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Forest structure data derived from lidar is being used in forest science and management for inventory analysis,
biomass estimation, and wildlife habitat analysis. Regression analysis dominated previous approaches to the
derivation of tree stem and crown parameters from lidar. The regression model for tree parameters is locally
applied based on vertical lidar point density, the tree species involved, and stand structure in the specific research
area. The results of this approach, therefore, are location-specific, limiting its applicability to other areas. For a
morewidely applicable approach to derive tree parameters, we developed an innovativemethod called ‘wrapped
surface reconstruction’ that employs radial basis functions and an isosurface. Utilizing computer graphics, we
capture the exact shape of an irregular tree crown of various tree species based on the lidar point cloud and
visualize their exact crown formation in three-dimensional space. To validate the tree parameters given by our
wrapped surface approach, survey-grade equipment (a total station)was used tomeasure the crown shape. Four
vantage points were established for each of 55 trees to capture whole-tree crown profiles georeferenced with
post-processed differential GPS points. The observed tree profiles were linearly interpolated to estimate crown
volume. These fieldwork-generated profiles were compared with the wrapped surface to assess goodness of fit.
For coniferous trees, the following tree crown parameters derived by the wrapped surface method were highly
correlated (pb0.05) with the total station-derived measurements: tree height (R2=0.95), crown width
(R2=0.80), live crown base (R2=0.92), height of the lowest branch (R2=0.72), and crown volume (R2=0.84).
Fordeciduous trees,wrapped surface-derivedparameters of treeheight (R2=0.96), crownwidth (R2=0.75), live
crown base (R2=0.53), height of the lowest branch (R2=0.51), and crown volume (R2=0.89) were correlated
with the total station-derived measurements. The wrapped surface technique is less susceptible to errors in
estimation of tree parameters because of exact interpolation using the radial basis functions. The effect of
diminished energy return causes the low correlation for lowest branches in deciduous trees (R2=0.51), even
though leaf-off lidar data was used. The wrapped surface provides fast and automated detection of micro-scale
tree parameters for specific applications in areas such as tree physiology, fire modeling, and forest inventory.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

The accurate measurement of tree crown parameters is critical for
fields such as wildland fire dynamics (Agee, 1993; Finney, 1998), plant
physiology (Maguire & Hann, 1989; Oohata & Shinozaki, 1979;
Shinozaki et al., 1964) forest health monitoring (Zarnoch et al.,
2004; Schomaker et al., 2007), and habitat analysis (Lowman &
Rinker, 2004). The shape and size of tree crowns are typically related
to photosynthesis, nutrient cycling, energy transfer (evapotranspira-
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tion and respiration) and light transmittance to understory vegeta-
tion. Obtaining precise crown information is, however, a challenging
task, because the irregularity of many crown shapes is difficult to
capture using standard forestry field equipment. Tree crown shapes
have attracted the interests of artists as well. Christo and Jeanne-
Claude used fine fabric to wrap actual trees and emphasize the
complexity of the crown shape (Fig. 1). Their artistic approach to
visualize the complexities of tree crowns prompted us to attempt the
same but relying on mathematical and computer graphic techniques
applied to light detection and ranging (lidar) point clouds.

Lidar systems have been used for ecological applications, change
detection studies, forest inventory applications, and single-tree based
methods (Carson et al., 2004). There are two kinds of lidar systems
that have been used in previous research: discrete-return devices
(DRD) and full wave recording devices (WRD) (Lefsky et al., 2002;
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Fig. 1. Visualization of tree crown formation captured by the artwork of Christo and Jean-Claude. (Christo and Jeanne-Claude, Wrapped Trees, Fondation Beyeler and Berower Park,
Riehen, Switzerland 1997–98, Photo: Wolfgang Volz, ©Christo 1998).
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Patenaude et al., 2004). WRD research focuses primarily on plot-level
estimation of canopy structures because of the larger footprint size.
The process of validation with field-measured tree parameters relies
on summarizing field data at the plot level and varies with user
interpretation (Mean et al., 1999). Since DRD captures returns from
individual structures, it can provide more direct measurement of
individual tree crown parameters. Most DRD data, however, has been
analyzed with regression analysis of canopy quantile lidar metrics
(Lim & Treitz, 2004; Næsset & Økrand, 2002) or the fitting of an
assumed geometric shapes to derive crown parameters such as height
or crown width (Andersen et al., 2002; Persson et al., 2002; Riaño
et al., 2004). These approaches had two main drawbacks. First,
information specific to the tree species related to their unique crown
shape was required to quantify crown parameters from lidar-derived
metrics. Species identification from remotely sensed data is still under
development. Thus, a species-invariant approach should be consid-
ered for lidar applications. Second, regression models for fitting crown
shapes were derived and applied on a local basis. The modeled
regression cannot be applied to the other areas without risking errors
of extrapolation. Thus, a widely applicable, individual tree-specific
approach to derive tree parameters is highly advantageous for further
automated detection of crown geometry from lidar measurement.

A number of commonly employed tree parameters are tree height,
crown width, basal area, crown base height, and crown volume.
Previous research on the determination and utilization of these
parameters from DRD data is reviewed in the following paragraphs of
this paper according to each tree parameter, because sensor settings
and data characteristics differ between DRD and WRD.

Lidar-derived tree height information has been used for tree
growth estimation and stem location (Hopkinson, 2007; Yu et al.,
2004), detection of single or multi-story stand condition (Zimble et
al., 2003), estimation of carbon density (Patenaude et al., 2004),
biomass estimation (Bortolot & Wynne, 2005), and modeling the
distribution of understory vegetation (Gobakken & Næsset, 2004,
2005; Maltamo et al., 2004). Generally, tree height and stem location
are derived from a Digital Canopy Height Model (DCHM) which is the
elevation difference between Digital Surface Models (DSMs) and
Digital Terrain Models (DTMs). Convex shapes of the DCHM were
assumed to be crown structure and were used to detect tree tops. The
location and height of the tree tops were key factors for determining
stem location and stand density (Hyyppä et al., 2001). The measure-
ment of tree height depends on the quality of Digital Terrain Models
(DTMs) (Andersen et al., 2006; Yu et al., 2004). Since tree height is
generally a more accurately determined parameter than other crown
or canopy parameters, tree height is preferred to detect change in tree
growth studies.

Crownwidth and basal area have been derived from lidar datawith
the use of regression models (Means et al., 2000) or the segmentation
method (Morsdorf et al., 2004; Persson et al., 2002; Popescu & Zhao,
2007). Means et al. (2000) used stepwise regression analysis for
50 m×50 m field plot to get R2 of 0.95 (R2: correlation coefficient) for
basal area between field and lidar measurement. For individual trees,
Persson et al. (2002) used the active contour technique to retrieve
crown diameter from lidar-derived DCHM to achieve an R2 of 0.76,
while Popescu and Zhao (2007) used a voxel-based method to get R2

of 0.51.
Crown base height has been estimated with stepwise regression

models (Næsset & Økrand, 2002) to achieve R2 of 0.53 for individual
trees. Alternatively, a median filter was applied to the vertical lidar
point distribution (Holmgren & Persson, 2004) to get an R2 of 0.71,
while a voxel-basedmethod (Popescu & Zhao, 2007) yielded R2 values
between 0.73 and 0.78. The accuracy of crown width and live crown
base measurements relies on the precise segmentation of points for
individual trees, both horizontally and vertically.

