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CCAR projects & cores

=CCAR |
Project 1 Project 2 Project 3
roadway exposure exposure atmosphere toxicology
characterization generation
M Campen (PI),
M Yost (PI), T Larson, J McDonald (P1), M Rosenfeld, A Lund,
C Simpson, T Jobson, T Larson J McDonald
T VanReken
Project 4 Project 5 Project 6
human clinical studies epidemiology cohort multipollutant exposure
study modeling
J Kaufman (PI)
J Kaufman (PI), S Vedal, L Sheppard (PI),
C Curl A Szpiro, P Sampson

Biostats Core

Admin Core
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Since we last met:

1. responses to SAC review
2. Clean Air Research Centers (CLARC)

meetings/seminars:
o EPA center webinar — M Campen (projects 2 and 3)

e Exposure chambers workshop webinar, May 2012

e Annual meeting Boston (Harvard center), June 2012
— updates + collaborative projects

« Biostatistics workshop preceding the annual meeting
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Since we last met:

3. Projects

 P1 - St Paul and Baltimore x 2 seasons

 P1+ P2-Albugquerque

o P2+ P3-atmosphere development +
toxicology findings

P4 —1to be discussed

 P5-coord field work Winston-Salem and LA;
develop/test instruments

* Biostats Core — dealing with P1 data; interim
work/plans for multivariate exposure model
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overview of SAC comments:

e aQging Vvs. source mix

 linking mobile monitoring to experimental and
observational exposures

e non-exhaust roadway exposures?

o streamline tox and human exposure studies

« other tox endpoints

« simple to more complex statistical modeling

e appropriate in-vehicle monitoring
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SAC Input especially on:

1. reactions to early data and approaches:
 mobile and chamber monitoring
o experimental atmospheres and tox models/endpoints

2. project 4 — what now?

3. MESA cohort

e short- and long-term approach to developing
multipollutant exposure model

e In-transit exposures
hypotheses
our CLARC collaborative projects

o B
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Outline of today’s activities

1. Individual project reviews, updates, discussions
e projectl, 4
e highlight project 4 issues

[LUNCH]

e projects 5, 2, 3, Biostats Core
2. Cross-center collaborations
3. General discussion
[DINNER]
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Tomorrow’s activities

1. SAC closed meeting
2. SAC report and discussion
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EPA Clean Air Research Center
Project 1: Exposure Mapping —

Characterization of Gases and Particles for Exposure Assessment
In Health Effects and Laboratory Studies

External Science Advisory Meeting, Sept 27, 2012

Investigators: Michael Yost, Tim Larson, Chris Simpson, UW,
Tom Jobson, Tim VanReken, WSU



University of Washington
Center for Clean Air Research (CCAR)

Project 1. Aims

1.

Characterize spatial and temporal gradients of selected air
pollutants along roadways and within neighborhoods in MESA
cities using a mobile platform

. Measure spatial variation in concentrations of selected air

pollutants at two-week average fixed sites

. Characterize rapid aging of air pollutant components

transported from roadway sources to neighborhood receptor
locations

Provide detailed characterization of controlled laboratory
atmospheres available for toxicology testing, and identify likely
laboratory conditions that mimic those found in urban settings



Project 1: Instrumentation

Parameter

Mobile Platform

Fixed Site - Supporting
Mobile Platform

Stationary Sites -
Integrated Coarse Particles
and Gases

Aerosol Light Scattering

Nephelometer

Nephelometer

PAHs

PAS 2000CE

PAS 2000CE

Ultrafine Particle Counts

PTRAK w/Diffusion Screen

PTRAK w/Diffusion Screen

Black Carbon

dual channel micro-
aethelometer (AE52)

single channel micro-
aethelometer (AE51)

Particle Counter

Particle Counter: 31 Sizes
(NanoCheck 1.320)

Particle Counter: 6 Sizes
(Aerotrak 9306)

Coarse Mass (LA and
Winston-Salem only)

Ozone

Optec analyzer

Optec analyzer

03: Ogawa passive badge

NO

2B tech model 410

2B tech model 410

NOx, NO2 by Difference

2B tech model 410 w/
converter

2B tech model 410 w/
converter

SO2, NO*, NO2, NOx
Ogawa passive badge

coO Langan T15N Langan T15N
CO, IR sensor IR sensor
VOCs ppbPID (Photovac)

3M passive sampler: Six

VOCs — integrated

|_ppbPID (Photovac)
charcoal sorbent

charcoal sorbent

VOC Compounds: pentane,

nonane, benzene, toluene,

Temperature & RH Sensor m-xylene, o-xylene
Position & Real-Time Tracking (GPS
Visual Recording of Route WebCam * NO by difference




Project 1: Sampling Schedule

Activity Est. Begin Date Est. End Date Year of Location - New
Study
Pilot Testing of Mobile system 8/15/11 11/15/11 1 Seattle, WA
Field Sampling, City 1 (Heating) 11/29/11 12/20/11 1 St. Paul, MN
Field Sampling, City 2 (Heating) 2/5/12 2/25/12 2 Baltimore, MD
Characterization of LRRI Exposure Atmospheres 4/16/12 5/17/12 2 Albuquerque, NM
Field Sampling, City 2 (Non-Heating) 6/8/12 6/30/12 2 Baltimore, MD
Field Sampling, City 1 (Non-Heating) 7/25/12 8/15/12 2 St. Paul, MN
Field Sampling, City 3 (Heating) 1/3/13 1/23/13 3 Winston-Salem, NC
Field Sampling, City 4 (Heating) 2/5/13 2/25/13 3 Los Angeles, CA
Characterization of UW Exposure Atmospheres 4/1/13 5/1/13 3 Seattle, WA
Field Sampling, City 4 (Non-Heating) 6/1/13 6/20/13 3 Los Angeles, CA
Field Sampling, City 3 (Non-Heating) 8/1/13 8/20/13 3 Winston-Salem, NC
Expanded Sampling with GT CLARC 9/1/13 9/20/13 3 Atlanta

Instrumentation



Preliminary Data

* Two Data sources:
PASSIVE — Passive samplers (2-week averages)

MOBILE |— Mobile data (30s & ~15 min.; time-corrected)

* 3 Mobile Routes
— One fixed route, 2-7 pm (evening commute)
— All routes time adjusted to central fixed site
— 15 Fuzzy points per route (43 total)
— Fuzzy points coincident with passive samplers



Mobile Platform

» Use same vehicle in all cities
Sample inlet attached to roof rack; matched to ~22 mph speed
Instrument package; samples drawn from common manifold
Data vector: 10-sec moving avg for all components, + position

Rack R
Fror_1t of _ tggof 7
vehicle view A line 4 7
(probe out ’ ¥ y
left-side
window) H
33 Window 2
” outline in 4”
rear left- 33
side door 1
]].-/’i Ic:hec ..... ¢ ....................................... }
folded 1320 |/ \_‘ jp | Nano
Vehicle Chec
down left-side |
seat rear door Side of vehicle view
back (probe extends out

left-side window)




Mobile Platform Analysis
Traffic Intersections as “Fuzzy Points”

* Measure pollutant marker (e.g. o) = =15 .
at selected traffic intersections
during peak afternoon traffic period

E C

« Trace a cloverleaf / figure 8 at each r K
Intersection (~5-8 minutes); repeat

« Adjust the observed readings using , - - 1

fixed site data

e Calculate the median of the adjusted
readings for each pass through a
fuzzy point

(o |T

Observed 10-sec reading from mobile x Campaign median from fixed

Adjusted Reading =
! 5 30-min moving median from fixed



Streaming data and video
1458 B0 3641 = 3939 ==

Mp/L




Fuzzy Points - Detail Maps
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St. Paul Heating Season
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St. Paul: Mobile Sample Zones & Fufzzyipgin
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St. Paul: Set in motion....

* Loop animation of fuzzy point results
* Time-Averaged over sample period
e Each pollutant plotted as Tertiles (High = Low)
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Baltimore Heating Season
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Baltimore: Set in motion....

* Loop animation of fuzzy point results
* Time-Averaged over sample period
e Each pollutant plotted as Tertiles (High = Low)
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VOC - Fuzzy Point Correlations: St Paul

Passive Data

Pentane| '~ |Benzene|Toluene| . ™" 0- NO2 | NOx
Nonane Xylene | Xylene
Pentanes
n-Nonane 0.77"
Benzene 0.85° | 0.76"
Toluene 0.887 | 0.87" 0.92”
m-Xylene 0.86° | 0.86 0.84" 0.97"
0-Xylene 0.85 | 0.85 0.82" 0.96° | 0.99"
NO2 0.34" 0.34" 0.48" 0.35 0.34" 0.31
NOX 0.28 0.28 0.26 0.25 0.29 0.27 | 0.62"
Ozone -0.18 -0.11 -0.07 -0.13 -0.11 -0.09 | 0.01 | -0.33

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).



