U.S. Burning Plasma Program Development…

R. J. Fonck

for the U.S. Burning Plasma Organization

presented to

University Fusion Association

Meeting

Philadelphia, PA

Oct. 30, 2006
USBPO Formed to Organize BP Research Activities

Mission:

Advance the scientific understanding of burning plasmas and ensure the greatest benefit from a burning plasma experiment by coordinating relevant U.S. fusion research with broad community participation.

info in this talk: http://www.burningplasma.org
Community discussions on what to do
 - 1st BP Workshop at ORNL in Dec, 2005

Building the organization
 - Structural elements: Council, Topical Groups, etc.
 - Communications tools

Addressing near-term research needs
 - First cut at a BP Research Plan: EPAct Task Group
 - ITER Physics Tasks
 - ITER Design Review Process

Starting technical/research activities
 - Identifying and coordinating broader BP research tasks
Address BP-Relevant Issues by Combining Community Expertise

Problems to Address...

Knowledge Base & Capabilities...
USBPO Comprised of 3 Elements

Council
[Community Governance]

Directorate
[Coordination, Support]

Topical Groups
[Implementation: Working Groups]

Task Groups

Entry: Join Topical Groups of Interest
Council Provides Community Governance

- Council:
 Chair = James VanDam (U. Texas)
 Vice-Chair = Amanda Hubbard (MIT)

 Steven Cowley (UCLA)
 Richard Hawryluk (PPPL)
 Gerald Navratil (Col. U.)
 Craig Petty (GA)
 William Nevins (LLNL)
 George Tynan (UCSD)
 Steven Allen (LLNL)
 Earl Marmar (MIT)
 Martin Peng (ORNL)
 David Petti (INEEL)
 John Sarff (U. Wisc.)
 Michael Zarnstorff (PPPL)

ex-officio:
 Stanley Milora (IPO Chief Technologist, ORNL)
 Raymond Fonck (USBPO Dir.; IPO Chief Scientist)

OFES Program Managers:
 Erol Oktay (Science)
 Gene Nardella (Technology)
Council Pursues Policy and Planning

- Reviews and advises on new activities and issues
 - Overall structure
 - e.g. EPAct study
 - USBPO - ITPA coordination
 - Help identify and recruit leadership candidates
- Monitors BPO activities thru Directorate
 - Bi-weekly conferences with Chair, Vice-Chair, Director, Dep, Director, OFES
 - Full Council videoconference ~ quarterly
- Charter development
 - Define policies and rules for organization
- Strategic Planning Activity for BP research
Directorate Manages USBPO Activities

• Directorate:
 Director = Raymond Fonck (UW)
 Deputy Director = Tony Taylor (GA)
 Research Committee = Topical Group Leaders
 Admin = Joan Welc-Lepain (UW)
 Communications = James Dekock (UW)

• Develops and guides daily USBPO activities
 • Topical and Task Groups: identify and manage BP research activities
 • Identifying and recruiting participants, with Council
 • Interfaces BPO with ITER Project Office and other orgs (e.g., ITPA)
 • Communication and information
 • Workshops, tech mtgs, FESAC, BPM, NRC, ITPA, etc.
 • Outreach and education
Topical Groups = Focus of BP Research

<table>
<thead>
<tr>
<th>Topical Group</th>
<th>Leader</th>
<th>Deputy Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHD, Macroscopic Plasma Physics</td>
<td>Jon Menard (PPPL)</td>
<td>Chris Hegna (UW)</td>
</tr>
<tr>
<td>Confinement and Transport</td>
<td>Paul Terry (UW)</td>
<td>Ed Doyle (UCLA)</td>
</tr>
<tr>
<td>Boundary</td>
<td>Dennis Whyte (MIT)</td>
<td>Tom Rognlien (LLNL)</td>
</tr>
<tr>
<td>Plasma-Wave Interactions</td>
<td>Cynthia Phillips (PPPL)</td>
<td>Steve Wukitch (MIT)</td>
</tr>
<tr>
<td>Energetic Particles</td>
<td>Raffi Nazikian (PPPL)</td>
<td>Bill Heidbrink (UCI)</td>
</tr>
<tr>
<td>Fusion Engineering Science</td>
<td>Nermin Uckan (ORNL)</td>
<td>Rich Nygren (SNL)</td>
</tr>
<tr>
<td>Modeling and Simulation</td>
<td>Don Batchelor (ORNL)</td>
<td>Jon Kinsey (Lehigh)</td>
</tr>
<tr>
<td>Operation and Control</td>
<td>Dave Humphreys (GA)</td>
<td>Dave Gates (PPPL)</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Rejean Boivin (GA)</td>
<td>Jim Terry (MIT), Steve Allen (LLNL)</td>
</tr>
<tr>
<td>Integrated Scenarios</td>
<td>Chuck Greenfield (GA)</td>
<td>Chuck Kessel (PPPL)</td>
</tr>
</tbody>
</table>
Research Committee Organizing Research Tasks

