The Science and Practice of Sustainable Sites:
Practical Implementation of Soil Protection & Restoration

David McDonald – Seattle Public Utilities
Howard Stenn – Stenn Design
Jim Berger – Port Blakely Communities

9/27/2011 seminar sponsored by the WA Chapter of the American Society of Landscape Architects, UW Botanic Gardens, and Seattle Public Utilities

Why a Soil Standard? – Multiple Benefits

Environmental/sustainability benefits
- Protect/restore stormwater infiltration
- Bio-filtration of urban pollutants – protect waterways
- Protect existing vegetation, improve tree & plant growth
- Reusing organic “wastes” to restore soil function
- Reduced irrigation use, less need for fertilizers & pesticides

Value to builder/contractor
- Quicker planting in prepped soil
- Less plant loss = fewer callbacks
- Better appearance sells next job

Value to property owner
- Better plant health & appearance
- Lower water bills
- Reduced chemical needs
- Lower maintenance costs

Sustainable Sites Initiative (SITES™) Rating System
- Prereq. 1.1 Protect farmland soils
- Credit 1.5 Select brown/grey-fields
- Prereq. 2.1 Conduct pre-design site assessment (incl. soil)
- Prereq. 2.2 Use integrated site development process
- Credit 4.4 Minimize soil disturbance (minimize grading)
- Prereq. 4.3 Create a Soil Management Plan
- Prereq. 7.2 Restore soils disturbed during construction
- Credit 7.3 Restore soils disturbed by previous development
- Prereq. 8.1 Plan for sustainable site maintenance
- Credit 8.3 Recycle organic matter in operations & maintenance

WA State “Post Construction Soil Quality & Depth” BMP in Dept. of Ecology Stormwater Manual; coming into local codes

- Soil management plan showing areas to be protected, or disturbed & restored, and soil/compost/mulch import amounts for each area
- Keep all impacts off protected veg. & soil areas
- Restore disturbed areas by amending with compost, stockpiling & reusing topsoil, or importing amended soil.
- Scarify subsoil, for 12” uncompacted depth.
- Mulch, and Maintain to replenish organic content.

Summary of Soil Best Management Practices

New Construction
- Retain and protect native topsoil & vegetation (esp. trees!)
- Choose sites to conserve good quality existing veg. & soil
- Minimize construction footprint
- Establish veg. & soil protection zones - fence & protect
- Store and reuse topsoil from site
- Retain “buffer” vegetation along waterways

- Restore disturbed soils by tilling 2-4” of compost into upper 8-12” of soil. Rip to loosen compacted layers.

Existing Landscapes
- Retrofit soils with tilled-in compost when re-landscaping
- Mulch beds with organic mulches (leaves, wood chips, compost), topdress turf with compost, and mulch-mow to maintain organic content that supports soil ecosystem.
Understanding Soil: development from parent “dirt” & rock

Soil horizons & their evolution

• Substratum (C) or bedrock (R) weathers physically & chemically to subsoil (B)

• Primarily biological processes create topsoil (A) and organic (O) horizons

Sub-Soils in the Puget Sound Basin: Leftovers from glaciers & volcanoes

glacial till: unsorted, unstratified mixtures of clay, silt, sand, gravel, and boulders; deposited under ice, or in moraines

hardpan: till compacted under glacier

outwash soils: layers sorted by particle size by water - sand / gravel / rocks

lake/marine bed soils: clay or silt that settled out in lakes & estuaries

volcanic ash: light, fertile, holds moisture - mostly blown east of Cascades

mudflows: mixed size, compact - like till

Learn about Puget Sound soils at: www.puyallup.wsu.edu/soilmgmt/Soils.htm
Lake beds, lenses, and layers
- Silts and clays settle out…
- And then may be overlain in lenses with sand or gravel from succeeding outwash
- Grey-yellow color when saturated and anaerobic
- Great for farming, but unstable in slopes or foundations!

Volcanic ash or mudflows
- Tephra (ash) – light, fertile, holds moisture, erodable
- Mudflow – compact, mixed fines and boulders, low permeability, looks and acts like basal till, but more fertile

Alluvial soils
- Flat, loamy deposits in river floodplains (or ancient rivers)
- Best for farming, often wasted on development because they’re flat

Layers upon layers… ignore them at your peril!
- Sandy outwash over compacted basal till hardpan
- Thin soil over bedrock
- Clay lenses over hardpan, or inter-layered with sand (unstable!)
Disturbed soils in urban areas

- Topsoil layer removed
- Compaction
- Subsoil (or worse) fill layers.
- Debris or toxins?

