IL-2 Immunotoxin Therapy Modulates Tumor-Associated Regulatory T Cells and Leads to Lasting Immune-Mediated Rejection of Breast Cancers in neu-Transgenic Mice

Original Articles
J Immunology 177(1): 84-91, 2006
Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, and Disis ML
Description / Abstract: 

Studies in cancer patients have suggested that breast tumors recruit regulatory T cells (Tregs) into the tumor microenvironment. The extent to which local Tregs suppress antitumor immunity in breast cancer is unknown. We questioned whether inhibiting systemic Tregs with an IL-2 immunotoxin in a model of neu-mediated breast cancer, the neu-transgenic mouse, could impact disease progression and survival. As in human breast cancer, cancers that develop in these mice attract Tregs into the tumor microenvironment to levels of approximately 10-25% of the total CD4+ T cells. To examine the role of Tregs in blocking immune-mediated rejection of tumor, we depleted CD4+CD25+ T cells with an IL-2 immunotoxin. The treatment depleted Tregs without concomitant lymphopenia and markedly inhibited tumor growth. Depletion of Tregs resulted in a persistent antitumor response that was maintained over a month after the last treatment. The clinical response was immune-mediated because adoptive transfer of Tregs led to a complete abrogation of the therapeutic effects of immunotoxin treatment. Further, Treg down-modulation was accompanied by increased Ag-specific immunity against the neu protein, a self Ag. These results suggest that Tregs play a major role in preventing an effective endogenous immune response against breast cancer and that depletion of Tregs, without any additional immunotherapy, may mediate a significant antitumor response.

PubMed ID: