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A B S T R A C T

Leaf area index (LAI) has traditionally been difficult to estimate accurately at the landscape scale,

especially in heterogeneous vegetation with a range in LAI, but remains an important parameter for

many ecological models. Several different methods have recently been proposed to estimate LAI using

aerial light detection and ranging (LIDAR), but few systematic approaches have been attempted to assess

the performance of these methods using a large, independent dataset with a wide range of LAI in a

heterogeneous, mixed forest. In this study, four modeling approaches to estimate LAI using aerial

discrete-return LIDAR have been compared to 98 separate hemispherical photograph LAI estimates from

a heterogeneous mixed forest with a wide range of LAI. Among the four approaches tested, the model

based on the Beer–Lambert law with a single parameter (k: extinction coefficient) exhibited highest

accuracy (r2 = 0.665) compared with the other models based on allometric relationships. It is shown that

the theoretical k value (=0.5) assuming a spherical leaf angle distribution and the zenith angle of vertical

beams (=08) may be adequate to estimate effective LAI of vegetation using LIDAR data. This model was

then applied to six 30 m � 30 m plots at differing spatial extents to investigate the relationship between

plot size and model accuracy, observing that model accuracy increased with increasing spatial extent,

with a maximum r2 of 0.78 at an area of 900 m2. Findings of the present study can provide useful

information for selection and application of LIDAR derived LAI models at landscape or other spatial scales

of ecological importance.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Estimates of leaf area index (LAI), broadly defined as the total
leaf surface area per unit ground surface area, but often differing
in their precise definition (Asner et al., 2003), are important input
parameters for a wide range of ecological models (Gower et al.,
1999; Hanssen and Solberg, 2007; Melillo et al., 1993), but
arriving at estimates over large spatial scales has proven difficult
due to limitations in time, cost, and accuracy. LAI is commonly
estimated, using theory based on the Beer–Lambert law, by
hemispherical photographs, the TRAC instrument (Chen and
Cihlar, 1995), or commercially available canopy analyzers such as
the LAI-2000 (LI-COR Inc., Licoln, Nebraska, USA) (Gower et al.,
1999), but these methods have limited applications for large areas
due the time required in acquiring and processing the data.
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Indirect techniques utilizing remote sensing to estimate LAI
show the most promise for delivering accurate estimates at larger
spatial scales. Existing techniques fall into two main categories: (1)
passive optical remote sensing, which tends to be limited in the
range of LAI values it can accurately estimate because of saturation
at high LAI associated with the indices such as the Normalized
Vegetation Difference Index (NDVI) (Gower et al., 1999; Lüdeke
et al., 1991) and (2) active light detection and ranging (LIDAR)
remote sensing, which has been shown to be successful on a limited
range of LAI values and/or for vegetation with limited species
diversity (Lim et al., 2003; Morsdorf et al., 2006; Riaño et al., 2004;
Solberg et al., 2006). Most studies have derived the effective LAI (Le),
which does not correct for the non-random distribution of foliage or
the presence of non-foliage elements (e.g., branches, bark) in the
canopy. Indirect methods based on the Beer–Lambert law also
calculate effective LAI. If the true LAI is desired, one could perform
corrections, and these methods have been previously described in
the literature (Chen et al., 1997; Leblanc et al., 2005).

Aerial LIDAR utilizes an airplane or helicopter mounted scanning
laser with an integrated GPS unit to collect three-dimensional data
points (Lefsky et al., 2002). The characteristics of the final dataset
depend on various parameters such as the height of the aircraft,
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radius of the LIDAR laser beam, scanning nadir angle, and post-
processing equipment. Large footprint, full-waveform LIDAR utiliz-
ing the SLICER instrument has been shown to be capable of
estimating LAI in Douglas-fir/Western-hemlock dominated forests
(Lefsky et al., 1999), but the instrument is not yet widely available
and is unable to give information to high spatial resolution at
present. Small-footprint, multiple return systems are more widely
available, and have been shown to be capable of estimating LAI in
single-species dominated stands and/or in stands with a small range
of LAI values (Lim et al., 2003; Morsdorf et al., 2006; Riaño et al.,
2004; Solberg et al., 2006). These studies were performed in
relatively homogeneous forests with a limited range of LAI. Each
study used a different model to estimate LAI (see Section 2 for model
details) suggesting that various methods may provide adequate
estimates of LAI in homogenous forests for which the respective
model has been calibrated. However, little is known about the
performance of each method in a heterogeneous, mixed forest with a
wide range of LAI values. To our knowledge, these LIDAR derived LAI
models have not been evaluated against datasets other than the ones
for which they were originally derived and calibrated.

