539 1478369574 104.07502 30.65362 104.0136 30.67191 
nJIhjrf9ttgum5cqowyFjkfk7nmooubq 1478368539 1478369574 104.07502 30.65362 104.0136 30.67191 
uJzhsmp4vBlur4jBpsFHfuiibgmcqnal 1478408628 1478410668 104.112023 30.663959 104.05845 30.64366 
qBJrrth1ipmtt7qBtACHfjnq9utekpcm 1478410438 1478412181 104.06401 30.63531 104.04377 30.71717 
uBHklop4mykqy_gwouJFtpio6jAluw0d 1478403399 1478405156 104.127065 30.673683 104.07005 30.64377 
Source: outreach.didichuxing.com 
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A.5.4 Kaggle Data 
Table 22. Bike sharing demand 
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2011/1/1 
0:00 1 0 0 1 9.84 14.395 81 0 3 13 16 
2011/1/1 
1:00 1 0 0 1 9.02 13.635 80 0 8 32 40 
2011/1/1 
2:00 1 0 0 1 9.02 13.635 80 0 5 27 32 
Source: www.kaggle.com 
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