Crown volume, one of the most difficult tree parameters to obtain,
is required for avian habitat analysis (Hinsley et al., 2002), estimation
of the fractal dimension of trees (Zeide & Pfeifer, 1991), and forest fire
simulation (Finney, 1998). Crown volume has been estimated using
fitted explicit geometric equations (e.g., cones and ellipsoids) using
diameter at breast height (DBH), field-measured basal area, crown
diameter, and tree height as the independent variables. It also requires
characterization of crown curvature (Nelson,1997; Sheng et al., 2001).
Riaño et al. (2004) computed crown volume using a relative crown
height profile given by vertical lidar point density and distribution.
None of these modeled equations are capable of exact fitting to all
types of tree shapes, even within the same species.

To estimate those tree parameters, tree canopy shapes have been
reconstructed by three different ways: implicitly, explicitly, and
parametrically. The parametric reconstruction has been approached
by regression statistical analysis, and the explicit reconstruction has
been done using mathematical explicit functions such as cone,
ellipsoid, parabolic and a combination of those. The implicit
reconstruction has been accomplished with a “marching cubes”
method with the implicit function (Angel, 2003).
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Other approaches to quantify the crown shapes using a parametric
approach are stochastic modeling and the crown shell modeling.
Biging and Gill (1997) used time series analysis to predict the vertical
crown profile and Song et al. (1997) used a crown shell model to
generate a 3D tree crown model for ecological simulation. These
approaches used limited sampled information of crown profiles. But
lidar can provide much richer point data for detailed reconstruction of
crown architecture.

With more lidar point returns, an accurate and direct way to capture
the object from lidar returns should be considered. Thomas et al. (2006)
used datasets with two different lidar point densities on the effectiveness
of the regression approach. Lower point density lidar estimates were
better for tree height and basal areawhile higher point densitywas better
suited to capture crown closure (Thomas et al., 2006). Although the local
Fig. 2. Our research site is inWashington Park Arboretum, Seattle WA. The yellow boundary o
orthophoto (1:12,000 sale, A) and DEM (30 m×30 m, B) come from USGS the National Ma
generally moderate relief of the study site. (For interpretation of the references to color in
variability is better captured by high point density (20 pointsm−2 is used
for our research), it cannot be adequately analyzed using regression
analysis to get all tree parameters. An alternative approach should be
taken for higher density lidar, which is becoming more widely available.
Furthermore, building regression models for different species and tree
shapes requires costly sampling to characterize the general tree shape for
each species in the research area.Managed forests arewell describedwith
regression models based on a few sample plots given the relative
uniformity. Urban forests with their mix of species and high variability in
shapes cannot be described very well with regression models.

An alternative approach is a voxel-based reconstruction (Lefsky
et al., 1999; Phattaralerphong & Sinoquet, 2005; Popescu & Zhao,
2007). Lefsky et al. (1999) used a canopy volume method to quantify
the region of vertical distribution of WRD data. Popescu and Zhao
n the left and black boundary on the right displays the research site. A true-color digital
p Seamless Server. Right image (B) is a color representation of the DEM, showing the
this figure legend, the reader is referred to the web version of this article.)



Table 1
Species list for sampled coniferous trees.

Coniferous (26) Summary

Abies (1) Grand fir, A. grandis (1) Sample size
(# trees)

26

Cedrus (2) Atlas cedar, C. atlantica (1) Tree height (m) 9.2–39.9
Cedar of Lebanon, C. libani (1) Crown base

height (m)
0–26.1

Picea (2) Norway spruce, P. abies (1) Crown
diameter (m)

2.8–11.2

Sakhalin spruce, P. glehnii (1) Crown
volume (m3)

77.4–3189.3

Pinus (5) Eastern white pine, P. strobes (1) DBH (cm) 25.5–117
Knobcone pine, P. attenuate (1) Lowest live

branch (m)
0–25.4

Maritime pine, P. pinaster (2)
Montezuma pine, P. montezumae (1)

Pseudotsuga (6) Douglas-fir, P. menziesii (6)
Thuja (9) Western red cedar, T. plicata (9)
Tsuga (1) Mountain hemlock, T. mertensiana (1)
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(2007) used a voxel approach for DRD data. Phattaralerphong and
Sinoquet (2005) used a photo interpretation technique and ray-box
intersection to reconstruct voxels for a crown shape. A drawback to
this voxel-based method for DRD was the fact that the total crown
volume was calculated by the sum of the voxels. The volume,
therefore, depended on the spatial allocation and voxel resolution.
The generation of voxels in three-dimensional spaces was influenced
by the degree of laser penetration through the canopy. Voxel-based
approaches work better forWRD than DRD because of the tendency of
WRD sensors to capture the lower strata of the canopy. DRD returns,
however, tend to reflect from the surface of the canopy (Lefsky et al.,
1999). To get more exact shape of canopy formation from lidar points,
implicit interpolation is employed to reconstruct the tree shape in this
study to avoid the spatial holes among voxels and to obtain a more
exact shape of complex tree crowns.

Implicit surface reconstruction has beenwidely used in the field of
computer graphics to construct 3D models of physical objects from
noisy scanned laser points (Bloomenthal et al., 1997). Radial basis
functions (RBFs) were used, as were implicit functions of an isosurface
(Bishop, 2005; Carr et al., 1997, 2001, 2003; Wendland, 2005), and
were used for classification to find the shortest path in a neural
network (Bishop, 2005). There have been several ways to reconstruct
surfaces from laser ranging data. In general, the subdivision surface
approach (Bloomenthal et al., 1997) and the Non-Uniform Rational B-
Spline (NURB) surface (Shirley, 2005) were utilized. The common
characteristics of these methods were that they did not perform an
exact interpolation and did require a complex procedure to recon-
struct the shape. The RBF approach is, however, an exact interpolation
methodmeans that interpolated vectors pass exactly through all input
points. The wrapped surface interpolated by RBFs in this study fits the
input lidar point location.

To validate the results of the surface reconstruction, a new field
validation technique for crown analysis was developed. The technique
of field-measured crown geometry has not been addressed by
previous research and it requires accurate horizontal and vertical
angular measurement. Handheld devices are commonly used to
measure these angles efficiently over a large area. Lidar, however,
generates much more accurate three-dimensional coordinates than a
handheld device can. Human manual error, therefore, should be
minimized to validate lidar-derived tree parameters. In this study, a
survey total station (Nikon-Trimble Inc., USA) was utilized to validate
lidar-derived tree parameters and crown profiles. Moreover, we
computed field-measured crown volume from crown profiles (the
edges of tree crown shapes) from four different cardinal angles. The
field based crown volume is compared with the volume given
graphically by the wrapped surface.