The aim of the present study was to (1) obtain effective LAI
estimates in a heterogeneous forest composed of multiple
coniferous and deciduous species with a wide range of LAI values,
(2) determine the best method for comparing LIDAR derived LAI
metrics and ground-based field measurements, and (3) evaluate
the modeling approaches for estimating LAI using aerial LIDAR.

2. Materials and methods

2.1. Study site

The present work was conducted at the Washington Park
Arboretum (WPA) in Seattle, WA (Fig. 1). The WPA is a 93 ha forest
managed by the University of Washington Botanic Gardens. The
WPA is comprised of over 4000 individual species of tree or shrub,
Fig. 1. (a) The state of Washington, with the city of Seattle shown by the dotted circle, (b)

WPA and the six 30 m � 30 m plots.
but dominated by a native matrix of Douglas-fir (Pseudotsuga

menziesii), Western hemlock (Tsuga heterophylla), Western red-
cedar (Thuja plicata), and big leaf maple (Acer macrophyllum). An
35 ha subsection of the WPA was used for the present work (Fig. 1c
and d), consisting of areas with slopes less than 10%, not located on
trails, at least 10 m from park boundaries, and away from buildings
and parking lots. Within this subsection, 100 point locations were
randomly located within five stratified fractional cover classes
during the summer of 2007. Two locations were excluded from
data collection due to the onset of autumnal leaf senescence,
reducing the total number of points to 98 (Fig. 1c). At each location,
250 individual GPS points, acquired in one second intervals, were
averaged using a Trimble GeoXT (Trimble Navigation Ltd.,
Sunnyvale, California, USA) operating in Differential GPS mode.

Six separate 30 m � 30 m plots were installed in the WPA in the
summer of 2007, with two plots composed of all conifers, two all
deciduous, and two mixed conifer and deciduous (Fig. 1d). A Nikon
DTM 420 Total Station (Nikon Inc., Melville, New York, USA) and
Trimble XR Pro GPS (Trimble Navigation Ltd.) were used to capture
the geographic coordinates of the four plot corners and check for
square. A 5 m � 5 m grid was set up over each plot for the purposes
of obtaining effective LAI estimates that could be aggregated for
plot wide estimates.

2.2. Ground estimates of LAI using hemispherical photography

Ground estimates of LAI were made using two methods: (1)
hemispherical photography, and (2) a commercial plant canopy
analyzer. A single hemispherical photograph was captured at each
of the 98 locations. In addition, one hemispherical photograph was
taken at each of the 49 grid intersections in the six 30 m � 30 m
plots between June and August of 2007. All photographs were
taken before sunrise, after sunset, or under uniformly overcast
skies using a Nikon CoolPix 4500 digital camera (Nikon Inc.)
leveled on a tripod 1 m above the ground. Hemispherical
the city of Seattle with the WPA in black, (c) the WPA and the 98 points, and (d) the
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photographs were obtained utilizing the methodology of Zhang
et al. (2005) to find the optimum exposure time. Photographs were
processed using the Digital Hemispherical Photography (DHP)
software (Leblanc, 2006), which breaks the photograph into ten
annulus rings, with each ring corresponding to 98 of zenith angle,
beginning with 0–98 at ring one. Rings 9 and 10 were excluded
from all analysis due to the influence of topography on the LAI
estimates. Eight different LAI estimates were obtained using DHP
for each photograph, corresponding to the inclusion of ring one,
ring one and two, and so on until the eighth estimate included rings
one through eight. These estimates were obtained in order to find
the best relationship between the conical view of the hemi-
spherical photograph and LIDAR metrics obtained from a cylinder,
as has been performed previously (Morsdorf et al., 2006). As noted
in the introduction, the photographs estimate effective LAI, and in
this study, were not corrected to find the true LAI. The LIDAR based
estimates would likely require the same correction factors as the
ground-based estimates.

2.3. Ground estimates of LAI using the LAI-2000

Estimates using a commercial plant canopy analyzer (LAI-2000,
LI-COR, Inc., Lincoln, Nebraska) were obtained at each of the 98
points under the same sky constraints as the hemispherical
photographs. Above canopy readings were taken by installing a 458
viewcap and bringing the instrument into an open area, as only one
instrument was available. The viewcap allowed the reading to be
taken in areas with smaller canopy gaps, as the sensor rings needed
to be exposed to open sky conditions in a much smaller field of
view. After an above canopy reading was obtained, the instrument
was quickly brought to the point location where eight readings
were taken in 458 increments. A final above canopy reading was
then taken and averaged with the first in order to reduce error
caused by changes in sky conditions. The LAI-2000, like the
hemispherical photographs, produces estimates of effective LAI.