Soil Texture

= mineral particle size (sand and finer particles)

Ribbon + feel test:
Moisten soil, roll between hands, then squeeze out with thumb
- Sand: no ribbon, grainy
- Sandy loam: ½ inch ribbon
- Loam: thick 1 inch ribbon
- Silt: makes flakes rather than ribbon
- Silty clay loam: thin, breaks easily, floury feel
- Sandy clay loam: stronger, grainy
- Clay: long (3 inch) ribbon, smooth feel

Understanding soil:
texture, structure, & pore space (thus infiltration)

Soil components:
- “The Dirt” (mineral part)
 - sand
 - silt
 - clay
- Air and Water
- Organic Matter and Soil Life (create aggregates & pores)

“Loam” is a mix of sand, silt, clay and organic, formed over time by nature

Soil Texture

Soil is alive!

Understanding Soil Biology

Soil life provides essential functions

Soil Biology Primer

http://soils.usda.gov/sqi/
Common organisms in the soil foodweb

- Bacteria
- Fungi
- Protozoa
- Nematodes
- Arthropods
- Earthworms

Restoring soil life, to restore soil functions

Soil organisms create:
- soil structure
- fertility = nutrient cycling
- plant disease protection
- biofiltration
- erosion control
- stormwater detention

Compost kicksstart the soil ecosystem!
(Provides food and home for organisms)

How does soil life create soil structure?

- Bacteria secretions glue clays, silts and sands together into micro-aggregates.
- Micro-aggregates are bound together by fungal hyphae, root hairs and roots.
- Spaces are made by moving arthropods & earthworms, and decaying roots.
- Only when all organisms are present can roots and water move into the soil with ease.

How does soil life provide fertility (nutrient cycling)?

- Soil foodweb stores nutrients in living & dead organic matter
- Nutrients are released in root zone as organisms eat and excrete “waste” (nitrogen, etc.)
- Mycorrhizal fungi bring nutrients and water to roots of plants
How does soil life provide plant disease protection?

Diversity ⇒ predation, parasitization & competition with the few disease-causing organisms

- Bacteria cover leaf surfaces, block infection
- Ecto- and endomycorrhizae prevent root infection
- Many organisms prey on the few disease-causing organisms

How does soil life filter out urban pollutants?

- Creates structure
- Breaks down hydrocarbons, pesticides
- Converts fertilizers to stable forms, so they are available to plants but won’t wash away
- Binds heavy metals in soil, so they don’t wash into streams

How does soil life control erosion?

- Creates pore spaces, increases infiltration
- Sticks soil particles & aggregates together with bacterial slime, fungal hyphae, & root hairs (bigger aggregates are harder to move) ⇒ “aggregate stability”
- Promotes rapid plant growth & deep root development

How does soil life provide stormwater detention / infiltration?

- Builds soil structure, moisture-holding capacity
- Increases surface porosity

UW trials, turf on glacial till soil
Compost amended till soil – up to 50% reduction in storm water runoff
How can we enhance & restore soil biodiversity, to improve plant growth, water quality, and reduce runoff?

- Protect existing soil & vegetation where possible
- Prevent /reduce compaction (keep heavy machinery off)
- Reduce intensive use of pesticides & soluble fertilizers
- Incorporate compost into soil to feed soil life

organic matter + soil organisms + time creates ⇒ soil structure, biofiltration, fertility, & stormwater detention

Site selection & planning to protect good soils

- Select previously disturbed sites instead of greenfields.
- Infill to enhance communities, connect with transit.
- Start early to identify site values, and locate development on site to maximize protection of best soils, trees, habitat, natural drainage, etc. Involve arborists, soil & habitat experts. Sell these values to developers/decision makers.
- Plan to minimize grading, soil export/import.

THE SUSTAINABLE SITES INITIATIVE
Select locations to preserve existing resources and repair damaged systems

Prerequisite 1.1: Limit development of soils designated as prime farmland, unique farmland, and farmland of statewide importance

Prerequisite 1.2: Protect floodplain functions

Prerequisite 1.3: Preserve wetlands

Prerequisite 1.4: Protect threatened or endangered species and their habitats

Credit 1.5: Select brownfields or greyfields for redevelopment (5-10 points)

Credit 1.6: Select sites within existing communities (6 points)

Credit 1.7: Select sites that encourage non-motorized transportation and use of public transit (5 points)

Protecting soil & vegetation during construction

- Fence vegetation & soil protection zones
- Inform all contractors & subs: no stockpiling, trailers, etc.
- If temporary vehicle access required, place steel plates over 6” coarse wood chip.