2. Objectives

We introduce a species-invariant method for deriving tree
parameters from lidar discrete points using implicit surface recon-
struction (a wrapped surface reconstruction). In this research, we
apply this approach to a mixed species urban forest. Our research aims
to: 1) analyze the relationship of tree parameters derived from the
wrapped surface and field measured crown parameters (tree height,
crownwidth, live crown base, height of the lowest branch, and crown
volume, and 2) quantify the error associated with the wrapped
surface.

3. Study area

The researcharea is located in theWashington ParkArboretumat the
south end of the University of Washington and east of downtown
Seattle,WA (Fig. 2). The total area is 230 acres. The arboretum collection
contains 5500 different species ranging from shrubs to trees. The terrain
of our studyarea ismoderate in slope, and the site is in a relatively urban
setting. Stands are heterogeneous, multi-aged mixtures of tree species
from around the temperateworld. It is an ideal setting inwhich to test a
methodology for characterizing irregular tree crowns and for the
development of methods that characterize tree structure without
destructive or excessive sampling in the field.

4. Field data

Even though the accuracy of airborne lidar and the detail of objects
measured by the data have improved, field validation of the tree
crowns derived from lidar data has not beenwell developed. The tools
used to verify airborne lidar-derived parameters must have a similar
level of precision as the lidar data itself. A ground-based lidar can be
used for this purpose. However, the methodology to use the ground-
based lidar for this aim is still in a stage of development. Issues such as
underestimation of tree parameters (Chasmer et al., 2006), inability to
distinguish between laser returns from foliage and stems (Clawges
et al., 2007), andmisalignment of points captured by different vantage
points (Henning & Radtke, 2006) continue to challenge verification
methods that employ ground lidar. Furthermore, the point density
captured by the ground-based lidar is much higher than the density of
point samples necessary to characterize the crown formation. The
total station was, therefore, used for verification of this research.

We used subjective random sampling to collect data for 55 open
canopy and overstory trees (26 coniferous trees and 29 deciduous
trees) to obtain the crown profiles using the total station for field
validation. Vertically overlapping (‘overtopped’) trees were excluded
from this analysis. The species and the statistics of field measured tree
parameters are given in Table 1 (coniferous) and Table 2 (deciduous).
The field-measured tree parameters captured by the total station
(Nikon DTM-420) are summarized on the right of both tables.

The total station is a high-end surveying device and has been found to
be highly efficient equipment for forest measurement purposes (Kiser
et al., 2005). Kiser et al. (2005) calculated the efficiency of various types of
field equipment and rated them on the basis of field worker cost and
closing accuracy, concluding that the total stationwas thebest instrument
for fieldwork among those surveyed. The field measurement methodol-
ogy in this study is demonstrated in Fig. 3. To capture crown profiles,
vertical and horizontal angles to either side of the tree were measured
from four positions around the tree. These positions were separated by
45° azimuth angles around the stem location, and were located at a
horizontal distance from the tree of at least 4–5 times the width of the
crown. This ensures that tangential angles to the edge of the tree crown
represent the actual profile silhouette of the measured tree. The distance
rangeof thisobservationwas set relative to tree size, because theprecision
of angular measurement using the total station decreases as the distance



Table 2
Species list for sampled deciduous trees.

Deciduous (29) Summary of tree parameters

Acer (5) Sugar maple, A. saccharum (1) Sample size
(# trees)

29

Maple A. sp. (4) Tree height (m) 13.4–39.3
Alnus (2) Italian alder, A. cordata (1) Crown base

height (m)
0–5.2

Red alder, A. rubra (1) Crown
diameter (m)

3.8–15.8

Betula (1) Birch, B. sp. (1) Crown
volume (m3)

305.4–5627

Carya (2) Hickory, C. sp. (2) DBH (cm) 20.5–111.5
Castanea (2) Japanese chestnut, C. crenata (2) Lowest live

branch (m)
0–6.5

Catalpa (2) Hybrid catalpa, C. erubescens (2)
Crataegus (3) Black hawthorn, C. douglasii (1)

Hawthorn, C. sp. (2)
Fraxinus (2) Oregon ash, F. latifolia (2)
Liriodendron (1) Tulip tree, L. tulipifera (1)
Paulownia (1) Empress tree, P. tomentosa (1)
Populus (2) Popular, P. sp. (2)
Quercus (4) Northern red oak, Q. rubra (1)

English oak, Q. rubur (1)
Oak, Q. sp. (2)

Tilia (2) Caucasus linden, T. caucasica (1)
Japanese lime tree, T. japonica (1)
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between the tree stem and the instrument increases. The vertical angles
that can bemeasured by the total station have anupper limit of about 55°,
which means that the total station must be located a certain minimum
distance from the tree. From each vantage point, the horizontal angle to
the crown edge was recorded vertically every fixed 5° increments,
beginning from the closest 5° vertical angle interval of the lowest lateral
branches. Essentially, the visual silhouette of the tree was captured in
coordinate space. In addition to these points, the locations of treetop and
trunk base height were recorded. Crown base height was defined as the
height of the lowest live branch on stem. The height of the lowest branch
was also collected for each profile. From one vantage point, two crown
Fig. 3. Field method of crown format
profiles were taken and each crown profile was created by linearly
interpolated lines. Each observation point could capture two crown
profiles. Four observation points, therefore, covered eight crown profiles.
To get the crownvolumeof a tree, the vertical profilewas integrated every
45° for each profiling direction. The sumof themwas the total volume for
a tree from field observation. To get a more precise volume, the volume
enclosed between live crown base and height of the lowest side branch
was subtracted from the total volume. Diameter at breast height was also
measured. The reflector target was not used for crown edge measure-
ment, but only tomeasure the horizontal distance fromthe total station to
the stem. The location of all crown edge points was calculated
trigonometrically from the vertical and horizontal angle based on the
horizontal distance (HD) between the instrument and the stem.

The location of the total station required a relatively clear view of
the entire crown from four sub-cardinal angles. Field measurements
for coniferous trees were, therefore, conducted during the deciduous
leaf-off season to get a clear view from the instrument. The field
measurement season for deciduous trees was conducted during the
growing season to get a clear view of tree crown edges. The field
season was between February and March 2007 for coniferous trees
and between May and August 2007 for deciduous trees.

All vantage points were georeferenced with GPS (Global Position-
ing System) location collected with survey-grade Trimble Pathfinder
Pro XR GPS units (Nikon-Trimble Inc., USA). All GPS points were
differentially corrected with correction data from one of the closest
NOAA CORS (National Oceanic and Atmospheric Administration
Continuously Operating Reference Stations).