2.4. Interpolation of LAI at 30 m � 30 m plots

In order to arrive at plot level estimates that could be easily
subdivided into smaller spatial areas, the 49 individual hemi-
spherical photograph LAI estimates for each 30 m � 30 m plot
were interpolated to a raster using the Inverse Distance Weighted
(IDW) function available in ArcGIS 9.2 (ESRI, Redlands, California,
USA). The interpolation allowed the 30 m � 30 m plots to be
subdivided into smaller areas where individual mean LAI estimates
could be calculated. IDW interpolation was compared to Spline and
Kriging methods by printing graphical representations of the
surfaces and comparing them to the actual stands, and IDW was
found to produce a more accurate surface reflecting the natural LAI
variation in the plots.

2.5. LIDAR data acquisition and processing

LIDAR coverage was obtained over the WPA on August 31st,
2004 using an Optech ALTM 30/70 laser scanner (Optech Inc.,
Table 1
Summary of different modeling approaches to estimate LAI from aerial LIDAR. Model spe

et al. (1999) approach utilizes full-waveform LIDAR. All others assume discrete-return LID

models is given, as well as letter used to identify the models in the text. Model Variab

Model Source LAI range Forest type(s)

A Lim et al. (2003) 0.5–4 Sugar maple/yel

B Lefsky et al. (1999) 0–14 Douglas-fir/Wes

C Riaño et al. (2004) 0 to �3 Pyrenean oak an

D Solberg et al. (2006) 0–1.6 Scots pine

a The original model was used without modification.
Vaughan, Ontario, Canada) at an elevation of 1200 m above ground
with a maximum scan angle of �108 from nadir. The scanner
classified the LIDAR returns into 1st, 2nd, 3rd, and 4th, as well as
denoting when returns were the last return. The raw LIDAR data was
processed using Fusion software’s ClipData feature (McGaughey,
2007) to normalize the vegetation heights above a constant ground
elevation using a ground model previously developed from the LIDAR
data. This produced a dataset where the height (z values) for each
point represented the true elevation of that point above ground level.

2.6. LIDAR metrics and LAI models

For each of the 98 plots, cylindrical LIDAR point clouds of 2.5, 5,
10, 15, 20, and 25 m radius were extracted. Within each of these
cylinders, various metrics were calculated in order to provide the
variables for the models tested. The number of canopy returns
above 2 m in elevation (Rc), the number of ground returns below
2 m (Rg), the mean elevation of all returns (Em), the fraction of
canopy returns over total returns (fc), and the fraction of ground
returns over total returns (fg) were computed. Some metrics used
in Lefsky et al. (1999) including closed gap volume (Vc_gap), filled
canopy volume (Vc_fill), and canopy classes (Cc) could not be
derived because full-waveform LIDAR was not available. Therefore,
to approximate the Lefsky et al. (1999) model, a canopy volume
metric (Vc), was derived by creating a Triangular Irregular Network
(TIN) surface from the maximum height of the LIDAR points using
ArcGIS 9.2. Vc was estimated using the surface volume tool in
ArcGIS 9.2. The tool calculates the volume between the TIN canopy
surface and the ground surface determined by the ground model.
All abbreviations used in the paper are listed in Appendix A.

The four models investigated in this paper estimate Le as a
function of Em (Model A), Vc (Model B), fc (Model C) or natural log of
fg (Model D) (Table 1). Relevant information for these models
including the reference, range of LAI values used in the reference,
the forest type, and the original or modified modeling approach is
summarized in Table 1.

2.7. Statistical analyses

Statistical analyses were performed using R version 2.6.2
(http://www.r-project.org/) or SAS NLIN procedure (ver. 9.2, SAS
Institute, Cary, North Carolina). Simple linear regression analysis
was performed between the 98 hemispherical photograph Le

estimates and 98 LAI-2000 estimates. Root mean square error
(RMSE) was calculated according to the methodology in Kobayashi
and Salam (2000) and hemispherical photograph estimates, which
were the better predictors of LAI (see Section 3), were then used in
subsequent analyses. It was necessary to determine the best LIDAR
cylinder radius and hemispherical annulus ring combination as has
been previously performed (Morsdorf et al., 2006; Riaño et al.,
2004). The best fit model, determined by simple linear regression,
was first selected by choosing a cylinder radius of 15 m, chosen
based on previous studies (Morsdorf et al., 2006; Riaño et al., 2004),
and all eight hemispherical photograph annulus rings. This best fit
model (see Section 3) was then used to obtain coefficients of
cific empirical parameters are denoted as a and b for each model. Note that Lefsky

AR. The modified modeling approach used in this study to best approximate the four

les are described in Appendix A.

