Project Report

State Route 99 Traffic Signs:

Software Interface

Performed by

Sound Transit
Research and Technology

and
Stuart Mclean, Daniel J. Dailey and Fredrick W. Cathey
University of Washington
ITS Research Program
Department of Electrical Engineering
Box 352500

Sesattle, WA 98195-2500

and
Washington State Transportation Center (TRAC)

August 2004

Table of Contents

T N I = O 15 1 L 1 O 1\ TN 1
2. SOFTWARE DESIGN ...ttt ettt e e e e e e ettt e e e e e e e e s b eeeesessasaaaeeeeeaansres 2
2.1 PROJECT OVERVIEW ...ttt ettt e ettt et et e e e et e e e e e e ettt b e e e e e s e e e bbbt e e e s s e es bbb e eeesseesbananaes 2
2.2 DATA FLOW + SYSTEM ARCHITECTURE.cutttuiiieiiittttieieeeseeeetssisesessessssiseesssssstnneesssesssn 3
2.3 SOFTWARE COMPONENTS «..itettttiteeeesettttseeeesessttaasseessesssbaaseeesesssbaaseesssesssbsassesssseessraaseeaaees 4
2.4 THE SERVER APPLICATION. . ettttuuteeeeiiettttiseeessesessssasseessssessssassessssessssassessseesssseeesserrssnnaeeeaees 5
24.1 Server Sartup Parameters..... ..o 6
24.2 S < Y g T o 1 o RSP P PP PPTPPROPTO 7
2.5 SERVER CONFIGURATION ... ctttttttttteeettettttiseeseseessssasessssesssssseesseeessaaaseesssesssssaseessssessrnsaaeeases 9
251 DIAgNOSHCS PhaASE... ...ttt ettt et sb et sb e b nr e nneen 9
2.5.2 S o010 (01 LSY 0 T=TS O 10
2.6 CONFIGURATION FILE SYSTEM .ttttiiiiiiiiiitttie e e e e e ettt s e e e e s e ea bt s e e s s s saab s e e s s s e eaaba e eseseeesbaannsns 12
26.1 (01 F=To 00 LS L0k o o T USRS TR PRSP 12
2.6.2 S 0120 (1Y o o TSP PP PR PR TPPURPIN 13
26.3 DIagNOSHCS FIlES.....c.eeiiecieciee e 13
2.6.4 SCNEUUIE FITES. ...ttt ettt eaeaaeaeeaseeeeeeaesseeesssssssessssees s e s s s s sessssesssesssssnssnssnnnnnnns 15
265 The ACEiVE CONfIGUIBLTON.coueiiiiiiii ittt bbb sne e sneene e 19
2651 TNESIGNS IR .o 20
2.7 THE EMULATOR APPLICATION 1uuuiiiiittttteeeeeseeettaisseessssssssassesssssesssssaesssssssssssnsseesssssssssnseeesees 20
2.7.2 Emulator Sart ConfigUrationoouiieiiiiiiise e 21
2.8 THE HUP APPLICATION ... citiettttte et e e e e ettt e s e e e s e ettt e e e e e s e eaab b s eesaseea bbb e esessessabbaa s eessseenbbaaneeaaaes 21
2.9 THE GUI APPLICATION ...t ttttttttteeeeeeette et e eesessstaaseeesseeesb bt eeessesstsaateeesseesabsaseesseeessbansaesaees 24
2.10 GUI START CONFIGURATION ..ceutttuuiieiiiietttsseeeseesstsassessssessssseesssesssssaeesssesssreeesseesssnns 25
211 SCHEDULE SHAKEUP ..ettttiiieee ettt e e e e et eet s s e e e e e et et e e e e s e e e e b b e e e s e s eeaa b b e eeessees bbb e eeeseeesbanansss 25
3. MYBUS SOFTWARE INTERFACE PROJECT - SR-99 HIGHWAY SIGNAGE:
OCTOBER 2003...... ettt e e e ettt e e e e e e et et e e eeeeee st b s e e e e s e eassaaaaaesssasssbsaanesseeesbanassns 27
3.1 PROJECT OUTLINE/OVERVIEW ..t nnan 27
3.2 EXPERIMENT CONDITIONS ..uuiiiiiiietttteee e e s e ettt s e e e e s eeetba e eessseeebbaseeesseessbaaeeesseesssaaanseeesseessnen 28
321 SErVEr CONMTIGUIALION ...ttt 28
322 SN CONfIGUIBLTION ...ttt bbb nb e b b 28
323 Data Sent From SEIVEN TO SN .evieeiieiieeiieesiee ettt 29
3.24 THINIEOULS ... nannnan 30
3.3 X PERIM ENT RESULT S, . ctttttiiiieeiiettttee e e e e e e e et s e e e e s et et e e e e e e s e ee b b e e eeeseesabb e eeeessessbaaaneeeseeesrees 31
331 CONNECHING TP AQAINESS........eieiieii et 33
3.3.2 LOg SUMMArieS and RESUITS.........oouiiiiiiiiiiiie et 33
IR I N ©ra g 0 1< o 1[0 SRR 33
3.3.2.2 Down Periods BEIWEEN CONMMECIIONS.uuvvrrrerrrrrrerrrrrrrrrrrssesssessssesssessssseeesessreseseeeeee 34
34 S LY N 2 2R 40
4. BRIEF REPORT ONHITECH SIGN TESTS: JANUARY 27, 2004.......ccoiiiiiiiiiiiiiiiieeeeeeeiin, 41
5. BRIEF REPORT ONHITECH SIGN TESTS. MAY 18,2004ccooeeiiiiiiiiiieeeeeeeeiiieee e 44

List of Figures

Figure 1: Total uptimeand dOWNEIME N NOUS.oiiiiiiiei i 36
Figure 2: Total uptimein hoursfor each connection DY day...........coceeiiiiiiiii i 37
Figure 3: Uptime by hoursfor all CONNECLIONS...........civiiiiiii i 38
Figure 4: Downtime between conNECtioNSiN MINUEES.eoiiiiieiieiie ettt 39

Figure 5: Sprint-serviced Sign 3 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.cocvvvvvvviieiieneen. 42

Figure 6: Sprint-serviced Sign 4 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to recoNNECt.cooveveeieeieeieenienns 42

Figure 7: Sprint-serviced Sign 5 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to recoNNECt.cooveveeieeieeieenienns 43

Figure 8: Verizon-serviced Sign 9 —top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.cocvvvvveeiveneenenn. 43

Figure 9: Sprint-serviced Sign 3 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to recoNNECt.coceeveeieeieeiieeniens 45

Figure 10: Sprint-serviced Sign 4 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.ccceeeeeeeieeiene 45

Figure 11: Sprint-serviced Sign 5 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.ccccceeeeieiieeiene 46

Figure 12: Sprint-serviced Sign 6 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.ccceeveieeieeiene 46

Figure 13: Verizon-serviced Sign 8 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of timeto reconnectcccceeveieiieeiene 47

Figure 14: Verizon-serviced Sign 9 — top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of timeto reconnectccceeveieviieenene 47

1. Introduction

This report consists of four sections. The first section provides an overview of the
software constructed to service the signs, a description of how the software works, and
how to configure the application. The second section details an experiment requested by
Sound Transit in October of 2003. The third section describes results from an experiment
in January 2004. The fourth section gives the results of an experiment in April and May
of 2004.

2. Software Design

This section details the software components that support the delivery and display of
departure predictions about Metro King County transit vehiclesto LED signs deployed at
the roadside bus shelters.

2.1 Project Overview

The ‘sign server’ suiteis a set of Java programs used to manage/control/administer
communications between a central controlling server application and many Dynamic
Message Sign devices sourced from Hitech Electronic Displays (hitechled.com). The
software was developed by the Intelligent Transportation Systems research program at
the University of Washington using the Java programming language. It runs on both
Windows and Unix platforms. The primary application is the server application itself. As
of May 2004, the server application is running on a Linux PC within the ITSUW
network.

Each Hitech sign consists of a 72 by 8 array of LED pixels for text display, plusa
built-in wireless modem for communication over the Internet. The CDMA modem is
supplied by Airlink Communications (airlink.com). Each sign is packaged in a
weatherproof metal box for outside installation and unattended operation. Due to the
pixel configuration and supported fonts, only one line of text of about 12 characters can
be displayed on each sign at one time. The signs cycle through a series of messagesin
order to provide avariety of information. It should be noted that the Hitech signsin use
for this project are not in any way tailored to the transit data application described here.
Rather, they accept simple text strings like “Hello World.” Only the server application
knows that the textual data sent to the sign, e.g., “Next Arrival in 3 Mins,” relatesto
trangit vehicle movements.