5. Lidar data

A small-footprint airborne lidar dataset was acquired over this
research site in 2005. The lidar sensor characteristics are shown in
Table 3. The coordinate system of data associated with this lidar
system is NAD83 UTM 10N. The flight campaignwas conducted during
leaf-off season with average altitude 900 m and 20° scan angle. There
is a two-year difference between the lidar acquisition (March, 2005)
ion captured by the total station.



Table 3
Airborne lidar sensor system.

Date of acquisition March 17th, 2005 (leaf-off)

Platform Airborne
Scan angle 20° (10° from Nadir)
Laser sensor Optech ALTM 3100
Flying height 900 m
Impulse frequency 100 kHz
Laser point density range Average for dataset: 3 to 20 points m−2

Average for study trees: 10–20 points m−2
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and the field measurements (from Jan. to May, 2007). To capture the
detail of tree crown structure, we tested our method using higher
point density than previous studies. The point density was greater
than 9 points m−2 for each flight line. The point sampling is related to
the degree of the overlap of measurement swaths. The point density
(diverges from 10 to 20 points m−2) is, therefore, not homogenous
over this research site and the average point density of sampled trees
used in this study was 10 to 20 points m−2. The effect of point density
for this method must be addressed by future studies.

6. Methodology

The steps involved in our crown wrapping approach are shown in
Fig. 4. The sequence of operations is composed of three sections: pre-
processing, post-processing, and field validation. Each section has several
sub-sections.
Fig. 4. Overview of
6.1. Pre-processing

Pre-processing includes the creation of a Digital Canopy Height
Model (DCHM) from the difference between DTMs and DSMs. To
create DTMs, a new algorithmwas used to classify the lidar points for
the canopy and ground returns. Local minimum height surfaces and
RBFs interpolation were used to create DTMs. Smith et al. (2005)
tested one geostatistical method (ordinary kriging) and four local
deterministic methods (bilinear, bicubic, nearest neighbor, and
biharmonic spline interpolations) with airborne laser data in creating
DSMs of urban areas. On one hand, these deterministic methods
required regularly spaced points and introduced errors because of
their smoothing algorithms. On the other hand, the geostatistical
method is used for irregularly scattered points but is not an exact
interpolator. RBFs involve the exact interpolation and, therefore, are
effective for irregularly scattered points.

Local minimumheight lidar points were collected within 1m×1m
square grids to make the minimum height elevation models. The
minimum height model, however, contains some returns from the top
of the crown and sometimes a few returns from the trunk or lower
branches. Since our study area had moderate slope, within
20 m×20 m extracted area around our sampled trees the mean and
one standard deviation of the elevation values were applied to filter
out non-ground returns. With the filtered ground points, the initial
DTMs were created using RBFs. The initial DTMs were used to pick
more ground points from original lidar returns. Then RBFs were
applied again for the selected points to create the final DTMs. Fig. 5
shows the selected lidar points and the final DTMs using RBFs.
methodology.



Fig. 5.DTMs created by RBFs. In the image at left, all lidar point distribution are colored by height. Yellow stripe points represent an elevated highway adjacent to the tree blocking the
ground surface underneath. In the image at right, the DTM is shown in gray, classified ground returns by red, and classified canopy returns by blue. DTM was successfully created
underneath the highway as well. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Pouderoux and Gonzato (2004) also used RBFs to reconstruct DTMs
in a large area ofMt.Washington andMount St. Helenswith edge points
sampled from contour lines created from USGS DEM. They used a
hierarchical data structure to partition the data to reconstruct the
surface locally and combined all local surfaces to generate single DTM
layer. For computational efficiency, instead ofmaking a single DTM layer
of the entire research area ground returns of lidar around the study tree
were locally extracted and RBFs were applied to reconstruct DTMs.

6.2. Post-processing

During post-processing, lidar points were segmented by a semi-
automatic method. Two main segmentation methods were used in
this study: a marker-controlled segmentation (Chen et al., 2006;
Sollie, 2003) and a density and height variance-dependent segmenta-
tion. For the purposes of this study, a marker was defined as a treetop
location determined from the DCHM. For coniferous trees, the
distinguished convex shapes on DCHM were identified easily as
treetops. For deciduous trees, however, a tree may contain multiple
treetops or a rounded shape. It may, therefore, be difficult to locate
tree tops. In these cases, the density and height variance-dependent
segmentation method was used. Our process was semi-automatic,
because the best segmentation method and parameters used for
segmentation were chosen subjectively for each tree case. The main
focus of this paper is the wrapped surface reconstruction and does not
include the validation of the segmentation method.

6.2.1. A marker-controlled segmentation
All elevation values of lidar points were subtracted by the elevation

of DTMs in terms of lidar x and y coordinates. Based on the lidar points
without ground elevation, the local maximum lidar points were
selected within 1 m×1m grid cells to create the DCHM using RBFs. To
acquire a smooth and continuous DCHM surface, a 3×3 Gaussian filter
(Hyyppä et al., 2001) was convolved over the DCHM.
Fig. 6. Level set method is used to identify tree tops. The darker gray plane progress
A level set method was used to identify the local peaks of the
smooth surface. In this approach, the plane continued progressively
through DCHM from bottom to top and ‘slices’ the DCHM at a certain
height. For each sliced plane, a value of 0 is assigned for pixels whose
height was less than the height of plane and 1 for all others to create a
binary image. For each binary image, a connected component labeling
was implemented to label and classify the pixels. To identify the peaks,
one sliced image at a certain height was compared with the other
sliced image of the next height to see the difference between them. If
the total number of labels decreased from one image to the other, the
marching sliced plane passed some local peaks of the surface and the
locations of the missed local peaks were collected as treetops.

After identifying the local peaks of the surface, we adapted a
similar technique which has been used by the marker-controlled
segmentation (Chen et al., 2006; Sollie, 2003) and a gradient flow
analysis in eight neighboring pixels was used to determine which
peak the surrounding pixels belonged to. All pixels were classified
based on an identifying number given to each local peak. From the
classified image, all discrete lidar points were assigned to point
clusters, representing individual trees. Fig. 6 demonstrates the level
set method to find a treetop from DCHM.

6.2.2. Density or height variance-dependent segmentation
The marker-controlled method segments lidar points for indivi-

dual trees based onmarkers such as tree top location. In the case that a
deciduous tree has a rounded shape and one tree top locationwas not
well distinguished, this marker could not be reliably placed and the
segmentation did not work well. Since high density lidar data were
used and only open canopy treeswere used in this study, point density
or height variance could be used to segment lidar points. The tree
canopy yielded a higher point density or height variation of laser
returns than other surfaces, such as the ground or building. The
relative difference of point density or height variance was used to
segment trees for deciduous trees. By using this approach, the artificial
es through the DCHM to identify the peak (treetop, point marker on the right).
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objects such as buildings or highway next to the treewere successfully
removed. Point density or height variance was calculated in cells,
every 1 m×1m, based on the lidar points and the threshold value was
applied to distinguish between tree crown region and the rest to
delineate the crown. However, the edge of the crown could be
excluded by the threshold because of a lower point density. A closing
morphological image operation (Sollie, 2003) was used on the
resulting tree crown delineation map to expand the area by 1 pixel
based on the boundary of crown region.