Original form Modified form

low birch Le = a + bEm –a

tern hemlock Le = a + b(Vc_fill � Vc_gap � Cc/H) Le = a + bVc

d Scots pine Le = a + bfc –a

Le = �b ln(Rg/Rt) –a

http://www.r-project.org/


Table 2
Performance of modeling approaches to estimate LAI against hemispherical

photograph Le estimates. Model specific empirical parameters are denoted as a and

b for each model. Note that Model B is an approach modified from Lefsky et al.

(1999) for discrete-return LIDAR data (see text for details). S.E. represents one

standard error (n = 98).

Model Parameter estimates r2

a (S.E.) b (S.E.)

A 0.630 (0.265) 0.220 (0.0229) 0.49

B 0.746 (0.245) 6.55 � 10�3 (6.50 � 10�4) 0.51

C �0.992 (0.323) 0.0584 (0.00459) 0.63

D – 2.097 (0.0665) 0.66
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determination (r2) from the simple linear regressions of the six
different LIDAR cylinder radii (2.5, 5, 10, 15, 20, and 25 m) and
eight different hemispherical photograph annulus ring combina-
tions (1, 1–2, 1–3, 1–4, 1–5, 1–6, 1–7, 1–8). This radius and annulus
ring combination was then used in all subsequent analyses. Each
computed LIDAR metric was then analyzed using simple linear
regression of the hemispherical photograph LAI estimates taken at
each of the 98 points.

To evaluate the relationship between spatial extent (and thus
number of LIDAR points used to compute the metrics) and
predictive accuracy, the 30 m � 30 m plots were subdivided into
smaller quadrilateral areas: 15 m � 30 m, 15 m � 15 m, and
7.5 m � 7.5 m. LAI was predicted for each of these areas using
the best model chosen by the process above, and those estimates
were compared to the average LAI determined from the mean
interpolated raster values for that same spatial extent.

2.8. Creation of LAI map

The best model chosen was used to create an effective LAI map
for the portion of the WPA used in this study (see Fig. 1). The spatial
analyst extension for ArcGIS 9.2 was used to create a raster map of
effective LAI using model parameters from Table 2.

3. Results

3.1. Determination of best indirect method

Comparisons between hemispherical photography and the
LAI-2000 showed good correlation (Fig. 2, r2 = 0.804), although
the LAI-2000 produced larger estimates at low Le values, while
Fig. 2. Comparison of hemispherical photograph effective LAI (LAIE) estimates and

LAI-2000 estimates at the 98 plots within the Washington Park Arboretum. One to

one relationship shown by the dotted line.
hemispherical photographs produced larger estimates at high Le

values. In order to determine which of the two methods of Le

estimation would be best correlated to the LIDAR metrics, the LAI-
2000 and hemispherical photograph Le estimates were compared
to each of the different models for estimating Le from LIDAR. In all
cases, hemispherical photographs exhibited consistently higher
correlations, and thus hemispherical photographs estimates were
used for all subsequent analyses (data not shown).

3.2. Determination of best LIDAR cylinder radius and hemispherical

photograph annulus ring combination

Model D performed best in the initial linear regression using all
eight annulus rings and a cylinder radius of 15 m. Several data
points in very dense canopy did not yield any ground returns at 2.5
and 5 m cylinder radii, and, these were excluded because of the
logarithmic transformation used in the Model D. The series of
simple regressions found the 10 m segment radius and the annulus
ring 1–7 combination to be the best correlated (r2 = 0.67), and this
combination was used for all subsequent analyses (Fig. 3).

3.3. Comparisons of LIDAR based LAI estimation models

Regressions of ground-based Le on the predictions of all four
models were highly significant (p < 0.01), indicating their reason-
able performance (Table 2 and Fig. 4). Models A and B showed
similar results, with error quickly increasing at LAI values larger
than 2 (Fig. 4a and b). Although Model C showed good correlation
at low LAI values, its predictions deviated considerably from
ground-based estimates in a non-linear fashion resulting in
underestimation when LAI values were high. Model D was most
highly correlated to the ground-based hemispherical photograph
estimates of Le (r2 = 0.665) with lowest residual errors
(RMSE = 0.994).