Roadway Gradient Sampling

e SAC recommendation to attempt “detailed
spatial/road and traffic source characteristics
information”

* Developed alternative mobile sampling
scheme to assess near-roadway pollutants

e Tested this approach in Albuquerque



Albuquerque I\/Iolgile'(.:h_aracterization (30-Sec Avgs.)

Los Ranchos de*

_’“_"f_“““"'“‘” Gradient Sampling test

Albuquerque® -:- 3
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Set it in motion....

 Sequence of raw data
e pass 1, 2, 3 etc. for BC; then
e pass 1, 2, 3 etc. for O3



| Black Carbon Pass 1 (pg/m’) |

700 - 1900 N
460 - 690 W ...%,r
340 - 450 v
220 - 330

=200 - 210 o 200 Meters



Next Steps...

Continue data collection schedule...
— Added roadway gradient sampling to all cities

QC & Preliminary analysis of Summer data

Analysis of Seasonal Differences
— Integration with Biostatistics Core

Mobile data in Atlanta - 2013



Thank You!

jVEAA CENTER FOR CLEAN AIR RESEARCH
CCAR UNIVERSITY of WASHINGTON
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jm CENTER FOR CLEAN AIR RESEARCH
=CCAR

\  UNIVERSITY of WASHINGTON

EPA Clean Air Research Center

Project 1.

Aerosol Characterization of LRRI Exposure Chamber

External Science Advisory Meeting September 2012

Investigators:
Tom Jobson, Tim VanReken, WSU
Michael Yost, Tim Larson, Chris Simpson, UW
Jake MacDonald, LRRI



Lovelace Respiratory Research Institute Exposure Chamber Study
April — May, 2012

Task 1. Characterize gas and particle composition in the 1-m?3 engine exhaust
exposure chambers. Sample mixtures of diesel and gasoline engine exhaust.

Task 2. Characterize 11.5-m3 Teflon chamber for engine exhaust irradiation - SOA




Purpose

Examine engine exhaust aerosol composition measured in chambers to real-world
scenarios to provide guidance on generating the most realistic exposures for toxicologic

and human clinical trials.

Do high concentration exposures reflect real world aerosol composition?

ambient conditions exposure chamber
Low Concentration (C) High Concentration (10 C)
@
Q O ¢ O ® mimic ambient
O O O O aerosol but at higher
—> ®o o concentrations to shorten
@ OO O o ° exposure times
R
\ but,
@ e ©® at high PM concentra-
O =PM,, ® O tions, gas-to-particle
e =toxic gas phase organic | O e O, g? aansgi; Z;’;’%‘ﬁ;’:‘f? .
: y
@ = organic bound to PM @O ® ®) o< gas phase composition




TASK 2. Hard sledding.

6 experiments performed: gasoline exhaust, diesel exhaust, and mixtures

2500 4
2000 +
~ 1500 +
1000 +

500 +

Gasoline Engine @ 1100 RPM

lights ON
BATCH mode - diluted with zero air flow

— toluene
xylenes

C3-alkylbenzenes

= henzene

zero
air

g

9:30 AM

10:00 AM

10:30 AM

11:00 AM

May 9

11:30 AM

12:00 PM

12:30 PM

1:00 PM

9% decrease
08+ —— Ratio_Tolu_Benz '
o Ratio_CZ2Benz_Benz |
= - Ratio_C3benz_Benz | I
¥ 061 I 1 m
0.4+ 19% decrease it )
/I8 1\8
021 39% decrease LJ |
0.0 t t t } } } } T
9:30 AM 10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 PM 12:30 PM 1:00 PM
May 9

Example:

May 9 Test

Gasoline engine exhaust
Initial conditions:

400 ppbv NOx +

400 ppbv Toluene

Changes in relative
abundance of
aromatic compounds
indicate
photochemical
oxidation by HO
radical



Taskl. Exposure Chamber

Experimental Matrix — many combinations of diesel / gasoline engine exhaust
mixtures at different engine loads and total PM concentrations

Typical (average) Throttle (11%) 4.5 kW
1123 RPM

Low Throttle (1%) 1.5 kW
600 RPM

Medium Throttle (6 %) 3.5 kW
857 RPM

High Throttle (27 %) 5.5 kW
1922 RPM

Particle Loading Condition Gas (ug/m?3) Diesel (ug/m3)

Low <10 <190

Medium 10 - 35 190- 310

High > 35 > 310

** currently ranges are arbitrarily set



Flow schematic of exposure chamber plumbing.

——) Gasoline Exhaust

Line —)

22

h
>

Diesel Exhaust Line

XY

b
&

—
5 @
% Q%D/C q"g
(O"?éb/ E
[
>
gl Air Dilution (CLOSED})
K
b
3 -
N —)
Air Make-up
% Exposure Exhaust
Chamber ;22

-2 T/

UW mobile
instrument package

co,/H,0 W PTR-MS | HR-ToF-AMS

Relative amounts of diesel /
gasoline engine exhaust added
to chamber determined by
measuring PM concentrations
with a Dustrack monitor.

2 chambers were used to
create a mixture with varying
PM concentration and
fractional amounts of diesel
and gasoline.




Test Name Gas Diesel Particle Gas : Diesel Loading Type Engine Load Type
(ug/m?3) (ug/m3) Gasoline : Diesel

Test04 0 292 None : Medium 40416 @:TYP
Test05 12 370 Medium : High < 05,15, 24 TYP: TYP
Test06 30 0 High : None ** TYP: @
Test07 50 73 High : Low < 07,17 TYP: TYP
Test08 3 4 Low: Low < 08, 18 TYP:TYP
Test09 0 8 None: Low < 09,13,19 @:TYP
Test10 20 0 Medium : None ¢ 10, 26 TYP: O
Testl1 22 10 Medium : Low 11, 22 TYP : TYP
Test12 22 202 Medium : Medium < 12,20 TYP : TYP
Test13 0 34 None : Low < @:TYP
Test15 30 504 Medium : High < HIGH : LOW
Test16 0 288 None : Medium HIGH : LOW
Test17 45 16 High : Low < HIGH : LOW
Test18 4 114 Low : Low < LOW : HIGH
Test19 0 72 None : Low - @ : HIGH
Test20 33 304 Medium : Medium < LOW : HIGH
Test21 42 236 High : Medium ** HIGH : HIGH
Test22 34 52 Medium : Low HIGH : HIGH
Test23 11 0 Low : None ** HIGH: @
Test24 35 409 Median : High «— HIGH : HIGH
Test25 10 269 Low: Medium ** HIGH : HIGH

Test26 24 0 Medium : None ¢ HIGH : @ 7



Exposure Chamber Test Matrix

particle load Particle Load | Particle Load

combinations High None 06 2
e 4 Gasoline : Diesel Low 07 "T17"™t
engine load Medium 7241 8k
combinations Median None 10 T:@ g H:®
e 22 tests with AMS data Low 11 TiT g H:H
Medium 12 T:T oo "
High 05 T'T 151t 24 HiH
Low None 23 H:?
Low 08 """ 18 L:H
Medium 25 HiH
None Low 09 ?:7139:T 19 @:H

Medium 04 ¢:T16 @:L



VOC Measurements

by Proton Transfer Reaction
Mass Spectrometer

PTR-MS

IVOC Sampling Inlet {6 VOC Inlet

___________________ I source

pressure
controller

quadrupole
mass
spectrometer

Measurement principle
H;0* + R 2 RH* + H,0

multiple ion monitoring: measured 59 organic ions
over mass range m/z=31 to m/z=191.

Two sampling modes, alternate between

1. VOC Mode:

Formaldehyde, Acetaldehyde
BTEX compounds, others ...

2. IVOC mode:

thermal desorption based sampling for heavier
organics emitted in diesel engine exhaust.

long chain alkanes , polycyclic aromatics



PPBV

PPBV

Gasoline Engine Exhaust — April 30, Test 14

Chamber #4
2500

LRRI: 42 ug/m3
Low engine load

benzene (m/z=79)

2000 W MM

1500 ~ VOC /\W
mode
1000 -
IVOC
500 4 mode
S I L-__ _______________________________ L&.__ _______________________________ o N Ay
Pre-purge trap
30 T dimethylnaphthalene (m/z=157) temperature
25 L varied to
discriminate
thermal .
20 + desorption against more
peak volatile
15T - components
10 ’
This mode
5 4 measures
M diesel alkanes
0 | | | | |
9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM
4/30/2012

10



Average lon Signal Abundance in Gasoline Engine Exhaust — April 30, Test 14

LRRI: 42 ug/m?3
Low engine load

m107 :
C2-alkylbenzenes

PTR-MS
Insensitive to
low MW alkanes
<C,foundin
gasoline exhaust.