6.2.3. Selecting points for a crown surface
After lidar points representing individual trees without understory

vegetation were selected and clustered, their returns came from not
only the surface of tree crowns, but also from the interior of the tree
crown. For the purpose of surface wrapping, only the points from the
surface of tree crowns were required. To remove the points inside the
crown, a two-dimensional convex hull algorithm was applied. Lidar
points for a single tree were sorted descending according to height.
From themaximum height downwards, every 10% of the total number
of lidar points was collected, projected in horizontally in two
dimensions, and assessed with a two-dimensional convex hull
procedure. A three-dimensional convex hull can be applied at once,
which results in selecting only outlined points from scattered points
and overestimating the shape of tree crown. The piecewise two-
dimensional convex hull, therefore, preserves more points represent
the complexity of a tree crown.

6.2.4. Wrapping process
After the convex hull process, the selected points were used in the

wrapping process. The wrapping was made using Radial Basis
Functions (RBFs) and an isosurface algorithm (Angel, 2003) to
visualize the implicit surface. The basic idea is to use our lidar data
to reconstruct a scalar function f(x, y, z) such that the set of points is
calculated as follows;

S = x; y; zð Þ : f x; y; zð Þ = 0f g ð1Þ

Eq. (1) is a good approximation to a “wrapping” of the tree crown. We
then use an algorithm to construct a triangulation of the surface S.
This triangulation can be used for visualization purposes and to
estimate crown volume. The isosurface algorithm creates a triangle
which uses a subset of voxels. It uses the triangular polygons to
tessellate the interpolated intersections and form triangular meshes
through voxels (Angel, 2003). Angel (2003) discussed mesh simpli-
fication to avoid overestimation of triangular meshes when the
intersected triangular polygons pass through the cells. The most
common way to simplify the triangular meshes is the well-known
Delauney triangulation (Angel, 2003). The mesh optimization was
also discussed by Hoppe (1994). In this study, we used an isosurface
function built into Matlab (MathWorks Inc., USA).

The isosurface method carries the information pertaining to the nth
dimension and projects them into the (n−1)th dimension. A good
example of this is the contour line. A contour line on a topographical
map represents elevation values of three-dimensional topography using
two-dimensional line feature. The isosurface method can perform a
similar transformation from four dimensions to three dimensions.

Lidar data has three dimensional point locations (X, Y, and Z
coordinates). The fourth dimension incorporated into our method is a
Euclidean distance. The distance was measured from any arbitrary
point or points in space to the closest points on the surface of the tree
crown. The distance was analytically measured by RBFs. RBFs
produced the distance of all regularly generated points to the closest
surface in three dimensions. The isosurface method was then applied
to create contour surface of zero distance (Eq. (1)), which was defined
as the surface of the tree crown.
6.2.4.1. RBFs and isosurfaces. Radial Basis Functions (RBFs) constitute
oneof the exact interpolationmethods in three-dimensional space. RBFs
in this research were used in two ways: to create DTMs from the
classified ground lidar points and to create a wrapping surface from
points selected with the convex hull procedure. The general formula of
RBFs is given in Eq. (2).

f jð Þ =
XN
i=1

λiΦðjjxi − xjjjÞ + π xð Þ ð2Þ

where π(x) is a polynomial term for point xaR3xi − xj is the Euclidian
distance.

λi is the weighting coefficient.
N is the number of initial points.
The radial basis function Φ used in this study is Φ(r)=r (linear).

To generate DTMs, elevation values were given by the function f(x)
where xwas a two-dimensional vector.We used a fourth dimension to
create a wrapping surface for the analytical function f(x) where x was
a three-dimensional vector. The wrapped surface was then given by
the set of points that satisfies f(x)=0. For this study, the polynomial
term of Eq. (2) was null, because it was desired that the resulting
interpolated surface should go through all initial points.

To apply RBFs in lidar tree crown research, the coefficient λi (the
right hand side of Eq. (2)) could be evaluated using the selected points
from the convex hull algorithm initially. Since the surface of tree crown
represented a distance of zerowith respect to the RBFs, all values on the
left hand side of the Eq. (2)were zero.With only zero distance, all values
of the coefficient λi were also zeros. Therefore, two additional sets of
points (outside and inside of the desired surface) were required to
calculate the coefficient λi. The additional points were generated using
the normal vector of the selected points. The normal vectors were
generated using principal components analysis (Wendland, 2005).
Finally, the total 3Npointswere used to solve the linear system.With the
given coefficients λi using 3N points, the distance of any arbitrary points
xaR3 in the space is evaluated by the formula below:

f xð Þ =
X3N
i=1

λijjxi − xjj ð3Þ

where x is any points in R3.
Regularly spaced points are generated in two dimensions to create the

DTM and in three dimensions to create the wrapped tree crown surface.
Thesepoints areapplied toEq. (3) tomeasure theelevationvalue forDTMs
and distance values for the fourth dimension of the wrapping process.

To complete the wrapping process, a routine available in Matlab
was used to determine the isosurface of f(x)=0. This routine gave us a
triangulation of the surface, which could be used for surface
visualization and for the following computation of crown volume.

6.2.4.2. Crown volume estimation using calculus divergence theorem.
Crown volume was calculated from a surface triangulation using the
calculus divergence theorem, given by:

Volume =
Z
C
jFdV =

Z
AC

F
ϖ
ndS ð4Þ

where FaR3 and the surface normal
ϖ
n = nx;ny;nz

� �
. By choosing F=

(x, 0, 0), we then have ∇F=1. Therefore,

Volume =
Z
AC

F n→dS =
Xm
j=1

ϖ
n
j
x

Z
Tj

xdS ð5Þ

where: njx is the x-component of the normal to triangle j.
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6.3. Validation of tree parameters given by the wrapped surface

To validate the result, a ray-tracing algorithmwas used to measure
the distance between the closest surface of the wrapped surface and
field sampled points using the total station. Established ground GPS
locations for fieldwork sometime did not match precisely with lidar
point location provided by IMU and GPS during lidar data acquisition.
If the field sampled point coordinates tied to the differentiated GPS
were slightly shifted from the lidar point distribution for the same
tree, this misalignment between them was corrected. Since lidar
provides the most reliable and accurate coordinate of tree location,
field measured sampled points were repositioned based on lidar-
derived stem location as needed.
Fig. 7. Visualization of the wrapped surface reconstruction. Shown are Douglas-fir (A), weste
CW: Crown width.
6.3.1. Ray-tracing algorithm
A ray-tracing algorithm (Glassner, 1989) was applied to calculate

the minimum distance between the crown profile points captured by
fieldwork and the wrapped surface. Forward ray tracing is defined
below:

R tð Þ = R0 + Rd⁎t ð6Þ

where R0 is a initial location of three-dimensional vector, Rd is a three-
dimensional vector, and t is a time step. R(t) is the intersected point
location at time step t.

