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I. Introduction 

This thesis project has explored the utility of using aerial LiDAR (Light Detection 

and Ranging) to estimate Leaf Area Index (LAI) in a complex urban forest. The project 

grew out of an initial desire to develop an electronic database of the woody accessions 

at the Washington Park Arboretum (WPA) in Seattle, WA. It soon became clear that 

developing this database would be more work than would be appropriate for a thesis, 

and a more manageable research topic was sought. Initial research led to some of the 

existing tools used to assess the ecological functions of urban forests, namely iTREE (U.S. 

Forest Service) and CITYGreen (American Forests) software.  Research efforts were 

concentrated on the iTree software, and in particular the Urban Forest Effects Model 

(UFORE). Many of the functions of the UFORE model rely on estimates of LAI derived 

from empirically derived allometric equations (Nowak and Crane, 1998).  Specifically, 

the LAI equations were derived from a single study of open grown deciduous trees 

(Nowak, 1996), and then applied using correction factors to all other trees. LAI is an 

important model variable in assessing ecological functions/ecosystem services of urban 

forests, as it is highly correlated to Gross Primary Productivity (GPP), which in turn is an 

important variable in determining a forest’s capacity to sequester carbon. The amount 

of rainfall a canopy can intercept and store is also nearly directly proportional to LAI, as 

total leaf surface area will determine how much water can physically adhere to the 

leaves’ surface. It seemed that a simpler and potentially more precise method of 

estimating LAI in urban forests could be obtained from LiDAR rather than the allometric 

method in UFORE, and this was possible because LiDAR datasets had already been 

acquired in 2004 and 2005 over the WPA. Therefore, this research was undertaken with 

the goal of estimating LAI from aerial LiDAR. 

Aerial LiDAR is a technology that was originally developed to obtain high quality 

digital elevation models (DEMs), but in the last 10 years LiDAR has also been employed 

to gain information about the vegetation above the ground. LiDAR works by using a 
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laser scanner with an integrated receiver. The laser pulses, sending a beam of light into 

the environment, and that light is scattered, absorbed, or reflected back to the receiver.  

The receiver detects the light and calculates the distance the light traveled by 

comparing the amount of time between when the pulse was emitted and when it was 

received. Most LiDAR lasers, including the one used in this study, utilize a near infrared 

laser, with a high reflectance for vegetation.  

This project began with the objective of creating a novel model to estimate LAI, 

but after some research, it became clear that there were several different LAI 

estimation models already proposed in the literature. None had been applied to a 

heterogeneous urban forest with a large range of LAI values, and it appeared important 

to assess the accuracy and precision of the different proposed models in such an 

environment. Since LAI is such an important variable, small changes in LAI can have a 

large effect on estimates of ecological functions. Therefore, the objective of this thesis 

project was  to (1) compare five methods of estimating LAI, and (2) develop a LAI map 

that could be used an input into models that can estimate ecological functions. 
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II. Comparison of Five Methods to Estimate Effective Leaf Area Index from Aerial 
Discrete-Return LiDAR 

 

1. Introduction 

Estimates of forest Leaf Area Index (LAI), defined as the one half the total leaf 

surface area per unit ground surface area (Asner et al., 2003),  are important input 

parameters for a wide range of ecological models (Gower et al., 1999; Hanssen and 

Solberg, 2007; Melillo et al., 1993), but arriving at estimates over large spatial scales has 

proven difficult due to limitations in time, cost, and accuracy. LAI is commonly 

estimated using Beer’s Law by hemispherical photographs or the LAI-2000 (LiCOR, 

inc.)(Gower et al., 1999), but these two methods are only useful for small areas due the 

time required in acquiring and processing the data.  Indirect techniques utilizing remote 

sensing to estimate LAI show the most promise for delivering accurate estimates at 

larger spatial scales. Existing techniques fall into two main categories: (1) passive optical 

remote sensing, which tends to be limited in the range of LAI values it can accurately 

estimate do to saturation effects when relying on indices such as the Normalized 

Vegetation Difference Index (NDVI) (Gower et al., 1999; Lüdeke et al., 1991) and (2) 

active LiDAR remote sensing, which has been shown to be successful on a limited range 

of LAI values and/or for homogenous, single species dominated stands (Lim et al., 2003; 

Morsdorf et al., 2006; Riaño et al., 2004; Solberg et al., 2006). Most studies have derived 

the effective LAI (LAIE), which does not correct for the non-random distribution of 

foliage or the presence of non-foliage elements (eg: branches, bark) in the canopy. 

Indirect methods based on Beer’s Law also calculate LAIE. In order to arrive at true LAI, 

one would need to perform corrections, these methods have been well studied (Chen et 

al., 1997; Leblanc et al., 2005), and are outside the scope of this study. 

