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1. INTRODUCTION

This research aimed to support the Washington State Department of Transportation’s 

(WSDOT) Target Zero safety priorities with a focus on pedestrians. The purpose of this research 

was to provide models that can associate roadway characteristics with pedestrian-vehicle crash 

potential. These models can then be used to identify (i) locations most likely to benefit from 

investments aimed at zero pedestrian fatalities and zero serious injuries, and (ii) characteristics 

that contribute to pedestrian-vehicle crashes resulting in severe injuries and fatalities. The project 

team developed data-driven tools that considered the following: 

1. The data needed and available data sources to capture pedestrian-vehicle crashes, crash

locations, and pedestrian density.

2. The types of models that can be developed using existing data sources.

3. The feasibility and limitations of the developed models to predict pedestrian-vehicle

crashes and severity of injury for various factors.

We expect the outcomes of this project to inform operational programs and help WSDOT 

prioritize safety-related pedestrian projects. 

2. PROBLEM STATEMENT AND BACKGROUND

Road traffic crashes have been associated with over 270,000 pedestrian fatalities annually 

worldwide (World Health Organization, 2013). In Washington State, pedestrian fatalities have 

remained relatively steady, even though crash fatalities have decreased for motor vehicles 

(WSDOT, 2016). Reducing pedestrian crashes is critical, but the data available to accurately 

capture the factors that contribute to pedestrian fatalities is sparse. The pedestrian-vehicle 

crashes that are reported typically involve serious injuries or fatalities. The examination of these 

crashes is crucial, and additional variables are needed to help identify the attributes associated 

with crashes that involve pedestrians. 

3. GOALS AND OBJECTIVES

The objective of this project was to develop pedestrian models that associate roadway 

characteristics with crash potential in order to identify urban and suburban locations with 

comparatively high pedestrian crash ratios throughout the WSDOT roadway network. Analytical 

models were developed to identify those locations and the potential contributing factors 
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associated with pedestrian-vehicle crashes. The technical objectives of the study were therefore 

to achieve the following: 

1. Identify and secure data that can be used to analyze pedestrian-vehicle crash 

characteristics that are associated with crash potential. 

2. Identify factors contributing to pedestrian-vehicle crash frequency and crash injury 

severity levels. 

The outcomes of this study included (1) the identification of areas with a high frequency 

of pedestrian-vehicle crashes, including the number and injury severity of crashes that occur at 

specific types of locations, and (2) analytical models that identify the factors that are believed to 

contribute to pedestrian-vehicle crashes, especially those resulting in serious injuries and 

fatalities. 

4. PEDESTRIAN-VEHICLE CRASH FREQUENCY MODELS 

This project assessed the factors that contribute to frequency of pedestrian-vehicle 

crashes at crash-prone intersection and non-intersection locations. Statistical models were 

developed on the basis of environmental characteristics for locations identified on state routes in 

King County and Washington State. A number of microenvironment and macroenvironment 

factors were considered. Microenvironment factors were defined as roadway characteristics 

influencing the frequency of pedestrian-vehicle crashes in the immediate vicinity (around 100-

meter radius circular buffer) of intersections or non-intersection locations. Accounting for 

microenvironment factors is important because some microenvironments (e.g. bus stops) can 

attract pedestrians, increasing crash potentials while others (e.g. sidewalks, the number of lanes, 

roadway classification) have been shown to decrease or increase the pedestrian-vehicle crash 

potentials (Quistberg et al., 2015). Macroenvironment factors were defined as built environment 

and land use characteristics around 400-meter radius circular buffer of intersections or non-

intersection. Neighborhood effects from the macroenvironment characteristics (e.g. population or 

employment density) can be used as proxy measures of pedestrian volumes. When there are a 

high number of pedestrians walking or present, pedestrian-vehicle crash potentials may increase 

due to higher chances of pedestrian-vehicle conflicts (Lyon and Persaud, 2002). On the other 

hand, more safety measures may be in place at locations with high pedestrian volumes, which 

may then lead to lower pedestrian crash potentials (Leden 2002, Elvik 2009).   
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4.1 Frequency Model Approach 

The modeling approach is summarized as follows: 

● Study areas: King County, Washington, and Washington State. 

● The unit of analysis: 100-meter Euclidean buffers around crash-prone locations (i.e., 

intersection or non-intersection) at or near state routes. The method of identifying these 

locations is summarized in Appendix A.  

● Regression model: Mixed-effects Poisson regression. The model was chosen after 

confirming there was no overdispersion in the data. That is, the mean and variance of the 

outcome of interest were not significantly different. The State Route variable was treated 

as a random intercept to account for pedestrians’ characteristics that are specific to each 

State Route. 

● Dependent variable: Number of pedestrian-vehicle crashes on state routes only per 100-

meter Euclidean buffer at each location between 2013 and 2017.   

● Explanatory variables: The pedestrian-vehicle crash data between 2013 and 2017 were 

obtained from the WSDOT Transportation Data, GIS and Modeling Office (TDGMO) of 

the WSDOT. Roadway and environmental data were obtained from WSDOT, the Census, 

the King County GIS Center, the University of Washington Urban Form Lab, and 

National Historical Geographic Information. 

- Micro-environments: Micro-environmental characteristics were quantified by using 

100-m Euclidean buffers around crash-prone locations. 

▪ Microenvironmental data for length of sidewalks and bus ridership were 

available only for the King County model. 

- Macro-environments: Macro-environmental characteristics were measured by 

applying 400-m Euclidean buffers around crash-prone locations. 

- Macroenvironmental data for employment density and residential density were 

available only for the King County model.   

- Number of pedestrians.  We did not have information on the number of 

pedestrians at each 400-meter buffer. Hence, we used the total population (census 

block) as a proxy. 

- Data imputation: For the King County Frequency Model, there were some missing 

observations in the explanatory variables. To impute the missing values in the data 
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set, a bootstrapping and Expectation-Maximization (EM) algorithm was applied. 

Multiple imputations were conducted by using James Honaker’s software package 

Amelia. For the Washington State Frequency Model, the variables with too many 

missing data were eliminated for simplicity.  

4.1.1 Frequency Model Method 

Mixed-effect Poisson regression models were used to examine the frequency of 

pedestrian-vehicle crashes. A random effect component was included in the regression models to 

account for the correlation within the same state route and to identify state routes that may need 

attention. Specifically, random intercept models were applied using equation 1 (Eq 1.). The 

random intercept recognizes the differences between each state route, which is then considered in 

the overall model prediction. 

𝑙𝑙𝑙𝑙 (𝐿𝐿𝑖𝑖𝑖𝑖) = 𝛾𝛾0 + �𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝

𝑟𝑟

𝑝𝑝=1

+ 𝑈𝑈𝑗𝑗 + 𝑅𝑅𝑖𝑖𝑖𝑖      (Eq 1. )  

In this model, L represents the number of pedestrian-vehicle crashes, i represents a 

specific location, j indicates a state route, γo is the intercept, γp is a regression coefficient 

corresponding to the pth explanatory variable xpij, Uj is a random effect for the jth cluster. γo+Uj is 

the random intercept for the jth cluster. Rij is a random error. This model assumes that the set of 

Uj, set of Rij, and covariates xpij are mutually independent.  

Incidence rate ratios (IRR) were obtained from the coefficient estimates of the model.  

Because the regression coefficients were interpreted as logs, the exponent was used to obtain the 

number of crashes per exposure to the crashes (i.e., the areas where the crashes could have 

happened) (see Eq 2). Therefore, IRR can be described in terms of the “crash frequency” and this 

term is used throughout this report to indicate crash counts per 100-meter buffer.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐼𝐼𝐼𝐼𝐼𝐼) =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒 (100 𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

=

𝑒𝑒−�𝛾𝛾0+∑ 𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑟𝑟
𝑝𝑝=1 +𝑈𝑈𝑗𝑗+𝑅𝑅𝑖𝑖�        (Eq 2. )    

A full model with all variables was first estimated as a reference, and then a refined 

model was developed on the basis of the results from a stepwise variable selection process. The 

analysis was done in the statistical software package R. The Akaike Information Criteria (AIC) 

and Bayesian Information Criteria (BIC) were used to identify the best-fit model. The final 
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models were selected on the basis of the lowest AIC and BIC values.  Lower values indicated a 

better model fit. 