3.4. The relationship between spatial extent and model accuracy

Model D parameterized as in Table 2 was used to predict Le at
the six 30 m � 30 m plots. Individual estimates were obtained at
each 30 m � 30 m area per plot, two 30 m � 15 m areas per plot,
four 15 m � 15 m areas per plot, and sixteen 7.5 m � 7.5 m areas
per plot. Fig. 5 shows the comparison of those predictions to the
Fig. 3. Contour plot of r2 resulting from simple linear regressions of Model D (with

intercept included) at differing annulus rings and LIDAR cylinder radii at 98 points

in the Washington Park Arboretum.



Fig. 4. Model performance based on a simple linear regression of predicted values of parameterized Models A–D against ground-based estimates from hemispherical

photographs. In each graph, the dashed line represents the 1:1 relationship, and the solid line is the best fit (n = 98).
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interpolated Le estimates for each area. At the smallest spatial
extents, several of the subplots contained no ground LIDAR returns,
and were excluded from the analysis. The coefficient of determi-
nation (r2) was also calculated for each of the four spatial extents
by performing simple linear regressions of the model predictions
and the interpolated Le estimates (Fig. 5). Because of the omission
Fig. 5. Prediction of the parameterized Model D at six 30 m � 30 m plots in the WPA.

Predictions are made at four spatial extents, with two spatial extents shown in the

main plot. The relationship between the four spatial extents and the correlation

coefficient is shown in the inset graph.
of several subplots at the smallest spatial extent due to presence of
no ground returns, the coefficient of determination is likely an
overestimate for the 7.5 m � 7.5 m areas. Predictive accuracy of
the model increased with increasing spatial extent (Fig. 5 inset).

4. Discussion

4.1. The relationship between LIDAR cylinder radius and

hemispherical photograph annulus rings

The best correlated combination of LIDAR radius and hemi-
spherical photograph annulus ring combination closely matches
what has been previously found (Morsdorf et al., 2006; Riaño et al.,
2004). Attempting to correlate Le estimates based on gap fraction
estimates from radiation captured from a conical area of the sky to a
cylindrical LIDAR point cloud will likely result in some errors. In a
heterogeneous forest such as WPA, this error is magnified as there is a
high probability that areas at the far edge of the photograph’s conical
viewwill be different than the areas in the middle which more closely
relate to the cylindrical LIDAR point cloud. This error contributes to
the residual errors seen in Fig. 4, and underscores the inherent
difficulty in obtaining precise indirect Le estimates. While indirect
ground-based methods such as hemispherical photographs and the
LAI-2000 are effective at obtaining stand level Le from multiple areas
within a stand, LIDAR based methods are likely to be more powerful
for obtaining precise estimates for specific spatial extents.

The cost effectiveness and relative speed at which hemisphe-
rical photographs can be acquired will continue to make them an



Fig. 6. Relationship between ground-based effective LAI estimates and the fraction

(fg) of LIDAR ground returns (Rg) over total returns (Rt). The red dashed line

represents the model based on the Beer–Lambert’s law.
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attractive method for obtaining ground-based estimates of Le, but
the inherent error of matching a cone to a cylinder suggests that
the upper bound of potential correlation between photographs and
LIDAR may have already been reached. Future studies should
concentrate on methods to arrive at the true LAI within the
cylindrical space around a point. One promising method is to use
simulated forests to explore the limitations of LIDAR (Goodwin
et al., 2007; Holmgren et al., 2003).

4.2. Comparison of LAI estimation methods

As noted in the introduction, ground-based indirect LAI
estimation may be categorized into the two groups: allometric
methods and methods based on the Beer–Lambert law. Allometric
methods tend to be applicable for a single species in a single
geographical area, and when allometric equations are applied to
trees outside of the calibration range, their accuracy decreases
(Gower et al., 1999). The two models based on biophysical
variables, Model A based on canopy height (Em) and Model B model
based on canopy volume (Vc), experience rapidly increasing
residual error at Le values greater than 2 (Fig. 4a and b). If the
WPA was dominated by a single species, these models might have
predicted relatively accurate values of Le, but since it is
distinctively heterogeneous, the relationship between volume
and height and Le differs greatly amongst species, accounting for
the large residual errors. While this suggests that these models
may be appropriate to predict Le in homogenous forests, they may
still require an independent calibration process using ground-
based LAI estimation methods in order to estimate empirical
parameters to be applied at larger spatial scales.