The ray/plane intersection algorithm (Glassner, 1989) was used
in this study, because the wrapped surface was composed of many
rn red cedar (B), tulip-tree (C), atlas cedar (D), oak (E), and maple (F). Ht: Tree Height,



Fig. 8. Correlation of tree height (left) and crownwidth (right) measurement. Coniferous tree height and crownwidth are shown by gray circles and line and deciduous tree height
and crown width are shown by black triangle and line. The dashed line represents a one-to-one correlation. All p-values are 0.00 (pb0.05).

1157A. Kato et al. / Remote Sensing of Environment 113 (2009) 1148–1162
triangular polygons. A ray was shot from each field-measured crown
profile point (R0) to the wrapped surface. Rd, the normal vector for
each R0 point, was calculated by principal component analysis
(Wendland, 2005). If the ray intersected one of the facets of the
wrapped surface, the three dimensional coordinates were recorded
as the closest point on the wrapped surface. The distance was
measured between the closest point and the sampled point location.
That distance was defined as the error between the field-measured
point and the wrapped surface. Validation was accomplished in
three different ways. In the first, field-measured tree parameters
such as tree height, crown width, height of the lowest brunch, and
crown base height were compared with tree parameters derived
from the wrapped surface. The error of these tree parameters was
quantified using the three-dimensional array of the ray-tracing
algorithm, since Rd was a three-dimensional vector. In the second,
the error variance associated with canopy height was captured using
a horizontal two-dimensional ray-tracing algorithm (Rd was a two-
dimensional vector) at each height of field sampled points. For the
third, the distance between each point used for wrapping process
(selected lidar points from convex hull) and the closest point of the
wrapped surface was measured using three-dimensional array of
ray-tracing algorithm (Rd was a three-dimensional vector). The
objective was to prove the exact interpolation of the wrapped
surface.
Fig. 9. Correlation of live crown base (left) and height of the lowest branch (right) measurem
grey circles and line and for deciduous trees are shown by black triangles and line. Dashed
7. Results

7.1. Tree parameters given by the wrapped surface

The wrapped surfaces of six sampled trees are shown in Fig. 7. The
wrapped surface goes exactly through the selected points on the tree
canopy, as seen in the figure. The complexity of tree canopy was thus
captured and visualized by the wrapped surfaces. The error associated
with this interpolation was addressed in the Discussion section.

In the following subsection, tree parameters given by the wrapped
surface are compared with field measured tree parameters for all 55
sampled trees. Tree height, crown width, crown base height, and
crown volume had high correlation between field and the wrapped
surface measurement, but the height of the lowest branch had low
correlation in the case of the deciduous trees.

7.1.1. Tree height and crown width measurement
The tree heightmeasurementwas highly correlated between lidar and

field measurements (R2=0.95, RMSE=1.56 m and R2=0.96,
RMSE=1.41 m for coniferous and deciduous trees, respectively, Fig. 8).
The bothp-values are significant (pb0.05). Lidar-measured tree heights of
both the coniferous and deciduous trees were slightly underestimated.
The underestimation effect was larger for deciduous trees than for
coniferous trees.
ent. Live crown base and height of the lowest branch for coniferous trees are shown by
line represents one-to-one correlation. All p-values are 0.00 (pb0.05).



Fig. 10. Correlation of crown volume estimation between field andwrapped surfacemeasurement (left) and crown volume derived from thewrapped surface and fieldmeasured DBH (right).
Grey circles and line represent coniferous trees and black triangles and line represent deciduous trees. Dashed line represents one-to-one correlation. All p-values are 0.00 (pb0.05).

Fig. 11. Crown volume estimation between field and wrapped surface measurement and
crown volume derived from the wrapped surface for Douglas-fir (black circles and line)
and western red cedar (grey triangles and line). Dashed line represents one-to-one
correlation. p-value in the case of Douglas-fir is 0.11 (pN0.05) and p-value in the case of
western red cedar is 0.00 (pb0.05).
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The crown width measurement also was highly correlated between
lidar and field measurements (R2=0.80, RMSE=0.93 m and R2=0.75,
RMSE=2.89 m for coniferous and deciduous, respectively, Fig. 8). The
crown width measurements of coniferous trees were more strongly
correlated than those of deciduous trees. The crownwidth as estimated by
wrapped surface was underestimated for the both coniferous and
deciduous trees. The underestimation of the crown width of deciduous
trees was larger than that of the coniferous sample.

7.1.2. Crown base height and height of the lowest branch measurement
Crown base height and height of the lowest side branch were

compared between field measurement and the wrapped surface
measurement. Live crown base and height of the lowest branch for
coniferous trees showed a high correlation. Live crown base and
height of the lowest branch of coniferous trees had R2 of 0.92
(RMSE=1.62 m) and 0.72 (RMSE=1.54 m) respectively (Fig. 9).
Those parameters given by the wrapped surface showed a strong
relationship and a one-to-one correlation (within 95% confidential
interval of slope). The same tree parameters for deciduous trees had
lower correlation and height of the lowest branch for deciduous was
more overestimated than that of coniferous trees. Live crown base and
height of the lowest branch of deciduous trees showed an R2 of 0.53
(RMSE=2.23 m) and 0.51 (RMSE=1.73 m) respectively (Fig. 9). The
lower correlation was found for live crown base and the height of the
lowest branch for deciduous trees.

7.1.3. Crown volume measurement
Crown volume estimates from field measurement and the wrapped

surface estimate were compared for both coniferous and deciduous
trees. Crown volume estimation was highly correlated for both
coniferous (R2=0.84, RMSE=243.31 m3) and deciduous trees
(R2=0.89, RMSE=328.49 m3) (Fig. 10). Crown volumes were more
likely to beunderestimated for deciduous trees than for coniferous trees.
Since conventional studies used DBH as an independent variable in
crown volume estimation, the relationship of crown volume to field-
measured DBH was also assessed. DBH was related to the wrapped
surface-generated crown volume for both coniferous (R2=0.67,
RMSE=3.53 m) and deciduous trees (R2=0.71, RMSE=5.33 m).

Crown volumeswere validatedwith per species fieldmeasurements
(Fig. 11). The crown volumes of Douglas-fir and western red cedar are
shown separately in the figure. For Douglas-fir, there was a lower
correlation of this parameter than for western red cedar, but the
regression line was in a nearly one-to-one relationship for both species.
There was no statistical significance for the case of Douglas-fir, because
we have noticed that Douglas-fir trees typically have less regular shapes
than western red cedar and more variation of crown volume within
species for Douglas-fir. The variation within species was quantified
easily and accurately using the wrapped surface process.

8. Discussion

8.1. Validation of the wrapped surface

8.1.1. The error distance between points and the wrapped surface
Therewere several basis functions used in previous studies. Carr et al.