4.2 King County Frequency Model 

4.2.1 King County Frequency Model Results 

The incidence rate ratios (IRR) for the final King County Frequency Model are shown in 

Table 1. For instance, an IRR of 1.46 (e.g., presence of a park and ride lot) means that locations 

with a park and ride lot will have 1.46 times (or 146 percent) the incident events (pedestrian-

vehicle crashes) that those without a park and ride lot will have.  

 
Table 1. Final King County frequency model using a mixed effect Poisson regression. Data on state routes only for 

2013 to 2017.  

Variable Level  Final Model -IRR (95% CI) 
Crash-prone location type   
 Intersection  0.72 (0.64-0.81) 
 Non-intersection  Reference 
Micro-environment characteristics (100-m Euclidean area around crash-prone locations) 

Number of Roadway Lanes for one direction   

 1 lane  Reference 

 2 lanes  2.21 (1.67-2.94) 

 3 lanes  2.40 (1.75-3.31) 

 4 lanes and more  2.67 (1.67-4.27) 

Roadway functional class   

 Principal arterial  2.49 (2.09-2.98) 

 Non-principal arterial  Reference 

Bus ridership density (1,000 person/km2)  1.02 (1.01-1.02) 

Macro-environment characteristics (400-m Euclidean area around crash-prone locations) 

Residential density (100 units/ km2)  1.01 (1.00-1.01) 

Employment density (1,000 jobs/km2)  1.02 (1.01-1.02) 

Park and ride   

 Presence  1.46 (1.26-1.70) 

 Absence  Reference 

Household income ($1,000 USD)                                           Census block-group  0.91 (0.87-0.94) 

Residential area (%)  1.01 (1.01-1.02) 

Industrial area (%)  0.89 (0.85-0.94) 

Commercial area (%)  1.03 (1.02-1.03) 

Observations  1915 

AIC / BIC  4089.5 / 4234.0 

logLik (LL)  -2018.7 

Note: IRR: incidence rate ratio, LL=log likelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information 
Criterion, CI=confidence interval 
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Comparisons between intersection and non-intersection location models were developed 

to better assess the countermeasures that should be prioritized for each type of crash-prone 

location. Details of the method and resulting identification of intersections and non-intersections 

were recorded by Kang et al. (2019). Of interest, the variable, number of lanes was significant in 

the intersection model but not significant in the non-intersection model (see Figure 1).  

 
Figure 1 Separate King County frequency models for intersection only (left) and non-intersection only (right) 
Note: Factors that cross the vertical black line on each panel do not have a significant impact on the outcome. 

 

The results of the King County frequency model were then exported as CSV format files 

using a unique identifier for each intersection and non-intersection location. The expected counts 

of pedestrian crashes were merged with the original intersection and non-intersection location 

GIS layers in ArcGIS. A planar kernel density estimation (PKDE) map was created to calculate 

the density of predicted pedestrian crashes in a neighborhood around each crash-prone location. 

A smooth curved surface was fitted over each crash-prone location as a distance decay function. 
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Figure 2 shows the PKDE map for the predicted count of pedestrian-vehicle crashes 

along the state routes. Downtown areas and parts of arterial roadways were identified as 

locations with high crash frequencies. The PKDE value shows the predicted count of pedestrian-

vehicle crashes per square kilometer. 

 

 
Figure 2. Planar kernel density estimation (PKDE) maps of expected crash frequency of pedestrian-vehicle crashes 
on state routes only (per 100-meter Euclidean buffer) between 2013 and 2017 at intersection and non-intersection 

locations along the state routes in the city of Seattle (a), Renton and Kent (b). 
 

4.2.2 Summary of King County Frequency Model 

The final King County frequency model shows some crash-prone locations and micro-

environment variables were significantly associated with the pedestrian crash frequency per 100-

meter Euclidean buffer. The number of roadway lanes (≥2) was associated with a higher crash 

frequency. Principal arterial roads were associated with a higher crash frequency than non-

principal arterial roads. Bus ridership density was also associated with a higher crash frequency. 

Given that high transit ridership is often associated with high pedestrian activity (Ryan et al., 
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2009), bus ridership density provides insights on the relationship between pedestrian activity and 

crash frequency. 

Macro-environment characteristics considered in our model included neighborhood and 

land-use characteristics. Locations with higher numbers of residences and businesses were 

depicted in our model with residential density, employment density, and proportion of service 

areas. These factors are likely to capture high levels of pedestrian activity and were found to be 

associated with a higher frequency of pedestrian-vehicle crashes. This shows that areas with 

higher development densities, which often have higher pedestrian movements, do not necessarily 

change the crash likelihood (Aldred et al.,2019, Jacobsen et al., 2015, Moudon et al., 2011, 

Jacobsen, 2003). The presence of park and ride lots, which likely generate walking trips between 

individual vehicles and transit stops (Cervero et al., 2001), was associated with higher crash 

frequencies. A higher proportion of residences near a crash-prone location was also associated 

with a higher frequency of pedestrian-vehicle crashes. Higher household income and a larger 

proportion of industrial land uses were associated with a reduced number of pedestrian-vehicle 

crashes (also known as a protective effect which reduces or eliminates any negative impact on 

the outcome). Lower income areas were associated with higher crash frequencies, similar to 

findings in previous studies (Noland et al., 2004, Laflamme et al., 2000, LaScala et al., 2004). 

Industrial areas are not conducive to walking and often lack pedestrian infrastructure facilities 

(Koh et al., 2012).  

Different factors were found to be associated with the intersection and non-intersection 

models for pedestrian-vehicle crashes. The number of roadway lanes was statistically significant 

only in the intersection model. When pedestrians have greater exposure to a roadway (e.g., 

crossing a four-lane roadway), the likelihood of being involved in a crash is also greater. 

Residential density and industrial land use were only statistically significant in the intersection 

model. This suggested that the effects of some macro-environment characteristics differ between 

the two location types. The results of other micro/macro-environment factors were consistent 

between the two models. 

The models proved to have many benefits. First, spatial autocorrelation was mitigated in 

the study by using unique crash-prone locations and statistical models that controlled the 

correlation within the same state routes. Specifically, we used a systematic protocol to create 

unique crash-prone location data without overlaps (Kang et al., 2019). Furthermore, the spatial 
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autocorrelation within the same state routes with similar environmental attributes was mitigated 

by using Poisson mixed-effects models. Fixed and random effects accounted for variations 

within and between state routes. While these approaches required extensive GIS data processing 

and computational power, they led to enhanced performance of the model. 

Second, a comparison between intersection and non-intersection location models 

provided insight into the kinds of countermeasures that could be prioritized in each type of 

location. The number of lanes was significant only in the intersection model, indicating that 

pedestrian safety strategies may need to be tailored differently for intersection vs non-

intersection locations.  At non-intersection locations where traffic control devices are less likely 

to be implemented when compared to intersections, countermeasures targeted toward changing 

driver or pedestrian behavior may be more effective for reducing the frequency of pedestrian 

crashes (Moudon et al., 2011, Quistberg et al., 2015).  

A study limitation was that our data only covered intersection and non-intersection 

locations along state routes within the boundaries of King County, Washington. Although we 

collected extensive environmental data sets from various sources, some data were not available 

to the project team. Previous studies conducted with city-level data included more detailed 

information on traffic conditions (Ukkusuri et al., 2012, Chen, 2015, Chen et al., 2016). 

Additional models that include detailed traffic condition variables should be considered even if 

the models cover smaller areas.  

4.3 Washington State Frequency Model  

The same modeling tool used for King County was also used for the Washington State 

frequency model. To account for the characteristics that were shared by the crashes that occurred 

on the same state routes, different intercepts were allowed in the model as a random effect for 

each state route. Rather than comparing the intersection and non-intersection models (Figure 2), 

the Washington State frequency model focused on the expected number of crashes for different 

state routes. This allowed us to generate a state route ranking in terms of pedestrian-vehicle crash 

frequencies while also controlling for all explanatory variables.  

4.3.1 Washington State Frequency Model Results 

The incidence rate ratios (IRR) were calculated for the final Washington State Frequency 

Model (see Table 2). As an example, an IRR of 1.28 (e.g., presence of a park and ride lot) 



 

10 

indicates that locations with a park and ride lot would have 1.28 times (or 128 percent) the 

incident events (pedestrian-vehicle crashes) that those without a park and ride would have.  