monoaromatic
ions dominate
mass spectrum

VOC mode sampling
10° = |
§ 107 I monoaromatics
S 4s vl T | alkanes + alkenes
- 121 I unknown:C_.H,
HCHO 71 A 2n-1
. H I tetrahydronaphthalenes 8 pPpmv
4 | 85 I naphthalenes
10 E 41 89 135
- B3 109
: 97 119
+ 127 149
@) 3 _ 113
aak 10 3 108 128 147
N . 129
T = 23
% i 139
E 31 143 -
2 _| 169
10 3 153 179
: 5
: 157 s 175
'101 = 171
- 189
] 177 91
0
10 [ [ [ [ [ [ [ [
20 40 60 80 100 120 140 160 180

m/z

200
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Average lon Signal Abundance in Diesel Engine Exhaust — April 30 test

LRRI: 288 ug/m3
Low engine load

VOC mode sampling
10° 3 .
3 I monoromatics m107 :
N I alkanes + alkenes C2-alkylbenzenes
- |
- I tetrahydronaphthalene 0.7 Ppmv
4 I naphthalene
1073 HcHo 57 .
. T Diesel exhaust
i A 191 organic 905.
. y e N concentration
Q 10’ 3 “ |, factor of 10
N - = lower than in
% : 09 1 111 M9 9(150“?’\6
E - 13 || 10 1438 exhaust
10° = | 149
- 1129 147
. 143 17
] 139
] 2- 157 160
; 153
10 3 57
: 191
0 135]
10 IIII|IIIIIIIII|IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
20 40 60 80 100 120 140 160 180 200

m/z
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Diesel Exhaust Ratio (mXX/m79)

Compound Abundance Relative to Benzene: Diesel vs. Gasoline

Hard to distinguish between exhaust composition except at higher MW compounds

10 ¥ ; 1 ! . -

I April 30 Tests HCHO
T low engine load @
| medium PM concentration . acetone

propanal (@%

0.1 E CT-aIkbeenzene

fluorene

0.01 +

l
!

0.001 ¥

0.0001 : 0.01 0.1 1 10

Gasoline Exhaust Ratio (mXX / m79) "



Impact of increasing the fraction of diesel exhaust in the mixture

PM comes from diesel engine, organic gases from the gasoline engine
VOC data

naphthalenes

polyaromatics

unknown (67 + n*14)

unknown (CnH2n-1)

tetrahydronaphthalenes

typical engine load mixtures:

~O- Gas 20 : Diesel 0 ug/m’
—®— Gas 22 : Diesel 10 _
—@— Gas 22 : Diesel 202 monoaromatics

alkanes

10 10 10° 10° 10"
Total Group Abundance (Hz / MHz H3O+)

14



Impact of increasing diesel engine load keeping mixture PM concentration constant

Factor of 10-50 increase except for PAH

VOC data

naphthalenes

polyaromatics ?

unknown (67 + n*14)

unknown (CnH2n-1)

tetrahydronaphthalenes

alkanes

change diesel engine load

@ Gas 30 : Diesel 504 ug/m® H:L
—8— Gas 35 : Diesel 409 H:H

monoaromatics

10" 10° 10° 10° 10°

Total Group Abundance (Hz /f MHz H30+) 15



WSU High Resolution Aerosol Mass Spectrometer

MCP
1L TOF Mass Spectrometer [Tt Siignial
to ADC
“J‘o Chopper L
ﬁ%. i gy — *.. -] h'"-
PTOF Thermal
T Region w.rapn;zahm
Aerodyna mic 1 70 ev EI
Lens lonization
{2 Tom) Turbo Turbo Turbo
: Pump Pump Pump
Particle Inlet

http.//cires.colorado.edu/jimenez-group/ToFAMSResources/

Measurement principle:

e Particles 50 < Dp < 1000 nm are efficiently concentrated
by an aerodynamic lens. PM, ,

* ‘Non-refractive’: Only material that volatizes below
~600 C is measured. (doesn’t measure soot)

 Complex fragmentation patterns- chemical patterns can
be identified, limited organic speciation is possible(i.e
PAH compounds).

* Analysis of ambient data typically involves
lumping fragments into major compositional
categories:

0 Organics, sulfate, nitrate, etc.

* Mass classification can be binned by size or
integrated.

e With PMF analysis, the organics category can be
further divided.
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_3:l

Nitrate equivalent mass (g m

AMS Data
Diesel exhaust mass spectrum of particle composition
Test 13: low PM concentration, typical engine load

1 Test13 - Diesel

107
10° |
YR

10™ I
10° I

10"

107

10"

Polyaromatic hydrocarbons

I MSSD Org
MSSD PAH

T T T T T T T T T T I T T T T I T T T T I T T T T I T T T T I T T T T I T T T T
50 100 150 200 250 300 350 400

450 500

17



AMS Data
Diesel exhaust fractional abundance of organic and PAH ions
Test 13: low PM concentration, typical engine load

{1% 091712 ExposureChambe 0: Test13-fOrg'i. |
% File Edit Data Analysis  Macros  Windows Graph Misc Help AMS = (=] =

0.15 — 100x10°
Test13-Diesel

0.14 — —— 'Test13-fOrg' %0

013 - Test13-fPAH

0.12 — — 80

0.11 — -
= — 70 T
5 0.10— e
J S
5 0.09 — — 60 L
= T
=2 x=
§ 008 * . >
o e
5 0.07 — §
£ 0.6 — 40 2
= I
8 0.05— s
w — 30 &

0.04 — =

0.03 — — 20

0.02 —

— 10
0.01 — ﬂ
0.00 _| T |J L| A| L L D ._-T_Il-‘*l_-”l.“-l =T -_l LI _T T T T I N |“'|_ T T T |_ L — |_ 0
0 50 100 150 200 250 300 350 400 450 500

Regg'\
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1 ] urs ambel
% 091712 _ExposureCh

AMS Data

Diesel exhaust fractional abundance of organic and PAH ions

Test 16: medium PM concentration, low engine load

Windows Graph Misc Help AMS

& File Edit Data Analysis Macros . =S

0.14 — — 0.15

Test16-Diesel |

Greater fractional Testie O - 0.4

oa abundance of low TestePAR]  Loas

MW PAH - 0.12
= 0.10 — 0.1 -
= —010 2
o S
= —0.09 o
Q  0.08 T
2 p
S —008 T
o )
o — 0.07 ;
z 0% 006 2
c — 0. =
2 E
® —0.05 &7
w | o
0.04 ooq =

— 0.03

0.02 —0.02

— 0.01

0.00 _| |AM| T |[1I | [T ThTﬁT_T __d_l === = _| =TT -‘l T - |- | T |_ 0.00

0 50 100 150 200 250 300 350 400 450 500
Reggv\
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Comparing PM in Gasoline - Diesel Mixtures

Filter: pg/m?3
AMS: pg/m3

AMS: pug/m3

Test05 Test15 Test24
12:370 ©T 30:504 Ht 35:269 H:H

Org: 74 (19%) Org: 100 (19%) Org: 130 (43%)
PAH: 0.085 PAH: 0.14 PAH: 0.11

- AMS measured lower organic mass for Test 15 (high PM)
than Test 24 (medium PM).

- indicates greater fraction of PM mass is soot at lower
engine loads.

20



Summary / Status

1) VOC and IVOC data are being analyzed and QA / QC’d

2) AMS data has been worked up and calibration issue being sorted out
(mass mode vs single particle mode)

3) Identifying lower molecular weight PAH compounds in AMS data likely
possible given good signal-to-noise. This will aid quantification of G>P
issue.

4) Just beginning to compare VOC / IVOC and AMS data.

5) Data will be examined to find evidence for gas-particle partitioning
effects at high PM concentrations in the mixtures - do high
concentration exposures accurately mimic ambient organic aerosol ?



Simulated Roadway Exposure
Atmospheres for Laboratory Animal
and Human Studies

McDonald, Larson, Lund

| www.LRRI. org ’-

THE UNIVERSITYof  WASHINGTON STATE lﬂl/ﬂlﬂﬂﬂ”’
NEW MEXICO [y UNIVERSITY




Objectives

e Simulate ambient exposures in the laboratory

— Bridge these exposures to ambient
measurements/modeling (Project 1)

o Compare toxicity of exposures

— Use these results to determine mechanisms
(Project 3) and to define priorities and
atmospheres for human exposures (Project 4)



Conceptual Paradigm: Exposures

100m 500m  1km ??

Background + Traffic Emissions _ » EXposures
. Distance From Roadway
0,, (NH,),SO,, Tailpipe,
NH,NO,,VOC, Evaporative,
NI, V Tire & brake,
Resuspended Dust
Chemical
Transformation
OH,
Sunlight
Aging
Nucleation,

Agglomeration




Specific Aims

o Aim 1: Develop and characterize laboratory-generated exposure
atmospheres simulating the key components of near-roadway exposures,
including transformed emissions and co-exposures.

e Aim 2: Conduct inhalation exposures of laboratory animals.

¢ Aim 3: Conduct inhalation exposures of human subjects.