(1997) used thin-plate spline RBFs for skull reconstruction from 3D CT
scan imagery. And Carr et al. (2001) used poly-harmonic spline RBFs for
the scatteredpoints of objects scannedby3Drange scanners in situ. In this
study, the linear radial basis functionwas used to get a more exact shape
from the existing lidar point cloud and avoided the smoothed and
circularly around the surface of tree crowns. To validate this assumption,
the distance between selected points using wrapped surface reconstruc-
tion and the resulting surface is measured in three dimensions. Table 4
shows the error range of themean and standard deviation for all sampled
trees. The mean range of coniferous trees is between −0.05 and 0.01 m
and that of deciduous trees is between 0.04 and 0.5 m. The range of
standarddeviation forconiferousanddeciduous trees isbetween0.04and
0.5 and between 0.03 and 0.65, respectively. The ranges of bothmean and
standard deviations of distance is larger for deciduous trees than for
coniferous trees, because deciduous trees are generally more irregular in
shape and the points are thus scattered in a more irregular manner. We
may conclude, therefore, that error of this interpolationmethod does not



Table 4
Thedistance between input pointsused for thewrappingprocess and thewrapped surface.

Coniferous trees
(26 sample trees)

Deciduous trees
(29 sample trees)

Mean error range −0.05 to 0.01 m −0.09 to 0.04 m
Standard deviation range 0.04 to 0.5 m 0.03 to 0.65 m
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influence the estimation of tree parameters from the wrapped surface.
The error distance between the points and thewrapped surface is within
7 cm in both horizontal and vertical dimensions.

8.1.2. The numbers of referenced points for normal vectors
The normal vectors were determined by the neighboring points

using principal component analysis. The direction of the normal vector
was the key factor in smoothing the surface or generating a more
complex surface. As the number of referenced points increased, the
resulting surface became smoother. To validate the sufficient number of
points, different numbers of referenced points (5 to 50 in increments of
5 points) were used to analyze the influence between the numbers of
points and crown volume estimation (Fig. 12).

Four different tree shapes were tested to compare the influence of
the number of points on crown volume estimation. Atlas cedar (upper
left) had the most complex crown shape due to its propensity for long
branch extension and flagging. Western red cedar (upper right) has a
conical crown shape, while tulip-tree has a parabolic crown shape
(lower left), and maple has a spherical crown shape. As the number of
referenced points increased, the complex and conical crown shapes
tended to decrease in estimated crown volumes and the parabolic and
spherical crown shapes tended to increase. If the number of referenced
points increased, normal vectors increasingly pointed in a radial
direction from the centroid of thewrapped surface and the represented
crown shape became simpler and smoother. A smoother surface means
Fig. 12. The influence for crownvolumeestimation causedbydifferent numberof referenced point
tulip-tree (lower left; seealsoFig. 7C), andmaple (lower right; seealsoFig. 7E).Note that they-axis
y-axis are different in this figure.
thewrapped surface loses some degree of the complexity of the original
crown architecture. When the shape reached the simplest or smoothest
form, estimated crown volumes tended to oscillate and the direction of
the normal vector no longer influenced the crown volume. In this study,
five referenced points were used to retain the complexity of tree form
given by the initial lidar points. Since points were irregularly spaced
(scattered from the edge of branches and leaves), the optimal numberof
referenced points for a given application should be considered based on
the point geometry and density.

8.2. Tree parameters given by the wrapped surface

The tree height of deciduous trees experienced greater under-
estimation than that for coniferous trees (Fig. 8), because lidar data
were acquired during early spring (leaf-off) and field measurement
was done during summer (foliage present). Even though the leaf-off
data was used, the lidar-derived tree height measurement of
deciduous trees was highly correlated with field measurements.

The lower correlation of deciduous crown widths with lidar-derived
valueswas reportedbyMorsdorf et al. (2004)becauseof theasymmetrical
shape of some of these crowns. To capture the asymmetry, we used four
vantage points to capture four crown width to achieve R2 values of 0.80
and 0.75 for coniferous and deciduous trees respectively. Smaller
deciduous crowns approached a one-to-one correlation, but the slope of
the relationship did not parallel the one-to-one correlation line. This
suggests that wrapped-surface crown width estimates performed on
smaller deciduous trees were less influenced by bias associated with
crown asymmetry.

Wrapped-surface estimates of the live crown base are highly
correlated with field measurements for coniferous trees. For coniferous
trees, the live crown base approximated the one-to-one correlation line,
though the height of the lowest branch was slightly overestimated. This
indicated that the lidar returns did not always contact the lowest
branches, and the returnsweremost likely reflected from the area around
s. Shownarewestern red cedar (upper left; see also Fig. 7B), Atlas cedar (upper right; Fig. 7D),
onlyspans the rangeof values. Toemphasize theeffectof crownvolumevariability, all scalesof



Fig. 13. Crown volume and relative error for coniferous trees (grey circles and line) and
deciduous trees (black triangles and line). The line represents the trend of the relationship.
As crown volume increases, relative error decreases.
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the live crown base for coniferous trees. For deciduous trees, there was
more overestimation of the live crown base and the height of the lowest
branch. Even though leaf-off datawasused togetmore returns fromlower
branches, the tips of the lowest branches was reliably captured by lidar
because of attenuation and scatter of the pulses through the canopy. This
factor was also partly responsible for underestimation of crownwidth.

Crown volume estimates derived from the wrapped surface method
were highly correlated with field measurements for both coniferous and
deciduous trees. The crownvolumewas slightlyoverestimated for smaller
coniferous trees, butunderestimated for larger trees. Toassess theeffectof
tree growth, the relative error of crown volume is shown in Fig.13. As the
crownvolume increased, the relative error decreased due to the relatively
Fig. 14. Box plot of error associated with relative canopy height for coniferous trees (A) an
confidential interval.
smaller proportion of change attributed to crown growth. Two years of
growthbetween lidaracquisitionandfieldmeasurementmaymeana20%
change in height, for example, for small trees, but only a 2% change in
height for large trees. Younger trees may be growing more rapidly, and a
given height increment is proportionally much greater for a small tree
than for an older and larger tree near its maximum height.

Conventional approaches to measuring individual tree crown
parameters such as tree height, crown width, and shape to capture
crown formation include lidar (Andersen et al., 2002), destructive field
sampling (Maguire & Hann,1989), and interpretation of high resolution
imagery (Sheng et al., 2001). Especially, our approach could contribute
to calculating tree crown volume precisely and efficiently for an open
canopy tree of any species, obviating the need to calculate species-
dependent shape parameters to reconstruct the tree crown. Sheng et al.
(2001) found that crown shape experiences unique changes as a
function of age for different tree species. The wrapped surface method
avoids the need to address this complexity, since it can fit any crown
shape and overcomes the disadvantages associated with ambiguity of
explicit and parametric methods of tree crown reconstruction.