 

 
Table 2. Final Washington State frequency model using a mixed effect Poisson regression. Data on state routes only 

for 2013 to 2017. 

Variables levels Final Model - IRR (95% CI) 

(Intercept)  0.23 (0.20-0.26, p<0.001) 
Intersection type Intersection Reference 
 Non-intersection 1.95 (1.80-2.11, p<0.001) 
Micro-environment characteristics (100-m Euclidean area around crash-prone locations) 
Functional class Non-Principal Arterial Reference 
 Principal Arterial 2.18 (1.96-2.44, p<0.001) 
Total width of lanes (m)  1.17 (1.13-1.21, p<0.001) 
Traffic signal presence N Reference 
 Y 1.66 (1.50-1.84, p<0.001) 
Macro-environment characteristics (400-m Euclidean area around crash-prone locations) 
Intersection density (count/km2)  1.26 (1.22-1.30, p<0.001) 
Park and Ride Absence Reference 
 Presence 1.28 (1.15-1.43, p<0.001) 
Length of Trail (100 m)  0.95 (0.92-0.99, p=0.024) 
Total population (1,000 counts) Census block 1.23 (1.19-1.27, p<0.001) 
Percent of Caucasian population (%)  1.06 (1.01-1.11, p=0.023) 
Household income (1,000 USD) Census block-group 0.88 (0.84-0.92, p<0.001) 
Industrial area (%)  0.89 (0.84-0.95, p<0.001) 
Commercial area (%)  1.20 (1.16-1.24, p<0.001) 

Observations  9130 
AIC/BIC  7824.14/ 7923.81 
Log-Likelihood  -3898.07 

Random Effects σ2 2.07 

 τ00 0.2666 Route number 

 ICC 0.11 

 Random effect group # 184 Route number 

Note: IRR: incidence rate ratio, LL=log likelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information 
Criterion, CI=confidence interval 

 

The final model for Washington State was a mixed effects model that accounted for the 

random effects of state routes.  Figure 3 is a visualization (with the 95 percent confidence 

interval) of the parameter estimates for the model. Appendix B includes the rankings (in a 

caterpillar plot) for random (or state route) effects.  Appendix C provides detailed maps with 

estimated crash frequencies per 100-meter Euclidean buffer for different state routes. 
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     Figure 3. Forest plots for the Washington State Frequency Model.  

Note: A vertical red line represents the null hypothesis (IRR=1).  



 

12 

 

Figure 4. Map of expected crash frequencies (on state routes only) per 100-meter Euclidean buffer of pedestrian-
vehicle crashes between 2013 and 2017 at intersection and non-intersection locations along the state routes in 

Washington State. 
 

4.3.2 Summary of Washington State Frequency Model 

The final model showed that three micro- and five macro-environmental characteristics 

were positively correlated with pedestrian crash frequencies (on state routes only) per 100-meter 

Euclidean buffer. Within the same state route, non-intersection locations had a 1.95 times higher 

crash frequency than intersections, with all other variables held constant. This differed from 

Schneider (2010), who showed that intersections have a higher crash frequency. The difference 

may be explained by our focus on crashes that occurred on state routes, which have fewer 

intersections, fewer pedestrians and fewer pedestrian characteristics (including pedestrian 

crossing treatments) than other roads or streets. On state routes, pedestrians may find crash 

potential lower at intersections than non-intersections because intersections at state routes have 

design and operational characteristics (median, traffic signals) to account for higher traffic 

volumes, higher traffic speeds, and wider roadways, as well as increased driver awareness of 
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pedestrians at these locations. Some state route pedestrian crossings even have pedestrian 

crossovers (e.g,, SR 99). 

At the micro-level (100-m buffer), pedestrian-vehicle crash frequencies at principal 

arterial roads were 2.18 times higher than at non-arterial roads, within the same state routes. The 

greater the total width of lanes, the higher the frequency of pedestrian-vehicle crashes.  Given 

that more lanes are associated with more vehicles (Moudon et al., 2011), it would suggest that 

pedestrians have more opportunities to be involved in these crashes as crossing distance and 

crossing times increases, as does more conflict with increased traffic volumes. 

Locations with a traffic signal had a 1.66 times higher crash frequency than locations 

without traffic signals. While these findings were very similar to those from previous models that 

used City of Seattle pedestrian crash data (Quistberg et al., 2015), they were contrary to the 

finding that non-intersections have a higher crash frequency because non-intersections are, by 

definition, less likely to have a traffic signal.  

For every unit increase of intersection count per square kilometers, the crash frequency 

increased 1.26 times. The locations around park and ride facilities showed a higher crash 

frequency than those with no park and ride facility (1.28 times). The percentage change in the 

crash frequency was 23 percent for every 1,000-person increase in total population, 6 percent 

for every 1 percent increase in Caucasian population, and 20 percent for every 1 percent 

increase in commercial space. For every 100-m increase in the length of the trail, the pedestrian 

crash frequency decreased by 5 percent. This is likely because there is usually more pedestrian 

traffic at trails, and motorists may be more aware of pedestrians for that reason.  For every 

increase in household income of $1,000 USD, the state route location had a 12 percent lower 

pedestrian crash frequency. This seems reasonable, as other studies have shown that lower-

income areas are associated with a higher crash frequency (Laflamme and Diderichsen, 2000; 

LaScala et al., 2004; Noland and Quddus, 2004). For every 1 percent increase in the proportion 

of industrial land use, there was a decrease in the crash frequency 11 percent. This is likely 

because industrial areas are typically less attractive places for walkers, and they lack pedestrian 

infrastructure facilities (Koh and Wong, 2013). 

Accounting for State Route Effects 

As noted earlier, our models included state routes as a random effect. By accounting for 

the effects within state routes, we were able to identify locations that might require attention with 
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respect to pedestrian-vehicle crashes such as SR 310 in Bremerton, Kitsap County, and SR 501 

in Vancouver, Washington. Without this random effect, the results could have been a biased 

representation of the real world.  

Our multilevel models identified which state route locations were more prone to higher 

crash frequencies, while also controlling for all the variables included in the model. The rankings 

of these state routes are represented in caterpillar plots in Appendix B. Expected pedestrian 

crashes, accounting for the autocorrelation between different state routes, were estimated for the 

Washington State Frequency Model. As expected, the King County area showed a higher 

number of pedestrian crashes per 100-meter buffer. The state routes for this area included SR 99 

and Interstate 5 in Seattle, Renton, and Kent.  

Summary of Frequency Models 

The pedestrian-vehicle crash counts at intersection and non-intersection locations were 

examined using micro- and macro-environment data as the explanatory variables. Roadway 

characteristics, traffic conditions, neighborhood characteristics, and land use were all associated 

with higher pedestrian-vehicle crash frequencies. The model results offer insights into the factors 

that affect pedestrian crash counts within and between state routes, and can be used to prioritize 

pedestrian safety programs throughout King County and Washington State. 

For both the King County and Washington State frequency models, the factors that were 

positively correlated with a pedestrian crash frequency included intersection type being a non-

intersection, principal arterial road, total width of lanes (number of lanes), presence of a park and 

ride facility, and commercial area. Locations with these characteristics should be prioritized to 

reduce the number of pedestrian crashes. Factors that were negatively correlated with a 

pedestrian crash frequency included household income and industrial area. Higher-income 

households were related to a lower number of pedestrian crashes, suggesting that opportunities to 

reduce crash potential may exist in low-income neighborhoods. Lastly, future studies are 

warranted to investigate the effects of more specific traffic conditions and behavioral 

characteristics of drivers and pedestrians on crashes. 

5 PEDESTRIAN-VEHICLE CRASH INJURY SEVERITY MODEL 

This chapter describes the models developed to assess pedestrian injury severity at crash 

locations. Statistical models were developed on the basis of environmental characteristics of 
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crash locations and pedestrian socio-demographic factors identified for state routes in King 

County and Washington State.  

5.1 Severity Model Approach 

The summary of modeling approach is as follows: 

● Study area: King County and Washington State. 

● The unit of analysis: Crash locations along state routes. 

● Regression model: Binary logistic regression. 

● Dependent variable: Pedestrian injury severity from a pedestrian-vehicle crash on state 

routes only between 2013 and 2017. Police records on pedestrian injury contained seven 

categories of severity: dead at scene, dead on arrival, died at hospital, disabling injury, 

non-disabling (evident) injury, possible injury, and no injury or property damage only.  