As of May 2004, six signs have been installed at bus stops operated by the Metro
King County transit agency in the Seattle, Washington metropolitan area. The signs have
been installed one per location at sites chosen by MetroKC. The signs display real-time
arrival and departure information for buses scheduled to service each stop.

Communication between each sign and the single server application is via TCP/IP using
the signs' built-in modem. The server maintains a TCP socket connection to each sign.

Each Hitech sign has programmed into its non-volatile memory a string-valued
‘serial number,” which it announces to the server upon connection establishment. Thisis
the ONLY reliable remote means of identifying a sign. The IP address assigned to the
modem cannot be relied upon, since static IP is not guaranteed on the CDMA network
used by the sign/modem units. Accurate logging of sign serial numbers is thus important
asthe signs areinstalled in the field. The list of serial numbersisa central part of the
overall server configuration.

ITSYUW has aready developed software for calculation and public dissemination of
real-time bus movement information for the King County region. The web site
http://mybus.org provides estimated departure times for al Metro King County buses at
all scheduled event locations. These locations do not directly correspond to bus stop
locations but are good approximations. The sign server application described here taps
into this data feed in order to provide each of the signs with bus movement information
relevant for that sign location. For example, for the sign installed at the northbound bus
shelter at the intersection of Aurora Ave N and N 85" Street in Seattle, the server is
configured to send datato that sign for just those buses which serve that stop.

2.2 Data Flow + System Architecture

For the Metro King County transit agency, I TS/UW receives rea-time automatic
vehicle location (AVL) data reports directly from MetrokKC's AVL system. Reports
identify the vehicle and block of scheduled work the vehicle is performing and how far
into the block the vehicle has reached. ITS/UW has defined a‘standard” AVL report,
containing many more fields than are currently provided by MetroKC's AVL system.
Thus, ITSUW processes the incoming AVL data stream and expands the data reports
into new ones containing al fields required by this ‘standard’ report.

Oncein this standard format, AVL reports are further processed by a set of ITS/UW
applications known collectively as ‘Mybus.” First, a‘predictor’ application estimates
future bus movements, and, in particular, arrival/departure times at specific points in each

block of work. Output of this predictor is maintained in a second Mybus application
caled the *Store.” The Store is effectively an in-memory database system. It makes
available the latest prediction about each scheduled event and can be queried by both
event location and block id keys.

The Mybus Store has many clients. The Mybus web site application
(http://mybus.org) is the primary consumer of the store data. For each request by a Mybus
web site client, normally via aweb browser, the web site queries the Store for the latest
predicted times for bus arrivals/departures. Parameters in the query include the
geographic location of interest.

The signserver application is another client of the Store. One important difference
between the web site and the sign server system is that the web site is client driven while
the sign server is server driven. For the web site, datais pulled from the system viaa
browser initiated HTTP request. In the sign server application, the Hitech signs are
passive. The server schedules internally the work to be done to update each sign at the
appropriate time. When a sign needs updating, the server queries the Mybus store for new
data and formats the data for transmission to the sign using the proprietary encoding
supported by Hitech’s signs. The server then pushes the data to the sign, which should

acknowledge receipt of the data.

2.3 Software Components

In the notes below we assume that a copy of the sign server software is available
locally on a Unix host. For a Windows installation, replace any shell script instructions
with those appropriate for batch files.

We shall refer to the root of the software installation as HITECH_HOME. All
applications under thisroot are written in 100% pure Java and thus will run on any
platform with a suitable Java Virtual Machine (JVM). In this directory, the following

sub-directories should exist:

» server — Thisdirectory holds the server application code and launch files.

Also in this directory tree are logs of data sent between server and signs. A

‘config’ sub-directory contains the tools needed to re-configure the server
application should the transit schedule change, which, for the MetroKC

agency, occurs approximately three times per year.

conf — Thisis the main directory that holds all text files which describe
exactly for each sign what sequence of text strings should be sent to the sign
and at what intervalsin time. The XML format is used to describe the

message Sequences.

hup — The hup program is used to communicate to the server that one or more
text filesin ../conf have been changed and that the server should re-process
them accordingly. Use of a hup mechanism avoids having to shutdown and
restart the server when any part of the configuration changes.

emulator — Thisis agraphica program which emulates areal Hitech sign.
Properties stored in alocal configuration file mimic the non-volatile memory
state variables of areal sign. A further sub-directory named ‘groups’ provides

ameansto run N emulators simultaneously.

GUI —Thisisagraphical user console from which simple text strings can be
sent to achosen set of signs. It is envisaged as atool for managing a sign
during exceptional conditions where the regular bus schedule does not apply,
e.g., ‘Snow Routes In Operation.” It may be further developed into a more
fully featured control application in the future.

2.4 The Server Application

The server directory contains the following files:

1.

2.

server.[sh|bat] — launch shell script/batch file
server.prp — example properties file with main server parameters

stores.prp — example properties file describing Mybus store access

parameters

its.app.mybus.vms.hitech.server.jar — application code

where files ending in .prp are text readable properties files and .jar files are a compressed
archive file containing Java class files.

The server launch files refer to both the jar file above and a second jar file in order to
complete the classpath needed to run the application. The second jar contains a number of
resources describing aspects of the transit schedule needed by the server application. For
atransit schedule named ‘ schedule’, this second jar would be located under
$HITECH_HOME/server/config/schedule.jar. This file would then be referenced in the
server launch file. See Section 2.11 on schedule shakeup below.

2.4.1 Server Startup Parameters

The server application accepts zero or one command line argument(s). If oneis
given, it is expected to name alocal propertiesfile. If no argument is given, a default
properties resource is located in the server jar file itself. Configurable properties found in
the local propertiesfile are:

» confhome — Thisis the directory root for configuration files. If not supplied,
defaults to ../conf, which is the correct value in all but server testing/debugging

cases.

» requestport — Thisis the tcp socket on which to listen for connections from
Hitech sign/modem devices. As of May 2004, all devices connect to port 3001
(on host 128.95.29.20, signserver.its.washington.edu). There is no default value.
If a propertiesfileis supplied, this property must be defined.

* responsetimeoutsecs — Thisis the number of seconds the server will block on a
socket read when trying to read data from the sign/modem. Defaults to O, which
means block forever, if not supplied.

* dtores—Thisisthe file name containing Mybus store access parameters. Defaults
to stores.prp if not supplied.

* hups—Thisis awhitespace-separated list of P names and/or addresses from
which the server will accept hup messages and re-process configuration files.
Names/ addresses can be complete, e.g., 128.95.29.1, troika.its.washington.edu,

or wild-card matched by the * token, e.g., 128.95.29.*, 140.142.*,

* .its.washington.edu, washington.edu. It defaults to the single entry ‘localhost’ if
not supplied. Thisis the most secure option. Remote hupping has security
implications since no authorization/authentication mechanism is currently built
into the server.

The default properties resource, used if no prp file is supplied on the command line,
defines the following properties:
* confhome: ../conf

e requestport : 3001
* responsetimeout : 0

To run the server:

e cdto$HITECH HOME/server
» server.[bat|sh] [prpFile]

The server will start by reading appropriate configuration files (see Section 2.5) and
then listens on the given TCP socket for remote sign devices to establish connections. In
order to test the server, asign emulator application is included in the distribution (see
Section 2.7).

2.4.2 Server Logging

Various levels of logging have been created within the server application itself to
document connection behavior due to problems experienced with the sign/modem
connections to the server. Three different logs are maintained by the server application
for each sign that communicates with the server (the server uses the signs serial numbers
for logging purposes, so distinct signs (and/or emulators, see Section 2.7 below) should
have distinct serial numbers).

The log files are found under $HITECH_HOME/server/logs. The following
directories are maintained:

1. connections— This directory contains text files that document connection
establishments and connection failures for each individual serial number. All
entries are timestamped. Statistics regarding connection uptime, down time,

number of connections during any period, etc., can thus be derived from these

logs.
Entriesinto thislog are written by the server when the following occurs:

» validation — The server accepts a TCP connection from the
sign/modem and receives a successful serial number response from
the sign upon request. At this point, a connection to an identified
device has been established.

» error - Whilereading or writing data bytes to/from the TCP socket,
the server encountered an /O error on the socket. As of May 2004, no
write error has ever been seen. All errors are due to read failures. The
underlying operating system which the server runs on receives TCP
packets (segments). These packets request either a connection reset
(TCP RST flag set) or aclosure of the socket by the remote end (TCP
FIN flag set). Either scenario resultsin the TCP connection being lost.
It is not clear why these segments arrive at the server machine or from
which entity in the network (ISP, modem) they are sent.

2. socket — This directory contains time stamped logs of every byte written and
read by the server with respect to a single sign. For reads, atimestamp is
logged before the server issues the blocking read call. Once a single byte is
read, that islogged too. In addition to logging every byte of all the text
strings sent by the server to the sign, thislog contains al the bytes used in the
message encoding used by Hitech, the sign vendor.