Key /nitia/Research Questions

e Does agglomeration and physical transformation of particulate motor
vehicle emissions alter their toxicity (does size matter)?

e Does chemical transformation, and formation of secondary organic
aerosol from motor vehicle emission precursors, enhance or diminish the
toxicity of roadway atmospheres?

e Do ozone and other background co-pollutants alter or exacerbate the
toxicity of motor vehicle emissions?

e Does road dust, a significant non-tailpipe roadway emission, confer any
cardiovascular toxicity that may confound associations with tailpipe
emissions?



Recommendations from ESAC

e Include PTR-MS and AMS Technology in Characterization
of Exposure Atmospheres: Extend beyond
characterization of irradiation atmospheres

o Apply Some Focus to further investigation of the gas-
particle relationships that have been observed

o Consider composition differences among road dust
samples prior to selection of final material.

e Considerimpact of NOx on irradiation chamber
atmospheres



Principle Activities Since Last ESAC

e Development of Novel Atmospheres to Further Evaluate Gas-Particle Inter-
Relationships

— MVe combinations/load differences
— MVe - all gases
— Mve - Nox
o Characterize MVe Performance in the Irradiation Chamber

— Participate/contribute to workshop on atmospheric transformation
approaches

o Collaborate with Project 1 to Define/Bridge Atmospheres
o Evaluate MVe physical tranformation/size feasiblility
o Further analyze database on road dust composition (decision on which to use)

e Conductof acute (up to 7 days) and subchronic (50 day) inhalation studies



Methodology-Exposures to focus on Gas-
Particle Interactions

e Laboratory generated simulated atmospheres this year
— Gasoline + Diesel
> Physical and/or Chemical Transformation
> -NOx
> -Gases
» Load combinations

— Study design defined in Project 3. Also included/leveraged
additional study animals for ancillary investigations



DRI-Cobalt Oxide NOx Denuder

*| Cobalt oxide
.| on firebrick
substrate




Denuders

DRI NOx Denuder

Harvard Gas Denuder




Diesel and Gasoline Contributions

Diesel Gasoline
Dilution factor 10 10
Totalmass (mg/m3) 84 116
Particles
Mass (ng/m3) 1005 60
Number (108/cc) 1.0 0.5
Size (MMAD, um) 0.15 0.15
%0OC 22 19
%EC 64 47
%sulfate 6 21
%nitrate 4 0.8
%ammonium 4 12
%elements (ash) 0.1 0.9
Gases & Vapors
CO (ppm) 30 80
NO (ppm) 45 18
NO, (ppm) 4 1
SO, (ppm) 0.4 0.6

THC (ppm) 2 12



Combining Motor Vehicle Atmospheres l.

lovelace

Gasoline

Diesel \ | Combined MVE
i 1.00M i M
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Atmosphere Compositions

Exposure Atmosphere Composition Particle Compositions
i . 100+
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Particle Number Size Distribution-Denuder '.

Llovelace:

Mixed MVe Mixed MVe Denuder



Test Atmospheres for 50 Day Study

350

300

250 -

200

H PM (ug/m3)

= CO (ppm)
150

= Nox (ppm)

100

50 -

MVE MVE-Gases MVE-NOx MVE-PM



Snippets from Irradiation Chamber !E
Workshop/Our Methods [ovelace

o Atmospheric Transformation in Outdoor Chamber
(Zielinska et al. 2007)

e Atmospheric Transformation in indoor continuous flow stir
reaction chamber (McDonald etal., 2010; 2011; 2012;
Campen 2010; Lund 2012)

o Simulation of atmospheric transformation products (e.g.
for coal: McDonald et al., 2012)

e Collection of ambient PM and attributing SOA based on
apportionment (Seagrave et al. 2010)



Concemns - High NOx

o Modern diesel engine emits relatively high NOx (mostly NO) level (under
our conditions app. 400 ppm) but low VOC and particulate matter

o This provides unrealistically high NOx level in the chamber and disturb the
light exposure conditions (shuts down photochemical transformations of

the exhaust)

NO+O; —» NO,+0,

A A

02 hv

O(P) —




Strengths, Limitations and Issues

e NOx Denuder:
— Strengths

> Reduction of NOx to more realistic NOX:Hydrocarbon ratio
permits a better simulation of ambient chemistry

— Limitations
> Denuder not readily available/cumbersome

> Small losses of ultrafine particles (not limited to this
denuder technology)
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Hardware




Aerosol Generation Systems

e T T
e System

Irradiation Chamber




Strengths, Limitations and Issues

e Motor vehicle emissions:

— Issues

» VOC:NOx ratio is ~1:1 in the technology of emissions
currently studied at LRRI. In modern technology ratio is
0.1:1 or lower

> Target VOC:NOx ratio for ‘typical’ conditions and chamber
work has been 10:1 (although 5:1 to 20:1 also used)

e Impact of VOC:NOx ratio on chemistry
— Read Johns book, chapter 5

— Chemistry will occur in either condition: in general
at low VOC:Nox levels OH is quenched by Nox and
forms HNO, and less RO,



Strengths, Limitations and Issues

— Impact of VOC:NOx ratio on chemistry
— Read Johns book, chapter 5

— Chemistry will occur in either condition: in general
at low VOC:Nox levels OH is quenched by Nox and
forms HNO, and less RO,

— Low VOC:NOx, all RO2 react with NO
— Higher VOC:NOx: RO2 radicals more abundant
— Another issue: expense of fuel in operating continuously

— Strength of LRRI system: can control gasoline/diesel
contributions

» Weakness: limited to our hardware, reactants.
> Low SOAvyield



Data on Irradiation of Mve




Project 1-2 Integrated Characterization
Team




Irradiation Chamber Batch Mode
Gasoline engine exhaust only
engine at 1100 rpm
added NO

Initial NOx ~ 400 ppbv
Initial Toluene ~ 100 ppbv

STUDIES CONDUCTED TO ASSESS SMOG CHAMB
PERFORMANCE AND BRIDGE CHARACTERIZATIONS TO
PROJECT 1

Lovelace”



— toluene

= Xylenes

= (C3-alkylbenzenes
- bhenzene

lights ON
BATCH mode - diluted with zero air flow

9:30 AM 10:00 AM 10:30 AM 11:00 AM 11:30 AM 12:00 PM 12:30 PM 1:00 PM
May 9
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- Ratio_C3benz_Benz
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May 9




— HCHO
- acetaldehdye
= acetone / propanal

HCHO
conditioning
problem

9:30 AM 10:00 AM

10:30 AM

11:00 AM 11:30 AM
May 9

12:00 PM 12:30 PM

1:00 PM

— butanone / butanal
— 87

= acetic acid?

—— methanol

10:00 AM

10:30 AM

11:00 AM 11:30 AM
May 9

12:00 PM 12:30 PM

1:00 PM




Challenges Encountered

o SOAyield from gasoline engine exhuast is low; ie 10 x lower then alpha
pinene atmosphere with similar precursors

e SOAyield from diesel engine exhaust is even lower

o Solution: need to add reactants to create stronger source of OH. Current
efforts focus on HONO and formaldehyde.



Considerations on Road Dust (ESAC

Recommendation)
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Most Important Contributors to Sample
Differences

Southwest Southeast Northeast LA



Are the magnitude of these differences
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Questions/Discussion




Project 3: Cardiovascular Consequences of Immune
Modification by Traffic-Related Emissions

Campen, Rosenfeld, Lund, McDonald



Project 3 Aims

 Aim 1, we will ascertain the potentiating effects of physical
and photochemical aging on fresh emissions, in terms of
driving this vascular oxidative stress.

e In Aim 2, we will examine effects of the emissions-induced
oxidative modifications to endogenous phospholipids, in
terms of activating immune-modulating receptors such as
LOX-1, CD-36, TLR-2, and TLR-4.

e Aim 3, we will further explore the role of specific immune
cell populations as participants in the innate and adaptive
responses to emissions-induced phospholipid
modifications.