- Injury severity was first aggregated into the five classes that are defined in the Federal 

Highway Administration (FHWA)’s KABCO injury recording system. The KABCO 

method of injury rating was developed by the National Safety Council (NSC) and 

included in the Manual on Classification of Motor Vehicle Traffic Accidents in 1966. 

KABCO rates injury severity on a decreasing scale, where “K” is a fatality, “A” is an 

incapacitating injury, “B” is a non-incapacitating injury, and “C” is a possible injury. 

Injury severity rated “O” is property damage-only, or in other words, the crash victim 

did not sustain any injuries in the crash. 

- Our models then aggregated injury severity into two classes, following past 

pedestrian crash severity research practices (Ballesteros et al., 2004; MacLeod et al. 

2012; Moudon et al. 2011; Oh 2005; Plurad et al. 2006; Sarkar et al., 2011): 

▪ Fatal or serious injury (K and A), 

▪ Evident injury (B) or possible or no injury (C and O). 

● Explanatory variables: The crash data were obtained from the Transportation Data, GIS 

and Modeling Office (TDGMO) of the WSDOT. Individual characteristics such as 

pedestrians, drivers, and crash conditions were gathered from crash data that were 

reported by police officers and citizens. Roadway and environmental data were obtained 

from WSDOT, the Census, the King County GIS Center, the University of Washington 
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Urban Form Lab, and National Historical Geographic Information. The data processing 

steps are summarized in Appendix D. 

- Individual characteristics: 

▪ Pedestrian sociodemographic characteristics  

▪ Pedestrian and driver behaviors  

▪ Crash conditions (temporal and lighting). 

- Micro-environments: Micro-environmental characteristics were based on 100-m 

Euclidean buffers around crash locations. 

▪ Microenvironmental data for length of sidewalks and bus ridership were available 

only for the King County model. 

- Macro-environments: Macro-environmental characteristics were based on 400-m 

Euclidean buffers around crash locations. 

- Macroenvironmental data for employment density and residential density were 

available only for the King County model.   

- Number of pedestrians.  We did not have information on the number of pedestrians 

at each 400-meter buffer. Hence, we used the total population (census block) as a 

proxy. 

- Data preparation: Missing data points regarding pedestrian injury type, gender, 

lighting conditions (approximately 8- to 9 percent) were excluded.  

5.1.1 Severity Model Method 

Binary logistic regression models were used to examine factors associated with the 

severity of pedestrian injuries in pedestrian-vehicle crashes.  The models included 

environmental, traffic, and roadway factors while also accounting for pedestrian and driver 

characteristics. A binary logistic regression with random state route effects was also considered 

to account for the correlation within the same state route.  However, no statistically significant 

differences in variances between different state routes existed.  Hence, the simpler binary logistic 

binary regression model was used.  

Our model aggregated injury severity to a binary outcome: 1=Fatal or Serious injury (K 

and A), and 0=Evident injury (B) and Possible or no injury (C and O). The binary logistic model 

used in this analysis follows: 
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𝐿𝐿𝐿𝐿𝐿𝐿
𝑃𝑃𝑃𝑃 (𝑦𝑦 = 1|𝑥𝑥)
𝑃𝑃𝑃𝑃 (𝑦𝑦 = 0|𝑥𝑥) = 𝛾𝛾0 + �𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝

𝑟𝑟

𝑝𝑝=1

+ 𝑅𝑅𝑖𝑖                     (Eq 3. ) 

where i represents a crash location, γo is the intercept, γp is a regression coefficient corresponding 

to the pth predictor variable xpij. A full model with all variables was first estimated as a reference, 

and then a refined model was developed on the basis of the results from stepwise variable 

selection processes in R programming (see Table 2). All variables were examined at a 

significance level of α=0.05.  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃 (𝑦𝑦=1|𝑥𝑥)
𝑃𝑃𝑃𝑃 (𝑦𝑦=0|𝑥𝑥)

= 𝑒𝑒−�𝛾𝛾0+∑ 𝛾𝛾𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑟𝑟
𝑝𝑝=1 +𝑅𝑅𝑖𝑖�    (Eq 4. )    

The results were expressed as coefficients in the form of odds ratios, with the associated 95 

percent confidence interval (CI). That is, each estimated coefficient was exponentiated as 

follows. 

5.2 King County Severity Model 

A model with all of the explanatory variables was first developed as a reference, and then 

a refined model was created on the basis of the stepwise variable selection processes. The refined 

model showed a better fit with the lower Akaike Information Criterion (AIC) than the full model.  

5.2.1 King County Severity Model Results 

The odds ratios (OR) calculated for the final King County Severity Model are shown in 

Table 3. For instance, pedestrians 65 to 74 years old were found to be 2.54 times more likely to 

be involved in a fatal or severe injury than pedestrians between 25 and 44. 
 

Table 3. Final King County severity model using binary logistic regression (fatal or serious injuries vs. other types 
of injuries). State routes only for 2013–2017. 

Independent variables Measures  Dependent variables Final model - OR (95% CI) 

Other types 
of injuries 
(B,C,O) 

Fatalities and 
serious 
injuries (K,A) 

Pedestrian age Age 25-44 222 (77.9) 63 (22.1) Reference 
 Age 0-9 8 (100.0) 0 (0.0) 0.00 (NA, p=0.990) 
 Age 10-14 20 (87.0) 3 (13.0) 0.46 (0.10-1.59, p=0.259) 
 Age 15-24 164 (80.8) 39 (19.2) 0.66 (0.39-1.12, p=0.130) 
 Age 45-64 158 (77.1) 47 (22.9) 1.13 (0.68-1.90, p=0.635) 
 Age 65-74 27 (69.2) 12 (30.8) 2.54 (0.99-6.31, p=0.048) 
 Age over 75 22 (91.7) 2 (8.3) 0.35 (0.05-1.59, p=0.228) 
Pedestrian contribution None/Blank 390 (89.4) 46 (10.6) Reference 
 Inattention 39 (79.6) 10 (20.4) 1.16 (0.44-2.84, p=0.758) 
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Independent variables Measures  Dependent variables Final model - OR (95% CI) 

Other types 
of injuries 
(B,C,O) 

Fatalities and 
serious 
injuries (K,A) 

 Did Not Grant RW to Vehicle 53 (62.4) 32 (37.6) 2.68 (1.26-5.74, p=0.011) 
 Under Influence of Alcohol 34 (75.6) 11 (24.4) 0.83 (0.31-2.11, p=0.703) 
 Failure to Use Xwalk 18 (58.1) 13 (41.9) 2.83 (1.04-7.63, p=0.040) 
 Other Unknown 69 (61.1) 44 (38.9) 3.20 (1.61-6.38, p=0.001) 
 Other Known 18 (64.3) 10 (35.7) 2.48 (0.87-6.84, p=0.082) 
Driver contribution None/Blank 167 (63.3) 97 (36.7) Reference 
 Fail to Yield Row to Pedestrian 186 (92.1) 16 (7.9) 0.55 (0.24-1.23, p=0.148) 
 Inattention 98 (89.9) 11 (10.1) 0.60 (0.25-1.40, p=0.251) 
 Driver Distraction 29 (87.9) 4 (12.1) 0.56 (0.15-1.73, p=0.348) 
 Under Influence of Alcohol 5 (38.5) 8 (61.5) 4.90 (1.19-22.61, p=0.032) 
 Other Unknown 87 (87.9) 12 (12.1) 0.34 (0.14-0.77, p=0.013) 
 Other Known 49 (73.1) 18 (26.9) 1.08 (0.50-2.27, p=0.844) 
Driver action Other Actions 56 (84.8) 10 (15.2) Reference 
 Going Straight Ahead 224 (64.6) 123 (35.4) 2.19 (0.99-5.28, p=0.064) 
 Making Left Turn 134 (88.7) 17 (11.3) 0.95 (0.37-2.58, p=0.919) 
 Making Right Turn 207 (92.8) 16 (7.2) 0.72 (0.28-1.95, p=0.504) 
Vehicle type Passenger Vehicle 349 (81.5) 79 (18.5) Reference 
 Pickup truck/Van 231 (77.8) 66 (22.2) 1.79 (1.15-2.80, p=0.010) 
 Bus/Heavy-Duty Vehicle 10 (47.6) 11 (52.4) 6.71 (2.39-19.37, p<0.001) 
 Other/Not Stated 31 (75.6) 10 (24.4) 3.91 (1.48-9.89, p=0.005) 
Light conditions Daylight, dawn, dusk 351 (85.6) 59 (14.4) Reference 
 Dark, Other 270 (71.6) 107 (28.4) 1.80 (1.17-2.77, p=0.008) 
Micro-environment characteristics (100-m Euclidean area around crash-prone locations) 
Traffic signal presence Y 73 (89.0) 9 (11.0) Reference 
 N 548 (77.7) 157 (22.3) 2.09 (0.90-5.32, p=0.101) 
Max posted speed (MPH) 35 MPH 178 (84.0) 34 (16.0) Reference 
 25 MPH 29 (100.0) 0 (0.0) 0.00 (NA, p=0.982) 
 30 MPH 54 (78.3) 15 (21.7) 1.85 (0.82-4.07, p=0.130) 
 40 MPH 159 (75.7) 51 (24.3) 1.81 (1.02-3.24, p=0.044) 
 45 MPH 90 (76.3) 28 (23.7) 1.37 (0.71-2.64, p=0.349) 
 50 MPH + 111 (74.5) 38 (25.5) 2.30 (1.18-4.54, p=0.015) 
Bus ridership (1,000 person/km2) 9.9 (16.4) 10.7 (16.9) Reference 
Macro-environment characteristics (400-m Euclidean area around crash-prone locations) 
Employment density (1,000 jobs/km2) 4.1 (12.7) 1.8 (2.2) 0.93 (0.85-0.99, p=0.106) 
Park and Ride N 481 (77.5) 140 (22.5) Reference 
 Y 140 (84.3) 26 (15.7) 0.64 (0.36-1.10, p=0.115) 
Industrial area (%)  0.5 (1.3) 0.3 (1.1) 0.85 (0.68-1.02, p=0.104) 