- **Bi-weekly videoconference**
 - Chaired by Deputy Director - T. Taylor

- **Various Tasks undertaken to date**
 - Communications standards and tools
 - ITER CODAC
 - Burning Plasma issues identification
 - ITER Physics Tasks for 2005-2006
 - ITER Physics Tasks for 2006-2007
 - ITER Issue Card contributions
 - EPAct BP Planning activity
2005-2006 ITER Physics Tasks In Progress

U.S. Burning Plasma Organization

- **RWM Control** (G. Navratil)
 - Simulations of RWM feedback; feedback coil design for ITER; sensor noise

- **VDE, Disruptions and their mitigation in ITER** (D. Whyte)
 - Halo current models, VDE simulation, gas injection mitigation

- **Fast particle Confinement** (N. Gorelenkov)
 - Effects of TAE modes, fishbones, and TF ripple on fast particle losses

- **Effects of Radiation Transfer on Divertor Plasma** (B. Lipschultz)
 - Assess physics in codes for predicting effects of opacity and radiation transfer

- **ICRF Heating and Current Drive** (F. Jaeger)
 - Benchmarking ICRF codes for ITER plasma and antenna
• M3D predicts stability of fishbone mode in ITER

Alphas beta (~1%) is less than required for fishbone excitation (>~1.5%, Fu G.-Y. IAEA-2006)

Thermal ion kinetic effects reduce ideal kink mode (sawtooth) by half (Kruskal-Oberman), but do not completely stabilize

• Quasilinear Analysis of TAE instability in ITER
 • Global nature can cause alpha particle loss
 • Strong Pa gradient + low shear = strong TAE
Accomplishments & plans ~ Neutrals

C-Mod results critical to benchmark ITER models for He exhaust

- C-Mod neutral densities uniquely span that of ITER
 - $\lambda_{D_2-D_2} \sim 1.3-7.8 \text{ mm} \ll L_{\text{Divertor}}$
 - $\lambda_{D_+-D_2} \sim 1-8 \text{ mm}$, small compared to divertor fan
 - Photon absorption mean free paths $\sim 1 \text{ mm}$
- \Rightarrow excellent test of codes for ITER (US-ITER task)
 - Lyman alpha trapping - affects the ionization - recombination balance and access to detachment
 - Short neutral mean free path regimes - strongly affects neutral balance and pumping
- Recent inclusion of above processes leads to much closer match to C-Mod divertor pressures ($\times 5$)
 - Very positive result for ITER pumping

Status and plans
- Finish interpretive modelling
- Move on to self-consistent predictive modelling
- Divertor Ly\textsubscript{a} tomography in C-Mod
U.S. ITER Physics Tasks Proposed for 2007

- Used existing info to start
 - ITPA priorities; 2005-2006 ITER tasks; USIPO WBS needs; USBPO Workshop; etc.
- Topical Group leaders engaged community for ideas
 - Ongoing discussions on BPO forums
- 76 discrete tasks identified
- High-priority list of 14 advanced to USIPO
 - Used well-defined metrics for evaluation
- Working with USIPO to refine & discuss with ITER team
 - Led by N. Uckan, assisted by C. Greenfield and J. Menard
 - Identifying participants and work plans
 - Topical/Task groups will perform the chosen Tasks
Final List of Recommended ITER Physics Tasks

- Active coil system for ELM suppression and RWM stabilization
- ITER disruption mitigation system design and physics understanding
- Tritium retention and H/D/T control
- Requirements for stabilization of (3,2) and (2,1) NTMs
- Limitations to startup flexibility for advanced scenarios
- ELM mitigation
- ICRF antenna performance and coupling studies
- Critical assessment of heating and current drive mix on ITER and impact on achievable scenarios
- Review measurement requirements related to US diagnostic packages
- Evaluate the feasibility of lost and confined fast ion diagnostic systems for ITER
- ITER CODAC architecture design
- ICRF heating and current drive scenarios (time-independent)
- Development of improved pedestal and L-H transition predictive capabilities and impact on ITER design and performance.
- Locked-modes and error field correction specification
ITER Issue Card Process: Community Participation in the ITER Design Review

- Identification of Issues in ITER reference design
 - On-going ITER design review process - see Town Meeting Tues, Night

- Sub-comm extracted 1st set from 14 priority tasks
 - Some additions from Res Comm and sifting for design impact
 - Initial list of 11 forwarded to USIPO for discussion

- Initial group advanced forward by USIPO
 - Refine and expand as feedback obtained

- Topical Groups engaged to ID more as needed
 - Reaching out to community membership

(details at http://www.burningplasma.org)
Developing a BP/ITER Research Plan

 • The U.S. research agenda for ITER
 • Methods to evaluate whether ITER is promoting progress toward making fusion a reliable and affordable source of power
 • Description of how work at ITER will relate to other elements of US fusion program.