8.3. Error of canopy height

Lefsky et al. (1999) assumed that most reflected energy comes
from the local upper canopy surface. To identify how much depth of
tree canopy the lasers can detect with high point density lidar data,
the horizontal distance between the wrapped surface and field
measured points was plotted according to percentile height classes
(normalized height by the maximum height for each tree; Fig. 14).

Relatively larger error variancewas found at less than 20% height area
and between 70% and 90% height area. The error increased toward both
the tree top and the bottomof the canopy. The error decreasedwithin the
d deciduous trees (B) with different height classes. Plus signs are outliers beyond 95%
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range of 40% to 60% relative height for both deciduous and coniferous
trees. The error around tree tops (70 to 90%) was attributed to the
underestimation of lidar measurement for tree tops and error from tree
growth over the two-year interval between data acquisition and field
measurement. Two years of growth may make a detectable difference at
the result frombetween20and30mheight class coniferous trees that are
still growing. Deciduous trees also growduring the twoyears interval, but
the effect of data acquisition during leaf-off season was more important
than the effect of tree growth.

The lower region of the canopy (relative height less than 20%)
experienced fewer returns due to attenuation of the lidar pulse. The
40% to 60% range was the best predictor of crown formation for any
irregular crown shape and for both coniferous and deciduous species.
This finding should be considered for change analysis for tree growth
using multitemporal lidar data.

8.4. Application of the wrapped surface

The wrapped surface approach described in this paper can be applied
toanumberoffields including treephysiology,wildlandfiremanagement,
inventory analysis, and forest management. For example, pipe model
theory (Oohata & Shinozaki, 1979; Shinozaki et al., 1964) states that the
cross-sectional area of stems and branches at some height was
proportional to the total amount of foliage above the height. The crown
volume, which is associated with photosynthetic activity, can be
quantified by the wrapped surface. When done so, the cross-section of
stems can be predicted at any height and stem volume can be estimated
easily without destructive sampling. Furthermore, Shinozaki et al. (1964)
found that DBH is the best predictor of foliage biomass, and our study
foundhigh correlationbetweenDBHandcrownvolume(Fig.10), thus, the
crownvolumederived fromthewrapped surface canbeagoodalternative
predictor for foliage biomass (Bortolot & Wynne, 2005) and potentially
carbon content (Patenaude et al., 2004) The wrapped surface can also
producemoreprecisedimensionsof crownwidth at anyvertical height for
the purposes of tree physiological analysis. Point density and space
enclosed by the wrapped surface can yield estimates of crown density
which is a useful indicator in tree health monitoring (Schomaker et al.,
2007; Zarnoch et al., 2004). Tree health monitoring is, therefore, easily
achieved by the wrapped surface.

Crown base height and volume measurements from lidar derived
from the wrapped surface can improve simulation of fire behavior,
including the probability of ground fires progressing to the crown
under given conditions. Crown fire simulations depend on accurate
estimates of crown volume and the three-dimensional connectivity
between crowns. The wrapped surface method can provide those
parameters to simulate fire spread at fine spatial scales.

Precise tree parameters given by the wrapped surface can be used for
change detection of tree growth. Three-dimensional differences between
the wrapped surfaces created by multitemporal aerial or terrestrial lidar
data canbe used to show the crowngrowth characteristics for a given tree
species. Furthermore, the shape recognition of irregular tree crowns
through the wrapped surface method can aid in distinguishing tree
species on a morphological basis. Brandtberg (2007) reported that the
intensity value of lidar data should be calibrated for use in species
identification by using height thresholds to classify the intensity values
between ground and canopy.With ourmethod, the angle and direction of
tree crown illumination can be distinguished between interior and crown
surface lidar points, thus, allowing for the calibration of the intensity
value. Furthermore, the structural component derived from the wrapped
surface may improve micro-scale shading technique in individual tree
level and fusion technique with the other 2D images such as high
resolution hyper spectral images for species classification.

Since RBFs were exact interpolators and sensitive to the location of
individual points, one important requirement for wrapped surface
reconstruction is precise segmentation. We limited our study to open-
grown trees for validation of the wrapped surface technique. For
managed forest or stands with closed canopies, the segmentation
method is critical for precise estimation of tree parameters. Once the
points are well segmented, the wrapped surface fits exactly to the
segmented points Current segmentation methods do not work well for
stands with closed canopies or plantations, however, thinned areas can
be used to estimate the tree parameters from the wrapped surface to
apply them to predict parameters in the entire area, since lidar point
cloud acquired over thinned stands is easily segmented for individual
trees. A few sampled trees can be retained in harvest units with
sufficient spacing to conduct accurate segmentation of lidar points.
These open canopy trees may then be captured by lidar flight to
efficiently obtain precise tree parameters. The tree parameters given by
the few sampled trees can be applied to estimate the total biomass loss
in the harvested area. In this way, it is no longer necessary to measures
all crown diameters on fallen trees.

As an alternative way to use this wrapping technique over closed
canopy or vertically overlapped trees in the setting of natural forest,
entire forest can be wrapped as one enclosed object without
segmenting points for individual trees. Though the computation to
wrap the huge area is quite expensive, it is possible to estimate an
entire area using one wrapped object.

9. Conclusion

A graphic approach named wrapped surface reconstruction using
RBFs and isosurfaces was taken to derive tree parameters from lidar
discrete points for coniferous and deciduous tree species in an urban
forest environment. Our approach was species-invariant, and accu-
rately yielded tree parameters, especially crown volume.

The total stationwasused tocaptureentire crownformationaccurately
from four different cardinal angles, thus minimizing manual errors
associatedwith otherdevices andavoidingdestructive sampling. Accurate
georeferencing of all fieldmeasured points collectedwith the total station
was critical for comparison with lidar-derived crown reconstructions. As
described above, we used differential GPS to perform this task.

Tree parameters such as tree height, crownwidth, live crown base, the
height of the lowest branch, and crownvolumederived from thewrapped
surface were significantly (pb0.05) correlated with field-measured tree
parameters using the total station for both coniferous and deciduous tree
species. The lower correlation observed was found for the height of the
lowest branch and live crown base for deciduous trees, whichwas caused
by seasonal difference between field observation and lidar acquisition as
well as less energy returns from the tips and fine branches at leaf-off lidar
data for deciduous trees. To identify errors using the relative heightwithin
the canopy, horizontal distance between field observation and wrapped
surface was measured. We showed that less than 20% canopy height was
always influenced by the effect and 40–60% canopy height was the best
predictor of the detection of open canopy tree formation. The error did not
come from the RBFs interpolation method itself, because RBFs are one of
exact interpolationmethods and theexactnesswas validated in this paper.

Through the capture of micro-scale tree parameters this technique
can be useful to many fields such as tree physiology, forest fire, and
inventory analysis. Moreover, this technique can be applied to higher
point density given by ground-based lidar to capture the micro-scale
crown formation analysis. The important requirement of this
technique is segmentation method where additional research should
be focused. If the points for individual trees are segmented well, tree
parameters are automatically derived from the wrapped surface.
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