
Fourier transformation of waveform Lidar for species recognition

NICHOLAS R. VAUGHN, L.MONIKAMOSKAL* and ERIC C. TURNBLOM

School of Forest Resources, University of Washington, Seattle, WA 98195, USA

(Received 6 May 2010; in final form 8 September 2010)

In precision forestry, tree species identification is one of the critical variables of

forest inventory. Lidar, specifically full-waveform Lidar, holds high promise in the

ability to identify dominant hardwood tree species in forests. Rawwaveform Lidar

data contain more information than can be represented by a limited series of fitted

peaks. Here we attempt to use this information with a simple transformation of the

raw waveform data into the frequency domain using a fast Fourier transform.

Some relationships are found among the influences of component frequencies

across a given species. These relationships are exploited using a classification tree

approach to separate three hardwood tree species native to the Pacific Northwest

of the United States.

We are able to correctly classify 75% of the trees (k̂ 0:615) in our training data

set. Each tree’s species was predicted using a classification tree built from all the

other training trees. Two of the species grow in proximity and grow to a similar

form, making differentiation difficult. Across all the classification trees built

during the analysis, a small group of frequencies is predominantly used as pre-

dictors to separate the species.

1. Introduction

Species identification is an important component of many forest surveys.

Environmental quantifications of interest such as timber value and habitat quality

highly depend on the species distribution within the stand. Because of this impor-

tance, techniques to quickly and accurately determine individual tree species or simply
the proportion of a given species on a larger scale are intensively sought after. As it is

more and more common for Lidar to be used for operational forestry, techniques to

classify species from Lidar data are of great interest.

As the spatial structure of a tree is modelled quite well, it is tempting to believe that

a Lidar data set of sufficient density might contain enough information needed to

correctly distinguish several tree species from one another. Under this hypothesis,

several authors have proposed methods of using discrete-point Lidar information

(Holmgren and Persson 2004, Moffiet et al. 2005, Brandtberg 2007, Liang et al. 2007,
Ørka et al. 2007, Kim et al. 2009). To improve upon these results, some have

combined Lidar data with raster data sets in one form or another (Koukoulas and

Blackburn 2005, Korpela et al. 2007, Holmgren et al. 2008, Säynäjoki et al. 2008).

However, in such cases, the Lidar data are incorporated more to aid tree crown

segmentation than for classification purposes.
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Recently, Lidar vendors have begun to make available waveform Lidar data sets.

Waveform data sets contain an entire digitization of the intensity over a brief period

for each light pulse. Mallet and Bretar (2009) provided a detailed introduction to such

data and the instruments that collect these data. The potential to hold additional

information about the target is likely increased along with the density of the recorded
waveform data. Wagner et al. (2004) have argued that waveform data already contain

sufficient information for target classification.

Each waveform contains information about the reflectivity, density and spatial

arrangement of the leaves and branches of the target tree. Given the amount of

information contained in a waveform, techniques that smooth this information,

such as Gaussian decomposition, may risk losing important information. In its raw

form, a waveform is a simple time series. Therefore, tools that have been used in the

past to analyse time series may again prove their usefulness in this case. These tools
allow for the transformation of the original data into forms that emphasize the

temporal relationships between all the sample points. Such a representation of the

data facilitates the search for patterns within the waveforms that may help distinguish

a given tree species. In this article, we employ a technique commonly used in the

analysis of time series, the Fourier transform, to distinguish three deciduous species

native to large areas of the western United States with waveform Lidar data.

2. Methods

2.1 The study site

The Washington Park Arboretum in Seattle, Washington, is operated by the

University of Washington Center for Urban Horticulture. The arboretum, which is
approximately 230 acres (93 ha) in size, is planted with more than 10,000 catalogued

woody plant specimens representing several genera. In addition much of the

Arboretum contains natural stands of species native to Western Washington State,

such as Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western red cedar

(Thuja plicata Donn ex D. Don), bigleaf maple (Acer macrophyllum Pursh), black

cottonwood (Populus balsamifera L. ssp. trichocarpa (Torr. & A. Gray ex Hook.)

Brayshaw) and red alder (Alnus rubra Bong.). The non-native trees in the arboretum

are planted in groups by genus. Native species are also dispersed throughout the
arboretum and can be found clustered in their own groups or sparsely mixed within

the non-native trees.

