
A Morphotactic Infrastructure for a Grammar Customization
System

Kelly O’Hara

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Arts

University of Washington

2008

Program Authorized to Offer Degree: Linguistics

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’sthesis by

Kelly O’Hara

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Emily M. Bender

Fei Xia

Date:

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at
the University of Washington, I agree that the Library shallmake its copies freely available
for inspection. I further agree that extensive copying of this thesis is allowable only for
scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law.
Any other reproduction for any purpose or by any means shall not be allowed without my
written permission.

Signature

Date

University of Washington

Abstract

A Morphotactic Infrastructure for a Grammar CustomizationSystem

Kelly O’Hara

Chair of the Supervisory Committee:
Assistant Professor Emily M. Bender

Linguistics

This thesis presents a morphotactic infrastructure created as part of the LinGO Grammar

Matrix customization system. The customization system allows users to select options

from provided libraries of syntactic and semantic content to create small but well-formed

grammars designed as a starting place for development of precision grammars. As many

languages have extensive systems of inflectional morphology, it is advantageous to have a

general, system-wide method of creating morphological rules. The infrastructure presented

here allows morphemes required by the various content libraries to interact properly in

terms of morphotactic constraints such as ordering and co-occurrence restrictions. It also

allows for the creation of placeholder rules that add morphophonological information but

do not contain any syntactic or semantic content. Development was driven by test suites for

four typologically and genetically diverse highly inflecting languages. The system showed

convergence over these tests, demonstrating that the resulting system is general and flexible

enough to used in a cross-linguistic tool such as the Matrix.

TABLE OF CONTENTS

Page

Chapter 1: Introduction .. 1

Chapter 2: Literature Review .. . 4

2.1 About the Grammar Matrix . 4

2.2 Morphology . 11

2.3 Morphology in Multilingual Grammar Tools 15

2.4 Summary . 20

Chapter 3: Design Goals . 21

3.1 Overview . 21

3.2 Customization Page . 25

3.3 Choices File . 26

3.4 Customization Script .27

3.5 Summary . 32

Chapter 4: Implementation .. 33

4.1 Choices File . 33

4.2 Customization Script .36

4.3 Summary . 50

Chapter 5: Evaluation . 51

5.1 Languages Used . 51

5.2 Test Suite Design . 54

5.3 Development And Evaluation Process 55

5.4 Results . 57

Chapter 6: Conclusion . 59

i

Bibliography . 60

Appendix A: Choices Files .. 63

A.1 Zulu . 63

A.2 Slave . 66

A.3 Finnish . 70

A.4 Uzbek . 72

Appendix B: Test Suites .76

B.1 Zulu . 76

B.2 Slave . 81

B.3 Finnish . 94

B.4 Uzbek . 98

Appendix C: Sample Rule Hierarchy 104

ii

ACKNOWLEDGMENTS

I cannot overstate my gratitude to Emily Bender, without whose guidence, support, pa-

tience, and optimism this thesis would never have been achieved. I am also indebted all

the attendees of the Matrix developers meetings, especially Scott Drellishak and Laurie

Poulson for ideas and feedback at all stages of the development of this thesis. Fei Xia’s

comments and suggestions helped me see this thesis with new eyes and I am grateful for

all the time effort she gave to improve the clarity and detailof my writing. I must also

thank my husband Ryan for his love and support, which gave me strength through my most

frustrated times. I couldn’t have done it without you.

This material is based upon work supported by the National Science Foundation under

Grant No. BCS-0644097.

iii

1

Chapter 1

INTRODUCTION

This thesis asks the question of how to provide coverage for morphologically rich lan-

guages in a cross-linguistic resource for grammar development. In particular, I concen-

trate on issues of morphotactics, such as morpheme ordering, morpheme optionality, and

inter-morpheme dependencies. I explore how to create a general-purpose morphotactic

infrastructure that can be linked into the system’s existing analyses of various linguistic

phenomena, as well as provide a morphotactic structure as the basis for further grammar

development.

The particular grammar tool I focus on is the LinGO Grammar Matrix (Bender et al.