Monsi and Saeki (2005; note this reference is an English
translation of the original article published in German in 1953)
demonstrated that light attenuation in plant canopies could be
represented by the Beer–Lambert equation of light extinction as a
function of LAI as follows:

I ¼ I0 e�kL (1)

where I is the below canopy light intensity, I0 is the above canopy
light intensity, L is the leaf area index, and k is the extinction
coefficient. The extinction coefficient (k) is determined by a
number of factors including leaf angle distribution, radiation type
and direction, and canopy structure and clumping (Breda, 2003).
The leaf area index (L) can be then obtained from above- and below
canopy radiation measurements and known k using Eq. (2) (Breda,
2003; Solberg et al., 2006):

L ¼ �1

k
lnðI=I0Þ (2)

Since the Eq. (1) represents the probability a beam reaches the
canopy at depth of L, a simple analogy to this relationship can be
established between the LIDAR ground returns (Rg) and total
returns (Rt) as follows:

Rg ¼ Rt e�kLe (3)

This relationship is clearly conserved in our data as a function of
ground-based Le (determined by the hemispherical photographs)
with an estimate of k = 0.485 with an approximated 95% confidence
interval between 0.45 and 0.52 (Fig. 6). The extinction coefficient in a
canopy with a spherical leaf angle distribution is approximated by
0.5/cos uwhereu is the zenith angle of the incoming radiation (Jones,
1992). The effect of zenith angle may be ignored when the LIDAR
scanning angles are small (e.g.,<108 as used in this study) (Morsdorf
et al., 2006). Hence, it can be seen that the estimated range of k in this
study coincide with the theoretical estimate of k for a canopy with
spherical leaf angle distribution for vertical beams. For its theoretical
robustness and simplicity, the k value assuming a spherical leaf
angle distribution has been widely used in key vegetation models for
simulating primary productivity and associated ecosystem and
global processes (e.g., de Pury and Farquhar, 1997). When scattering
is considered this value tends to decrease slightly (Goudriaan, 1988;
de Pury and Farquhar, 1997). It is not inconceivable that the foliage
distribution in a mixed heterogeneous forest such as WPA follows
the spherical leaf angle distribution. Studies have found that
different forest types commonly exhibit foliage distribution
corresponding to a spherical distribution and that significant
deviations from this theoretical distribution are not common (Chen
et al., 1997; Hyer and Goetz, 2004; Leblanc and Chen, 2001). This
provides theoretical background for applying our estimate of k or
simply that of the spherical leaf angle (i.e., 0.5) to estimate LAI of
vegetation using LIDAR if the vegetation is deemed to follow the
spherical leaf angle distribution. The effective LAI of a canopy with
spherical foliage distribution can be approximated by Eq. (4) that is
similar to model D:

Le ¼ �
1

k
lnðRg=RtÞ � �

cos ūlidar

0:5
lnðRg=RtÞ (4)

Here ūlidar represents mean LIDAR scanning angle. For plant
canopies exhibiting strong deviations from the spherical foliage
distribution, a leaf angle distribution function (e.g., beta function)
can be applied to augment this relationship for other leaf angle
distributions such as ellipsoidal, horizontal, and vertical leaves
(Jones, 1992; Wang et al., 2007).

The modeling approach based on the Beer–Lambert law has
several benefits compared to the allometric models. In addition to
the fact that this approach resulted in the best overall performance
in the present study with highest r2 and lowest RMSE (Table 2 and
Fig. 4d), it does not necessarily require an independent model
calibration as discussed above. In addition, there is a body of
literature describing the extinction coefficient of various forest
types (Monsi and Saeki, 2005; Pierce and Running, 1988; Thomas
and Winner, 2000). Note that caution is needed to directly
translate these empirical k values for LIDAR data because LIDAR
resembles beam radiation while those empirical k values might
have been derived from both direct and diffuse radiation. Solberg
et al. (2006) found the extinction coefficient derived using aerial
LIDAR to be approximately 0.7 for Scots pine canopy while their k

values estimated from ground-based LAI measurements were 0.51
and 0.44 which are close to the theoretical value (=0.5) and similar
to the LIDAR derived k value (=0.485) found in this study. The



Fig. 7. Estimates of LAIE within the area of study with (a) 3 m pixels with areas

containing no ground returns shown as white and (b) 14 m pixels.
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differences in LIDAR derived k values from this study and the
Solberg et al. (2006) study are likely a result of (1) different
vegetation types, (2) differences in the range of LAI in each study,
and (3) the different sensors, flying heights, and scanning angles
used in each study. Separating the effects of those factors will be
difficult, and a potential source of future research. A practical
solution to producing Le estimates from LIDAR in areas with no
ground-based data may be to use the theoretical projection value
of 0.5 for a spherical foliage distribution as shown in Eq. (4). This is
a key benefit of the method following the Beer–Lambert law over
the allometric-based methods, where model parameters cannot be
easily estimated.