Street tree protection measures in action

- Box trunks, protect root zones from compaction
- Avoiding cutting roots – by using air spade & vactor, or boring to place conduits.
Sustainable Sites soil requirement:
Prereq. 7.2 Restore soils disturbed during construction

Ecology Stormwater Mgmt. Manual for Western WA:
BMP T5.13 Post-Construction Soil Quality and Depth

- Retain & protect native soil and vegetation wherever possible
- Areas cleared or graded required to restore min. soil depth:
 - Organic matter content (SITES ≥ 3%; Ecology ≥ 10% planting beds, 5% for turf – driven by stormwater performance in NW)
 - SITES: ≥ 12-inch amended soil depth. Use native topsoil, amend existing soil with compost, or import topsoil blend.
 - Ecology: Subsoil scarified 4 inches below 8-inch amended soil, for 12” finished uncompacted depth
 - Protect amended soil from compaction
 - Mulch after planting
 - Maintenance practices to replenish organic content

Manual for Implementing BMP T5.13
- also referenced by SITES 4.3 Soil Mgmt. Plan and 7.2 Restore Soils Disturbed by Construction

- Manual developed regionally with experts
- Develop a “Soil Management Plan” for each site
- Four options for soil management (can use 1 or more / site):
 1. Retain undisturbed native soil & vegetation, protect from compaction
 2. Amend existing soil in place with compost
 3. Stockpile topsoil prior to grading, and reuse on site (amend if needed)
 4. Import topsoil meeting organic matter content requirements
- Choose pre-approved or custom calculated amendment rates
- Simple field inspection and verification procedures
Available www.soilsforsalmon.org or www.buildingsoil.org

How to Select Compost
Know your supplier!

- Field tests:
 - earthy smell - not sour, stinky, or ammonia
 - brown to black color
 - uniform particle range
 - stable temperature (does not get very hot if re-wetted)
 - not powdery or soaking wet
- Soil/compost lab test info:
 - Nutrients
 - Salinity
 - pH
 - % organic content (OM)

- Mfr.-supplied info:
 - Permitted WA composting facility – meets WAC 173-350 requirements
 - Meets US Compost Council (STA) “Seal of Testing Assurance”
 - C:N ratio
 - Weed-seed trials
 - Nutrients, salinity, contaminants
 - Size: “screen”, % fines

Carbon to Nitrogen ratio of composts

- For turf & most landscapes
 C:N ratio of 20:1 to 25:1 - good nutrient availability for first year of growth (no other fertilizer needed)

- For native plants and trees
 C:N ratio of 30:1 to 35:1, and coarser (1” minus screen)
 - less Nitrogen better for NW natives, discourages weeds
 - for streamside, unlikely to leach nitrogen
Clearing up the confusion about “% organic”

“% Soil Organic Matter Content” in lab soil tests is by loss-on-ignition method
- Most composts are 40-60% organic content by this method

Recommended soil amendment rates
(for low-organic soils or sand-compost topsoil mixes):

- 5% Soil Organic Matter Content for Turf
 → 15-25% compost amendment by volume
- 10% Soil Organic Matter Content for Landscape Beds
 → 30-40% compost amendment by volume

Compost Application Methods

Compost application & incorporation methods:
- Blowing
- Spreading
- Tilling / ripping
- Blending off-site

Blowing & spreading

- Blower trucks
- Various construction grading equipment
- Other equipment: golf course & farm spreaders

Issaquah Highlands – the big scale
Incorporating amendments into soil

• Range of equipment for different-sized sites
• Till in to 8” depth
• If compacted, rip to 12” depth before/while amending

Stockpile site soils & amend, after road & foundation work

• Allows mass grading
• Can reduce hauling & disposal costs
• Set grade to allow re-application of topsoil & allow for settling
• Amend stockpile to spec offsite, or after reapplication
• Spread after concrete work
• Rip in first lift, to reduce sub-grade compaction

Importing “Topsoil”

• “Topsoil” is not a defined, regulated product. Topsoil products often include subsoil, uncomposted organic material, land-clearing and construction debris…
• Best to use mixes containing only clean compost and mined sand or “sandy loam” as defined by USDA.
• Important to avoid clay that can inhibit drainage – spec <5% passing #200 sieve
• See Seattle/WSU/PSP “Bioretention Soil” specification at www.seattle.gov/util/GreenInfrastructure

Compost Based Erosion Control BMPs

• EPA-approved BMPs: blankets, berms, and socks see www.buildingsoil.org
• “2 for 1” – use compost for erosion control, then till in at end to meet soil BMP:
 - No disposal costs
 - Faster planting, better growth
• Costs: blankets similar to rolled products, but savings on disposal, plus 2 for 1 benefits

“2 for 1” – construction erosion control and soil quality BMPs are met with compost at Issaquah Highlands.
Combine methods as needed for best water quality and flow control

WsDOT - Protecting Wetland Area from I-5 Runoff

MULCHING: after planting, & annual maintenance

BENEFITS OF MULCHES:
- Limit weed growth, & make weeds that sprout easy to pull.
- Conserve water, moderate soil temperature, and reduce erosion.
- Replenish soil organic matter, enhancing soil biodiversity, structure, and nutrient cycling = increased plant vigor.