2002). The Matrix is a starter-kit for the creation of broad-coverage precision gram-

mars using Head-driven Phrase Structure Grammar (HPSG) (Pollard and Sag 1994). It is

presently accessed through a grammar customization system(Bender and Flickinger 2005,

Drellishak and Bender 2005), which elicits information from the user-linguist through a

typological questionnaire and then outputs a grammar containing the Matrix core grammar

as well as additional types, rules, and lexical entries specialized for the language in ques-

tion. These files are intended as a launching point for further development of the grammar

by the user-linguist. These grammars can be loaded into the LKB grammar development

environment (Copestake 2002), as well as the PET parser (Callmeier 2000). These sys-

tems can (among other things) parse sentences using the rules and constraints defined by

the input grammar. While the Matrix core grammar contains a rich set of types supporting

lexical rules, the customization system previously did notallow the user to create lexical

rules which interact properly with each other.

The goal of the work presented here is to extend the customization system to provide a

2

robust, language-independent infrastructure for creating morphological rules. The resulting

system should take the user’s answers to the questionnaire and create language-specific

morphological rules that extend the existing type hierarchy of the Matrix core grammar.

The morphological system must also create an infrastructure for building rules that will

apply morphemes in the correct order, taking into account morpheme optionality and co-

occurrence restrictions. The solution needs to be languageindependent, because the Matrix

is a multilingual tool. It must also be independent of any particular syntactic information,

because it will serve as a general infrastructure for all thecustomization system’s syntactic

libraries, as well as creating placeholder rules for the morphemes for which the Matrix does

not yet provide an analysis. The concrete goals of this project are to define the morphotactic

phenomena that need to be modeled, define how the relationships between morphemes

can be represented in the questionnaire’s internal format,and extend the customization

system to be able to construct the morphological rule type definitions such that they can be

integrated with the core grammar and existing libraries andparse morphologically complex

words as the user intended.

Following Bender and Good (2005), morphosyntax and morphophonology are treated

as separate systems. The resulting system presented here acts as an independent layer be-

tween the morphophonology and morphosyntax. It creates systems of rule hierarchies mod-

eling the interactions between various morphemes and/or morpheme paradigms. Where no

syntactic content is available, the system creates a skeleton rule that applies appropriate

morphotactic information but does not add any syntactic information. The syntax can be

filled in as the user develops an analysis. This also allows new syntactic libraries to be

added to the customization system incrementally, without having to disturb already estab-

lished lexical rules.

I assume that the phonological forms provided in the grammarare regularized. That is, I

assume that morphophonological processing will take placeoutside of this system (before-

hand on inputs to parsing, afterwards on outputs of generation). Pre- or post-processing

might be done with a finite state transducer, as is common for many morphological pro-

3

cessing tools. However, FSTs alone would be insufficient forthe morphological processing

(including morphosyntax) required by the Matrix. Matrix grammars, based in HPSG, pro-

duce complex feature structures that encode syntactic and semantic information. Lexical

rules add to or modify the features of the lexical entries, outputting more detailed feature

structures which can serve as input to further lexical rules, or combined with other feature

structures via phrase structure rules. I am attempting to create an infrastructure for these

lexical rules. The necessary feature structures are complex, nested structures and could not

be reproduced by an FST.

This thesis is divided as follows: Chapter 2 consists of a literature review, describing

the Matrix system, the role of morphology in linguistics, and how morphology has been

handled in other multilingual grammar tools. Chapter 3 discusses the design goals for this

project, both in terms of what linguistic phenomena need to be modeled, and how to do

so within the Matrix framework. Chapter 4 describes how the system was implemented

and how the design goals were met. Chapter 5 covers the evaluation procedure, and how

the system performs on test suites designed for four morphologically rich but genetically

unrelated languages.

4

Chapter 2

LITERATURE REVIEW

In this section I explore the broader intellectual context for the work described in this

thesis. In§2.1 I describe the relevant aspects of the Grammar Matrix is greater detail.§2.2

looks at the linguistic topic of morphology and how it relates to this project. In§2.3, I look

at how morphology has been addressed in other multilingual resources.