• DoE/OFES asked USBPO to help develop this Plan
 • Consultation with FESAC

• EPAct Task Group formed to produce this
 • Sent to OFES in early June 2006; available on BPO web site
Overview

- **Introduction**
 - Uniqueness = *strong-coupling* in burning plasma
 - Focus of U.S. program = *predictive understanding* of the fusion plasma system
 - Organize plan around previously identified priority campaigns
 - Always recognize tight coupling to international community planning

- **Research community structure is evolving to adapt to anticipated modes of participation**
 - Participation in USIPO
 - Members of international ITER Organization
 - Visiting participant scientists
 - ITPA
 - USBPO
 - Multilateral IEA and U.S. bilateral agreements
(i) The U.S. research agenda for ITER: Aligned with Science Campaigns

• Specific long-term goals require near-term preparatory research
 • Determines the near-term agenda for U.S. program over next decade or so
 • A range of topics identified
 • Plan backwards from goals…

• Examples:
 • Macroscopic Plasma Physics:
 - Goal on ITER: Stabilize pressure-limiting instabilities
 - ITER Time Frame: Modest gain Non-inductive Phase
 - Preparatory Research: Define suitable control coil systems for ITER

 • Waves and Energetic Particles:
 - Goal on ITER: Understand instabilities driven by alpha-particles
 - ITER Time Frame: High gain DT Phase
 - Modest gain Non-inductive Phase
 - Preparatory Research: Investigate energetic particle instabilities
 - Develop alpha particle diagnostics
(i) The U.S. research agenda for ITER: Specific Tasks for Each Campaign

Research Agenda for ITER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Integrated Burning Plasma System</td>
<td>DESIGN SUPPORT</td>
<td>High energy long pulse inductive scenarios for ITER</td>
<td>Achieve high gain long pulses in ITER</td>
<td>Achieve modest gain steady-state capability</td>
<td>Optimize gain in non-inductive plasmas</td>
<td>High duty cycle operation in burning plasma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRE-OPERATIONS</td>
<td>High energy steady-state scenarios for ITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMMISSIONING</td>
<td>First Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIGH GAIN DT</td>
<td>Achieve high gain long pulses in ITER</td>
<td>Study alpha heating effects</td>
<td>Establish integrated model on ITER</td>
<td>Control complex, burning plasmas in ITER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODEST GAIN DT LONG PULSE, NONINDUCTIVE TESTS</td>
<td>Achieve modest gain steady-state capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUSION TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscopic Plasma Physics</td>
<td>Design suppression coils for pressure limiting instabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop disruption avoidance and mitigation methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specify RF systems to stabilize confinement limiting instabilities</td>
<td>Mitigate disruptions in ITER</td>
<td>Suppress confinement limiting instabilities in ITER</td>
<td>Stabilize pressure limiting instabilities in ITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves and Energetic Particles</td>
<td>Resolve RF and microwave issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specify Upgrade of HMC2 systems for ITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigate energetic particle instabilities</td>
<td>Develop alpha particle diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop alpha particle diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Scale Transport Physics</td>
<td>Understand electron heat transport</td>
<td>Develop turbulence diagnostics for ITER</td>
<td>Understand transport in the burning plasma regime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decide how to spin the ITER plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand transport barriers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma-Boundary Interface</td>
<td>Understand edge pedestal physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify approaches to minimize the impact of edge instabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand role of density in divertor physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion Engineering Science</td>
<td>Study first wall material options</td>
<td>Participate in a test blanket module program</td>
<td>Handle unprecedented power exhaust</td>
<td>Deploy with sufficiently low tritium inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participate in a test blanket module program</td>
<td>Develop advanced fueling for ITER</td>
<td>Deploy, operate, study test blanket modules in ITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop advanced fueling for ITER</td>
<td>Support superconducting magnet construction</td>
<td>Provide central fueling in ITER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support superconducting magnet construction</td>
<td>Develop RF sources and wave launchers</td>
<td>Assess the performance of power-plant scale magnets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop RF sources and wave launchers</td>
<td>Develop applicable technique</td>
<td>Use RF systems to control the plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop applicable technique</td>
<td></td>
<td>Deploy turbulence and alpha diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Develop applicable technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(ii) Methods to evaluate whether ITER is promoting progress toward making fusion a reliable and affordable source of power