Observations    787 
Log-likelihood    -304.33 
Akaike Inf. Crit (AIC)    678.66 
Bayesian Inf. Crit (BIC)    842.05 

Note: OR: Odds ratio, LL=log likelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information Criterion, 
CI=confidence interval 
 

The final King County Severity Model was visualized to help interpret the results.  The 

odds ratios and 95% confidence intervals are shown in Table 3 are visualized in Figure 5. All 
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variables that did not overlap zero were statistically significantly different from the reference 

group.   

 
Figure 5. Forest plot for the King County severity model (state routes only).  

Note: A vertical red line represents the null-hypothesis (OR=1). 
 

5.2.2 Summary of King County Severity Model 

We examined factors associated with the severity of pedestrian injuries by using binary 

logistic models. Our findings showed that the likelihood of a fatal or serious injury for 

pedestrians is affected by the surrounding environment and the roadway type. The model 

accounted for pedestrian and driver characteristics (age, gender) and behaviors (actions, 

contributing circumstances). 
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The final model showed that pedestrian age (socio-demographic variables) and pedestrian 

and drivers’ contributing circumstances (action variables) are associated with the likelihood of a 

severe pedestrian injury. 

Pedestrian-Related Variables  

The pedestrians’ age—being in the older age category—increased the association with 

fatalities or serious injuries in crashes. This result aligned with the findings from multiple studies 

that have shown that older pedestrians are more vulnerable and prone to incurring fatal or serious 

injuries (Jang et al. 2013; Kim et al. 2010; Lee and Abdel-Aty 2005; Moudon et al. 2011; Sarkar, 

Tay, and Hunt 2011; Tarko and Azam 2011). The odds of being in crashes that result in fatalities 

or serious injuries are 2.54 times higher for the age group between 65 and 74 than for the age 

group between 25 and 44.  

In past studies, pedestrians’ behaviors (e.g., crossing the road, walking along the road) 

were shown to be associated with an increased likelihood of incurring fatal or serious injuries 

(Al-Shammari et al., 2009; Byington and Schwebel 2013; Haleem et al., 2015; Moudon et al., 

2011; Nasar and Troyer 2013; Tarko and Azam, 2011). Our results showed that when pedestrians 

did not grant right of way (RW) to a vehicle (OR=2.68), failed to use a cross walk (OR=2.83), 

and exhibited ”other unknown” behaviors (OR=3.20), the odds of incurring a higher severity of 

pedestrian injury increased significantly. Our analysis showed that unknown “other” pedestrian 

behaviors were significantly correlated with the likelihood of fatal or serious injuries. The police 

reports that were available included a limited number of categories of pedestrian behaviors that 

contribute to pedestrian crashes. This shows potential room for improvement in documentation 

that could help researchers find more detailed and specific factors associated with fatal or serious 

injuries. 

Driver-Related Variables  

Driving under the influence of alcohol was associated with fatal or severe pedestrian 

injuries (OR=4.90). This finding is supported by previous research (Jang et al., 2013; Zajac and 

Ivan, 2003). The category “other unknown” did not include detailed documentation of driver 

behaviors but was included in the model.  This category was negatively correlated with fatal or 

serious injuries.  

Vehicles traveling straight ahead were positively associated with severe injuries and 

fatalities, whereas vehicles making a right or left turn were negatively associated (but not 
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significantly). These findings were consistent with other studies (Roudsari et al., 2005). 

Pickups/vans (OR: 1.79), buses/heavy-duty vehicles (OR: 6.71), and other types of vehicles/not 

stated (OR: 3.91) were more likely to result in fatal or serious injuries than passenger vehicles. 

Heavy vehicles have been found to be associated with a higher likelihood of severe injury in 

other studies (Lefler et al., 2004, Paulozzi. 2005, Charters et al., 2018). 

Lighting Conditions  

Lighting conditions labeled as “dark” were found to increase the likelihood of a severe 

injury or fatality in comparison to daylight (OR=1.80). This is consistent with other studies that 

have shown that darkness (late in the day or at night) is associated with serious and fatal 

pedestrian crashes (Kim et al., 2010; Lee and Abdel-Aty, 2005; Mohamed et al., 2013)  

Micro-Environment Variables   

Maximum posted speed was associated with fatal or severe injury crashes. Speed has 

been previously associated with the severity of pedestrian injuries in pedestrian-vehicle crashes 

(Davis, 2001). However, in other studies the posted speed limits have been reported to not 

significantly affect injury severity (Zahabi et al., 2011).  Although the posted speed limit is not 

the same speed that all drivers of motor vehicles follow, posted speeds of 40 MPH and 50 MPH+ 

showed greater positive correlations with fatal or serious injuries than a posted speed of 35 MPH 

in our analysis.  

Macro-Environment Variables  

Employment density, the presence of park and ride facilities, and industrial areas showed 

weak associations (p<0.1) with fatalities or serious injuries. Areas with park and ride facilities 

showed a lower likelihood of fatalities or serious injuries than areas without such facilities. This 

could be because more traffic calming signs or lower speeds are often imposed around these 

facilities. Lastly, areas with higher percentages of industrial facilities were associated with a 

lower likelihood of fatalities or serious injuries. 

5.3 Washington State Severity Model 

A model with all of the explanatory variables was first developed as a reference, and then 

a refined model was created on the basis of the stepwise variable selection processes. The refined 

model showed a better fit with the lower Akaike Information Criterion (AIC) than the full model.  
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5.3.1 Washington State Severity Model Results 

The odds ratios (OR) calculated for the final King County Severity Model are shown in 

Table 4. For instance, pedestrians over 65 to 74 years old were found to be 3.30 times more 

likely to be involved in a fatal or severe injury than pedestrians between 25 and 44.  
Table 4. Final Washington State severity model using binary logistic regression (fatal or serious injuries vs. other 

types of injuries). State routes only for 2013–2017. 