WHAT: Arborist Wood Chip Mulch is best – see spec 9-14.4(5)

HOW MUCH: 2-4 inches wood chips, replenish annually until plant canopy closes.

Developing A Soil Management Plan (SMP)

- A scale-drawing identifying areas where each soil treatment option will be applied.
- A completed SMP form identifying treatment options, amendment products and calculated application rates for each area.
- Copies of laboratory analyses for compost and topsoil products to be used, with OM content and C:N

1: Review Landscape and Grading Plans

Working with plans, check the soil in each area to assess how grading will impact soil conditions and potential for reuse of topsoil excavated for building foundations, stormwater detention facilities and pavement.
Soil Treatment Options

Option 1.	Retain undisturbed native vegetation and soil, and protect from compaction during construction.
Option 2.	Amend existing soil at pre-approved or custom calculated rates based on soil and amendment tests.
Option 3.	Import topsoil mix of sufficient organic content and depth.
Option 4a.	Stockpile native topsoil during grading, and reapply after construction.
Option 4b.	Amend stockpiled soil if needed to meet 5-10% o.m.

Amendment Rate Options

Option 1.	Retain undisturbed native vegetation and soil, and protect from compaction during construction.
Option 2.	Amend existing soil at pre-approved or custom calculated rates based on soil and amendment tests.
Option 3.	Import topsoil mix of sufficient organic content and depth.
Option 4a.	Stockpile native topsoil during grading, and reapply after construction.
Option 4b.	Amend stockpiled soil if needed to meet 5-10% o.m.

2. Identify Areas Suitable for Each Option

- Establish vegetation and soil protection zones where “native” plants and duff– will be left undisturbed and protected from compaction during construction.
- Excavated or graded topsoil suitable for stockpiling and reuse on site.
- Compacted layers less than 12 inches deep (after grading) – require scarification or soil import.
- Existing organic content in soil to be retained or stockpiled and reapplied – reduced amendment rate.

3. Tests to Conduct for Custom Calculated Amendment Rates

If planning to use calculated amendment rate, sample and test soil. Request compost test results from supplier.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Bulk density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent organic matter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compost</th>
<th>Bulk density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent organic matter</td>
</tr>
<tr>
<td></td>
<td>Moisture content</td>
</tr>
<tr>
<td></td>
<td>Carbon to nitrogen ratio</td>
</tr>
</tbody>
</table>

Sampling and calculations must be performed by licensed Soil Scientist, Geologist, Civil Engineer or Landscape Architect.

4. Select Amendment Options

Outline areas where each amendment option will be applied on plan. Assign each area a letter (A, B, C…) on the plan and Soil Management Plan form.
5. Calculate Amendment, Topsoil & Mulch Volumes on Soil Management Plan Form

- **For Pre-Approved Amendment Rates:** Calculate the square footage of each area, and complete calculations for each area to convert inches of amendment into cubic yards.
- **To Compute Custom Calculated Amendment Rates:** Use soil and amendment test results, and the Model Amendment Rate Calculator.
- List products on the Soil Management Plan form.
- Procure recent product test sheets showing that compost or other organic materials specified meet requirements.

Verification of Post-Construction Soil Quality and Depth BMP

Inspections

Verification

Dispute Resolution

Who Will Verify BMP?

Primary
- Code Enforcement Inspector
- May be assigned to Licensed Landscape Architect

Independent Inspection to Resolve Disputes
- Certified Soil Scientist, Crop Advisor or Agronomist
- Licensed Landscape Architect, Civil Engineer or Geologist

Suggested Inspection Procedures

- Pre-Grading Inspection
- Grading Progress Inspection
- Post-Construction Inspection
- Mulch Verification

Exact number of inspections will vary between jurisdictions and project type.

Example verification forms at www.soilsforsalmon.org
Suggested Inspection Procedures

- Pre-Grading Inspection
- Grading Progress Inspection
- Post-Construction Inspection
- Mulch Verification

Exact number of inspections will vary between jurisdictions and project type.