Another noteworthy approach to estimate LAI using discrete-
return LIDAR has been developed by Morsdorf et al. (2006). This
approach applies a LAI proxy defined as the ratio between canopy
first returns and the sum of canopy single and canopy last returns
to represent foliage density in the canopy, and multiplies this
proxy by fractional cover to derive Le. This method, however, was
not compared in this study because the pulse duration data which
can be used to test data transferability between the LIDAR
instruments for computing the LAI proxy were unavailable in the
dataset used in the present study.

One of the limitations of utilizing the Beer–Lambert law is that
it produces estimates of effective LAI and must be corrected if true
LAI is required (Chen et al., 1997). Applying multiple correction
factors for the many different species in a heterogeneous forest is
not realistic if one is attempting to estimate LAI for very large
spatial scales, and further research is necessary to examine
whether clumping indices and the ratio of stem to foliage can be
directly estimated from aerial LIDAR. LIDAR intensity values
present a potential source of data from which to differentiate
foliage returns from bark/wood returns and have already proved
effective at species classification (Andersen et al., 2005). Different
objects reflect differing wavelengths of light differently, and this is
the basis of most optical remote sensing. The wavelength of the
laser used would have a large effect on any model developed using
this technique, and perhaps the best solution would be to develop a
LIDAR system that uses multiple wavelengths of lasers. A system
utilizing red and near infrared lasers would be a reasonable choice
as the two wavelengths exhibit such different reflectance in
vegetation canopies.

4.3. The saturation at high LAI and its relationship to other methods of

remotely sensing LAI

Although the modeling approach based on the Beer–Lambert
law (Eq. (4)) was the best method for estimating Le from aerial
discrete-return LIDAR in the WPA, residual error still increased
with increasing LAI. There are two likely causes for this behavior.
First, the error associated with comparing the conical view of the
hemispherical photograph to the cylindrical LIDAR point cloud will
likely increase with increasing LAI. At high LAI, small differences in
gap fraction can lead to large changes in LAI derived from
hemispherical photographs. There were many point locations
where dense forest patches were bordered by open areas due to the
heterogeneous nature of the WPA. In these areas, the LIDAR
cylinders captured only dense vegetation, while open sky at the
edges of the photographs increased the gap fraction, leading to
error. The opposite occurred in open areas ringed by dense
vegetation. Secondly, because the model is comparing canopy
returns to ground returns, the model loses accuracy in areas where
few laser pulses penetrate the canopy producing few ground
returns. Using a 10 m cylinder radius, none of the 98 points
contained only canopy returns, but there were smaller areas within
those cylinders that contained very dense vegetation below which
there were no ground returns. When there is no ground returns
(Rg), the model as in Eq. (4) fails. This saturation issue is also found
in satellite based remote sensing using the Normalized Difference
Vegetation Index (NDVI) (Wang et al., 2005). The NDVI is driven by
the difference in reflectance between vegetation and ground, and
when vegetation reaches a certain density, around a LAI of 3
(Lüdeke et al., 1991), this index no longer changes because the soil
is mostly covered by vegetation. A similar saturating pattern is
observed with LAI estimates based on LIDAR in the present study.
As the gap fraction decreases, the probability of an individual laser
pulse penetrating through a gap and reflecting off the ground with
enough energy to be recorded by the laser scanner decreases
exponentially. Hence, when the proportion of Rg is plotted against
hemispherical photograph Le estimates (Fig. 6), a curvilinear
relationship develops, showing a flattening pattern over Le greater
than three. Using Model D to create a map of LAI for the WPA also
highlights the saturation problem. When a 3 m pixel size is used,
chosen to create a high resolution map (Fig. 7a), significant
portions of the WPA contain pixels with no ground returns,
producing gaps where no LAI estimate could be attained due to the
logarithmic transformation in Model D. In order to obtain a
continuous map with the smallest possible pixel size, it was
necessary to increase the pixel size to 14 m (Fig. 7b). This tradeoff
in map resolution could be a major problem if the final application
of the LAI estimates require very fine resolution, such as may be
desired in an urban forest where property lines and heterogeneous
canopies are the norm.