3. goaltimes— This directory contains a higher level log for debugging the
Mybus-derived bus data strings sent to the sign. For example, this log shows
HOW the string ‘2 & 15 Mins was calculated, given the state of the Mybus
store at any moment in time. Given the data available in the Store, a
relatively complex algorithm is applied to derive the final message, and this
log isaview onto this algorithm. Factors involved include early vs. late
running buses, the absence of good AVL datafor avehicle, etc.

2.5 Server Configuration

The sequence of messages sent from the server to any sign/sign emulator that
connects to that server can be partitioned into two distinct sets/phases. These are the
initial diagnostics phase, followed by the logically non-terminating schedule phase. Only
when the TCP connection is lost does the schedule phase end. At this point, the server
returns to listening for a new connection. When established, the whole * diagnostics

followed by schedule phase’ cycle starts over.

2.5.1 Diagnostics Phase
Thefirst phase is the ‘diagnostics' phase. When a sign connects and is identified via
its serial number, a sequence of ‘diagnostics messages are sent to the sign. These meta-
data type message affect how the sign operates. For the Hitech sign, such diagnostics

include:
» Setting the text font size.

» Setting the pixel brightness (intensity). Thisis either constant throughout the day
or at various levels for various specified periods. Typically, the display isto be
brightest during daylight hours and dimmer during the night.

» Setting timeout values which drive re-connection logic in the sign, e.g., if the
sign has not received datain N seconds, assume there is a problem with either the

network and/or the server and re-connect.

» Setting a default text message for the sign to display during the periods when a

connection is not in place.

» Setting a“‘modem messages debug flag so that the sign will display the series of
AT commands it issues to the modem to initiate a connection with the server. In
the field, thiswould be set to fase.

The sequence of diagnostic messages sent to each sign is independent of the
sequence to any other sign, athough typically a single diagnostics sequence is applicable
to all signs. A sequence of diagnostics messages can be of length zero.

2.5.2 Schedule Phase

The second, and most important phase, of the server to sign message
communications is the so-called schedule phase. The schedule phase is where the
‘schedule’ of instructions describing the sequencing and content of the text messages to
be sent to the sign for display isread and interpreted by the server. The term schedule
here pertainsto a‘recipe,’ ‘plan,” or ‘itinerary’ and should not to be confused with the
notion of atransit schedule. A typical message schedule might be ‘Route 11 to
Downtown,” ‘Next BusIn,” ‘4 and 10 Minutes,” ‘ Time Now Is 12:20," at which point the

schedule loops back to the top element.

Assuming that signs are installed at distinct locations in the field, it is highly unlikely
in normal operation that two signs would be allocated to the same message schedule. The
text strings sent in the message schedule typically contain bus route numbers, trip
destinations, etc. (properties derived form the transit schedule) and times of next
arrival/departures for buses serving that location. Even on opposite sides of the roadway
at asingle intersection/cross-street, two signs would be served by schedules describing
buses heading in opposite directions. However, under exceptional conditions, such as
when all buses might be cancelled due to adverse weather conditions, ALL signs might
be controlled by the SAME schedule of * Snowing,” *All Buses Canceled,” ‘Update
Expected 6.00pm.” Switching of schedules by an operator as conditions apply is detailed
below.

We define the term * configuration’ to mean the complete description of all
diagnostics plus al schedule messages to be sent to ALL signs which the server is
expected to administer/control. A configuration is given alocal name. For example, ina
server system controlling 5 signsidentified as S1, S2, S3, $4, S5, atypical configuration
might be:

» name = ‘Default MetroKC Configuration’

» diagnostics sequence Da (consisting of D1,D2 where Di is a single diagnostic) to
be applied (sent) to signs S1, S3 and $4. D1 = set brightness to max, D2 = set

timeouts to 30 seconds.

10

» diagnostics sequence Db (D1,D3,D4) to be applied to signs S2, S5. D1 = set
brightness to max, D3 = set default message to ‘Not Connected,” D4 = set
modem messages to ON.

* message schedule SC1 to be applied to sign S1. SC1 consists of 4 rotating
messages. Route 358, Next Arrival, X and Y mins (X and Y filled in by Mybus
logic!), Time Now T.

* message schedule SC2 to be applied to sign S2. SC2 consists of 6 rotating
messages. Route 48, Next Arrival, X1 and Y1 Mins, Route 355, Next Arrival, X2
and Y2 mins

» schedule SC3 applied to sign S3

» schedule SC4 applied to sign 4

schedule SC5 applied to sign S5
Then a configuration is fully specified by
1. name

2. set of sign to diagnostics sequence assignments, e.g.

S1 : Da
S2 1 Db
S3 : Da
S4 ;0 Da
S5 : Db

3. description of each diagnostics sequence, e.g:

Da
Db

D1, D2
D1, D3, D4

4. st of sign to schedule assignments, e.g.

S1 : SC1
S2 . SC2
S3 : SC3
sS4 . SC4
S5 : SC5

5. description of each schedule, e.g.

SCl = (‘Route 11 to Downtown’, ‘Next Bus In’, ‘4 and 10 Mnutes’,
“Time

11

Now I's 12:20")

2.6 Configuration File System

A configuration is stored in the signserver system as a set of text files adhering to a
rigid naming convention and file system structure. Under $HITECH_HOME isa
directory called ‘conf.” Under this directory all configurations a server might use are
stored, one per directory. If different than ./conf, the server’s ‘confhome’ property must
be set accordingly. Thus, a configuration caled ‘MetroKC' would be stored in
$HITECH_HOME/conf/MetroKC. A configuration is effectively named by its directory
under conf. Other than this directory name, a configuration’s name is used only for

descriptive purposes.

For a configuration named CNAME, two files and two subdirectories must exist
under $HITECH_HOME/conf/CNAME/. The files contain information relating to the
assignment of sign serial numbers to diagnostics sequences (point 2 above in Section
2.5.2) and to the assignment of sign serial numbers to schedules (point 4 above). The
subdirectories contain files which describe the actual diagnostics and schedule contents
(points 3 and 5 above).

2.6.1 diagnostics.prp

All sign to diagnostics assignments are specified in $HITECH_HOME/conf/
CNAME/diagnostics.prp. Thisis atext file of key, value entries satisfying the syntax of a
Java properties object, i.e., a non-commented and non-empty line is of the form ‘key :

value.’

The keys in diagnostics.prp are the sign serial numbers. An entry is required for all
sign devices under control of the server instance. For any given key, say serial number
S1, the value string denotes an XML filename relative to $HITECH_HOME/conf (or

other confhome if not ‘conf’). Thus, a diagnostics.prp entry
S1 : metrokc/diagnostics/common.xml

tells the server that when sign S1 connects, the diagnostics sequence for that sign is
described in file $HITECH_HOM E/conf/metrokc/diagnostics’common.xml. The

12

configuration containing this file is ‘metrokc,” which in most cases is the current
configuration being described (i.e., CNAME = ‘metrokc’).

2.6.2 schedules.prp

All sign to schedule assignments are specified in $HITECH_HOME/conf/
CNAME/schedules.prp. Thisis atext file of key, value entries satisfying the syntax of a
Java properties object, i.e., a non-commented and non-empty line is of the form ‘key :

value.’

The keys in schedules.prp are the sign serial numbers. An entry is required for all
sign devices under control of the server instance. For any given key, say serial number
S1, the value string denotes an XML filename relative to $HITECH_HOME/conf (or
other confhome if not ‘conf’). Thus, a schedules.prp entry

S1 : metrokc/schedules/aurora85_north.xml

tells the server that when sign S1 connects, the schedule of messages to be applied to that
sign is described in file $HITECH_HOM E/conf/metrokc/schedules/aurora85 _north.xml.
The configuration containing thisfileis ‘metrokc,” which in most casesis the current
configuration being described (i.e. CNAME = ‘metrokc’). The file name, e.g.,
aurora85_north.xml, is arbitrary, but would be named to reflect the physical location at
which the signisinstalled. Its contents would then describe messages relating to buses
passing by that location (see Section 2.6.3 below).

2.6.3 Diagnostics Files

The sequence of diagnostics messages sent to a sign is described using xml text files.
The xml schema for valid diagnostics files is included in the software distribution. The
diagnostics which can be applied to a Hitech sign are detailed in the Hitech protocol
document, a copy of which is aso included in the distribution.

A typical diagnosticsfileis:
<configuration id= “common *“>

<bri ght ness-schedul e default= “8 *“>

13

<period starthour= “7 *“ startmn= “0 *“ stophour= ©“16 *“ stopm n=
“0 “ level= *“10 *“/>
</ bri ght ness-schedul e>

<of fl i ne-nmessage scrolling= “false *“ text= "“RESETTING *“/>

<ti nmeout-values hitech= “3 *“ npoden “30 “ online= ®“30 “ offline=
“30 “/>

<nobdem nessages value= “false *“/>

<set-tinel/>

</ configuration>

This diagnostics sequence contains 5 diagnostics. They are transmitted to the signin
the order given.