Aerial LiDAR utilizes an airplane or helicopter mounted scanning laser with an 

integrated GPS unit to collect three-dimensional data points (Lefsky et al., 2002). The 
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characteristics of the final dataset depend on various parameters such as the height of 

the aircraft, diameter of the LiDAR laser beam, scanning nadir angle, and processing 

equipment. Large footprint, full-waveform LiDAR utilizing the SLICER instrument has 

been shown to be capable of estimating LAI in Douglas-fir/Western-hemlock dominated 

forests (Lefsky et al., 1999), but the instrument is not widely available and is unable to 

give information at high spatial resolution. Small-footprint, multiple return systems are 

more widely available, and have been shown to be capable of estimating LAIE in single-

species dominated stands and/or in stands with a small range of LAIE values (Lim et al., 

2003; Morsdorf et al., 2006; Riaño et al., 2004; Solberg et al., 2006). Table 1 summarizes 

the range of ground based LAIE values used in these studies, the dominant tree species, 

and the model found to best fit their ground-based LAIE estimates. Each study used a 

different method to estimate LAIE, suggesting that various methods may provide 

accurate estimate of LAIE in homogenous forests with small LAIE values and ranges. It is 

not known, however, which models can best predict LAIE in a more heterogeneous,  

mixed forest with a wide range of LAIE values. 

 

Table 1: Summary of different methods to estimate LAI from aerial LiDAR 

a
Model variables are described in Appendix A 

 

 The aim of the present study was to (1) obtain LAIE estimates in a highly variable 

forest composed of multiple coniferous and deciduous species with a wide range of LAIE 

Study 
Range of LAI 

values 
Forest Type(s) Best LAIE model

a 

Lefsky et al., 
(1999) 

0-14 Douglas-fir/Western hemlock LAI= α +β(FCV – CGV – CC/H) 

Lim et al., 
(2003) 

0.5-4 sugar maple/yellow birch LAIE =  α +  βMRE 

Riaño et al., 
(2004) 

0-≈3 Pyrenean oak and Scots pine LAIE =  α +  βPCH 

Morsdorf et 
al., (2006) 

0-2 mountain pine/stone pine LAIE =  α +  βFc (∑ RCF/(∑ RCL + ∑ RCO)) 

Solberg et al., 
(2006) 

0-1.6 Scots pine LAIE =    β -ln(RG/RC +RG) 
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values, (2) determine the best method for comparing LiDAR derived metrics and indirect 

field measurements, (3) evaluate the five different models proposed for estimating LAIE 

using aerial LiDAR, and (4) identify the best model and determine the effect of spatial 

extent on the model predictions.  

 

2. Materials and methods 

2.1. Study site 

The present work was conducted at the Washington Park Arboretum (WPA) in 

Seattle, WA (Fig. 1). The WPA is a 230 acre (0.931 km2) forest managed by the University 

of Washington Botanic Gardens.  The forest is comprised of over 4000 individual species 

of tree or shrub, but dominated by a native matrix of Douglas-fir (Pseudotsuga 

menziesii), Western hemlock (Tsuga heterophylla), Western red-cedar (Thuja plicata), 

and big leaf maple (Acer macrophyllum). An 86 acre (0.347 km2) subsection of the WPA 

was used for the present work (Fig. 1.c,d.), consisting of areas with slopes less than 10%, 

not located on trails, at least 10 m from park boundaries, and away from buildings. 

Within this subsection, 100 plot locations were randomly located within five stratified 

fractional cover classes during the summer of 2007. Hemispherical photographs were 

not collected on two points due to the onset of autumnal leaf senescence, reducing the 

total number of points to 98 (Fig. 1.c). At each point, 250 individual GPS points were 

averaged using a Trimble GeoXT (Trimble Navigation Ltd.) operating in DGPS mode.  
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Figure 1 : (a) The state of Washington, with the city of Seattle shown by the dotted 
circle, (b) The city of Seattle with the WPA in black, (c) the WPA and the 98 points, and 
(d) the WPA and the six 30 by 30 m plots 

 

Six separate 30 by 30 m plots were installed in the WPA in the summer of 2007, 

with two plots composed of all conifers, two all deciduous, and two mixed conifer and 

deciduous (Fig. 1.d). A Nikon DTM 420 Total Station (Nikon, corp.) and Trimble XR Pro 

GPS (Trimble Navigation Ltd.) were used to capture the geographic coordinates of the 

four plot corners and check for square. A 5 by 5 m grid was set up over each plot for the 

purpose of obtaining indirect LAIE estimates that could be aggregated for plot wide 

estimates. 
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2.2. Ground estimates of LAIE using hemispherical photography 

Hemispherical photographs were captured at each of the 98 points and at each 

grid intersection (a total of 49 photographs) in the six 30 by 30 m plots between June 

and August of 2007. All photographs were taken before sunrise, after sunset, or under 

uniformly overcast skies using a Nikon CoolPix 4500 (Nikon, corp.) leveled on a tripod 

one meter above the ground. At each point, a single hemispherical photograph was 

obtained utilizing the methodology of Zhang et al. (2005) to find the optimum exposure 

time. Photographs were processed using the Digital Hemispherical Photography (DHP) 

software (Leblanc, 2006), which breaks the photograph into ten annulus rings, with each 

ring corresponding to 9° of zenith angle, beginning with 0-9° at ring one. Rings 9 and 10 

were excluded from all analysis due to the influence of topography on the LAIE 

estimates. Hills would have been counted as foliage if these rings were not excluded. 

Eight different LAIE estimates were obtained using DHP for each photograph, 

corresponding to the inclusion of ring one, ring one and two, and so on until the eighth 

estimate included rings one through eight. These estimates were obtained in order to 

find the best relationship between the conical view of the hemispherical photograph 

and LiDAR metrics obtained from a cylinder, as has been performed previously 

(Morsdorf et al., 2006). As noted in the introduction, the photographs estimate effective 

LAI, and in this study, LAIE was not corrected in order to estimate the true LAI, as the 

LiDAR based estimates would likely require the same correction factors. The LAIE 

estimates, therefore, must be carefully examined and possibly corrected before they are 

used in an ecological model. 

