UB SAT 2009 Worksheet #22 Quadrilaterals

1. In the figure above, if the perimeter of rectangle ABCD is 56, and if the length of AD = 16, what is the area of ABCD?

- 2. In the figure above, if *PQRS* is a square, what is the value of *a*?
 - (A) $\frac{9}{5}$
 - (B) $\frac{9}{2}$
 - (C) 5
 - (D) 7
 - (E) 9

3. The area of a certain rectangle is 36. If the ratio of the length of the rectangle to the width of the rectangle is 4 to 1, what is the perimeter of the rectangle?

- 4. In the figure above, *MNOP* is a parallelogram. What is the value of *x*?
 - (A) 20
 - (B) 10
 - (C) 5
 - (D) $\frac{25}{7}$
 - (E) $\frac{5}{2}$
- 5. In quadrilateral *DEFG*, the degree measures of its 4 angles are in the ratio of 2:3:5:6. What is the difference in the degree measure between the largest and smallest angles?
 - (A) 135
 - (B) 112.5
 - (C) 90
 - (D) 67.5
 - (E) 45

- 6. The figure above is a parallelogram. What is the value of *y*?
 - (A) 50
 - (B) 55
 - (C) 60
 - (D) 65
 - (E) 70

- 7. In square ABCD, what is the average (arithmetic mean) of angles e, f, and g?
 - (A) 45
 - (B) 60
 - (C) 90
 - (D) 100
 - (E) 180

Note: figure not drawn to scale.

- 8. In parallelogram ABCD above, what is the value of 2a + b?
 - (A) 120
 - (B) 180
 - (C) 240
 - (D) 250
 - (E) 320

- 10. In the figure above, what is the sum of a, b, c, d, e, f, g, and h?
 - (A) 100
 - (B) 180
 - (C) 360
 - (D) 500
 - (E) 630

- 11. In the figure above, \overline{AC} and \overline{BD} intersect at point E. If $m\angle ABC = 80^{\circ}$, $m\angle BCE = 50^{\circ}$, and $m\angle CEB = \frac{3}{4}m\angle ABC$, what fraction of $m\angle CEB$ is $\angle BAC$?
 - (A) $\frac{1}{7}$
 - (B) $\frac{4}{7}$ (C) $\frac{2}{3}$ (D) $\frac{5}{7}$ (E) $\frac{5}{6}$

Note: figure not drawn to scale.

- 12. In the figure above, ABDE is a rectangle. The length of \overline{BD} is 13, the length of \overline{CD} is 5, and the length of \overline{AC} is 10. What is the area of parallelogram ACDF?
 - (A) 24
 - (B) 30
 - (C) 50
 - (D) 60
 - (E) 78
- 13. In a square with vertices WXYZ, if point V is the midpoint of side YZ and the area of the triangle XYV is $\frac{4}{5}$, what is the area of square WXYZ?
 - (A) 2
 - (B) $\frac{8}{5}$
 - (C) 4
 - (D) $\frac{16}{5}$
 - (E) $\frac{18}{5}$

Note: figure not drawn to scale.

- 14. What happens to the area of rectangle ABCD above if h is doubled and side p is halved?
 - (A) The area is squared.
 - (B) The area is multiplied by 4.
 - (C) The area is doubled.
 - (D) The area is halved.
 - (E) The area remains the same.

Note: figure not drawn to scale.

- 15. In the figure above, G is the midpoint of \overline{FH} and $\overline{EF} \perp \overline{FH}$. If $\angle EGF \cong \angle JFH$ and $\angle FJH \cong \angle FEG$, what is the perimeter of ΔEFG ?
 - (A) 12
 - (B) $6\sqrt{8}$
 - (C) $11 + \sqrt{73}$
 - (D) 24
 - (E) 48

- 16. $\triangle ABC$ is equilateral and has an area of $1\frac{3}{5}$. Point *D* is the midpoint of side *AB*, point *E* is the midpoint of side *BC*, and point *F* is the midpoint of side *AC*. What is the area of parallelogram *DECF*?
 - (A) $\frac{2}{5}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{4}{5}$
 - (D) $\frac{13}{15}$
 - (E) 1

- 17. In rectangle *QRST* shown above, if $m \angle SUR$ is $\frac{4}{5}$ of $m \angle SRU$, what is the sum of the measures of $\angle RUT$ and $\angle RQT$?
 - (A) 230°
 - (B) 245°
 - (C) 260°
 - (D) 275°
 - (E) 290°
- 18. Quadrilateral ABCD has a perimeter of 26 and sides of integer lengths. If AB = m, and BC = CD = DA = n, when what is the difference between the greatest and least possible values of n?
 - (A) 7
 - (B) 6
 - (C) 5
 - (D) 4
 - (E) 3

- 19. In the figure above, two identical squares \overline{ABCD} and \overline{EFGH} overlap. I is the midpoint of \overline{AD} and \overline{EF} . J is the midpoint of \overline{CD} and \overline{FG} . If square ABCD has an area of 64, what is the area of the shaded region?
 - (A) 128
 - (B) 118
 - (C) 104
 - (D) 96
 - (E) 80

UB SAT 2009 Worksheet #22 Quadrilaterals Answers

1. 12

4. B

7. B

10. E

13. D

16. C

19. E

2. C

5. C

8. D

11. E

14. C

17. A

3. 30

6. E

9. $\frac{1}{6}$

12. B

15. A

18. A