1. brightness-schedule: Up to 8 periods can be specified and would be as
follows: Between 7am and 4pm (16:00) set the pixel brightness at level 10,
the maximum. At all other times, the brightness should be the default of 8.

2. font-value: Thisis not a diagnostic message per se, but it is packaged as
control information with each text message. Thus, the font value is recorded
by the server for each sign and that value is then sent with each text message
in the schedule phase. (This appears to be the only way to set the sign’sfont.)
Note that currently this option has no effect, e.g., all signs' fonts are currently
fixed at 6x8 monospaced. In testing, it was agreed that thisis the only legible
font for the current signs.

3. offline-message: Thisisthe text the sign should display when the connection
to the sign server islost.

4. timeout-values: For Hitech and modem values, this information is in the
protocol document included with the distribution. The online value specifies
how long the sign should wait to receive new data from the server when the
TCP/IP connection isin place. Given that the message schedules used send
new text every 3 or 5 seconds, 30 seconds s plenty. If the online timeout

14

expires, the sign will tell the modem to re-dial. The offline timeout specifies
how long to wait between reconnection attempts.

5. modem-messages: Thisis a debugingoption only. If on (true), the sign will
display the AT commands it uses to control the modem. For an installed sign,
it would be off (false).

6. set-time: Thissetstheinternal clock in the sign. The sign uses its own clock
for various functions, including switching brightness periods. Setting the sign
clock upon connection establishment should reduce any clock drift (assuming
the server’s clock is correct).

One other diagnostic of interest is:

7. set-dial-number: Thisis used for debugging/installation only. It setsthe IP
address and port which the sign should dial up when it is next disconnected.
It enables the server to ‘offload’ the sign to a new server. Care should be used
with this command. If there is no control over the new IP address, there may
be no remote means for retrieving control of the sign/modem.

2.6.4 Schedule Files
The cycling sequence of text messages sent to a sign is described using xml text
files. The xml schema for valid schedule files is included in the software distribution as
$HITECH_HOME/doc/schedule.xsd. This schema is more application-oriented than the
diagnostics schema, which was entirely Hitech sign specific. The schedule schema
describes exactly what Mybus data should be calculated, how it should be formatted, and
when it should be sent.

A sample schedulefileis:

<schedul e id= “aurora46-north “>
<descri pti on>Aurora OB @ 46t h</ descri ption>
<tasks run= “forever “>

<events duration= “5 “>

<text value= “358 AUR VILL “ duration= “5 “/>
<text value= “NEXT ARRIVAL “ duration= “3 “/>

<retrieve storedescriptor= “nmetrokc *“ location= “1143
past= “30 “ future= “30 *“ errortext= “No Server *“/>

15

<sel ect >

<route value= “358 “/>

</ sel ect >

<di splay trinChars= “&anp; ‘>

<countdown units= “mns “ text= “% &anp; ® “ trailing= “ MN *“>
<inmmnent text= “DUE “ collapseMiltiples= “true *“/>
</ count down>

</ di spl ay>

</ event s>

<l-- show the current tinme for 5 seconds -->

<time duration= “5 “/>

</t asks>

</ schedul e>

The schedule ‘id" attribute is not read by the server, but is used by the GUI app for
descriptive purposes (see Section 2.9). The main element isthe ‘tasks element, whose
attribute ‘run’ should always be set to forever so that the enclosed task list repeats
without termination. Allowable task types, which may appear in any order and any
number of times, are:

1. text: Thisdisplays the text value for the specified duration, in seconds. The text
will be sent to the sign. The server will then wait ‘duration’” seconds before
sending the next string.

Note that there are NO text tasks at the top level in the above schedule
snippet. The <text> elements shown are within an <event> element (see
number 3 below more details of the event element). The difference
between the two isthat atop level text task (i.e., one whose parent element
is the <tasks> element) results in an unconditional transmission of the text
to the sign. A text task within an <events> element is sent only if the

string resulting from the event calculation is non-empty, i.e., there are
some buses due. There is no point showing ‘Next 358 to Downtown’ if
there are no subsequent bus times to be displayed.

16

2. time: Thisdisplays the current time and wait ‘duration’ seconds. The default

format for the time string is currently ‘h:mma,” displayed as ‘12:34PM’.

3. events: Thisisthe most important element in the schedule, since it describes the

Mybus-derived bus data text which the sign isto display. The events element has

four sub-element types:

a)

b)

text elements — These are text strings to be sent to the sign only if the
events task itself computes some bus time text, given the state of the
Mybus store and selection criteria of eventsto show.

retrieve element - The Storedescriptor attribute maps to a set of store
access parameters in the server file stores.prp (see Section 2.4.1). The
location attribute specifies alocation id from the transit schedule
(currently all locations must be timepointsin the schedule). Thisid is
included in the Store request message. The Store will respond with all
events at that location whose scheduled event time (NOT whose
estimated actual time) falls in the window NOW-past, NOW-+future,
where past and future are additional required attributes of the retrieve
element (units are minutes). In the above snippet, predictions for all
events in the Store denoted by ‘metrokc’ (maps to stores.prp key) at
location id 1143 whose scheduled time is NOW-30 mins to NOW+30
mins would be retrieved. Note that ALL event predictions are retrieved
for all scheduled buses on al routes, including deadhead events, end of
trip, departed buses, etc. The Mybus store has no filtering logic built in.
This must be done by the client; in this case, the selection element *next.’

select element — This enables filters to be applied to the event prediction
list returned from the Store. Provided filters are:

» aroutefilter, used above, to select only routes 358 — xml element
is <route>

» adirection filter (values are “inbound” and “outbound”) — xml

element is <direction>

17

» achained trip destination filter —xml element is <destination>

Any number of selection filters can be applied. They are
AND-ed together, so a scheduled event (and its associated
prediction) must satisfy all the filters to be considered for
display on the sign.

Implicit in the selection logic is the rule that departed buses
will not be considered for display, since this is meaningless on
a countdown style display. Problems do arise if there is no
real-time information on a bus. Then the schedule time is used
asthe best estimate of the arrival (i.e., the schedule actsas a
predictor). An according-to-schedule departed busis
processed as a departure too. The complete algorithm for
event selection and estimated arrival time is available from
ITSUW.

d) display element — The attribute ‘trimChars’ denotes which charactersin
the display string should be trimmed from both left and right of the result
string if they appear at either end. It istypically used to trim the
conjunction (e,g, ‘&’, asused in ‘3 & 5 Mins,") if only one bus is due.
Without trimming, the result string would be ‘3 &, which makes no
sense. Note that in xml the ‘&’ character is special and must be escaped
as‘&’ to appear as data.

The countdown element is currently the only allowed sub-element of
the display element. It is used so that the sign display counts down the

impending bus arrival, i.e., 4 Mins, 3 Mins, 2 Mins. Attributes are:

e units— Thisisamost always mins. A seconds-based

countdown is impractical.

» text—Thisisaformat string. Most charactersin the text string
appear in the final result string of the events task for
transmission to the sign. The actual bus times are inserted

18

wherever a %N appearsin the text string. Thus, %1 is replaced
with the estimated time of the next bus (NOT the next
scheduled time but the next ACTUAL time), %2 by the next
but one, etc. Due to the Hitech signs having just 12 characters,
no more than 2 bus arrivals can redlistically be shown at once.

» trailing — Thisis constant text to append to the result of text
above.

» leading (not included above) — Thisis constant text to be
prepended to the text result.

The <imminent> sub-element of <display> is included by request from Metro KC. If
abusarrival isless than 2 minutes from the sign, the arrival is said to be ‘imminent.” A
special imminent text (“DUE” is used above) is substituted for the actual minute value.
Thus'1l and ‘2" become ‘Due.” Multiple imminent arrivals, which can occur if the text
string is ‘%1 & %2 and both the next two arrivals are imminent, would normally be
shown as ‘Due & Due.” Setting ‘collapseMultiples' to true shortens the result to just
‘Due’

Example display configurations when the next bus isimminent (less than 2 minutess
away) and the following one is estimated to arrive in 10 minutes are:

text= “% &% “ -> “Due & 10

text= “% & %® *“ trailing= “Mn * -> “Due & 10 M n

| eadi ng= *“Second Bus: *“ text= “9%® *“ trailing= “Mn *“ -> *“Second
Bus: 10 M n”

2.6.5 The Active Configuration

In the $HITECH_HOME/conf directory (or some other directory if confhome is set
otherwise), there exists atext file called ‘active'. Its sole content is the name of the
configuration which the server should use on startup. Using a runtime notification
mechanism (see hup described in Section 2.8 below), the operator can edit thisfile and
cause the server to switch entire configurations. Under normal operation, the active file
would be left asis. As of May 2004, the configuration describing the six Hitech signs

19

installed and operating for MetroKC has been given the name ‘mybus.” Thus, the active
file contains just the word ‘ mybus.’