2.3. Ground estimates of LAIE using the LAI-2000 

Estimates using the LAI-2000 (LiCOR, inc.) were obtained at each of the 98 points 

under the same sky constraints as the hemispherical photographs between June and 

August of 2007. Time constraints did not allow for measurements at the 30 by 30 m 

plots. With only one instrument, it was necessary to modify the collection technique in 
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accordance with the instrument manual by installing a 45° viewcap and bringing the 

instrument into an open area to obtain “above canopy” readings. The viewcap allowed 

the reading to be taken in areas with smaller canopy gaps, as the sensor rings only 

needed to be exposed to open sky conditions in a much smaller field of view. After an 

“above canopy” reading was obtained, the instrument was quickly brought to the point 

location where eight readings were taken in 45° increments. A final “above canopy” 

reading was then taken in order to reduce error caused by changing sky conditions. The 

LAI-2000, like the hemispherical photographs, produces estimates of effective LAI, and 

no additional analysis was performed on the LAIE estimates obtained aside from the 

calculations performed by the instrument’s internal hardware.  

2.4. Interpolation of LAIE at 30 by 30 m plots 

In order to arrive at plot level estimates that could be easily subdivided into smaller 

spatial areas, the 49 individual hemispherical photograph LAIE estimates for each 30 by 

30 m plot were interpolated to a raster using the Inverse Distance Weighted (IDW) 

function available in ArcGIS 9.2 (ESRI, corp.). The interpolation allowed the 30 by 30 m 

plots to be subdivided into smaller areas where individual mean LAIE estimates could be 

calculated. IDW interpolation produced a surface that more accurately reflected the 

natural LAIE variation in the plots than Kriging or the Spline function.  

2.5. LiDAR data acquisition and processing 

 Aerial discrete-return LiDAR coverage was obtained over the WPA on August, 

31st, 2004 using an Optech ALTM 30/70 laser scanner at an elevation of 1200 m above 

ground with a maximum scan angle of ± 10° from nadir. The scanner classified the LiDAR 

returns into 1st, 2nd, 3rd, and Last, where Last was the final return to break the 

instrument’s energy threshold, regardless of return number. The last return may have 

been a fourth return, but no data was collected for only fourth returns. Therefore, last 

returns were excluded from the analysis. The raw LiDAR data was processed using 

Fusion software’s ClipData feature (McGaughey, 2007) to normalize the vegetation 
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heights above a constant ground elevation using a ground model previously developed 

from the LiDAR data. This produced a dataset where the Z value for each point 

represents the true elevation of that point above ground level. 

2.6. Computation of LiDAR metrics 

For each of the 98 plots, cylindrical LiDAR point clouds of 2.5, 5, 10, 15, 20, and 

25 m radius were extracted. Within each of these cylinders, various metrics were 

calculated: the number of returns above 2 m in elevation (RC), the number of returns 

below 2 m (RG), the mean elevation of all returns (MRE), total canopy 1st returns (CR1), 

canopy 2nd returns (CR2), and canopy 3rd returns (CR3). Fractional canopy cover (Fc) was 

estimated by rasterizing the LiDAR dataset according to the maximum elevation of each 

grid cell. All grid cells with values greater than 2 m were considered canopy, while those 

less than 2 m were considered ground. The proportion of canopy grid cells within each 

10 m radius circle was calculated for each of the 98 points, and used as the estimate of 

Fc.  The metrics of closed gap volume (CGV) and canopy classes (CC) could not be 

derived, as full waveform LiDAR was not available. Therefore, to approximate the Lefsky 

et al. (1999) model, a canopy volume metric (CV) was derived by creating a Triangular 

Irregular Network (TIN) surface from the maximum height of the LiDAR points using 

ArcGIS 9.2 (ESRI, corp.). CV was estimated using the surface volume tool in ArcGIS 9.2. 

The tool calculates the volume between the TIN canopy surface and the ground surface 

determined by the ground model.  
 

2.7. Statistical analyses 

 All analyses were performed using R version 2.6.2. Simple linear correlation 

analysis was performed between the 98 hemispherical photograph LAIE estimates and 

98 LAI-2000 estimates. Hemispherical photograph estimates, which were the better 

predictors of LAIE (see results), were then used in subsequent analyses. Simple linear 

regression was carried out to determine which LAIE estimate using the model of Solberg 

et al. (2006) computed from differing LiDAR cylinder radii was best correlated to LAIE 
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estimates derived from different combinations of hemispherical photograph annulus 

rings, as has been previously similarly performed (Morsdorf et al., 2006; Riaño et al., 

2004). This radius and annulus ring combination was then used in all subsequent 

analyses. Each computed LiDAR metric was then input into the five models described in 

Table 2 and analyzed using simple linear regression of the hemispherical photograph 

LAIE estimates taken at each of the 98 points.  

To evaluate the relationship between spatial extent (and thus number of LiDAR 

points used to compute the metrics) and predictive accuracy, the 30 by 30 m plots were 

broken into smaller areas: 15 by 30 m, 15 by 15 m, and 7.5 by 7.5 m.  LAIE was then 

predicted for each of these areas using the best model chosen by the process above, 

and compared to the average LAIE determined from the mean interpolated raster values 

for the same area. 