Hypothesis: Chemical modification of phospholipids
ﬂm{/aryrataim leads to altered biological signaling

Specifically, we
suspect that reaction
by-products from the
lung enter the
circulation to drive
endothelial cell
activation via cell
surface receptors,
especially pattern
recognition receptors
such as CD36,
TLR4, and LOX-1

Exogenous Toxicants

mH)CHK\W/,\\//L\O//LF4J\\/,\\//0é

X=-H,-OH
Y=-0,-OH
Z = choline, inosital, -H, etc

2 Oxidized Phospholipid
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LOX-1 mRNA Expression

LOX-1 Inhibition Reduced Aortic TBARS
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CD36 Is Necessary for Endothelial
Dysfunction Following Ozone Exposure

—— WT 1 ppm ozone
—=— D36 Filtered air

MJ

—— WT Filtered air
—— CD36 1 ppm ozone
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Courtesy of Sarah Robertson



Evidence that the signal is blood-borne:

Plasma from humans
exposed to NO,, Diesel,
or filtered air (control)
for2 h

Incubated with primary
human coronary artery
endothelial cells at 10%
in media

Plasma after exposures
induced ICAM, VCAM,
P-selectin and IL-8

VCAM mRNA Fold Induction

1.6m
*
*
4} < DIESEL
<> NO2
@ FILTERED AIR
0.8=-
cT "
& A
& <2o6 <2o6
Q\

Channell et al., Tox Sci, 2012



Vascular Lipid Peroxidation from Mixed
Gasoline and Diesel Emissions

(00)

Compared to gasoline <9~ Mixed Emissions
or diesel alone, even at ©- Diesel

) A Gasoline
considerably greater
concentrations, the
combined gasoline-
diesel emissions had a
synergistic increase Iin
systemic vascular lipid
peroxidation.
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Aim 1 Studies to date

* First, we wanted to test 2 key factors with regard
to their sensitivity to vascular response to mixed

vehicle emissions (MVE)
— Strain (LDLR v ApoE)
— Diet (normal v high fat)
e Also wanted to compare vascular wall vs
perivascular adipose contribution to response
e Conducted 2 x 1 week-long exposures to MVE

— 6 h/d at 100 and 300 pg/m3
— At 100 pg/m3we saw nothing at 7 days



Vascular

7-d Exposure to MVE

TBARS (Lipid Peroxidation)

300 pg/m3

Only slight changes
in TBARS, mostly
seen in
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Next Steps

e Clarity (signal:noise) of responses in the 7-day
exposure is low compared with what we have
seen in the past

— Refine model and outcomes

e Compare aged emissions with 50 day ApoE on
normal and high fat chow model

— Physical aging
— Photochemical Aging (upcoming study)




Immunohistochemical methods to
assess vascular oxidative stress

Filtered Airl Coal Combustion

Dihydroethidium . g A 3
For superoxide . :

3-nitrotyrosine
for peroxynitrite




3-Nitrotyrosine staining

Control Mixed Vehicle Emissions
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Macrophage Staining in Aortic Outflow
Tract

Control, ApoE, Low Fat

R

MVE, ApoE, High Fat
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Air and Diet

High Fat Diet

Baseline

10 15
Days Post Injection

5
[
= Muscle Heart HeartTh Lungs
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2 wk high fat diet

Ozone
—_—

High fat diet
A

Imaging of Vascular
Inflammation using
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1 week Ozone

E] 10 15

Days Post Injection §
Muscle Heart HeariTh Lungs




Latest Round of Exposures

e Mixed vehicle emissions

— Whole
— Without Nox

— Without gases
— Without PM

 ApoE mice: vascular oxidative stress, histopath

e Young versus old mice (2 v 18 month) for
cardiac function, inflammation by SPECT/CT



Mixed Vehicle Emissions Exposures
in Older Mice (18mo)

Mixed Vehicle Emissions
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Next Steps: Aims 2 and 3

e Expose TLR2/4-null and LOX-1-null (on ApoE
background) mice to “raw” MVE for 50 days

— Ongoing short-term work with CD367- mice can
be extended

e Conduct SCID mouse adoptive transfer
protocol, as proposed
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Vascular Response to Traffic-Derived Inhalation in Humans
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Aims

O

e Aim 1: To build a multi-pollutant exposure model for

traffic-derived air pollutants for use In
epidemiological analysis
Using the data collected in Project 1 to model TRAP along
roadways
Modeling efforts part of the biostats core




Aims

O

e Aim 1: To build a multi-pollutant exposure model for
traffic-derived air pollutants for use In
epidemiological analysis

 Aim 2: To determine the effect of time-in-transit on
personal exposure In this cohort

Achieve this through a combination of personal, residential
and in-vehicle monitoring and location tracking

Goal of understanding measurement error in previously
administered questionnaires and understanding relative
Importance of the vehicle as an exposure “compartment”




Aims

O

e Aim 1: To build a multi-pollutant exposure model for
traffic-derived air pollutants for use In
epidemiological analysis

e Aim 2: To determine the effect of time-in-transit on
personal exposure in this cohort

e Aim 3: To estimate the effect of individual-level
exposure to traffic-derived air pollution on subclinical
cardiovascular disease in MESA Air

This aim will integrate the two exposure pieces above into
health effects analyses




Current Focus is on Planning for Field Work

O

e Aim 1: To build a multi-pollutant exposure model for
traffic-derived air pollutants for use in epidemiological
analysis

e Aim 2: To determine the effect of time-in-transit on
personal exposure in this cohort

e AIm 3: To estimate the effect of individual-level

exposure to traffic-derived air pollution on subclinical
cardiovascular disease in MESA Air




Individual Exposure Estimation in MESA Air

O

FA = CA =[fo+(1- fO)F, ] CA

fo Time outdoors, assumed to be at home

(1- £°) Time indoors, assumed to be at home

Fins Infiltration factor for the participant’s home

CA Outdoor exposure concentrations at home




Just Two Compartments?

» Still an advance over previous
studies that have assumed all 1007
time was spent outside

(by assuming ambient 807
concentration = exposure)

e Most MESA Air participants
spend the majority of their
time at home

* We are still missing potentially
Important exposure 20-
‘compartments”

BHome Indoor

Work o- | |
Time in transit <55 55-65 65-75 75-85 >85
Other indoor locations Age (yrs)

Other outdoor locations

B Other Indoor
B Transit
Elwork

[l Total Outdoor

Mean Percent of Time




MESA Air Questionnaire Traffic Questions

O

The next few questions will ask about your travel time during the day.

3. On average, how many hours each day do you spend doing the following during your travel time:

a. walking or biking hours minutes
b. in a private car or taxi hours minutes
c.on a bus hours minutes
d. on a train or subway hours minutes
e. other hours minutes  please specify:

4. On average, what percent of your travel time do you spend on or next to:

O Participant does not leave home in a typical week (Skip to Question 6)

Freeways, expressways, highways, toll roads, etc. %
Other maijor, heavily traveled roads or streets %
Residential or lightly traveled roads, streets, or %
paths




Most participants [ ° ° ) °
do not frequently ’ ’ .
travel by bus, < - ¢ o 0 0
train, or other & ) : e .
mode of transit. ;g . .
On average, most F : o : :
participants spent [ —— ‘ . ’
about 1.5 hrsin A : 0
transit, about 60% E : : :
of which is in a - : : o
car and the .
majority of the i i g i E
rest is walking. . ] r . .
car walking bus train other

Mode of Transit




Mean Percent of Travel Time
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40

20

1.7 hrs 1.6 hrs
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Percent of travel time spent on:

Other major,
heavily traveled
roads or streets

Freeways,
expressways,
highways, toll
roads, etc.

33% Residential or
lightly traveled

roads, streets, or
paths




Focusing on In-Vehicle Exposures

O

e Studying actual travel patterns
GPS trackers and proximity sensors provide gold standard

Can be combined with more specific self-reported time-
location diary data

Can then be compared with data acquired for summer and
winter from the MESA Air Questionnaire on the entire cohort

* Measuring concentrations of TRAP in vehicles
Goal to determine importance of the in-vehicle “compartment”

Determine whether we need to add an “in-vehicle” component
to MESA Air individual exposure model




Monitoring Campaign

e Two-week duration

o Sample ~50 participants in each of two cities (Winston-
Salem and Los Angeles) in each of two seasons in 2013
January (Winston-Salem) and February (LA)
June (LA) and August (Winston-Salem )

» Location logging
GPS tracking unit
Proximity monitor
Self-reported time-location diary

e Passive monitoring
Ogawas
Organic Vapor Monitor




Participant selection criteria

O

* Previously consented to be approached about
participation in a personal monitoring study

e Own and travel in a personal vehicle as primary mode
of transportation
Ok if multiple vehicles; monitoring equipment will be transferable

e Living at primary residence during the sampling period

* Non-smoking and not living with a smoker




Select sample based on:

O

e Arange of reported time spent in transit in personal
vehicles

* Arange of reported road types traveled

e Select participants to match the demographics of the
MESA participants




Location Logging
e GPS trip recorder

Intended to track travel routes
Will be used to determine total time traveling from

place to place and road type traveled ~100
imi __ participants
e Proximity sensors (2) o Projoct 5

1) distinguish time indoors at home from time outdoors

: : . monitoring
2) to clock time in vehicle
o Self-reported time-location diary
 Air Questionnaire time-location data Entire
Provided previously by all MESA Air participants L MESA Air
Will be compared with sampling specific time-location cohort

diary information from Project 5 subset

—_




Percentage of points
within 10 m of true path

Device Memory Length
Name (# waypoints)

In car Walking
747ProS ! 250,000 84 79 65 99
Adapt AD-850? 120,000 77 88 55 129
Garmin Oregon 5502 SD card 79 97 191 300
TracKing Key Pro? 360,000 89 88 226 249
WBT-2013 131,000 82 40 48 94
VGPS-9003 SD card 79 57 55 95
BT-Q1000x3 200,000 78 55 65 95
GPhone3 SD card 88 57 128 99
E71 cell phone3 SD card 88 23 126 345
BT-3353 60,000 81 40 75 63
DG-1003 60,000 83 58 227 70

References: 1. Pilot testing at the University of Washington; 2. Beezkhuizen et al., JESEE, epub
ahead of print; 25 July 2012; 3. Wu et al., Environ Health Insights, 2010, 4: 93-108.