2.6.5.1 The Signs File
Also in SHITECH_HOME/conf isatext file named ‘signs.” Thisfile serves asthe
central documentation for various aspects of each Hitech sign/modem unit. It is expected
that maintenance/updates of this file will always be a manual process. Properties include:

e serial number
e install location

» ISP provider. As of May 2004, the six installed signs have Sprint and
Verizon providing the network accounts, with three modems assigned to each
provider.

* modem phone number, used as an extra means of identifying/debugging the

modems

* esn, as per phone number. A hardware identification of a modem, like an
Ethernet address.

The signsfileisNOT used by the main server application, nor isit referenced
anywhere in a configuration. The only software component in the distribution which
reads the signs file is the GUI application, see Section 2.9. No application writes the signs
file.

2.7 The Emulator Application

In order to test the server application and its various required runtime files, a sign
emulator application is included in the software distributon. The emulator mimics as
closely as possible areal Hitech sign (i.e., it uses the same proprietary protocol for
message encoding, has the same timeout functiondlity, etc). Indeed, the server cannot
distinguish areal Hitech sign from an emulator. In the $HI TECH_HOME/emulator
directory, the following files should exist:

» emulator.[sh|bat] - launch shell script/batch file.

20

* emulator.prp - example properties file with emulator parameters

* its.app.mybus.vms.hitech.emulator.jar - application code
2.7.2 Emulator Start Configuration
The sign emulator application accepts zero or one command line argument(s). If one

isgiven, it is expected to name alocal propertiesfile. If no argument is given, a default
properties resource is located in the emulator jar file itself. Configurable properties are:

» controllerhost : 1P hostname or address of server application
» controllerport : tcp socket on which server is listening for connections
» serialnumber : the string-valued serial number of the emulator
To run the emulator:
e cdto$HITECH HOME/emulator
* emulator.[bat|sh] [prpFile]

A graphics window should appear on the desktop. Once the emulator connects to the
server application and identifies itself via its serial number, the server will send text
strings based upon the server’s configuration. The strings are displayed in the emulator
window. A typical sequence of message strings might be

358 Downtown - displayed for 5 seconds
Next Arrival - displayed for 3 seconds
3 & 15 Mins - displayed for 5 seconds
11:54AM - displayed for 5 seconds.

It would then loop back to the first message.

2.8 The Hup Application

As described above, the main sign server application reads text configuration files at
runtime in order to derive the text messages appropriate for each sign. Should the server

21

operator/maintainer wish to change the server behavior, this is achieved via a two-step

process.
1. Edit the appropriate file(s) in aregular text editor.

2. Send the server notification that those file(s) have changed and the contents re-
processed.

The notification is done viathe ‘hup’ application included in the software
distribution. The hup is achieved by the hup application sending a UDP packet to the
host/port on which the server is listening for hup messages. The hup mechanism used
hereis NOT a Unix-style signal mechanism since these are not available in a cross-

platform Java environment.
In $HITECH_HOME/hup, the following files should exist:
» hup.[sh|bat] - launch shell script/batch file
* its.app.mybus.vms.hitech.hup.jar - application code

The hup program is driven by its command line arguments. The command line

grammar is:

hup [-h host] [-p port]

(active| di agnosti cs-assi gnnent s| schedul e- assi gnnent s| di agnosti cs-
contents

FI LE| schedul e-contents FILE)

In generdl, it islikely that the server would be hupped from the localhost, i.e., the
server and hup apps will reside and be run on the same machine. Thus, the -h and -p
options to the hup are not used in practice. If remote hupping is required, the -h option
should be used to identify the server host.

The hup program accepts five forms of command line input:

1. hup active — This notifies the server that the active configuration has changed.

This hup would be used after the ‘active’ file (under conf) has been edited, with a

new active configuration name replacing the existing active name. Upon receipt
of this hup, the server will read the ‘active’ file to identify the to-be activated

22

configuration and process all diagnostics and schedule files in that configuration.

Thisis done without losing socket connections to any connected signs.

2. hup diagnostics-assignments — This notifies the server that the diagnostics.prp
file has changed within the active configuration. The server re-reads the file and
calculates which sign-to-diagnostics assignments have changed. Diagnostic
sequences are applied to any connected signs for which a diagnostics assignment
IS seen to have changed.

3. hup schedule-assignments — This notifies the server that the schedules.prp file
has changed within the active configuration. The server re-reads the file and
calculates which sign-to-schedule assignments have changed. New message
schedules are communicated to any connected signs for which a schedule
assignment is seen to have changed.

4. hup diagnostics-contents PATH_TO_DIAG_FILE — This notifies the server that
the diagnostics sequence description file HITECH_HOME/conf/PATH_
TO_DIAG_FILE has changed and should be re-processed. Typically, the
FILE_NAME would be CNAME/diagnosticg/file.xml for an active configuration
named CNAME. The path MUST be rooted at $HITECH_HOME/conf. It is
NOT sufficient to provide D1.xml as the hup argument; it must be
CNAME/diagnostics/D1.xml.

Any connected sign currently assigned to the newly altered diagnostics sequence

will be sent the new diagnostics sequence.

5. hup schedule-contents PATH_TO_SCHED_FILE — This notifies the server that
the message schedule description file $SHITECH_HOME/conf/PATH_TO _
SCHED_FILE has changed and should be re-processed. Typically, the
FILE_NAME would be CNAME/schedules/filexml for an active configuration
named CNAME. The path MUST be rooted at $HITECH_HOME/conf. It is
NOT sufficient to provide SC1.xml as the hup argument, it must be
CNAME/schedules/SC1.xml.

23

Any connected sign currently assigned to the newly altered message schedule
(likely to be zero or one in number) will be sent the new schedule message

sequence.

2.9 The GUI Application

Included in the software distribution under $HITECH_HOME/qgui is a graphical
operator console. The console allows an operator to override the normal behavior of the
sign server. Currently, the GUI console supports the following functions:

* inspect various properties of each Hitech sign — This includes the serial
number, installed location, 1SP, modem netphone, esn, etc. These values are

read directly from the ‘signs filein ../conf.
» switch between active configurations

* Dbuild new configurations — A limitation is that the auto-generated xml files for

message schedules can contain just a single message.
* delete configurations, except for those identified as read-only

* identify groups of signs and save the group under a group name for later

referencing.

The primary task which the GUI cannot yet do is to actualy build xml schedule files.
Due to the extensive schema and the myriad configurations of message schedules, it is
arguable if aform-based input system would be feasible.

In the $HITECH_HOME/qgui, the following files should exist:
* gui.[sh|bat] - launch shell script/batch file
e qgui.prp - example properties file with GUI parameters

* its.app.mybus.vms.hitech.gui.jar - application code

24

2.10 GUI Start Configuration

The GUI application accepts zero or one command line argument(s). If oneis given,
it is expected to name alocal propertiesfile. If no argument is given, a default properties
resource is located in the GUI jar file itself. Configurable properties are:

» server : IP hostname or address of server application. Defaults to ‘localhost’ if

not supplied.

» serverport : tcp socket on which server islistening for connections. Defaults to
3001 if not supplied.

» confhome : home directory for configurations. Defaults to ../conf is not supplied.

The default properties resource, used if no prp file is supplied on the command line,
defines the above three property names with their default values as stated.

2.11 Schedule Shakeup

The server application relies on some files containing information derived from the
operating transit schedule. Should the schedule ever change (for the Metro King County
agency this occurs approximately every four months but can occur with higher
frequency), these files must be rebuilt and the server restarted. Included in the software
distribution isan Ant build script that can rebuild these files.

Reliance on this local file data is necessary since not all properties of a scheduled
event are available in the prediction data retrieved from the Mybus store. For example, in
the message schedule data files, the operator can specify that only “inbound” buses on
some route R should be displayed on a sign. That sign would presumably be installed at a
bus shelter serving inbound buses (Inbound as used by Metro King County means
towards downtown Seattle and outbound is away from downtown Seattle.). Currently, the
directonality (inbound vs. outbound) of a bus trip passing through a scheduled location is
not a property which can be obtained from the Store’s prediction data. So alocal file of
‘direction data’ maps each trip identifier (afield which IS provided in a prediction report)
to itsinbound or outbound direction.