 

3. Results 

3.1. Determination of best indirect method  

 Comparisons between hemispherical photography and the LAI-2000 showed 

good correlation (Figure 2, R2  0.804), although the LAI-2000 produced larger estimates 

at low LAIE values, while hemispherical photographs produced larger estimates at high 

LAIE values. It was necessary to determine which of the two methods of LAIE estimation 

would be best correlated to the LiDAR metrics.  Both the LAI-2000 and hemispherical 

photograph LAIE estimates (results not shown) were compared to each of the different 

models for estimating LAIE from LiDAR.  In all cases, hemispherical photographs were 

slightly more correlated, and thus were used for all subsequent analyses.  
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Figure 2: Comparison of hemipsherical photograph LAIE estimates and LAI-2000 
estimates at the 98 plots within the Washington Park Arboretum. One to one 
relationship shown by the dotted line. 

 

3.2. Determination of best LiDAR cylinder radius and hemispherical photograph annulus 

ring combination 

 Initially, simple linear regression was used to compare the different LiDAR LAIE  

models using LiDAR metrics extracted from a cylinder with 15 m radius, chosen based on 

previous studies (Morsdorf et al., 2006; Riaño et al., 2004), to hemispherical photograph 

LAIE estimates using all eight annulus rings. Model E proved to be most highly 

correlated, and this model was used to obtain coefficients of determination from the 

simple linear regressions of the six different LiDAR cylinder radii (2.5, 5, 10, 15, 20, 25 m) 

and eight different  hemispherical photograph annulus ring combinations (1, 1-2, 1-3, 1-

4, 1-5, 1-6, 1-7, 1-8)(Fig 3.).  Intercept estimates were included in the regressions in 
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order to arrive at comparable estimates of the coefficient of determination. Because 

Model E is logarithmic, several datapoints at 2.5 and 5m cylinder radii were excluded 

because they contained no ground returns. Therefore, coefficients of determination at 

these radii are likely overestimated, although this did not influence our final 

combination. The series of simple regressions found the 10 meter segment radius and 

the annulus ring 1-7 combination to be the best correlated (R2 0.6782), and this 

combination was used for all subsequent analyses. 

 

Figure 3: Contour plot of the of  the coefficient of determination resulting from simple 
linear regressions of model E with an intercept value included  at differing annulus rings 
and LiDAR cylinder radii at 98 points in the Washington Park Arboretum. 
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3.3. Comparisons of LiDAR estimation models 

 Table 2 summarizes the results of the simple linear regressions of the five 

models investigated. Each model is given an identifier, and will be thus referred to by 

that identifier. Thirteen observations were excluded from the regression of the Model 

D, as they were apparently outside the sensitivity of the model as the inclusion of those 

observations reduced the coefficient of determination to 0. The coefficients from Table 

2 were used to produce predictions of LAIE using the 5 models (Fig.4). Model E was most 

highly correlated to hemispherical photograph estimates of LAIE, and produced the least 

amount of residual scatter at high LAIE. 

 

Table 2: Results of simple linear regression between LAIE estimation models and 
hemispherical photograph LAIE estimates 

 

Identifier 
Reference/ 

Metric 
Model

a 

Number 
of 

Observati
ons 

α (SE) β  (SE) R
2 

A 
Lim et al. 

(2003) 
LAIE = α + βMRE 98 

0.52156 
(0.28504) 

0.20985 
(0.2267) 

0.4717 

B 
Canopy 
Volume

 LAIE = α + βCV 98 
0.72655 

(0.24877) 
6.5269 x 10

-3
 

(6.552 x 10
-4

) 
0.5083 

C 
Riaño et al., 

(2004) 
LAIE = α + 

β100(FC / Fc + Fg) 
98 

-1.42509 
(0.38287) 

0.05850 
(0.00497) 

0.5907 

D 
Morsdorf et 
al., (2006) 

LAIE = α + βFc (∑ 
RC1/(∑ RC2 + ∑ 

RC3) 
85 

0.9472 
(0.5899) 

0.9675 
(0.2624) 

0.1408 

E 
Solberg et al., 

(2006) 
LAIE =   β -

ln(RG/RG + RC) 
98 - 

1.6852 
(0.05161) 

0.6756 

    a
Model variables are described in Appendix A 
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Figure 4: Simple linear regression of predicted values of Models A-E with parameters 
from Table 2 against hemispherical photograph estimates of LAIE . Note that one data 
point is not shown in 4.D. In each graph, the dotted line represents the 1:1 relationship, 
and the dark line is the best fit. 
 