747ProS

frip Recorder
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747ProS Trip Recorder Pilot Test Results

O

* With added battery pack, battery life is sufficient for at least 21 days
Additional battery pack added 385 g; next generation will be smaller

* Waypoint frequency sufficient to track routes; current settings for
acquisition rate dependent on speed
<3 km/hr logs data point every 30 sec
3 - 20 km/hr logs data point every 15 sec
>20 km/hr logs every 5 sec

* Waypoint memory sufficient for at least 21 days
e Spatial accuracy sufficient to allow determination of travel routes

* Small and inexpensive




Determination of time indoors and outdoors

O

» GPS trackers were not accurate enough to
determine whether we were indoors or outdoors at a
given location

* In pilot studies, the sheer number of datapoints
collected while we were at home created a “cloud”
around the home
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Proximity Sensor

O

e Plan to include with the indoor sampling set up a small
“proximity sensor”
Activated by a magnet embedded in the GPS case

Participants will be asked to store their GPS trackers at the sampling
set up when they are indoors at home, activating a light, a beep, and a
timer

» A second proximity sensor will be included with the in-
vehicle sampling equipment

» Used to calculate time spent indoors at home and In
vehicle

* Will be compared to the self-reported time-location diary
data and to the data collected in the Air Questionnaire




Time-location diary

O

 Participants will also complete a time-location diary
to aid interpretation of GPS-based route and
Indoor/outdoor time distribution

* Diary modeled after the one used in the MESA Air
personal monitoring efforts in Exam 4 and found to
be useful and acceptable to participants




Time

LOCATIONS (minutes)

Home

Other

In

Out

In

Out

Motorized
Vehicle

Travel

12-1 AM

Vehicle

Traffic
conditions

Notes

1-2 AM

2-3 AM

3-4 AM

4-5 AM

5-6 AM

6-7 AM

7-8 AM

8-9 AM

9-10 AM

10-11 AM

11-12 AM

12-1 PM

1-2 PM

2-3 PM

3-4 PM

4-5 PM

5-6 PM

6-7 PM

7-8 PM

8-9 PM

9-10 PM

10-11 PM

11-12 PM




Passive monitoring

O

* Personal monitoring plus three “compartments”

Indoor
Outdoor
In-vehicle

 In-vehicle monitoring set up will be portable
Participants will be asked to take it with them if they travel in
other personal vehicles

Participants will be asked to open and close lid at beginning
and end of their trips

Will also include a proximity sensor, a timer, and a
temperature and humidity logger




Four Sets of Passive Badges Deployed per Home

e Indoor, outdoor, in-vehicle
and on the participant

e Ogawas samplers:
measurements of NOy, NO,
NO,, SO,, O,

e Organic Vapor Monitors.
measurements of benzene,
Isoprene, toluene, n-decane,
n-nonane, 2-methylpentane,
m-xylene, undecane, i-
pentane, n-pentane, o-
xylene







Pilot Testing Underway

O

{ Testing the battery life and memory of the GPS
tracking unit

2. Blank testing the in-vehicle monitoring set up

3. Determining the limit of detection (in terms of hours
per road type) of the in-vehicle monitors

4. Evaluating the accuracy of the in-vehicle monitors

by comparison with measurements obtained by
Project 1 monitors




Next Steps

O

e Coordination with the field centers

e Continuing pilot testing

* Human subjects approval

e Recruitment scripts, forms and protocols
e Participant selection lists

e Recruitment beginning in December 2012 In
Winston-Salem
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Major Activities

e Support Project 1
— Design (select fuzzy point locations)
— Data management
— Data analysis

 Develop Collaborative Proposals
e Methods Research



Support Project 1 — Data Management

e Combine mobile monitoring data from multiple instruments
and times into a single coherent dataset

— Original plan was two data files per day (one per platform)

— Data and instrument issues have resulted in many files per day

e QC system to give feedback to the field team

— Identify instrument problems during deployment
 Develop standardized data creation and storage procedures

* Incorporate fuzzy point locations into the dataset

— Filter data by geographic location and time to identify observations
the vehicle is traveling in the fuzzy points



Support Project 1 — Data Analysis

 Descriptive summaries
— Time adjust measurements
* Smooth the mobile data using 30-minute median of fixed site data

— Fuzzy point estimates of central tendency
 Median of the median from each pass through a fuzzy point

* Analysis of NO,/NO, ratio
— Proxy for pollutant aging?
— Data from the MESA Air
snapshot campaign
* Minneapolis-St. Paul
— Data in 3 seasons at ~100

locations:

e 15 clusters — traffic gradient sites
e 8-12 individual sites

(. = L ix
saSineamingt|||||][]]] 100%



Log(NO,/NO,) Modeling

* Rationale: Pollutants undergo

physical and chemical reactions ARINEH
as they move away from roads ]
— Oxidation of NO to NO, is one :
reaction in the pollutant aging —
process .
e Scientific questions: Is there e i
spatial structure in this ratio? ALY A e
\ l? ! :i| I_.I il ! _’ \d\; | 3 ummer
— How does it vary over space? L})%gﬂ piisr SO 7 ]] Ngszn:gx_o_”
* |sthere seasonal dependence? \;, PR T e\ |\ o Qoo
— What geographic features are ,_ ;j;gg A e A ; 0
predictive? e e e e




e Fair cross-validated R? estimates

— .36 winter; .56 spring; .58 summer

— Less accurate than predictions from
single-pollutant models (NOx, NO,)
* Relatively less NO, near busy roads
and in the city center

— Open land use and multiple traffic
covariates were included in the
models

— Results varied by season

e Future analyses may need to
control for ozone




Collaborative Proposals

e Background / context (Vedal)

e Biostatistics Core collaborations
— Satellite data

— Measurement error



Exposure Estimation Collaboration

Title: Ambient PM, . Estimation Inter-Comparison

Purpose: Evaluate the performance of various PM, - exposure
models including satellite-driven models and CMAQ PM,
simulations

Goals: Compare & summarize results; identify directions for
future development; consider applications to various
population-based health effects studies

Data: EPA data in North Carolina modeling domain (2006-8)

Candidate models to be evaluated:
1. Mixed effect models (Harvard, Emory)

Multi-level model (Harvard)

Spatial downscaler (Emory)

Spatiotemporal model (UW)

CMAQ PM, : simulation (Georgia Tech)

A S N



Measurement Error Collaboration

e Title: Measurement error for air pollution cohort studies:

application and comparison of several statistical methods to
Georgia birth cohort data

 Data: On-going study of maternal exposure to air pollution
and fetal growth in Georgia

 Predicted exposure metrics at maternal residences
e Exposures with different averaging times

 Approach: Develop methods and examine PM2.5 linear
associations between birth outcomes and predicted exposure:

1. Parametric/parameter bootstrap (UW)

2. Regression calibration and simulation extrapolation (Harvard)

3. Bayesian modeling (Emory)



Methods Research

e Conceptual framework:
— CLARC Biostatistics Workshop presentation (Sampson)
— Review & status update (Szpiro)
e Start-up activities:
— Identified and obtained permission to use a “testbed” dataset

— Methodological development in a single-pollutant context

— Preliminary analyses of PM, . components : National single pollutant
prediction models and health effect analyses with measurement error
correction (Bergen)

e Recruitment:

— Postdoctoral fellow Roman Jandarov



“Testbed” Data

e Exposure data: EPA network of PM components + gases

— Focus on 15-20 reasonably well-measured pollutants that are plausibly
related to health outcomes

* E.g,S,Si EC, OC, Ni, Cu, Cr, SO,, SO,, NOx, NO,, 0,, CO
— 250-400 locations across the US

* Not all locations have all measurements
 Health data: NIEHS Sister Study cohort
— Large prospective cohort study

— Designed to investigate environmental and other risk factors for
breast cancer

— >50,000 women from across the U.S.



Methodological Approach

Goal: Develop a comprehensive statistical framework for
assessing the health effects of long-term exposure to multi-
pollutant mixtures of pollutants. Steps:

1. Dimension reduction of the multi-pollutant exposure surface based
on monitoring data

2. Spatial prediction of the multi-pollutant exposure surface

3. Health effect inference that accounts for the uncertainty from
prediction and dimension reduction in the first two steps

Evaluation:
— Preliminary analyses using single pollutant models
— Simulation studies

— Data analysis using “testbed” dataset



A national prediction model for components of
PM, s and measurement error corrected health
effect inference.