25

It is assumed that the new transit schedule data is stored in an accessible sgl database
system for which a Java JDBC driver is available. The ITS/'UW-defined ‘ standard transit
schema’ is assumed to be the sgl schema used to store the data. This schema is described
in the documents directory of this distribution, i.e., $HITECH_HOME/doc/
transit_ddl.sql.

To build the required runtime data files for the server application, the following
sequence applies:

* cdtothe $HITECH_HOME/server/config directory

» edit the db.prp file so that the latest db properties are in place, esp dbschema.

* run Ant on the build.xml, i.ejust ‘ant’ suffices.

The build procedure builds a jar file with the same name as the dbschema. So if the
database transit schema name is ‘ april2004," the file will be $HITECH_HOME/server/
config/april2004.jar. This file must be included in the server app’s classpath:

e cdto$HITECH HOME/server
» shutdown the server app (viaps + kill on Unix)
* edit the launch script so that ./config/april2004.jar isincluded in the classpath.

e restart the server.

26

3. MyBus Software Interface Project - SR-99 Highway Signhage:
October 2003

3.1 Project Outline/Overview

The Intelligent Transportation Systems (ITS) research group at the University of
Washington (UW) has developed software which delivers real-time bus information to
variable message signs (VMSs). The software integrates the *Mybus' real-time data
developed by the UW I TS research group with aVMS provided by Hitech LED Signs,
Inc. Metro King County Transit owns the sign(s) and guides the project. VM Ss are to be
installed at bus stops in the King County, Washington, region.

The signs are to be located at bus stops. Communication between the central ‘ server’
application and the signsis via a wireless communication link. Each Hitech sign
incorporates a modem, provided by Airlink Systems, which handles wireless data transfer
from the server to the sign. The modem uses the Sprint PCS network as its Internet
service provider. Currently, the server application is hosted at ITS/UW though thisis not
arequirement of the system architecture.

In theory, the server and a sign should be able to transfer data at any time. The
communication protocol chosen for the project is TCP/IP, a connection-oriented protocol
widely used on the Internet. Upon powering up, the sign contacts the server, using a
TCP/IP ‘active open’ connection establishment routine. The server performs ‘passive
opens and accepts the incoming connection requests from the sign(s). Once a connection
is established, data can independently flow in both directions.

The server application attempts to send textual data (i.e., ‘Next Route 44 Bus' or
‘Will Arrive 3 Mins) to the sign at set intervals, nominally every 5 seconds. The text is
enclosed in a‘message’ coded according to the Hitech protocol. This protocol is a binary
data format used by Hitech to send datato and read data from a Hitech VMS.

In theory, the TCP/IP network connection between the server and a sign could
remain established continuously, as long as both the server application and sign are both
powered up and operating as designed. Unfortunately, it has been discovered that the

connection between the server and the sign is lost intermittently. Thus, messages sent by

27

the server do not reach the sign, and responses from the sign to the server (if any are sent)
are not received by the server.

The purpose of the experiment described in this report is to quantify the state of the

connection over an extended period, nominally seven days.

The aim of the experiment is to measure the robustness of the TCP/IP connection
established between a Hitech sign, with its enclosed Airlink Raven CDMA modem, and a
server application, which is hosted at the University of Washington. The server attempted
to send Hitech protocol-formatted messages to the sign at set intervals (approximately
every 5 seconds) for the duration of the experiment. The Hitech sign sends messages
back to the server application, verifying that it has received the server’s message and
acted on it accordingly (i.e., the given text was been displayed).

3.2 Experiment Conditions
The experiment started Wednesday, October 8, 2003, at 12 noon.

The experiment ended Wednesday, October 15, 2003 at 12 noon.

The duration of the experiment was 7 days, which is equal to 168 hours or 10,080
minutes or 604,800 seconds

3.2.1 Server Configuration

The server software application was run on the host nova.its.washington.edu
(128.95.29.3). The operating system was Windows NT 4.0 (build 1381) with Service
Pack 6. The server application was a Java program, and Sun Java Virtual Machine (JVM)
version 1.3.1 was used to run the compiled Java code. The code was written to send data
once, but the TCP/IP implementation within the operating system is set to a
retransmission count of 10. This means that the host server will try for at least 5 minutes
to get data to the sign. Thistime interval is sufficiently large enough that the sign will
timeout. See Section 2.4 for further details on timeouts.

3.2.2 Sign Configuration
The sign was located in an office at the University of Washington for ease of visua
monitoring. The sign display was visible every day to I TS staff during the approximate

28

hours of 9 AM to 5:30 PM, with the exception of Saturday, October 11 and Sunday,
October 12.

The sign was configured to display all text in a 6x8 mono-spaced font and to use a
static (i.e., non-scrolling) text display mode. The sign has 72 LEDs across its width and
can therefore display 12 text characters (i.e., 72/ 6) at one time while using this particular
font.

The brightness schedule feature of the sign was employed. The means that the text
can be displayed with varying brightness for user-specified periods of each day. Between
7 AM and 4 PM every day, the sign was to display text using brightness value 10
(brightest available). Between 4 PM and 7 AM, the brightness level wasto be 5 (a
medium value). The brightness schedule feature requires that the sign keep time. The ‘set
time' function was used every time the sign connected to the server so that the sign could
be initialized with NTP (network time protocol) time.

3.2.3 Data Sent From Server To Sign

The data sent from the server to the sign during the experiment consisted of text that
was provided by Metro King County Transit. The data sent was relevant to the
westbound bus stop at the intersection of N 85th St and Aurora Ave N in Sesttle. Route
48 and Route 355 buses pass through this location. Route 48 buses are scheduled to pass
westbound through this point between 06:20 AM and 12:06 AM. Route 355 buses are
scheduled to pass this point between 3:39 PM and 6:30 PM. The sequence of text
messages sent to the signis shown in Table 1.

Note that text strings 1 through 3 are sent only when Route 48 is scheduled within
the next 30 minutes (i.e., between 05:50 AM and 12:06AM). At other times, this message
set is not sent to the sign. Similarly, messages 4 through 7, relating to Route 355, are sent
only between 3:09 PM and 6:30 PM. This means that between 12:06 AM and 5:50 AM,
only message 8, the current time, is sent to the sign, at arate of once every 5 seconds.
Sending different messages at different times of the day affects the number of bytes being
exchanged. This time-of-day-dependency should be considered when interpreting the
number of bytes exchanged between the server and the sign.

29

Table 1. Sequence of Text M essages

Message Display Time Notes

483 LOYAL HTS 5 secs

NEXT ARRIVAL 3 secs

X &Y MIN 5 secs X and Y are replaced by Mybus prediction data values
355 SHORL CC 5 secs

EXPRESS 5 secs

NEXT ARRIVAL 3 secs

X &Y MIN 5 secs X andY are replaced by Mybus prediction data val ues
HH:MM AM|PM 5 secs the current time

In the Hitech protocol design, the server is aways the master and the sign is always

the slave. The server initiates message sequences, and in this experiment, it sent text

string data to the sign as described above. At the application level, this consists of a

single Hitech message. The sign then acknowledges receipt of the message, sending a 2-

byte response back to the server. Once it has acted upon the text message, the sign then

sends an ‘OK’ message to the server. The server acknowledges the OK message with a 2-

byte response back to the sign. The server then waits some period of time (3 or 5 seconds

as described above) and repeats the cycle. At the Hitech protocol level, the data transfer

therefore looks like this:

1. server to sign - 12 bytes (header) + 6 bytes (style and positioning of text) +
text length bytes ‘L. So, ‘Hello World' transfers 12 + 6 + 11 = 29 bytes. In
general, 18 + L.

2. dignto server - 2 byte response

3. dignto server - 12 byte OK message (12 byte header + O bytes of data)

4. server to sign - 2 byte response

5. server waits some time, then goesto step 1

3.2.4 Timeouts
The sign was configured to timeout and re-initialize the modem if data were not

received from the server in 30 seconds. Thisis the default value built into the sign

30

firmware. This means that the sign would wait 30 seconds for the arrival of message 1, as
detailed above. In normal operation, the 5-second server intervals between message
transmissions means that this 30-second timeout would never occur. However, in the
presence of network (or other) failures, the sign may not always receive the server-
transmitted messages. Thus, a sign-initiated timeout could occur. When the sign times out
on aread (defined as the act of attempting to read bytes across the connection), it re-
initializes the modem. Upon re-initialization, the modem closes its side of the connection
with the server. A connection closure of this type causes the modem’'s TCP
implementation to send the server’s TCP implementation a special TCP segment. Upon
receipt, the server notifies the server application that there are no more datato be read.
Thisresultsin the server trying to read the sign’s response (message 2 above) but getting
notification that the connection will never contain any further bytesto read. The server
application then aborts its regular cycle, described above, and closes its side of the
connection. At alater time, the sign attempts to re-establish a new connection with the
server, and the whole cycle begins anew.