Predicted LAI
E

0 2 4 6 8 10

H
e
m

is
p
h
e

ri
c
a

l 
P

h
o

to
g

ra
p
h

 L
A

I E
 E

s
ti
m

a
te

s

0

2

4

6

8

10

R
2
 = 0.5083, p < 0.0001

Predicted LAI
E

0 2 4 6 8 10

H
e
m

is
p
h
e

ri
c
a

l 
P

h
o

to
g

ra
p
h

 L
A

I E
 E

s
ti
m

a
te

s

0

2

4

6

8

10

R
2
 = 0.4717, p < 0.0001

Predicted LAI
E

0 2 4 6 8 10

H
e
m

is
p
h
e

ri
c
a

l 
P

h
o

to
g

ra
p
h

 L
A

I E
 E

s
ti
m

a
te

s

0

2

4

6

8

10

R
2
 = 0.5907, p < 0.0001

Predicted LAI
E

0 2 4 6 8 10

H
e
m

is
p
h
e

ri
c
a

l 
P

h
o

to
g

ra
p
h

 L
A

I E
 E

s
ti
m

a
te

s

0

2

4

6

8

10

R
2
 = 0.0005, p = 0.8232

Predicted LAI
E

0 2 4 6 8 10

H
e

m
is

p
h

e
ri
c
a

l 
P

h
o

to
g

ra
p

h
 L

A
I E

 E
s
ti
m

a
te

s

0

2

4

6

8

10

R
2
 = 0.6782, p < 0.0001

A. 

E. 

D. C. 

B. 



15 
 

 

3.4. The relationship between spatial extent and model accuracy 

 Model E with the parameters from Table 2 was used to predict LAIE at the six 30 

by 30 m plots. Individual estimates were obtained at each 30 by 30 m area per plot, two 

30 by 15 m areas per plot, four 15 by 15 m areas per plot, and sixteen 7.5 by 7.5 m areas 

per plot. Fig. 5 shows the comparison of those predictions to the interpolated LAIE 

estimates for each area. At the smallest spatial extents, several of the subplots 

contained no ground LiDAR returns, and were excluded from the analysis.  The 

coefficient of determination was also calculated for each of the four spatial extents by 

performing simple linear regressions of the model predictions and the interpolated LAIE 

estimates. Because of the omission of several subplots at the smallest spatial extent due 

to presence of no ground returns, the coefficient of determination is likely an 

overestimate for the 7.5 by 7.5 m areas. The inset in Fig. 5 shows that predictive 

accuracy increases linearly with increasing spatial extent.
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Figure 5: Prediction of Model E at six 30 by 30 m plots in the WPA. Predictions are made 
at four spatial extents, and the relationship between spatial extent and the correlation 
coefficient is shown in the inset graph. 
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and Saeki, 1952). The slightly higher LAIE estimates of the LAI-2000 at low LAIE levels is 

likely a cause of the ability of that instrument to better discern above and below canopy 

light intensity differences. Vegetation bordering bright open sky will tend to be 

underestimated using hemispherical photographs due to the penumbra effect. The 

LiDAR LAI
E 

Estimates

0 2 4 6 8

ID
W

 I
n

te
rp

o
la

te
d

 L
A

I E
 E

s
ti
m

a
te

s

0

2

4

6

8

56.25 m
2
, r

2
 0.35

225 m
2
, r

2
 0.52

450 m
2
, r

2
 0.67

900 m
2
, r

2
 0.89

Area (m
2
)

0 200 400 600 800 1000

R
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0



17 
 

 

cause of the opposite difference at higher LAIE levels between the two methods is less 

clear. At high LAIE levels, small differences in open sky patches can have a large effect on 

LAIE estimation, but it is unclear if or why there is a systematic difference between the 

two methods. 

4.2. The relationship between LiDAR cylinder radius and the combination of 

hemispherical photograph annulus rings 

 The best correlated combination of LiDAR radius and hemispherical photograph 

annulus ring combination closely matches what has been previously found (Morsdorf et 

al., 2006; Riaño et al., 2004). Attempting to correlate LAIE estimates based on gap 

fraction estimates from radiation captured from a conical area of the sky to a cylindrical 

LiDAR point cloud will always result in some error. In a heterogeneous forest such as the 

WPA, this error is magnified as there is a high probability that areas at the far edge of 

the photograph’s conical view will different than the areas in the middle which more 

closely relate to the cylindrical LiDAR point cloud.  This error contributes to the residual 

errors seen in Fig. 4. 

 The cost effectiveness and relative speed at which hemispherical photographs 

can be acquired will continue to make them an attractive method for obtaining ground 

based estimates of LAIE, but the inherent error of matching a cone to a cylinder suggests 

that the upper bound of potential correlation between photographs and LiDAR may 

have already been reached. Future studies should concentrate on methods to arrive at 

the true LAI within the cylindrical space around a point. One potential next step would 

be to simulate canopy structure in a computer environment and simulate LiDAR 

behavior within that environment. 

4.3. The distinction between the two main LAIE estimation methods  

 As noted in the introduction, ground-based indirect LAI estimation falls into two 

main categories: allometric methods and methods based on Beer’s Law.  Allometric 

methods  tend to be applicable for a single species in a single geographical area, and 
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when allometric equations are applied to trees outside of that narrow range, their 

accuracy decreases (Gower et al., 1999). In Fig. 4, the two models based on biophysical 

variables, model A and B, experience rapidly increasing residual error at LAIE values 

greater than 2. This is not surprising as this is essentially an allometric approach to 

estimating LAIE. If the WPA was dominated by a single species, these models would be 

expected to predict very accurate values of LAIE, but since it is very heterogeneous, the 

relationship between volume and height and LAIE differs greatly amongst species, 

accounting for the large residual errors. While this suggests that these models may be 

appropriate to predict LAIE in homogenous forests, they still need calibration by ground-

based LAI estimation methods in order to estimate regression coefficients, which adds 

time and cost to the use of this method for larger spatial scales. 