Metric Class I: Scientific Progress

- Focus of U.S. program = development of underlying science and a *predictive understanding* of the fusion plasma system
- Comparison of predicted and measured properties of plasma
 - Experimental validation of theory and simulations
 - e.g., explore predicted stability limits once in BP regime
- Use of knowledge for controlling and extending plasma performance

Metric Class II: Energy and Technology Progress

- Performance goals: e.g. fusion power, gain, pulse length, etc.
- Secondary to scientific metrics, but easier to define - need to be careful!
(iii) Description of how work at ITER will relate to other elements of the U.S. fusion program.

- Follow NRC BPAC report: goals for attractive fusion energy
 - Maximize the plasma pressure
 - Maximize the plasma energy confinement
 - Minimize the power needed for sustainment
 - Simplify and increase reliability

- A portfolio approach used to develop the predictive understanding of magnetic confinement to achieve these goals
 - Experiment in four leading categories
 - Theory and simulation
 - Fusion engineering science and tools
 - Tests of emerging concepts

- Relation to ITER and burning plasma research in an integrated fusion program
 - Support
 - Complement
 - Benefit from
Future Directions in Developing an Overall Plan for ITER Participation

- Further develop specific goals and timescales
 - Long-term BP Planning Activity in USBPO - Council activity
 - Work with partners through ITPA, USIPO, and ITER for U.S. roles

- Set clear priorities among the tasks
 - As tasks are defined, confront prioritization
 - Lead to suggest BP priorities in near-term domestic research

- Work with FESAC planning activity
 - Address the ITER/BP participation part of the U.S. program
Getting Involved from Universities

• Find out what’s going on
 • Sign up for membership at: http://www.burningplasma.org/
 • e-News, Bulletin Boards, e-mail distributions, TG meetings and discussions
 • Suggest new approaches for communications?

• Participate in Topical Group Discussions and Tasks
 • TG videoconferences and satellite meetings (e.g. several here during week)
 • Execute research tasks
 • Propose new activities…
 • Move to leadership positions in areas of interest

• Also: ITER Positions posted at http://www.usiter.org/
 • National and international
Topical Groups = Avenue for Identifying, Proposing new BP Activities

- Work with colleagues to promote needed research
 - Needs can be communicated to OFES

Fast T_e measurement on NSTX using multi-energy SXR array

Example (JHU):
Real-time Pedestal Measurements:
- ELM detection, assessment
- Early RWM detection
- Pedestal MHD
- Reduce demands on TS
- Suitable for BP environment
What’s Going on This Week & Near-Term

- **Topical Group meetings of interested community members**
 - MHD - Menard, Hegna Tues 17:30 Rm 304, Marriot
 - Integrated Scenarios - Greenfield, Kessel Weds15:30 TBD
 - Modeling & Simulation - Batchelor, Kinsey Tues 16:30 Tables in poster hall
 - Boundary - Whyte, Rognlien Tues after Town Mtg ITER Town Mtg Rm
 - Plasma-Wave - Philips, Wukitch Tues after Town Mtg ITER Town Mtg Rm
 - Transport / Confine - Terry, Doyle Tues after Town Mtg ITER Town Mtg Rm
 - Diagnostics - Boivin, Terry, Allen Feb. 6-8 Workshop @ GA
 - Control and Ops - Humphreys, Gates TBD (see web site) Videoconference

- **Council Meeting (Weds 12:00)**
 - Review of BPO activities
 - Charter development
 - Search Committee for new Director nominees
New USBPO Director Search Starting…

- Interactive process planned
 - Council to suggest candidates slate for OFES
 - Input from USIPO (Director = US-ITER Chief Scientist)
 - Appointment by OFES

- Council Search Subcommittee
 - A Hubbard - MIT (chair) R. Hawryluk - PPPL
 - W. Nevins - LLNL T. Taylor - GA
 - J. Sarff - UW

- Suggestions from community welcome and desired!
Summary

• First-cut USBPO organization is established
 • Structural elements: Council, Topical Groups, etc.
 • Quickly becoming a functional research organization

• Several Tasks addressing near-term issues
 • Physics Tasks proposed; Issues Card process underway
 • Strategic planning for BP research in U.S.

• Starting technical/research activities
 • Identifying and initiating BP research tasks
 • Main focus of next year

• Participate in Topical Groups to get involved…