Silas Bergen

Sept 27, 2012



Introduction

e 2-stage approach to assessing long-term impact on health of
pollution exposure:
e Build exposure models to assign individual-level exposures
o Use predictions in regression analyses to get fBx, the health
effect estimate

e Separate analyses of multiple pollutants:

e Exposure modeling approach should not be labor intensive
e |mportant to understand relationship between exposure surface
characteristics and measurement error in health analyses



Introduction

In our analysis:

e Health outcome is carotid intima-media thickness (CIMT) for
5,501 participants in the MESA study
e Exposures are four PMj, 5 components:
Elemental carbon (EC)
e Organic carbon (OC)
e Sulfur (S)
e Silicon (Si)
e Exposure model:

e National prediction model

e Combination of partial least squares (PLS) and universal
kriging

o Can efficiently make predictions on national scale



Monitoring data

e Observed exposures are
annual averages from ~ 250 L

EPA regulatory monitors 3‘,- B o b
e Chemical Speciation e ,. s i
Network (CSN): mostly ,: " R fi".":ﬁ;.:,g:
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Protected Visual : AT y
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rural areas, especially
state/national parks



Exposure model

Let X denote true unobserved exposure; X* true exposure at
monitoring locations. Assume that X and X* are jointly modelled

- ()

e Sand S*: N x k and N* x k matrices of covariates (often
geographic covariates)
e «: k x 1 vector of unknown coefficients

J (;1) ~ N (0,%(;+)(6y)); 0 vector of unknown parameters;
(02, ¢,T2) in a universal kriging framework

o2[e~(@/9] g0

Cov(X;, Xj) = { 2412 d=0



PLS

For S and S*, have ~ 150 geographic covariates (some
possibly collinear)

Building 4 prediction models

Variable selection approaches time-consuming, require
decision making for each pollutant

Partial least squares: reduces dimension of geographic
covariate set to small number (2 or 3) of PLS scores

Use these scores as new S and S* in exposure model in place
of the geographic covariates

Can also look at predictions using derived from fitting ordinary
least squares using PLS scores as covariates (analogous to
land-use regression)



10-fold Cross-validation

e Used to determine optimal number of PLS scores to use in
prediction

e Compares effects of using PLS only and PLS in conjunction
with kriging
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e EC, OC:

e Very little large-scale
spatial structure

e Predictions derived mostly

from PLS alone

e Si and especially S showed
much greater spatial
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Pollutant | # Scores | PLSonly PLS+UK | PLSonly PLS+UK | (#2)? (69 (¢)¢ +%/0?
EC 3 0.79 0.82 0.11 0.10 0.0074 0.0025 413 2.96
ocC 2 0.60 0.69 0.22 0.20 0.0251 0.0199 304 1.26
Si 2 0.36 0.62 0.10 0.08 0.0043 0.0086 2789 0.50
S 2 0.63 0.95 0.13 0.05 0.0007 0.0251 2145 0.03

7 Nugget used in kriging
b Partial sill used in kriging
€ Range used in kriging



2-stage modeling: Stage 2
Interested in estimating health effect via linear regression,
specifically, the effect of X on Y (here, Y denotes IMT; X the
true long-term EC, OC, Si or S exposure):

Y =00+ XBx +ZBz+¢€

Y denotes CIMT

X denotes true long-term EC, OC, Si or S exposure
Bx is the regression coefficient of interest

e Z is a vector of possible confounders

Actual fitted model is
Y = fo+ Wgx + ZBz + ¢

o W denotes predicted individual-level exposure



Measurement error
The measurement error can be decomposed as follows. Let W be
the predictions made if the exposure model parameters were

known.
X—-W=X-W)+(W-W)=Ug + Ua
e Up;: Berkson-like error
Error from smoothing (in this case, kriging)
Does not bias BX
Inflates SE of Bx
Berkson-“like": W is not fixed; Ug; not independent across
locations
e Ucy: Classical-like error
Error from estimating spatial parameters
Can induce bias in BX
Inflates SE of Bx
Classical-"like": Not independent across locations; not strictly
independent of Y
e Correct for both using the bootstrap methods of Szpiro et al.

(2010)
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Bootstrap methods

Account for Berkson-like and classical-like measurement error by assessing
variability in exposure model parameters and smoothing exposure surface

e Parametric bootstrap:
e Simulate new observed and unobserved exposures
e Re-estimate exposure model parameter from simulated data
e Predict at unobserved locations
e Calculate Bx using predictions as plug-ins; estimate bias, SE
® Parameter bootstrap:
e Eliminates time-consuming re-estimation of exposure model
parameters
e Estimate sampling distribution for exposure model parameters
e Predict at unobserved locations with exposure model using sampled
parameters
e Can be used to see how bias varies as function of classical-like error
by sampling exposure model parameters from sampling density with
increasing variance
e Partial parametric bootstrap:
e Accounts only for Berkson-like error
e Hold exposure model parameters fixed; predict at unobserved
locations

11



Results

| EC oc si s
Bx SE(Bx) Bx SE(Bx) Bx SE(Bx) Bx SE(Bx)
Naive 0.001 0.014 0.025 0.008 0.401 0.082 0.055 0.017
Parametric 0.000 0.015 0.026 0.008 0.400 0.134 0.055 0.025
Parameter 0.000 0.016 0.025 0.009 0.397 0.141 0.054 0.025

Partial Parametric 0.001 0.016 0.025 0.008 0.401 0.134 0.055 0.025

Table: Point estimates and standard errors for the different pollutants, using naive
analysis and with bootstrap correction for measurement error in covariate of interest
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Discussion

e National prediction model provides nearly automated
approach applicable to multiple pollutants, and is effective
e PLS alone works well to predict EC and OC
e Exploiting the spatial structure in the residuals after using PLS
improves Si and S predictions; EC and OC improvements are
negligible
e Measurement error has different implications for different
pollutants
e The spatial structure in S, Si induces Berkson-like error that is
highly correlated in space; not appropriately accounted for by
naive methods
e EC, OC exposure models are almost entirely explained by PLS;
Berkson-like error is nearly pure Berkson error (independent
across locations) and is properly accounted for by naive SE
estimation

e Implies careful attention should be given to exposure model
characteristics when performing 2-stage analyses

13



SIMEX version of parameter bootstrap

e Integration of method by Stefanski et al. into parameter
bootstrap

e Previously described bias corrections assume bias is linear

e SIMEX extension of parameter bootstrap: can sample &;, 0, ;
from a probability distribution with variance inflated by factor
of A

e Plotting estimated biases as function of A gives representation
of how classical-like measurement error induces bias

e Can extrapolate to hypothetical setting where variance of
measurement error is zero to get alternative bias estimate

14



SIMEX results
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Methodological approach

e Goal: Develop a comprehensive statistical framework for
assessing the health effects of long-term exposure to multi-
pollutant mixtures of pollutants. Steps:

1.

Dimension reduction of the multi-pollutant exposure surface based
on monitoring data

Spatial prediction of the multi-pollutant exposure surface

Health effect inference that accounts for the uncertainty from
prediction and dimension reduction in the first two steps



Overview of plans

 NIEHS Sisters Study for development and initial application
— Clear linear model air pollution effect in a large national cohort

— Spatially misaligned multi-pollutant data is a springboard to Project 1
mobile monitoring

— Health and monitoring data available, clean, and and in-hand now!
e Refined eigenpollutant methods for dimension reduction

— Enforce sparseness to improve interpretability
e Staged development plan

— Start with relatively straightforward multi-step analysis
— Integrate dimension reduction + spatial prediction

— Propagate uncertainty in health analysis (i.e., measurement error)



Sisters Study

e Strong evidence of association between PM, . and elevated
systolic blood pressure (Van Hee et al, in preparation)

— A 10 pg/m? increase in PM, . was associated with a 1.2 mmHg increase
in SBP (95%Cl: 0.5, 1.8; p < 0.001)

— PM, ; based on national spatial model using AQS monitor data

— Evidence of a similar association with NO, exposure

e CSN/IMPROVE networks provide national monitoring data for
>20 components, trace metals, and gaseous pollutants

— Some of these were modeled in NPACT study

e Goal: Identify multi-pollutant mixtures and/or components
that are responsible for the observed associations



Need for dimension reduction

Say we have m reasonably well-measured pollutants that are
plausibly related to health outcomes

General disease model not practical

m
Y =6, + z f;P; + interactions + -
=1

Too many main effects + interactions to estimate or interpret
Our solution
— Characterize contrasts with a small number of eigenpollutants

— Sparseness within eigenpollutants will improve interpretability

Other CLARCs are using clustering

— May try this if eigenpollutants don’t work out and/or for comparison



What findings might look like

e Consider SBP and exposure to pollutant mixtures, e.g.,
— P, =EC, P, =0C, P; =S0,, P, =NO,, etc.
e |dentify 2-dimensional eigenpollutant space

— E; =(0.9,0.8,1.1,0.7, ..., 0.9); dense eigenpollutant ; aggregate air
pollution

- E, =(1.0,0.8,0,0,...,0); sparse eigenpollutant ; carbon species

— X = (X1, X5); projections of P onto E; and E,

 Health model Y = S, + 51X, + ,X, + (interactions?) ...