 The Beer’s Law based methods, conversely, produce LAIE estimates by arriving at 

the difference between above and below canopy light levels, shown by the following 

equation: 

      (1) 

where I is the below canopy light intensity, I0 is the above canopy light intensity, F is the 

LAIE, and K is the extinction coefficient (Monsi and Saeki, 1952). As Solberg et al. (2006) 

noted, this equation can be rewritten in the form: 

      (2) 

and the proportion of LiDAR ground returns to total LiDAR pulses emitted can be 

substituted for I/I0: 

     (3) 

This method has several benefits compared to the allometric models. It is much less 

sensitive to species differences, resulting in less residual error as can be seen in Fig. 4.E. 

It also does not necessarily require model calibration, as there is a body of literature 

describing the extinction coefficient of various forest types (Monsi and Saeki, 1952; 

Pierce and Running, 1988; Thomas and Winner, 2000).  Using the inverse of the 
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regression coefficient  from model E. (2006) from Table 2, the estimated extinction 

coefficient is 0.5934. While this value will likely differ in different forest types, it tends to 

fall within the range of 0.5-0.7 (Pierce and Running, 1988; Vose et al., 1995), and 

utilizing a value of 0.6 is reasonable in a heterogeneous forest such as the WPA. One of 

the limitations of utilizing Beer’s Law is that it produces estimates of LAIE and must be 

corrected. Applying multiple correction factors for the many different species in a 

heterogeneous forest is not realistic if one is attempting to estimate LAI for very large 

spatial scales, and further research is necessary to examine whether clumping indices 

and the ratio of bark to foliage can be directly estimated from aerial LiDAR.  

 LiDAR intensity values present a potential source of data from which to 

differentiate foliage returns from bark/wood returns. Different objects reflect differing 

wavelengths of light differently, and this is the basis of most optical remote sensing. The 

wavelength of the laser used would have a large effect on any model developed using 

this technique, and perhaps the best solution would be to develop a LiDAR system that 

uses multiple wavelengths of lasers. 

4.4. The saturation problem and potential solutions 

 Although the Beer’s law method represented by equation 3 was the best method 

for estimating LAIE from aerial LiDAR in the WPA, residual error still increased with 

increasing LAIE. There are two likely causes for this behavior. First, the error associated 

with comparing the conical view of the hemispherical photograph to the cylindrical 

LiDAR point cloud will likely increase with increasing LAIE. At high LAIE, small differences 

in gap fraction can lead to large changes in LAIE derived from hemispherical 

photographs. As noted in section 4.5, there were many point locations where dense 

forest patches were bordered by open areas due to the heterogeneous nature of the 

WPA. In these areas, the LiDAR cylinders captured only dense vegetation, while open 

sky at the edges of the photographs increased the gap fraction, leading to error. The 

opposite occurred in open areas ringed by dense vegetation.  Secondly, because the 
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model is comparing canopy to ground returns, the model loses sensitivity in areas where 

there are no ground returns. Using a 10 m cylinder radius, there were no points that 

contained only canopy returns, but there were smaller areas within those cylinders that 

contained very dense vegetation with no ground returns. This is an issue that is also 

found in satellite based remote sensing using the Normalized Difference Vegetation 

Index (NDVI)(Wang et al., 2005): 

   (4) 

Where RNIR  and RVis are the reflectances derived from a satellite’s near-infrared and 

visible bands respectively. NDVI is driven by the difference in reflectance between 

vegetation and ground, and when vegetation reaches a certain density, around a LAI of 

3 (Lüdeke et al., 1991), this index no longer changes because the soil is mostly covered 

by vegetation. The same problem is observed with LiDAR. As the gap fraction decreases, 

the probability of an individual laser pulse penetrating through a gap and reflecting off 

the ground with enough energy to be recorded by the laser scanner decreases 

exponentially. Hence, the residual error in Fig. 4.B. begins to increase around LAIE of 

three.  

 There are four main ways this saturation problem can be overcome. (1) One can 

increase the number of laser pulses per square meter. This will increase the likelihood 

that a pulse will find a gap. (2) One can increase the spatial extent from which one is 

computing the number of ground and canopy returns. Fig. 5 illustrates this effect, as at 

larger areas there is a greater probability that an individual laser pulse will strike a 

canopy gap, yielding more ground returns. (3) The off-nadir angle of each individual 

laser pulse could be included as a variable in a model. At larger off-nadir angles, the 

laser beam may pass through gaps that would not be visible at very small off-nadir 

angles. It would be important to correct for the reduced probability of striking the 

ground at large off-nadir angles, though, as the path length would be increased, thus 

increasing the probability that light would be attenuated. (4) One could reconfigure the 
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LiDAR instrument to be more sensitive to low energy reflections or reduce the beam 

diameter. It is highly likely that laser pulses are penetrating through very small gaps, but 

that there is not enough reflected energy to be recorded by the scanner. As LiDAR 

technology matures, forestry specific instruments and calibrations should be developed 

to increase the sensitivity to low energy ground returns. At present, though, most 

advances in LiDAR technology center around increasing the scanning frequency. 

