Original Articles

An autoimmune response signature associated with the development of triple-negative breast cancer reflects disease pathogenesis

The repertoire of antigens associated with the development of an autoimmune response in breast cancer has relevance to detection and treatment strategies. We have investigated the occurrence of autoantibodies associated with the development of triple-negative breast cancer (TNBC) in the before diagnosis setting and in samples collected at the time of diagnosis of TNBC.

Concurrent SPECT/PET-CT imaging as a method for tracking adoptively transferred T-cells in vivo

BACKGROUND:

The ability of T-cells to traffic to and penetrate tumors impacts the clinical efficacy of T-cell therapy therefore methods to track transferred T-cells in vivo are needed. In this preliminary report, we evaluated the use of concurrent SPECT/PET-CT imaging to monitor the egress of HER-2/neu specific T-cells in a breast cancer patient with extensive bone-only metastatic disease.

The Antitumor Efficacy of IL2/IL21-Cultured Polyfunctional Neu-Specific T Cells Is TNFa/IL17 Dependent

PURPOSE:

Infusion of HER2-specific T cells, derived from vaccine-primed patients and expanded with IL2/IL12, has induced tumor regression in a minority of patients with metastatic treatment-refractory HER2+ breast cancer. We questioned whether alteration of cytokine growth factors used to culture vaccine-primed T cells could improve antitumor activity.

Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer.

BACKGROUND:

Ovarian cancer is immunogenic and residual tumor volume after surgery is known to be prognostic. Ovarian cancer often follows a recurring-remitting course and microscopic disease states may present ideal opportunities for immune therapies. We sought to establish the immune profile of a murine model of ovarian cancer that allows in vivo tumor imaging and the quantitation of microscopic disease.

Natural history of tumor growth and immune modulation in common spontaneous murine mammary tumor models.

Recent studies in patients with breast cancer suggest the immune microenvironment influences response to therapy. We aimed to evaluate the relationship between growth rates of tumors in common spontaneous mammary tumor models and immune biomarkers evaluated in the tumor and blood. TgMMTV-neu and C3(1)-Tag transgenic mice were followed longitudinally from birth, and MPA-DMBA-treated mice from the time of carcinogen administration, for the development of mammary tumors.

Therapeutic vaccines for ovarian cancer.

While therapeutic vaccines for ovarian cancer represent only a small fraction of active clinical trials, growing interest in this area and the accumulated data supporting the use of vaccines in cancer treatment portend further expansion of trials incorporating these strategies. This review explores the rationale for the use of vaccines for the treatment of ovarian cancer. It examines vaccine platforms that have been investigated and reviews the data from these studies. We also highlight recently reported phase 2 and 3 clinical trials with clinical outcomes as endpoints.

Protein-bound polysaccharide-K induces IL-1β via TLR2 and NLRP3 inflammasome activation.

Inflammasome activation has been shown to regulate both innate and adaptive immune responses. It is important to investigate whether immune-enhancing natural products can also activate inflammasome. The current study examined the potential of protein-bound polysaccharide-K (PSK), a hot water extract from Trametes versicolor, to activate inflammasome. Using THP-1 cells, we have demonstrated that PSK induces both pro-IL-1β and mature IL-1β in THP-1 cells in a caspase 1- and NLRP3-dependent manner. PSK also induces IL-1β and IL-18 in human PBMC.

Can immunity to breast cancer eliminate residual micrometastases?

An effective immune response has the potential for breast cancer sterilization with marked reduction in the potential for disease relapse. Adaptive type I immune cells uniquely have the capability of (i) cytotoxic T-cell activation and proliferation until all antigen expressing cells are eradicated, (ii) traversing endothelial barriers to penetrate tumor deposits wherever they occur, and (iii) immunologic memory, which allows the persistence of destructive immunity over the years it may take for breast cancer micrometastases to become clinically evident.

Proteomic profiling of the autoimmune response to breast cancer antigens uncovers a suppressive effect of hormone therapy

PURPOSE:  Proteomics technologies are well suited for harnessing the immune response to tumor antigens for diagnostic applications as in the case of breast cancer. We previously reported a substantial impact of hormone therapy (HT) on the proteome. Here, we investigated the effect of HT on the immune response toward breast tumor antigens.

Pages

Subscribe to RSS - Original Articles