2.2 Data processing

Weapplied the waveformdata provided by TerrapointUSA Inc. (TheWoodlands, TX,

USA), who flew a RIEGLLMS-Q560 laser scanner, with waveform signal digitization,

over the Washington Park Arboretum on 8 August 2007. This instrument was set to

digitize waveforms at a sample interval of about 1 ns, or 15 cm in linear distance. Scan
angle ranged from -30 toþ30, and the pulse frequency was set at 133,000 Hz, resulting

in a pulse density of about 10 pulses/m2 (ppm) near nadir at ground level. For

comparison, this would yield about 20 points/m2 in a comparable first and last return

discrete-point data set.A single 4.5-km loopedpass in theNorth–Southdirection for the

length of the arboretum, lasting about 6 min, provided nearly 49 million waveforms.

Within the same arboretum, Kim et al. (2009) geolocated and measured character-

istics of the trees in 18 field plots within the Arboretum. The locations of these plots
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are shown in figure 1. The field plots were installed systematically so that at least one

plot is measured in each genus group of interest. Within each plot about 10–20

example trees were identified and measured during the summer of 2005. Typically,

the measured trees were somewhat isolated, simplifying the process of crown delinea-

tion from the Lidar data. However, several groups of native species are arranged with

densities similar to the densities of natural stands. Each of the trees measured in the

field plots has been mapped into Universal Transverse Mercator (UTM) coordinates

using an angle and distance from known points within the plots. These points were
located with survey-grade global positioning system (GPS) units and these data were

later differentially corrected for optimal accuracy.

To associate waveform data to individual trees on the ground, the tree crowns had

to be delineated in mapping coordinates. Although it is possible to do this directly

using a waveformLidar data set, many tools already exist to perform such analysis on a

discrete-point data set. We therefore used a discrete-point data set, built from the

waveform data set, to create a raster image containing a digital canopy height model. In

this model, the highest return elevation, above the digital elevation model (DEM),
within each grid cell was stored.We used themethod described byHyyppä et al. (2001a)

to obtain an initial set of polygons representing the crown outlines of individual trees in

the arboretum. This method works in an iterative manner: at each step neighbouring

pixels are added to clusters surrounding local maxima of a filtered canopy height

model. Under such an algorithm, many groups of trees are mistaken for single trees

(Hyyppä et al. 2001b). Although this should have little effect in the arboretum, the

polygon for each tree in the training data set was visually inspected and, if necessary,

Figure 1. Map of theWashington ParkArboretumwith flight path and ground plot locations.
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improved upon by hand. All waveforms with data inside the outline of each tree (at

any height) were identified. Due to the large size of the full data set, this procedure was

performed using code written in C programming language.

2.3 Fourier transform

In the analysis of time series, several tools are available to look for non-random

patterns within the data. One technique is to look at the data in the ‘frequency
domain’ to discover frequencies of strong influence. This is usually done with a

discrete Fourier transform. This transform converts the original data into a set of

coefficients representing the influence of sine and cosine waves of a known set of

frequencies. Large coefficients are associated with heavy influence and imply that a

higher amount of periodicity at the given interval is detected in the data. The trans-

form loses no information, as the number of frequencies is equal to the number of

samples in the original signal. Fast versions of the transformation exist under the

name fast Fourier transform (FFT) and have a relatively low upper limit on computing
time (Singleton 1979). The function ‘fft’ in the R programming language

(R Development Core Team 2009) was used to compute the FFT on each waveform.

In this study, waveforms had 60 samples each, representing about 9 m of linear

distance. Because of how the FFT works, only the coefficients of half of the frequen-

cies are meaningful. With 60 samples, we can consider the amplitudes of the first 30

frequencies to be useful. For each tree, the averages (across all waveforms hitting a

tree) for each of these 30 useful amplitudes were stored as variables named with a

leading ‘M’ followed by the frequency identification number (M1–M30).
Additionally, the standard deviations of each frequency were recorded as variables

V1–V30.

Additionally, the average intensity value was kept for each waveform. This easily

computed value represents the total amount of light reflected from each pulse. It is

easy to see how this value might vary by species. The average and the standard

deviation of these values for each tree were recorded as MI and VMI. In total, for

each tree in the training data set, there are 62 variables that will be considered for use

in classification as described in the next section.
The FFT algorithm assumes an equal time period between samples; however, in

some cases the range values within each pulse data are not equally spaced. To greatly

simplify the analysis, these facts were ignored, as a violation of this assumption is not

too concerning in this case. The displacement of an occasional sample point should

have little impact on the results. In most cases, the difference in intensity between two

neighbouring samples is very small. We are also ignoring that our series is not of a

periodic origin, as are our sinusoidal basis functions. It does little harm to pretend that

our series repeats itself in both directions ad infinitum.

2.4 Classification

We attempted to correctly classify all trees in three hardwood species: red alder, black

cottonwood and bigleaf maple. These species represent common hardwood species

that grow naturally in the arboretum and, therefore, are represented well in the field

data. To partition the data, we used a classification tree approach (Breiman et al.