The server was configured to not timeout when reading data from the sign. That is,
when the server issues aread call to obtain messages 2 and 3 from the sign (see above), it
will wait forever for the bytes to arrive. Only an input/output error would cause the server
to abort reading expected data from the sign. The connection closure described above is
an example of this error, and it causes the server to abort reading any further data on the

connection.

3.3 Experiment Results
The server remained running for the duration of the experiment. In other words,
whenever the Hitech sign was trying to connect to the server after a connection failure,
the server was always ready to accept the connection attempt. Further, any data sent by
the sign were aways read by the server.

Asfar as we aware (no notice of scheduled/unscheduled power outages in the office
where the sign was located), the sign remained powered up for the duration of the
experiment. Given that the server and the sign were both operational, any data transfer
failures can be attributed to either a network failure, alogical error on the server, alogical

31

error on the sign, or a combination of these. Since the server succeeds in most of its
message transmissions, we have no reason to think the server’slogic is erroneous. We
have insufficient information about the modem and the network configurations to derive

any further explanation of the problems.

Visual monitoring of the sign throughout the experiment verified that the brightness
schedule feature functioned as expected, with brightness changes occurring within 1
minute of 4 PM (the 7 AM switch was, however, never visually monitored).

As expected, the network connection between the server and the sign failed several
times. We define a‘ connection’ as the period of time from the instant Swhen the server
accepts the sign’s connection request to the instant E that a message sent from the server
is known not to have been received by the sign. Due to the 30-second timeout built into
the sign, the time E is actually 30 seconds earlier than when the server gets an
input/output error performing its next read.

The ‘results’ from the experiment were collected in three files:

* Server.log - Thisisthe server’s main log and is maintained by the server
application. It logs TCP/IP connection establishments with timestamps,
connection breaks with timestamps, total bytes written, and reads per

connection. This log forms the source of the primary results detailed later.

* CM04280002.l0g - (seria number of sign is CM04280002) This logs every
byte written by the server to the sign, along with the write time, the time
before every blocking read is called, and the byte value and time received for
every byte read. It is maintained by the server application.

» tcpdump log - Thisisalog of every TCP segment originating from or destined
for the server application. It is alow-level tool used to monitor
communication between the server application and the sign. It contains useful
information for diagnosing possible TCP implementation anomalies in the
modem and/or Windows NT OS or any network component in between.

32

3.3.1 Connecting IP Address
In the seven-day experimental period, we logged 74 separate connections. The final
connection remained in place past the experiment ending time. Thus, there were 73

connection failures.

Each time the sign connected to the server, the server logged the IP address of the
host sending the request for connection. The IP address was 68.26.112.169 and remained
constant in all 74 connections. This address resolves via DNS (Domain Name Server) to
000-160-536-areal.spcsdns.net. The name hitech2.eairlink.com also resolves to this P
address. In an earlier discussion, it was noted that a changing | P address for the sign may
cause problems. We are unable to verify that this might be a problem since only asingle

| P address was recorded during the experiment.

3.3.2 Log Summaries and Results

3.3.2.1 Connections
Over the entire testing period, there were 74 connections. The total bytes sent from
the server to the sign was 3205432 (3.057 MB), and the total bytes read by the server
(from the sign) was 1551080 (1.479 MB).

The minimum duration time for a connection was 3.15 minutes and the maximum
duration was 286.58 minutes (~4.8 hours). The median connection time was 125.96
minutes (~2 hours), and the mean connection time was 135.66 minutes (~2.3 hours). The
standard deviation was 62.45 minutes (~1 hour). The percentage of uptime for the
duration of the testing period was 98%.

Table 2 below details the statistics for connection times over the course of each day.
The headings in the table are defined as follows:

* Count: number of connections

 Min: duration of shortest connection (minutes)
« Max: duration of longest connection (minutes)
* Median: median duration (minutes)

* Mean: average duration (minutes)

33

« STD: standard deviation of duration (minutes)

Table 2: Connection Times by Day

Date Count Min M ax Median Mean STD
Wed, 08 5 65.57 254.80 137.33 144.72 69.92
Thurs, 09 11 13.47 234.48 154.43 135.35 63.30
Fri, 10 11 3.15 231.83 121.50 127.60 68.37
Sat, 11 11 3.17 227.85 127.45 127.72 67.80
Sun, 12 10 71.43 286.58 139.44 153.79 59.19
Mon, 13 9 92.45 198.53 124.08 139.43 42.90
Tues, 14 13 3.63 276.58 116.42 119.39 65.68
Wed, 15 4 78.40 245.83 17451 168.31 84.41

3.3.2.2 Down Periods Between Connections

Over the entire testing period, there were 73 down periods between connections. The
minimum duration for a down period was 1.47 minutes. The maximum duration was
33.47 minutes, which occurred from 4:16 AM until 4:50 AM, Thursday, October 9, 2003.
This down period of 33.47 minutesis far greater than any other down period. The second
highest duration for a down period was 3.58 minutes. The median duration for down
periods was 1.57 minutes, and the mean was 2.15 minutes. The standard deviation was
3.74 minutes. If the highest down period of 33.47 minutes is deleted from the data, than
the mean is 1.71 minutes and the standard deviation is 0.44 minutes.

Table 3 below details the statistics for downtimes between connections over the
course of each day. The headings in the table are defined as follows:

» Count: number of down periods (no connection)

* Min: duration of shortest down time (minutes)

« Max: duration of longest down time (minutes)

* Median: median down time duration (minutes)

* Mean: average down time duration (minutes)

« STD: standard deviation of down time duration (minutes)

Table 3: Downtimes Between Connections by Day

Date Count Min M ax Median Mean STD
Wed, 08 4 157 2.67 159 1.85 0.54
Thurs, 09 10 155 33.47 157 497 10.03
Fri, 10 10 157 3.08 1.58 1.87 0.60
Sat, 11 10 155 1.73 1.58 1.59 0.05
Sun, 12 9 147 1.62 157 155 0.05
Mon, 13 8 157 2.93 157 1.74 0.48
Tues, 14 12 1.48 1.67 157 157 0.05
Wed, 15 2 157 157 157 157 0.00

Figure 1 shows connection behavior over the duration of the testing period, 7 days
from noon Wednesday, October 8, 2003 to noon Wednesday, October 15, 2003. It shows
length of each connection and downtime in hours. Figures 2 shows the connection data
broken down by day. Figure 3 shows only the connection times in hours, and Figure 4
shows only the downtimes in minutes. This shows that the 33 minute downtime was an
abnormally long connection failure.

35

j

san,

4_:_1

.,_;_A_

SAWTUMOP PUB SUOT}IaUUO.)

"

;___%

_jg

"AN[qQ Ul UMOYS SUOTIIIUUOD UM SAWUMOP
puE pal ul UMOYS SAUIT) UOTIAUU0))

j__E_

—

o]

SINOY Ul auil J,

Figure 1: Total uptime and downtimein hours

36

Uptime Wed, 10/8/03 U%ti_me Thurs, 10/9/03

4 4
3 3
21 2
1} 1
. . i Time of Da
48 12 16 20 24 |meofDay 4 8 12 16 20 24 g
Uptime Fri, 10/10/03 Ulgtime Sat, 10/11/03
5)
4 4
3, 3
2 2
1} 1}
L D Time of Da
12 16 20 24 meotbw 4 12 16 20 24 4
Upstime. Sun, 10/12/03 Uptime Mon, 10/13/03
5 .
4 4|
3 3 |
2 2|
I 1
' Time of Day Time of Day
12 16 20 24 12 16 20 24
U%time Tues, 10/14/03 U%time Wed, 10/15/03
4 4
3, 3 |
21 2 |
1} 1!
' Time of Day Time of Da
12 16 20 24 4 12 16 20 24 |

Figure 2: Total uptimein hoursfor each connection by day.

37

Py sen] \‘

uop

SUON2UUO)
S

"

SuOauu0d [[B Joj awndn

POM

] —
SINOY Ul awi],

[as'

=t

Figure 3: Uptime by hoursfor all connections.

38

PaML sanj,

SAWTUMO(]

L__..ﬁm...L.....ﬂ.m...L....m..._;._..“m...L_..

SUOIJ2UUOD [[B U32Mm]aq aWNuMO(]

singp,

Ji

€

01

S

-0

- 8C

- 0e

SINUTL UT WIUMO(]

Figure 4: Downtime between connectionsin minutes.

39

3.4 Summary

It appears from the experiment that the sign functions as per the Hitech protocol
documents and that communication between the server application and the sign worked
as expected. Although the number of connection failures seems high at 73, the sign
quickly re-establishes the connection to the server and has an overall connection uptime
of 98%.