Independent Variables Levels Dependent variables OR (multivariable reduced) 

Other types 
of injuries 
Count (%) 

or Mean (SD) 

Fatalities and 
serious 
injuries 
Count (%) or 
Mean (SD) 

Pedestrian age Age 25-44 539 (74.7) 183 (25.3) Reference 

 Age 0-9 28 (87.5) 4 (12.5) 0.50 (0.13-1.52, p=0.260) 

 Age 10-14 60 (85.7) 10 (14.3) 0.53 (0.24-1.10, p=0.105) 

 Age 15-24 381 (79.0) 101 (21.0) 0.83 (0.60-1.14, p=0.248) 

 Age 45-64 404 (71.6) 160 (28.4) 1.35 (1.01-1.80, p=0.043) 

 Age 65-74 68 (64.2) 38 (35.8) 3.30 (1.94-5.58, p<0.001) 

 Age over 75 46 (63.0) 27 (37.0) 3.46 (1.88-6.29, p<0.001) 

Gender Female 635 (80.4) 155 (19.6) Reference 

 Male 891 (70.8) 368 (29.2) 1.24 (0.97-1.59, p=0.086) 

Pedestrian action All Other Actions 369 (72.1) 143 (27.9) Reference 

 Walking in roadway 49 (50.5) 48 (49.5) 1.05 (0.63-1.75, p=0.861) 

 XingNon Int 146 (52.3) 133 (47.7) 1.72 (1.18-2.53, p=0.005) 

 At Int. No Xwalk 84 (65.6) 44 (34.4) 1.40 (0.84-2.30, p=0.195) 

 At Int. W Signal 583 (90.8) 59 (9.2) 0.73 (0.46-1.16, p=0.181) 

 At Int. No Signal 163 (77.6) 47 (22.4) 1.36 (0.85-2.16, p=0.195) 

 At Int. Against 132 (72.9) 49 (27.1) 1.04 (0.65-1.66, p=0.858) 

Pedestrian contribution None/Blank 930 (86.1) 150 (13.9) Reference 

 Inattention 139 (72.8) 52 (27.2) 1.29 (0.81-2.02, p=0.273) 

 Did Not Grant RW to Vehicle 108 (58.4) 77 (41.6) 1.89 (1.19-3.00, p=0.007) 

 Under Influence of Alcohol 84 (59.6) 57 (40.4) 1.42 (0.87-2.29, p=0.154) 

 Failure to Use Xwalk 45 (65.2) 24 (34.8) 1.64 (0.85-3.11, p=0.136) 

 Other Unknown 162 (54.7) 134 (45.3) 2.49 (1.71-3.63, p<0.001) 

 Other Known 58 (66.7) 29 (33.3) 1.67 (0.93-2.93, p=0.079) 

Driver contribution None/Blank 394 (60.2) 260 (39.8) Reference 

 Fail to Yield Row to Ped. 474 (87.0) 71 (13.0) 1.23 (0.77-1.95, p=0.387) 

 Inattention 233 (86.6) 36 (13.4) 0.81 (0.49-1.31, p=0.394) 

 Driver Distraction 68 (73.1) 25 (26.9) 1.18 (0.65-2.09, p=0.583) 



 

23 

Independent Variables Levels Dependent variables OR (multivariable reduced) 

Other types 
of injuries 
Count (%) 

or Mean (SD) 

Fatalities and 
serious 
injuries 
Count (%) or 
Mean (SD) 

 Under Influence of Alcohol 12 (37.5) 20 (62.5) 4.06 (1.78-9.63, p=0.001) 

 Other Unknown 210 (79.5) 54 (20.5) 0.78 (0.50-1.20, p=0.255) 

 Other Known 135 (70.3) 57 (29.7) 1.09 (0.71-1.66, p=0.701) 

Driver action Other Actions 127 (78.4) 35 (21.6) Reference 

 Going Straight Ahead 595 (59.7) 401 (40.3) 2.10 (1.37-3.29, p=0.001) 

 Making Left Turn 358 (86.7) 55 (13.3) 0.89 (0.52-1.53, p=0.663) 

 Making Right Turn 446 (93.3) 32 (6.7) 0.45 (0.25-0.81, p=0.007) 

Vehicle type Passenger Vehicle 752 (76.4) 232 (23.6) Reference 

 Pickup truck/Van 647 (73.8) 230 (26.2) 1.28 (1.00-1.63, p=0.048) 

 Bus/Heavy-Duty Vehicle 25 (42.4) 34 (57.6) 4.47 (2.37-8.60, p<0.001) 

 Other/Not Stated 102 (79.1) 27 (20.9) 1.07 (0.62-1.82, p=0.804) 

Light condition Daylight,dawn,dusk 871 (82.5) 185 (17.5) Reference 

 Dark,Other 655 (66.0) 338 (34.0) 1.84 (1.44-2.36, p<0.001) 

Intersection presence Y 1265 (79.5) 326 (20.5) Reference 

 N 261 (57.0) 197 (43.0) 1.30 (0.92-1.83, p=0.140) 

Max posted speed (mph) 35 MPH 460 (81.1) 107 (18.9) Reference 

 25 MPH 163 (83.6) 32 (16.4) 0.88 (0.53-1.43, p=0.599) 

 30 MPH 197 (79.1) 52 (20.9) 1.08 (0.71-1.65, p=0.708) 

 40 MPH 226 (73.6) 81 (26.4) 1.74 (1.18-2.55, p=0.005) 

 45 MPH 182 (74.3) 63 (25.7) 1.53 (1.01-2.30, p=0.043) 

 50 MPH + 298 (61.3) 188 (38.7) 1.66 (1.13-2.44, p=0.009) 

Length of Trail (100 m)  1.2 (3.3) 0.8 (2.5) 0.96 (0.92-1.00, p=0.046) 

Total population  1.8 (1.2) 1.6 (1.2) 0.89 (0.81-0.99, p=0.031) 

Observations  1526 523 2049 
Log-likelihood    -916.92 

Akaike Inf. Crit (AIC)    1915.83 

Bayesian Inf. Crit (BIC)    2146.46 

Note: OR: Odds ratio, LL=log likelihood, AIC=Akaike Information Criterion, BIC= Bayesian Information Criterion, 
CI=confidence interval 
 

The final Washington State Severity Model was visualized to help interpret the results.  

The odds ratios (and 95 percent confidence interval) are shown in Table 4 and Figure 6. All 

variables that did not overlap zero were statistically significantly different from the reference 

group.    
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Figure 6. Forest plot for the Washington State Severity Model.  
Note: A vertical red line represents the null-hypothesis (OR=1). 

 

5.3.2 Summary of Washington State Severity Model 

We examined factors associated with the severity of pedestrian injuries by using binary 

logistic regression models. The final model showed that pedestrian age (socio-demographic 

variables) and pedestrian and drivers’ contributing circumstances (action variables) were 

associated with the likelihood of a severe pedestrian injury. 

  

 



 

25 

Pedestrian-Related Variables  

Pedestrians in the “45 to 64” and “over 75” age groups were more likely to have a fatality 

or serious injury in a pedestrian-vehicle crash when compared to pedestrians in the “25 to 44” 

age group. Our model also showed that male pedestrians were more likely to be involved in 

crashes resulting in fatal or serious injuries (p<0.1). This is consistent with Henary et al (2006) 

and Raharjo (2016).  

For pedestrians on state routes in Washington State, actions associated with the highest 

likelihood of fatalities and serious injuries were crossing at non-intersections (OR=1.72), 

whereas the least likelihood of fatalities or serious injuries was associated with crossing at an 

intersection with a signal. This finding emphasizes that the current design of intersections with a 

signal supports the safety of pedestrians at intersections. 

Driver-Related Variables 

Motorist’ maneuvers have been shown to be a significant factor in the severity of 

pedestrian injuries. Our model showed that vehicles traveling straight ahead was positively 

(OR=2.10) associated with severe injuries and fatalities, whereas vehicles making a right turn 

(OR = 0.45) or a left turn were negatively associated. Similar findings were also observed by 

Roudsari et al. (2005).  

Micro-Environment Variables  

With more observations in Washington State, the maximum posted speed of 45 MPH was 

significant in the Washington State model and was positively associated with fatal or severe 

injury crashes (OR=1.53). 

Macro-Environment Variables  

The length of trails and the total population became significant in the Washington State 

model. These variables were negatively associated with the likelihood of fatalities or serious 

injuries. This suggests that living in a denser area and with higher exposure to trails in 

Washington State reduced the likelihood of fatalities, given the higher concentration of 

pedestrians. 
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5.4 Comparison between King County Refined Model and Washington State Model 

 

Figure 7 Forest plots comparison between the Washington State and King County severity models. 
Note: A vertical red line represents the null-hypothesis (OR=1) 

 
We examined factors associated with the severity of pedestrian injuries (caused by 

crashes between pedestrians and motor vehicles) by using logistic binary regression models. Our 

findings showed that the likelihood of a fatal or serious injury for pedestrians is affected by the 

surrounding environment and the roadway type. The model accounted for pedestrian and driver 

characteristics (age, gender) and behaviors (actions, contributing circumstances). 