1984, p. 18). The R library Tree contains a function of the same name for modelling

with these classification trees (Venables and Ripley 2002, p. 266). Figure 2 shows the

classification tree obtained by fitting the entire training data set. The variable and split
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value used is shown atop the fork. Each end node is labelled with the species most

represented in the group of trees that have not been eliminated when traversing the

tree from the root. Below each leaf the deviance within that leaf and the actual class

membership are presented. The total tree deviance is the sum of the individual leaf

deviances, and the reductions in the tree deviance as each split is added are shown in a

table in the bottom-left corner of the figure.
With limited training data available, a leave-one-out cross-validation technique

was used to estimate the actual predictive power of this technique when the trained

model cannot be applied to a separate validation data set. The species of each tree was

predicted by a classification tree that was trained with all other trees in the data. The

numbers involved in such a process make refinement of each tree unpractical, and

thus each tree was built from the built-in defaults of the tree function. In a non-

academic application, the tree building could be better optimized and this may result

in slight improvements in the classification accuracy.

3. Results and discussion

Table 1 shows the classification results from the cross-validation. The overall classi-

fication accuracy, or the portion of correctly classified trees, was 75%. The associated

k̂ value was 0.615. For individual species, 70% of maples, 82% of cottonwoods and

71% of alders were correctly classified. Previous studies have accuracies ranging from

about 64% (Brandtberg 2007) to around 95% (Holmgren and Persson 2004).
However, the classification approaches and model applications vary quite drastically

1

2

M6 < 4.1748

M26 < 0.0966

3

MI < 0.1925

4

M12 < 0.9119

Bigleaf  maple
(8.997)
[6,2,0]

Tree deviance:
Split

1
2
3
4

94.300
76.030
65.309
51.351

Before

76.030
65.309
51.351
36.872

After

Red alder
(10.590)
[3,0,5]

Black cottonwood
(6.884)
[0,11,1]

Red alder
(0.000)
[0,0,10]

Black cottonwood
(10.410)
[1,4,1]

Figure 2. Example result of a classification tree fit to the training data. This is the tree returned
when fitting to the entire training data set and pruning off one branch to simplify the structure.
Above each split is the variable and level used to split the remaining trees into two subgroups.
The reduction in tree deviance resulting from each split is shown in the bottom left. Leaf
deviances are shown in parenthesis, actual class memberships in square brackets [bigleaf
maple, black cottonwood, red alder].
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among these works. An indirect comparison ofmethods applied in different situations

provides little information about the qualities of each. Although these results are not
generally better than the previous results, they were obtained from a simple analysis

with much room for improvement.

In the selection of species to classify, we left out all conifers. One reason for this

omission is that it seems methods using discrete-point data are already capable of

discriminating hardwoods from conifers. For instance, Reitberger et al. (2006)

achieved 88% accuracy distinguishing conifers from hardwoods in a German mixed

forest. Another reason for leaving out conifers is that the dominant shape of most

conifers would mean that light pulses crossing the trees at steep angles would likely be
drastically different than those passing at shallow angles. The more dome-like shape

of most hardwoods might nullify this effect. It is possible that limiting analysis to

more vertical scan angles could provide information to differentiate conifers from

hardwoods ormultiple species of conifers from one another. For this study we paid no

attention to scan angle, and this is an area for improvement.

Table 2 lists all variables that were used inmore than two classification trees out of the

44 built. The second column shows the frequency, in cycles per metre, associated with

Table 1. Results of the classification when each tree species is predicted from a classification
model incorporating all other trees.

Predicted

Species Bigleaf maple Black cottonwood Red alder Producer accuracy (%)

Bigleaf maple 7 2 1 70
Black cottonwood 2 14 1 82
Red alder 1 4 12 71
User accuracy (%) 70 70 86 75

Table 2. The most commonly used variables from the cross-validation procedure. Count is the
number of cross-validation trees incorporating the variable. Those beginning with ‘M’ are
means of the coefficients of a given frequency across all waveforms hitting a tree. Variables
beginning with ‘V’ are variances. ‘MI’ and ‘VMI’ are the mean and variance of all intensity

values for all waveforms hitting a tree, respectively.

Variable Frequency (cycles/m) Wavelength (m) Count

M1 0.11 9.00 8
M6 0.67 1.50 37
M12 1.33 0.75 35
M17 1.88 0.53 4
M19 2.11 0.47 4
M21 2.33 0.43 7
M25 2.78 0.36 6
M26 2.89 0.35 36
V1 0.11 9.00 5
V8 0.89 1.13 3
V9 1.00 1.00 3
MI – – 37
VMI – – 4
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the listed variables. However, the variables MI and VMI are not associated with any

frequencies. The third column lists how many trees used the variables as a predictor

variable.