Example verification forms at www.soilsforsalmon.org

Inspection / Verification Supplies

- Field Verification Form
- Soil Management Plan
- Site drawing
- Shovel
- Tape measure

Pre-Grading / Grading Progress Inspection

- Verify native soils & vegetation delineation and protection per SMP
- Review SMP with general contractor and/or grading equipment operator
- Verify erosion controls in place
- Verify excavation & stockpiling of native soils consistent with SMP
- Check sub-grades consistent with SMP

Post Construction (prior to planting)

- Compare conditions to SMP / drawings
- Confirm volumes on amendment delivery tickets match approved SMP
- Dig test holes to check depth of amended soil & scarification
- Use shovel test to check uncompacted depth in multiple locations
Dig Test Holes to Check Depth of Amended Soil & Scarification

- At least three 12 inch deep test holes (3 per acre minimum) for each treatment
- 8” depth of amended soil (excluding mulch layer)
- Scarified subsoil

Check Soil Depth

- Use shovel or rod “driven only by inspectors weight” to test for compaction
- Test 10 locations per landscaped acre (10 minimum per site)

Dispute Resolution

- Organics verified using Loss On Ignition method
- No analytical method to verify scarification

Field Inspection and Verification guide available at www.soilsforsalmon.org (in Building Soil manual and as separate PDF)

Issaquah Highlands

1000 ft. elevation change, dense “urban village” development. 700 acres developed, 1400 acres deeded to King County as permanent open space.
Slope preparation: track-walking with cat, tracks on contour (perpendicular to fall line) to promote infiltration and provide bonding for applied compost/topsoil.

The next spring. 100% plant cover on compost-amended slope.

Spreading compost on prepared (track-walked) slope.
Planting strips (between curb and sidewalk) re-excavated to 18” for placement of compost-amended soil before tree planting.

Blowing coarse compost on 2:1 slope.
Repairing erosion with blown-in compost blanket and seed.

Compost blanket protects a steep slope as well as coir fabric over compost – expensive fabric not necessary.

Project Sequencing

- **GMA-vs-Soil Conservation**
 - GMA mandates higher density
 - Less opportunity for conservation on smaller lots and compact development
 - There may be no native soil & vegetation to conserve
 - Restoration more appropriate?
Soils Planning and Coordination

◆ Challenges
 - Is the soils plan practical?
 ◆ Dirt Cheap??? Hauling dirt is expensive!
 ◆ Room to stockpile topsoil?

◆ Cost
 - Stockpile-vs-export/import:
 ◆ Stockpile & reuse is cheaper, if there’s room

◆ Cost of compost
 - Save compared to hauling more topsoil
Park establishment, using amended stockpiled topsoil.

Stormwater pond as amenity: compost-amended soil makes the difference.
Hydroseed and straw mulch: the next spring – no growth.

Same slope, same seed, but applied with compost blanket: next spring – slope’s stabilized, job’s done.

Compost and seed blown over rock road-cut face: superior erosion protection, and long-term plant success.
The green sells the project. Good soil makes the green.

Construction Sequencing for Soil Protection

Design phase
- Choose site & program to minimize impacts.
- Identify vegetation & soil protection areas; verify they fit into development program and site access routes.
- Identify areas to be graded, and soil restoration options. Calculate compost amendment, topsoil, & mulch on Soil Management Plan.

Site grading through construction phases
- Communicate Soil Management Plan to managers & contractors.
- Fence vegetation & soil protection areas prior to first disturbance.
- Stockpile topsoil to be reused with breathable cover.
- Grade below finish grade to allow placing topsoil/amendments.
- Compost based erosion BMPs can be reused as soil amendment.
- Place rock road bases ASAP and keep vehicle traffic on them.

Construction Sequencing for Soil Restoration (cont.)

Post construction, pre-planting phase
- Amend all disturbed soil areas or place amended topsoil.
- Avoid tilling through tree roots, or raising soil height on trunk.
- Plan for amended soil to settle, by placing amended soil higher, or retain/import amended topsoil to meet final grades.

After planting, end of project phase
- Remove protection area barriers. Have arborist evaluate trees for stress/need for remediation.
- Mulch all planting beds (& tree root zones with exposed soil).
- Protect amended/restored soils from compaction.
- Communicate a landscape management plan to property owners.

Learn More:
- Protect existing soils and vegetation where possible.
- Restore natural functions in disturbed soils, by reducing compaction and using organic amendments.

Learn More:
- www.SustainableSites.org
- www.BuildingSoil.org
- www.SoilsforSalmon.org