While this type of model failure can be prevented simply by
setting Rg to have the minimum value of 1, the error due to this (i.e.,
underestimation of Le with no actual ground returns) is likely to
increase with increasing LIDAR footprint and with decreasing
cylinder (or pixel) size. Thus, some possible ways to improve the
precision at high LAI include (1) increasing the number of laser
pulses per square meter. This may increase the likelihood that a
pulse will find a gap; (2) increase the spatial extent from which one
is computing the number of ground and canopy returns. Fig. 5
illustrates this effect, as at larger areas there is a greater probability
that an individual laser pulse will strike a canopy gap, yielding
more ground returns. As noted above, this reduces the resolution of
the estimates and possibly their utility; (3) the scanning angle of
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each individual laser pulse could be included as a variable in a
model. Holmgren et al. (2003) showed the effect of scanning angle
on canopy closure estimation, and Model D uses the inverse of
canopy closure as its principle variable. At larger scanning angles,
the laser beam may pass through gaps that would not be visible at
very small off-nadir angles. It would be important to correct for the
reduced probability of striking the ground at large off-nadir angles,
though, as the path length would be increased, thus increasing the
probability that light would be attenuated. If the scanning angle of
each pulse is known, Eq. (4) may be used to perform this
correction; (4) configure the LIDAR instrument to be more
sensitive to low energy reflections. It is highly likely that laser
pulses are penetrating through very small gaps, but that there is
not enough reflected energy to be recorded by the scanner. As
LIDAR technology matures, forestry specific instruments and
calibrations should be developed to increase the sensitivity to
low energy ground returns. Advances in decreasing the footprint
size of full-waveform LIDAR systems show promise in overcoming
this limitation.

Even with above improvements, a method using the Beer–
Lambert law will be ineffective to produce reliable LAI estimates
at very high LAI. Extremely dense areas of foliage that overlap
will absorb all light, ensuring that no LIDAR pulses will reach the
ground. In these areas, scanners that can partially penetrate
foliage may provide the ultimate solution to achieving true LAI.
Both long- and short-wave radiation, as well as green visible
light, is transmitted through foliage, and sensors operating in
these wavelengths may provide areas for future research.
Similar saturating issues are inherently associated with the
ground-based indirect LAI estimation based on the Beer–
Lambert law. The ground-based indirect methods such as
hemispherical photography measure directional gap fraction
of a conical view that is a function of LAI and other canopy
elements (e.g., branches and trunks). It may be argued, as
Morsdorf et al. (2006) stated, that LIDAR data may provide a
truer estimate of the canopy characteristics (e.g., fc and Le) than
the ground-based indirect methods because interference by
non-foliage elements and distortion of the view at low elevation
angles can be minimized.

5. Conclusions

The present study investigated the applicability of various
models to estimate effective LAI from aerial discrete-return
LIDAR using a unique data set of ground-based LAI collected
from a heterogeneous forest with a large range of LAI. The
models examined in the study fall into two categories:
allometric and the Beer–Lambert law based methods. A
modeling approach based on the Beer–Lambert equation (Model
D) as used in Solberg et al. (2006) exhibited best performance
(r2 = 0.665), likely due to the similar mechanistic basis of the
ground-based methods used. In a heterogeneous forest, the
Beer–Lambert law based approach would produce accurate
predictions of effective LAI without separate calibration
processes to parameterize the extinction coefficient (k). This
value can be approximated to be 0.5 if the LIDAR scanning
angles were narrow (i.e., near vertical) and a spherical leaf angle
distribution can be assumed. Limitations on map resolution in
areas of high LAI may also limit the utility of the LIDAR based
estimates in some applications. Continued research to increase
the applicability of LIDAR scanners for vegetation remote
sensing, to examine the influence of different scanner types
on LAI estimation, and to research into the possibility of deriving
the clumping index and bark to foliage ratio from LIDAR data
would improve the accuracy and precision of vegetation index
estimation using aerial discrete-return LIDAR data.
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Appendix A. List of abbreviations

Cc canopy classes
Em m
ean return elevation
fc fr
actional canopy returns (i.e., Rc/Rt) or percentage of canopy

returns in Model C
fg fr
actional ground returns (i.e., Rg/Rt)
H m
aximum height
L le
af area index (referred to LAI in the text)
Le e
ffective leaf area index (referred to LAIE in figures)
Rc c
anopy returns (returns greater than 2 m in elevation)
Rg g
round returns (returns less than 2 m in elevation)
Rt to
tal returns (i.e., Rc + Rg)
Vc c
anopy volume
Vc_fill fi
lled canopy volume
Vc_gap c
losed gap volume
Greek symbol

ūlidar m
ean LIDAR scanning angle
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