40

4. Brief Report on Hitech Sign Tests: January 27, 2004

Serial Numbers: CM04280003, CM04280004, CM 04280005, CM04280009

The ITS/UW group monitored the connection characteristics of each of four Hitech
signs connected to a central server application at ITS/UW. The monitoring period
commenced at approximately 15:30 on Friday, January 23, 2004 and ended at
approximately 13:00 on Mon, January 26, 2004. The signs are configured with the Online
Timeout and the Offline Timeout set at 60 seconds. We plan to deploy the signs with
these values set at 30 seconds, which is the minimum specified by Hitech.

Below are four figures, one for each sign, and each figure has two plots. There are
three Sprint-serviced signs labeled 3, 4, 5, and one Verizon sign labeled 9. The top plot in
each figure is the histogram of the session duration or time between reconnections. The
mean session duration, in hours, is called out at the top and is labeled “Mean.” The mean
time to reconnect is also at the top and labeled “ Restart time.” The bottom plot in each
figure has a bar that represents the time at which a reconnection occurred and the height
of the bar represents the time it takes to reconnect. Note that when we deploy the signs
with 30-second timeouts this reconnection time should be cut in half.

For each pair of figures, the percentage of downtime is show at the top right of the
bottom plot. The downtime percentages range from 1.5 to 2.7 percent. The Verizon sign,
number 9, has more reconnections but is faster to complete the reconnection. Though not
shown in the graphs. the data indicates that the Verizon sign changes | P address each
time a reconnection takes place.

During the testing, a software sign emulator was run in parallel and no reconnects
were observed, indicating that the server process was continuously functional.

41

Mean: 3.2879 STD: 271 Restart Time: 26917 Minutes

Sign 3
2 T T T T T T T
18 -1
31
L+]
0.5 -
0 1 1 1
0 1 2 3 4 5
Hours

Reconnaction Duration - Total Time:63 2767 Percentage Down:1.2761
35 ' . ' i 1 '

25+ | -

minutes

1.6 -

0.5

Hours

Figure 5: Sprint-serviced Sign 3 —top plot shows session duration or time between reconnections and
bottom plot showsreconnection times and length of time to reconnect.

Sign4 Mean: 5.1981 STD: 3.0034 Restart Time: 2.603 Minutes
2 T T T T T T T T

]) 1 I
8 7 8 9

|
10

Count

1 2 3 4]

Hours

Reconnection Duration - Total Time:62. 8664 Percentage Down:0.75811
a T T T T T T

Figure 6: Sprint-serviced Sign 4 —top plot shows session duration or time between reconnections and
bottom plot showsreconnection times and length of time to reconnect.

42

Sign5 Mean: 29426 STD: 3.5457 Restart Time: 2.9325 Minutes
4 T T T T T T

Count
he
T
1

1 -
ol L II L xl L I I L L l
2 4 10

12 14

Reconnection Duration - Total Time:62.7711 Percentage Down:1.5572
-] T T T T T T

T

minules
w
T

10 20 50 60 70 80
L3

Figure 7: Sprint-serviced Sign 5 —top plot shows session duration or time between reconnections and
bottom plot shows reconnection times and length of time to reconnect.

Sign9 Mean: 1.2223 STD: 0.75319 Restart Time: 2.0111 Minutes
14; r T T T

Count

1 | . .
3 4 5 & 7
Hours
Reconnection Duration - Total Time:69.0356 Percentage Down:2.6218
4 T T T T T + T -
3k -
g
x”
1k -
O L L
10 20 30 40 50 60 70 B0 90
Hours

Figure 8: Verizon-serviced Sign 9 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to r econnect.

43

5. Brief Report on Hitech Sign Tests: May 18, 2004

Serial Numbers: CM04280003, CM04280004, CM 0428005, CM0428006, CM0O428008,
CM04280009

The ITSYUW group monitored the connection characteristics of each of the Hitech
signs connected to a central server application at ITS/UW. The monitoring period
commenced at approximately 00:00 on Sunday, April 18, 2004 and ended at
approximately 14:00 on Monday, May 17, 2004. The signs are configured with the

Online Timeout and the Offline Timeout set at 30 seconds.

Below are twelve figures, two for each sign. There are four Sprint-serviced signs
labeled 3, 4, 5, 6 and two Verizon-serviced signs labeled 8 & 9. The top plot for each sign
is the histogram of the session duration or time between reconnections. The mean session
duration, in hours, is called out at the top and is labeled “Mean.” The mean time to
reconnect is also at the top and labeled “Restart time.” The bottom plot in each figure has
abar that represents the time at which a reconnection occurred, and the height of the bar
represents the time it takes to reconnect.

For each pair of figures, the percentage of downtime is show at the top right of the

bottom plot. The downtime percentages range from 0.97 to 2.4 percent.

Sign Information:

serial nunber : |ocation|l SP| ESN| Net phone| nodem password

initial 4 signs installed March 2004...

CMD4280003 : Aurora |B @46th| Sprint|09900283353| 206 251 6370| *******
CMD4280004 : Aurora OB @46t h| Sprint|09900283348| 206 251 6860| *******
CM428008 : Aurora | B @85th|Verizon| 09900491255| 206 714 7723| *******
C\VD4280009 : Aurora OB @ 85t h| Verizon| 09900481680| 206 714 7726| *******

sign 5 installed April 2004...
CMX428005 : Aurora OB @85t h| Sprint|09900283340| 206 251 6488| *******

sign 6 installed (testing) May 2004...
CMD428006 : 46th | B @Auroral Sprint]|09900147303| 206 852 4091| *******

Sign3 Mean:1.7708{Hrs) STD: 0.95367(Hrs) Restart Time: 2.3424 Minutes
35 T T T T T

(@] -
N . .
] 1 2 3 4 5 6
Session Duration (Hours)
Total Time: 707 5242 Percentage Down: 2.1519
50 T T T T T T
g‘ 40
2
E a0t -
o
E
= 204 -
=
B
8
T 10
s b o ikl ! i
] 100 200 300 400 500 €00 700 800

Hours into Test

Figure 9: Sprint-serviced Sign 3 —top plot shows session duration or time between reconnections and
bottom plot showsreconnection times and length of time to reconnect.

Sign 4 Mean:1.9114(MHrs) STD: 1.0644(Hrs) Restart Time: 2. 4387 Minutes
25 T T T T

0 1 2 3 4 5 5]
Session Duration (Hours)

Total Time:708.5553 Percentage Down:2.0766
TB T T T T T T T

@ & O @
(=] L= L= L=]
T
L

Restart Time (minutes)
n
(=]

i I I Lkl hdunduli I . | ad
100 200 300 400 500 600 700 800
Hours into Test

-
o

(=]
=]

Figure 10: Sprint-serviced Sign 4 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to r econnect.

45

Sign 5 Mean:1.8859(Hrs) STD: 0.80597(Hrs) Restart Time: 2.2098 Minutes
20 T T T T T T T T T

0 o5 1 15 2 2.5 3 35 4 45 5
Session Duration (Hours)

Total Time:709.9931 Percentage Down:1.9867

T T T T T

2

8

Restart Time (minutes)
8 =]
T
1

TP r—— m.qjmw.mummMm“Jmlﬂanumh
0 100 200 300 400 500 600 T00 800
Hours into Test

=]

Figure 11: Sprint-serviced Sign 5 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to r econnect.

Mean.g. 0438(H|s) STD: 5.4585(Hrs) Restart Time: 0.97361 Minutes

T

:
22
| I I I
15
Session Duration (Hours)
Total Time: 151 4836 Percentage Down:0 25709
27 T T T T T T T
3
2 15 -
3
1
1S
" E -
'
b=
5
w 05}
&
ol - 11 L i - o | 1
/] 20 40 &0 20 100 120 140 160

Hours into Test

Figure 12: Sprint-serviced Sign 6 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to r econnect.

46

Sign 8 Mean:2. 7866(Hrs) STD: 1.2372(Hrs) Restart Time: 2. 1279 Minutes
25 : T T T T

Session Duration (Hours)
Total Time: 708.3003 Percentage Down: 1.2518
40 T T T T T T T

W

2 0} -
£

E

.E 204 -
=

%

3 10

| L 4
&

0 100 200 300 400 500 600 700 800
Hours into Test

Figure 13: Verizon-serviced Sign 8 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to reconnect

Sign® Mean:3.3525(Hrs) STD: 1.644(Hrs) Restart Time: 1.4582 Minutes

Q 1 2 3 4 -] 1] T 8
Session Duration (Hours)

Total Time: 705.7375 Percentage Down:0.7 1627
] T T T T T T T

om
T
L

-
T
L

Restart Time {minutes)
L~ o
T
L

A A

O

o 100 200 700 B0O
Hours mno Tast

Figure 14: Verizon-serviced Sign 9 —top plot shows session duration or time between reconnections
and bottom plot shows reconnection times and length of time to reconnect

47