 Even with improvements to correct the saturation problem, estimating LAIE using 

Beer’s Law will never give the absolute true LAI. Extremely dense areas of foliage that 

overlap will absorb all light, ensuring that no LiDAR pulses will reach the ground. In 

these areas, scanners that can partially penetrate foliage may provide the ultimate 

solution to achieving true LAI. Both long and short-wave radiation is transmitted 

through foliage, and sensors operating in these wavelengths may provide areas for 

future research. 

4.5. Conclusions 

 The various models that have been developed to estimate LAIE from aerial LiDAR 

fall into two categories: allometric and Beer’s Law based methods. Each main method 

has its limitations, with allometric models only applicable to single species dominated 

stands and dependent on calibration utilizing ground-based methods, while Beer’s Law 

based methods exhibit saturation at high LAIE values and do not correct for foliage 

clumping or presence of non-foliage elements. In a heterogeneous forest, the Beer’s 

Law method clearly produces more accurate predictions of LAIE, and also does not 

require calibration as the extinction coefficient, k, can be approximated by using a value 

of 0.6. Continued research should be performed to examine the influence of different 

scanner types on LAIE estimation, as well as research into the possibility of deriving the 

clumping index and bark to foliage ratio from LiDAR data. 
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III. Estimation of Effective Leaf Area Index at the Washington Park Arboretum 

 

 After selecting the best model for estimating LAIE at the WPA, it was possible to 

produce estimates of LAIE for the entire WPA. Interpretation of the estimates should be 

limited to the subset of the WPA that was included in the development of the model, as 

the model was parameterized using this specific area (Fig. 1). It may be reasonable to 

expect the model will still perform reasonably well outside of the study area, but only 

estimates within the bounds of the study area should be used without further 

investigation and validation. 

The final area-wide estimates of LAIE were produced in map form using ArcGIS 

9.2. (ESRI, inc).  By creating two separate raster grids where each pixel was equal to the 

sum of ground or canopy returns within the extent of that pixel, it was possible to create 

a separate raster grid equal to the output of Model E with the parameters from Table 2. 

The pixel size was set at 5m in order to obtain a reasonably high resolution map that 

could display the heterogeneity of LAIE values at the WPA. This raster grid could then be 

displayed in ArcGIS 9.2 (Fig 6.), but contained several areas of no data (shown as white 

areas in the map) due to the fact that many raster pixels contained no ground points, 

because of the saturation effected discussed above. 
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Figure 6: Estimates of LAIE for the entire extent of the 2004 LiDAR acquisition. White 
areas indicate areas where there were no ground returns within the pixel. 
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 Several methods have been employed to create an LAIE map for the study area at 

the WPA, within the context of attempting to minimize errors brought on by the 

saturation effect, while attempting to maximize the resolution.  First, the grid from Fig. 6 

was simply clipped to the extent of the study area, keeping the same pixel size of 5 m 

(Fig 7.a.). This may be the most objective presentation of the model output, but it would 

impossible to use this grid as a source of LAIE for another model because of the many 

areas of missing data. The missing data pixels should contain the largest values of LAIE, 

and to leave those pixels out a model to estimate rainfall interception, for example, 

would result in large underestimates. 

 Figure 7.b. is a map displaying interpolated LAIE created by setting no data pixels 

set to a value of 9. Although 9 is somewhat arbitrary, it was chosen because it was 

assumed that the pixels of no data contained larger LAIE values than the maximum of 

8.16 found within the study area. A value of 9 was larger, but still physically feasible. 

IDW interpolation was run on the grid from Figure 7.a. with the no data values set to 9 

to produce Figure 7.b. While there is some error associated the arbitrary assignment of 

9, this grid can act as a source of continuous data for ecological models. 
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Figure 7: Estimates of LAIE within the area of study with (a.) pixels with no ground 
returns shown as white and (b.) pixels with no ground returns set to an LAIE of 9 and 
interpolated using the IDW technique. 

 
 Figure 8.a. is a grid created by running the IDW interpolation on the grid from Fig 

7.a. with no data pixels included. This produced a continuous grid that can serve as an 

input for ecological models, but likely underestimates LAIE because pixels could not be 

assigned values larger than 8.16.  

 Figure 8.b. was created by iteratively increasing the pixel size of the raster grid of 

ground returns until a continuous grid was created where every pixel had a value 
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greater or equal to one. This was point was reached with a pixel size of 16 m. This 

provided a dataset that model E could be run to produce a continuous estimate of LAIE. 

The obvious drawback is the reduction in resolution, and this may or may not be a 

serious problem depending on the application.  

 

Figure 8: Estimates of LAIE within the area of study with (a.) pixels interpolated on the 
raw modeled output using the IDW technique and (b) 16 m pixels. 

 

 The maps from Fig. 7 and 8 can now be used as an input into various models 

requiring estimates of LAI. Each has its drawbacks, but Figure 8.b. is the map most likely 

to contain the least amount of error because it does not require assumptions or 
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produce obvious underestimates. It is important to note, though, that the range of pixel 

values in all four maps is larger than the range obtained from hemispherical 

photographs used in parameterizing the model. With the increase in residual scatter 

seen at these high LAIE values in Fig. 5.E., the error associated with the larger values in 

Figures 7 and 8 may also be large. Nothing definitive can be quantified without further 

validation.  Care must also be taken to account for the fact that these are estimates of 

LAIE and not true LAI.  