Both the full and refined models showed that pedestrian age (socio-demographic 

variables) and pedestrian and driver contributing behaviors are correlated with the likelihood of a 
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severe pedestrian injury or death. The Washington State severity model did not account for 

variables such as length of sidewalks, bus ridership, and employment density, as these variables 

were only available for King County severity model.  

We then compared the odds ratios for final versions of the Washington State and King 

County severity models.  Variables that significantly impacted the likelihood of a fatal or serious 

injury in a pedestrian-vehicle crash in Washington State but not in King County include: 

● Pedestrian age 45 – 64 (+) 

● Pedestrian age over 75 (+) 

● Pedestrian action: Crossing at a non-intersection (+) 

● Driver action: Making a right turn (–) 

● Max posted speed: 45 MPH (+) 

● Length of trails (–) 

● Total population (–). 

Variables that did not show any significant impact in the Washington State model but 

were significant in the King County model include: 

● Pedestrian contribution: Failure to use crosswalk 

● Driver contribution: Other unknown  

● Vehicle type: Other/not stated. 

5.5 Findings of the Severity Models 

Most of the explanatory variables in the Washington State and King County severity 

models had similar coefficients. Older pedestrian age groups (ages 45 to 64, 65 to 74, and over 

75) showed a larger increase in the likelihood of fatal or serious pedestrian injuries in the 

Washington State model than in the King County model.  

As expected, pedestrians’ and drivers’ characteristics presented strong associations with 

pedestrian injury severity. By taking into account micro- and macro-environment variables 

around crash locations, our model aimed to identify environmental factors associated with the 

severity of pedestrian injuries.  While individual-level variables were controlled for, several 

environmental factors that captured posted traffic speed and nearby land uses were associated 

with a higher likelihood of crashes ending in severe injuries or fatalities. A better understanding 

of the environmental factors associated with pedestrians’ involvement in severe injury or fatal 
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crashes could provide insights into safety strategies to reduce pedestrian-vehicle crashes in the 

future.  

It is important to note that great portions of data were missing from crash reports, 

including several factors that were found to be significantly correlated with fatal or serious 

injuries. For example, although we found that “unknown” pedestrian and driver actions were 

significantly correlated with fatal or serious injuries, we could not identify the specific actions 

because they were listed as “unknown” in the crash reports.  Because car speeds at the time of a 

crash were also not known, we used the posted speed limit as a proxy for motor-vehicles’ speeds. 

This was a limitation, as speed was found to be significantly correlated with pedestrian injury 

severity.  This underscores the importance of gathering accurate information at the time of a 

crash. As the quality of crash reports improves, the increased information will offer greater 

potential for improvements in crash safety analysis.    
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APPENDIX A – UNIT OF ANALYSIS FOR FREQUENCY MODELS  

 

The unit of analysis for the frequency models was a 100-meter buffer around crash-

prone locations (either intersection or non-intersection) at or near state routes.  This appendix 

describes the process for identifying these locations. 

● Intersection: According to the American Association of State Highway and 

Transportation Officials’ (AASHTO), A Policy on Geometric Design of Highways and 

Streets, an intersection is defined as the general area where two or more highways join or 

cross, including the roadways and roadside facilities.  

- Intersection point: WSDOT intersection point data were obtained and used as a 

baseline data set for further analysis. 

- Intersection location: Unique intersection locations were identified by excluding 

overlapping intersection points. 

● Non-intersection: A non-intersection is defined as a location where two or fewer 

segments join where pedestrians may cross a facility legally (traffic sign, signal, marked 

crosswalk, etc.) or illegally (no traffic sign). 

- Non-intersection point: Non-intersection points were detected by segmenting the 

state route roadway network. 

- Non-intersection location: Unique non-intersection locations were identified by 

excluding redundant non-intersection points. 

Intersection and non-intersection locations may or may not have had a crash during the 

study period (2013-2017), but they were all locations where a crash between a motor-vehicle and 

a pedestrian could occur (locations with crash risk) and hence had to be identified for modeling 

purposes. The study team thoroughly investigated WSDOT intersection and roadway network 

data and clarified possible issues and problems. In addition we suggested detailed approaches to 

identify crash-prone locations. 

The study team used WSDOT intersection point data as a baseline data set to identify 

pedestrian crash-prone locations. The flowchart shows the decisions made for cleaning the data 

and identifying unique crash-prone locations at intersections and non-intersections. Details of the 

method and resulting identification of intersections and non-intersections were recorded by Kang 

et al. (2019).  
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Figure A-1. Decision trees for identifying unique intersection locations [a] and non-intersection locations [b] (Kang 

et al., 2019) 

 

Once the intersection and non-intersection locations had been identified, we developed 

separate models for King County and Washington State. Our focus was on pedestrian-vehicle 

crashes that occurred on state routes.  

 
Reference: Kang, M.; Moudon, A.V.; Kim, H.; Boyle, L.N. Intersections and Non-Intersections: A Protocol for 

Identifying Pedestrian Crash Risk Locations in GIS. Int. J. Environ. Res. Public Health 2019, 16, 3565.
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APPENDIX B – CATERPILLAR PLOT 
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The state route numbers that fell within these percentiles are shown in the table below. 
Table B-1. State routes by percentiles of random effects 

Random Effects Percentiles  State Route numbers  
(In the order random effects decreases) 

>80% 515, 203, 501, 542, 99, 516, 529, 522, 519, 
528, 310, 705, 523, 900, 7, 96, 204, 507, 520, 
536, 531, 405, 291, 181, 513, 5, 224, 164, 
509, 19, 904, 530, 823, 524, 527, 544, 116 

60–80% 18, 90, 215, 500, 167, 532, 221, 92, 505, 270, 
2, 11, 223, 9, 125, 525, 702, 166, 303, 131, 
129, 510, 205, 526, 704, 182, 411, 307, 300, 
27, 28, 970, 225, 285, 97, 17, 302 

40–60% 202, 113, 128, 282, 599, 243, 123, 213, 241, 
197, 304, 433, 115, 283, 271, 20, 107, 10, 
153, 539, 547, 409, 26, 263, 274, 117, 102, 
206, 906, 8, 971, 305, 163, 534, 4, 292 

20–40% 82, 308, 730, 122, 127, 110, 706, 538, 401, 
121, 161, 546, 173, 821, 902, 518, 261, 548, 
100, 543, 22, , 41, 240, 105, 502, 150, 172, 
124, 278, 165, 231, 262, 141, 3, 24, , 506, 260 

<=20% 31, 112, 119, 170, 504, 108, 169, 272, 162, 
106, 195, 155, 410, 12, 25, 503, 23, 508, 432, 
395, 174, 512, 397, 21, 290, 104, 142, 281, 
101, 160, 903, 171, 16, 14, 6, 109, 103 

 

State routes that were within the 80th percentile of random effects are marked in cyan in 

Figure B-1. They were spread out among many cities, including Seattle, Renton/Kent, 

Bellingham, Yakima, and Bremerton, Washington. State routes by percentiles are shown in the 

Figure B-1. 
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: >80%,  : 60%,   : 40%, : 20%,

: <=20% 
Figure B-1. State routes in the greater than 80, 60, 40, 20, less than 20 percentiles of random state route effects 
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APPENDIX C – ESTIMATED PEDESTRIAN-VEHICLE CRASH FREQUENCY 

WITH STATE ROUTE EFFECTS  

 

     King County 

 
Figure C-1. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state routes in King County 
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Seattle 

 
Figure C-2. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state routes in Seattle 
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Renton/ Kent 

 
Figure C-3. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state routes in Renton and Kent 
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Everett 

 
Figure C-4. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state route in Everett 
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Bellingham 

 
Figure C-5. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state route in Bellingham 
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Clark County 

 

Figure C-6. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 
intersection and non-intersection locations along the state route in Clark County 
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Spokane County 

 

Figure C-7.  Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 
intersection and non-intersection locations along the state route in Spokane County 
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Kitsap County 

 
Figure C-8. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state route in Kitsap County 
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Yakima and Kittitas County 

 
Figure C-9. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 

intersection and non-intersection locations along the state route in Yakima  

 

 

Figure C-10. Map of expected crash frequencies per 100-meter Euclidean buffer of pedestrian-vehicle crashes at 
intersection and non-intersection locations along the state route in Kittitas County 

 

  



 

C-10 

 



 

D-1 

APPENDIX D – DATA PROCESSING STEPS FOR THE SEVERITY MODELS  

 

<PEDESTRIAN ACTIONS> 

 Pedestrian actions were categorized into seven groups, including All Other Actions, 

Walking in Roadway (with Traffic or Opposite Traffic), Xing - Non Intersection - No X Walk, 

Xing at Intersection with Signal, Xing at Intersection - No Signal, At Intersection Not Using 

Crosswalk, and Xing at Intersection Against Signal or Diagonally. More detailed categories are 

shown below.  