— A 1IQR increase in the average exposure to all pollutants was
associated with a §; = 1 mmHg increase in SBP

— Independent of overall pollution, a 1 IQR increase in exposure to
carbon species was associated with a ,5’2 = 0.5 mmHg increase in SBP



Data availability and needs

e Cohort study subjects
— Health data
— Subject-specific covariates
— Geographic covariates (GIS, long, lat)
 Exposure monitors
— Pollutant concentrations (m-dimensional)
— Geographic covariates
 Need to derive new exposures at new locations

— Sparse eigenpollutants profiles (k < m components)

— Eigenpollutant scores at subject locations



Three step sequential procedure

Eigenpollutant
High dimensional profiles + scores
monitoring data at monitor
locations

Eigenpollutant

——> Sscores at subject ——
locations

Health effect
analysis

2. Muultivariate
spatial prediction
modeling (low
dimensional)

3. Linear regression
(with measurement
error correction)

1. Sparse PCA

e Initially carry out the steps in this approach sequentially
e Refinements once we have all the pieces working

— Combine steps 1 and 2 to improve efficiency
— Propagate uncertainty with measurement error correction in step 3
e Alternative approaches

— Reverse order of steps 1 and 2 (high-dimensional spatial model)

— Combine steps 1-3 (joint exposure and health model)



Sparse PCA (step 1)

Eigenpollutant

: . : . Eigenpollutant
High dimensional profiles + scores enp
—_—

: Health effect
{—— scores at subject ——

monitoring data at monitor : analysis
. locations
locations
2. Multivariate 3. Linear regression
1. Sparse PCA spatial prediction (with measurement
modeling error correction)

e Sparse principal components analysis (PCA) to define
eigenpollutants from monitoring data

e Search for small number of vectors that account for most
variability in matrix of pollutant data from all locations

e Similar to standard PCA, except use an L! penalty to
encourage zeros in individual components

e At least three published approaches (Shen and Huang 2008,
Witten et al. 2009; Joliffe et al. 2003; Zou et al. 2006)



Multivariate spatial prediction (step 2)

High dimensional
monitoring data

1. Sparse PCA

Eigenpollutant
profiles + scores
at monitor
locations

Eigenpollutant
——> scores at subject
locations

2. Multivariate
spatial prediction
modeling

e

Health effect
analysis

3. Linear regression
(with measurement
error correction)

* Multivariate spatial modeling for k < m eigenpollutants much
more manageable than for all m pollutants

— Lower dimensional

— Eigenpollutants expected to be nearly independent of each other

e Mean model options

— PLS or variable selection

e Spatial structure options

— Independent kriging models / co-kriging

— Independent low-rank spline models / correlated spline coefficients



Measurement error correction (step 3)

Eigenpollutant

: . : . Eigenpollutant
High dimensional profiles + scores enp
—_—

: Health effect
——>| scores at subject ——

monitoring data at monitor : analysis
. locations
locations
2. Multivariate 3. Linear regression
1. Sparse PCA spatial prediction (with measurement
modeling error correction)

e |[nitially propagate uncertainty from spatial modeling only (not
sparse PCA)

e Parametric bootstrap methods can be extended to multi-
pollutant, if we believe exposure model

e Currently working on single pollutant methods with
misspecified exposure model; will extend to multi-pollutant

e Early findings for misspecified exposure model may inform how
we carry out steps 1 and 2 (next few slides)



Do better exposure predictions
improve health effect estimation?

Exposure models typically designed to maximize prediction
accuracy

— Key is selecting covariates and/or spatial smoothing parameters

— Leaving out covariates introduces model misspecification, but this is not
always bad

— Bias/variance tradeoff is on the scale of exposure predictions

Do better exposure predictions necessarily improve health effect
estimation?

— Not as obvious at it seems because there are two types of measurement
error (Berkson-like and classical-like)

— Is there a different bias/variance tradeoff on the scale of health effect
estimates?



Simulation scenario

e Subject data (don’t observe the exposures x;)
— Yi=Po +xp1 €
— Xi =Yo t Ry¥1 + Ryi¥2 + R3i¥3 + 15
— Ry, Ry, R;~N(0,1)
e Exposure monitoring data
— X =Yoot Rijy1 + Ry;¥2 + R3jys + 1}

— R},R;~N(0,1), R3~N(0,02) @ 0.1 o@

e Use either full or truncated model exposure prediction model

— Correct mOdel: Wi = ]70 + ?1R1i + ]72R2i + ?3R3i
— Misspecified model: W; = P, + V1Rq; + 72R5;
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Szpiro et al., Epidemiology (2011)
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Model selection example

Health Effect Estimates Prediction Accuracy Optimal Exposure Model DF

——  Optim. exposure
— = Optim. health effect
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e Correctly specified exposure model has 8 covariates

e Variable selection approach: LASSO pre-screening of low-rank regression splines



Back to 3-step procedure: combining
steps 1 and 2

Eigenpollutant
High dimensional profiles + scores
monitoring data at monitor
locations

Eigenpollutant

——> scores at subject |——>
locations

Health effect
analysis

2. Multivariate
spatial prediction
modeling (low
dimensional)

3. Linear regression
(with measurement
error correction)

1. Sparse PCA

e Initially carry out the steps in this approach sequentially
 Refinements once we have all the pieces working

— Combine steps 1 and 2 to improve efficiency

— Propagate uncertainty with measurement error correction in step 3



Integrating sparse PCA and spatial
exposure model (“spatial sparse PCA”?)

 Objectives of each step separately

— Sparse PCA: describe most of the variability in m-dimensional
monitoring data as linear combinations of k sparse eigenpollutants

— Multivariate spatial model: accurately predict as much of the m-
dimensional multi-pollutant exposure surface as possible

e Combined objective

— Accurately predict as much of the m-dimensional multi-pollutant
exposure surface as possible as linear combinations of k sparse
eigenpollutants

 Could design a joint statistical model for steps 1 and 2

— Not clear exactly what form this will take (is there a likelihood?), but
knowing what we are trying to optimize is a great start

— Interesting feature is that geographic covariates and monitor locations
will contribute to specification of eigenpollutants



Summary of our plans

e Ultimately, we plan to exploit mobile monitoring data (Project 1) to
analyze MESA Air cohort (Project 5)

— Very complex spatio-temporal monitoring data a major challenge on top of dealing with
multi-pollutant mixtures

e Initially, we will work in a simpler setting where we can observe long-term
averages at monitor locations (purely spatial exposure data) and don’t
have to worry about multiple cities

— NIEHS Sister Study + CSN/IMPROVE monitoring data; data available now!
— First implement three-step sequential procedure without propagating uncertainty

— Improve methodology by combining sparse PCA with spatial prediction and by
propagating uncertainty into health analysis with measurement error correction

e We will extend our methods to mobile monitoring data and MESA Air once
we have made sense of the mobile data and developed multi-pollutant
methods for the somewhat simpler spatial setting



| .
jLP Cross-center collaborations

Center for Clean Air Research

Other EPA Clean Air Research Centers (CLARC:S)
 Emory/Georgia Tech (“SCAPE”)
e Harvard (“Harvard”)
e Michigan State/Michigan (“GLACIER”)

Collaboration specifics
e $50,000 per center per year
e Involves 2 or more CLARCs

Planning
* Discussed at the first CLARC annual meeting in May




ju UW CLARC collaborations

Center for Clean Air Research

e Mobile sampling in Atlanta (with Emory)
e Toxicology (with Harvard and Michigan State)

e EXposure measurement error correction (with
Harvard and Emory)

o Satellite (remote sensing) data for PMzs (with
Emory and Harvard)



EXposure measurement error correction

 With Harvard and Emory
« Georgia birth cohort endpoints and PMz2s

e« Common PMz2s exposure predictions based on
LUR +/- satellite

« 3 statistical approaches (1/CLARC) for

measurement error correction:
e parameter bootstrap
 simulation extrapolation
* Bayesian



Satellite PM2.s estimation

With Emory and Harvard
Standard set of data for North Carolina, 2006-08

6 candidate models for PMas prediction
e Harvard x 2
e Emory x 3 (incl CMAQ)
o UW x 1 (spatio-temporal model)
o assess added value of satellite data

commons metrics for model evaluation



Mobile sampling in Atlanta

e With Emory (SCAPE), following the Project 1
mobile monitoring in Winston-Salem — summer 2013

e J Sarnat doing a scripted commute health study
with detailed in-vehicle monitoring

e AImMS:
1. compare instrumentation measures
2. vehicle infiltration fractions
3. complete another near roadway campaign



Animal toxicology

e Michigan State (GLACIER) rat (mouse?) model of
cardiometabolic syndrome

* high fructose diet

o Campen ex vivo endothelial cell assays

e Transfer animal model to Lovelace and Harvard
e McDonald CCAR exposures and endpoints (incl.
telemetry)
 (Godleski using Boston Tunnel exposure
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