Future research or analysis can be undertaken to use these maps as a source of 

data for models of carbon sequestration, rainfall interception, pollution interception, or 

other ecological functions. If future LiDAR flights are acquired over the WPA, these maps 

can also be used to assess changes in LAIE over time, and thus changes in the ecological 

functions provided by the WPA. 
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Appendix A: List of Acronyms 

 

CC: Canopy Classes 

CGV: Closed Gap Volume 

CV: Canopy Volume 

DEM: Digital Elevation Model 

DGPS: Differential-corrected Global Positioning System 

DHP: Digital Hemispherical Photography 

FC: Fractional Cover 

FCV: Filled Canopy Volume 

GPP: Gross Primary Productivity 

GPS: Global Positioning System 

H: Mean Canopy Height 

IDW: Inverse Distance Weighted 

LAI: Leaf Area Index 

LAIE: Effective Leaf Area Index 

LiDAR: Light Detection and Ranging 

Model A: LAIE = α + β MRE 

Model B: LAIE = α + βCV 

Model C: LAIE = α + β –PCH 

Model D: LAIE = α + βFc (∑ RC1/(∑ RC2 + ∑ RC3)) 

Model E: LAIE = β -ln(RG/RG + RC) 

MRE: Mean Return Elevation 

PCH: Percent Canopy Hits 

RC: Canopy Returns 

RC1: Canopy First Returns 

RC2: Canopy Second Returns 

RC3: Canopy Third Returns 
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RCL: Canopy Last Returns 

RCO: Canopy Only Returns 

RG: Ground Returns 

RIR: Reflectance in the Infrared Wavelength 

RNIR: Reflectance in the Near Infrared Wavelength 

SE: Standard Error 

TIN: Triangular Irregular Network 

WPA: Washington Park Arboretum 
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Appendix B: Users Guide to Hemispherical Photograph Acquisition and Analysis 

 
The purpose of this supplement is to record the method used in this study for acquiring 

and analyzing hemispherical photographs. There are many sources of error in this 

process, and this presents the detailed method used to produce estimates of LAIE. 

 
Acquisition 
 
1.  The camera used was Nikon CoolPix 4500 with a Nikon FC-E8 Fisheye lens. This 

camera was also used in the development of the method for acquiring hemispherical 

photographs in Zhang et al. (2005). If other cameras are to be used, this guide should be 

modified. 

2. The camera was put into Fisheye mode and manual focus mode. 

3. The aperture was set to 5.3 

4. The camera was placed on a 1 m tall tripod, brought into an open field and leveled. 

The shutter speed was then adjusted until the light meter was two “clicks” to the right 

of the suggested level. 

5. The camera was then brought to the plot location, leveled, set to face magnetic 

north, and set to timer mode. 

6. The shutter was depressed and the operator ducked to be out of the field of view of 

the photograph. 

7. If light levels are changing rapidly (as they do at dawn and dusk), the camera should 

be brought into an open field at regular interviews to adjust the shutter speed using the 

methodology in step 4. 

 
Analysis 
 
1. Digital Hemispherical Photography (DHP) software was used for the analysis. This 

software can be obtained for free from Sylvain G. LeBlanc 

(Sylvain.Leblanc@CCRS.NRCan.gc.ca). 

mailto:Sylvain.Leblanc@CCRS.NRCan.gc.ca
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2. Click “Browse Input” and select the image file of the photograph. 

3. You will be prompted to select the camera used in obtaining the photograph. If not 

prompted, select the camera in the drop down menu. If the camera is not shown, 

consult the software’s user manual. 

4. Click “Blue” in Input Options. 

5. For the CoolPix 4500, enter 2.2 for Gamma. Consult the software manual if using a 

different camera. 

6. The software breaks the photograph into 10 annulus rings. You can switch between 

rings using “Up” and “Down”. 

7. Make sure “Histogram Logarithm View” is checked 

8. Select “Down” until ring 10 is selected. 

9. A histogram of the pixel values in the blue band is shown at the right, on a 

logarithmic scale. The sliders above and below the histogram can be moved to se the 

thresholds for “foliage” pixels, “mixed” pixels, and “sky” pixels. 

10. Each ring will follow a similar pattern in its histogram. There will be a steep peak at 

the left leveling off to a near linear area, followed by a steep peak at the right. 

11. The bottom slider should be set at the left edge of the linear area, at the point 

where the “slope” of the histogram moves from linear to exponential. 

12. The top slider should be set at the right edge of the linear area, at the point where 

the “slope” of the histogram moves from linear to exponential. 

13. If the histogram is not clear, the thresholds can be adjusted using visual inspection 

of the ring. The area at the left displays the image of the ring. Higher resolution can 

be achieved using “Full Resolution” and areas denoted as “mixed pixels” will be 

displayed in green if “Gaps Colour Code” is selected. By moving the sliders, 

inspecting the histogram, and inspecting the image, the proper threshold can be set. 

14. Continue on to each of the next nine rings, following steps 11-13. 



42 
 

 

15. When finished, LAIE estimates can be retrieved by entering the number of rings the 

analysis should process in the box “Rings #.” Select “Process” to retrieve the 

estimates. 

16. The upper right window will display the LAIE (displayed as PAIe) at the top column for 

the rings selected. It will also display the individual LAIE for each of the 10 rings 

below that. 

17. The thresholds for each photo will be saved in a text file and can be accessed at a 

later date. 

18. The output can also be exported to TRACwin. See the user manual for more 

information. 