 

Detailed pedestrian actions Recategorized group 

Xing at Intersection with Signal Xing at Intersection with Signal 

Xing - Non Intersection - No X Walk Xing - Non Intersection - No X Walk 

All Other Actions All Other Actions 

Xing at Intersection - No Signal Xing at Intersection - No Signal 

Xing at Intersection Against Signal Xing at Intersection Against Signal or Diagonally 

At Intersection Not Using Crosswalk At Intersection Not Using Crosswalk 

Not in Roadway All Other Actions 

Walking in Roadway with Traffic Walking in Roadway 

Standing or Working in Roadway All Other Actions 

Walking on Roadway Shoulder with Traffic All Other Actions 

Walking in Roadway Opposite Traffic Walking in Roadway 

Xing - Non Intersection - In X Walk Xing - Non Intersection - In X Walk 

Walking on Roadway Shoulder Opposite Traffic All Other Actions 

Pushing or Working on Vehicle All Other Actions 

Fell or Pushed Into Path of Vehicle All Other Actions 

From Behind Parked Vehicle All Other Actions 

Xing at Intersection - Diagonally Xing at Intersection Against Signal or Diagonally 

Lying in Roadway All Other Actions 

Playing in Roadway All Other Actions 
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<PEDESTRIAN CONTRIBUTING CIRCUMSTANCE> 

Pedestrian contributing circumstances were categorized into seven groups, including 

None/Blank, Inattention, Did Not Grant RW to Vehicle, Under Influence of Alcohol, Failure to 

Use Xwalk, Other Unknown, and Other Known.  More detailed categories are shown below.  

● If the driver contributing circumstance was shown to be a pedestrian contributing 

circumstance in the data, then the None/Blank category was assigned because the 

pedestrian contributing circumstance was not known.  

● If the data showed Other, then the Other Unknown category was assigned because the 

pedestrian contributing circumstance was an unknown category. 

● If the data were aggregated although the circumstance was known, then the Other 

Known category was assigned to distinguish the category from Other Unknown. 

 

Detailed pedestrian contributing circumstance Recategorized group 

None None/Blank 

Other Other Unknown 

Did Not Grant RW to Vehicle Did Not Grant RW to Vehicle 

Inattention Inattention 

Under Influence of Alcohol Under Influence of Alcohol 

Failure to Use Xwalk Failure to Use Xwalk 

Blank None/Blank 

Disregard Stop and Go Light Other Known 

Driver Not Distracted None/Blank 

Unknown Driver Distraction None/Blank 

Fail to Yield Row to Pedestrian None/Blank 

Improper Turn Other Known 

Disregard Stop Sign - Flashing Red Other Known 

Disregard Yield Sign - Flashing Yellow Other Known 

Driver Distractions Outside Vehicle None/Blank 
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Driver Operating Other Electronic Device None/Blank 

On Wrong Side Of Road Other Known 

Operating Defective Equipment Other Known 

Under Influence of Drugs Other Known 

 

<DRIVER’S ACTION> 

Driver’s action: Pedestrian actions were categorized into four groups, including All Other 

Actions, Going Straight Ahead, Making Right Turn, and Making Left Turn. More detailed 

categories are shown below.  
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Detailed driver actions Recategorized group 

Going Straight Ahead Going Straight Ahead 

Making Right Turn Making Right Turn 

Making Left Turn Making Left Turn 

Starting in Traffic Lane All Other Actions 

Other* All Other Actions 

Merging (Entering Traffic) All Other Actions 

Changing Lanes All Other Actions 

Slowing All Other Actions 

Backing All Other Actions 

Starting From Parked Position All Other Actions 

Stopped for Traffic All Other Actions 

Stopped in Roadway All Other Actions 

Illegally Parked, Unoccupied All Other Actions 

Overtaking and Passing All Other Actions 

 

<DRIVER CONTRIBUTING CIRCUMSTANCE > 

Driver contributing circumstances were categorized into eight groups, including 

None/Blank, Fail to Yield Row to Pedestrian, Inattention, Driver Distraction, Under Influence of 

Alcohol, Exceeding Reas. Safe Speed, Other Unknown, and Other Known. More detailed 

categories are shown below.  

● If the data showed Other, then the Other Unknown category was assigned because the 

pedestrian contributing circumstance was an unknown category. 
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● If the data were aggregated although the circumstance was known, then the Other 

Known category was assigned to distinguish the category from Other Unknown. 

 

Detailed driver contributing circumstance Recategorized group 

None None/Blank 

Fail to Yield Row to Pedestrian Fail to Yield Row to Pedestrian 

Inattention Inattention 

Other Other Unknown 

Unknown Driver Distraction Driver Distraction 

Driver Not Distracted Other Known 

Under Influence of Alcohol Under Influence of Alcohol 

Did Not Grant RW to Vehicle Other Known 

Blank None/Blank 

Disregard Stop and Go Light Other Known 

Exceeding Reas. Safe Speed Exceeding Reas. Safe Speed 

Improper Turn Other Known 

Driver Distractions Outside Vehicle Driver Distraction 

Apparently Asleep Other Known 

Disreguard Flagger - Officer Other Known 

Improper Backing Other Known 

Operating Defective Equipment Other Known 

Apparently Fatigued Other Known 

Disregard Stop Sign - Flashing Red Other Known 

Disregard Yield Sign - Flashing Yellow Other Known 

Driver Interacting with Passengers, Anim Other Known 
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Follow Too Closely Other Known 

Improper Parking Location Other Known 

Improper Passing Other Known 

Under Influence of Drugs Other Known 

 

<CONTINUOUS VARIABLES> 

● Total width of lanes: The total widths of all lanes were obtained from WSDOT’s GIS 

data on roadway lanes. The width in each increasing and decreasing direction was 

summed up as the total width of lanes. For example, if there was a 12-ft-wide lane road 

in the northbound (increasing milepost numbers) and southbound (decreasing milepost 

numbers) directions, the total width of lanes was 24 ft.  

● The maximum posted speeds for both increasing and decreasing directions were 

compared to get the maximum posted speed in either direction.  

● Bus ridership density: This represented the number of daily average boardings and 

alightings per square km calculated from SmartMaps that were generated by the 

University of Washington Urban Form Lab (Hurvitz and Moudon, 2012).  

● Employment densities: Similar to bus ridership density, these densities were obtained 

from SmartMaps and represented jobs per square km.  

● Total population and racial population (Caucasian) were obtained by using census block 

information, and the household income was retrieved from census block-group 

information.  

● Residential, industrial, commercial and park areas represented the percentage of a total 

subject area within the circular area with a 400-m radius. For example, a total of 40,212 

m2 residential areas present in circular area with a 400m radius (502,655 m2) would give 

a value of 8 percent.  

● Lengths of sidewalks and trails were calculated by adding the lengths within the buffer 

area.  

 
Reference: Hurvitz, Philip M., and Anne Vernez Moudon. 2012. “Home Versus Nonhome Neighborhood.” 

American Journal of Preventive Medicine 42(4): 411–17.
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Americans with Disabilities Act (ADA) Information: 
This material can be made available in an alternate format by emailing the Office of Equal Opportunity at wsdotada@wsdot.
wa.gov or by calling toll free, 855-362-4ADA(4232). Persons who are deaf or hard of hearing may make a request by calling the 
Washington State Relay at 711.

Title VI Statement to Public: 
It is the Washington State Department of Transportation’s (WSDOT) policy to assure that no person shall, on the grounds of race, 
color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied 
the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who 
believes his/her Title VI protection has been violated, may file a complaint with WSDOT’s Office of Equal Opportunity (OEO). For 
additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, 
please contact OEO’s Title VI Coordinator at (360) 705-7090.
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