The classification trees during the cross-validation procedure consistently relied

on very few of the available variables. This is largely because in each cross-
validation run, only one tree was replaced in the training data. However, it is still

surprising that very few variables were so consistently included. The variables M6,

M12, M26 and MI were included in a strong majority of the trees. Any biological

meaning of these particular frequencies is not obvious, but there are some possible

explanations for the importance of these frequencies. The frequency of M12 divided

byM6 is 2.20 whereasM26 divided byM12 is 2.27. The fact that these two quotients

are nearly the same may not be a coincidence. A sine wave of a given frequency is

orthogonal to a sine wave of twice the frequency, assuming no phase shifts. Such a
selection of variables may tend to be optimal due to this phenomenon. Of the three

commonly used frequencies M6 represents a lower frequency, M12 a medium

frequency and M26 a higher frequency. When compared with the dimensions of a

tree, the wavelength of the lower frequency is on a scale that could represent

between-branch variation whereas that of the higher frequency may represent

within-branch variation.

The boxplots shown in figure 3 represent the range of each of the variables M6,

M12, M26 and MI (panels (a), (b), (c) and (d), respectively) over all the waveforms
hitting each tree. The species of each tree is represented by a shade of grey. There is a

clear, observable difference between bigleaf maple and the other two species. Less

clear is that the variables M12 and MI are more responsible for the differentiation of

red alder and black cottonwood. Figure 2 shows that lower values of MI or high

values of both MI and M12 lead to a decision of black cottonwood. This can be

observed in the boxplots after prolonged examination.

This technique does show promise as an additional tool for the classification of tree

species. There is sufficient information available in the raw waveform data to aid in
the distinction of tree species. As in decomposition of waveforms into peaks, we have

still managed to reduce the data. Instead of reducing waveforms to peaks, we have

reduced a large amount of data into simple averages for each tree. One important note

is that no spatial information, beyond that used to assign a waveform to a given tree,

was used in this analysis. Related techniques incorporating the additional spatial

information to look for patterns between waveforms might provide a large perfor-

mance boost.

As waveform data are dense and very expensive when compared with discrete-
point data, the next step is to test whether similar results can be produced from

discrete-point data. Per-tree histograms of return abundance by height, such as

those in Falkowski et al. (2009), appear similar to a single waveform. There may

be some spatial patterns detectable in such ‘waves’ using the same Fourier

transform.

It is important to note one potential drawback to using Lidar for individual tree

results. As in discrete-point systems, the intensity values from waveform Lidar

systems are dependent on time. This is due to an adaptive gain setting on the instru-
ment changed dynamically during flight to adapt to large-scale changes in surface

reflectivity. The intensity values over the length of the flight over the arboretum seem

stable in this case. Effects of intensity scale changes on the results of this technique

would likely depend on the degree of such change.

Fourier transformation of waveform Lidar 353
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4. Conclusion

The technique described in this article provides an elegant method for the classifica-

tion of tree species fromwaveformLidar data. Further refinement, such as accounting

for scan angle and more precise crown delineation techniques, could bring substantial

increases in accuracy. This way of looking at the data in the frequency domain

provides much information about branch and leaf arrangement patterns observed

between waveforms. However, this viewframe provides little or no information about

general tree shape and large-scale spatial arrangement, as do other methods using

point data previously published (e.g. Holmgren et al. 2008, Kim et al. 2009).
Therefore, these two ways of looking at the data may complement one another.

This hypothesis needs to be tested through future research.

Although only three species were tested here, two are very similar, suggesting that

the technique may perform well in regions with higher complexity. The use of Lidar

15 3.5
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I
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0

25

20

15

10

5

0

(a) (b)

(c) (d)
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5

M
6

M
26

0

0.25

0.2

0.15

0.05

0

Bigleaf  maple Black cottonwood Red alder

0.1

Figure 3. Boxplots of the values of four classification variables for all trees in the training data
set. Each box represents one tree of the indicated species and represents all waveforms inter-
cepting the tree’s crown outline polygon (40–16,000 waveforms). The values of these variables
have no units. Variables (a) M6, (b) M12, (c) M26 and (d) MI.
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would also eliminate many complications imposed on optical imagery analysis by

cloud cover in many regions. Because a waveform data set contains species informa-

tion as well as the information contained in a discrete-point Lidar data set, it may

soon be unnecessary to acquire an additional optically based raster data set for the

sole purpose of species classification.
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