2.1 About the Grammar Matrix

2.1.1 What is the Matrix

Precision grammars are linguistically-motivated rule based grammars designed to model

human language as accurately as possible. Unlike statistical grammars, these systems are

hand-built by grammar engineers, taking into account the engineer’s theory and analysis

for how to best represent various syntactic and semantic phenomena in the language of

interest. While having a system designed with linguistic precision in mind can help with

tasks as wide ranging as testing linguistic hypotheses or machine translation, building such

a system is extremely time consuming and labor intensive. Inaddition, new grammars have

typically been built from scratch; prior work tends to be notfreely available, or poorly doc-

umented, or too specific to the particular language to provide a useful starting point for a

new grammar (but cf. Kim et al. 2003). A side effect of this is that precision grammars tend

to be substantially different from each other, with no best practices or common represen-

tations. This makes it difficult to compare grammars or to usemultiple grammars within a

larger system. (Exceptions do exist; the ParGram project (Butt et al. 2002) is one example

of multiple grammars developed using a common standard)

The Grammar Matrix was designed as a solution to all of these problems. The initial

5

design goal was to create a language-independent core grammar that could serve both as a

seed for new grammars, and as a common development framework(Bender et al. 2002). As

development progressed, it became possible to design several libraries that covered more

language-specific information (Bender and Flickinger 2005, Drellishak and Bender 2005).

For example, there is not one universal strategy for major constituent order, but there is a

known range of possibilities. Providing analyses of known strategies for various syntactic

and semantic phenomena speeds up the grammar development process by creating a larger

and more language-specific grammar from the outset, allowing the grammar engineer to

concentrate more on complicated or quirky aspects of the language of interest. The li-

braries can be accessed via a web interface where the user canselect the options relevant

to the language they are working on, and the appropriate codeis compiled into a starter

grammar. As grammars for more languages are developed usingthe Matrix, there have

been improvements to the core grammar. However, most current development is concen-

trated on the customization system, both in providing more libraries and improving the user

interface.

2.1.2 Core Grammar

Matrix grammars are typed feature structure grammars. Theyconsist of a hierarchy of

types, which have constraints in the form of feature structures, the elements of which are

themselves typed feature structures. A class of types called rules include constraints on the

types or features of their daughter(s). The rule must then unify its own constraints with the

constraints on the daughter value, with the output being a typed feature structure where the

type is the rule type, and the feature structure is the combined feature structure of the rule

type and its daughter(s). Grammars produced by the Matrix all include the core grammar

of basic types and rules designed as a general-purpose base for all Matrix grammars.

Of particular interest to the work discussed here is the typelex-rule. The feature

structure forlex-rule (1) contains complex features for specifying the syntacticand

semantic content of the rules (SYNSEM).

6

(1)










































































































































lex-rule phrase-or-lexrule & word-or-lexrule

NEEDS-AFFIX bool

SYNSEM




























LOCAL


























CONT
























RELS







LIST 1

LAST 2







HCONS







LIST 3

LAST 4





















































































DTR word-or-lexrule &

5







































SYNSEM






























LOCAL




























CONT


























RELS







LIST 1

LAST 6







HCONS







LIST 3

LAST 7



























































































ALTS 8







































C-CONT




















RELS




LIST 6

LAST 2





HCONS




LIST 7

LAST 4

























ALTS 8

ARGS
〈

5

〉











































































































































The content of these features is unspecified in the basic type. Rules that inherit from

lex-rule fill in the content of the feature values. Another feature (DTR) specifies the

rule daughter, essentially the input of the rule. The daughter is constrained to be either a

lexical entry or another lexical rule. Rules that inherit fromlex-rule can place further

constraints on the type of the daughter, as well as the valuesof the syntactic and/or semantic

features. Lexical rules can only have one daughter value. Ifmultiple types could in theory

serve as a daughter to the same lexical rule, they need to eachinherit from a common

7

rule type (the Matrix’s allowance of multiple inheritance makes this possible). A rule can

specify its own type or a type it inherits from as a daughter. It is also possible to get

cycles of two or more rules that can feed each other. Infinite loops can be prevented by

putting additional constraints on the feature content of the daughter that prevents a rule

from applying more than a certain number of times. In the absence of this, the LKB sets a

cap on the number of lexical rules that can apply to one word (the default number is 7, but

is adjustable), and will stop parsing once this limit is reached.The syntactic and semantic

content specified in rules inheriting fromlex-rule can add or change feature values of

the daughter, but no information can be removed.

2.1.3 LKB Processing

Matrix grammars can parse and generate when loaded into a grammar development envi-

ronment such as the LKB or the PET parser. For this thesis, I used the LKB and concen-

trated solely on parsing, and so will discuss only these aspects. Once a grammar is loaded

into the LKB, the input to parsing is a sentence or sentence fragment. The LKB then ap-

plies a bottom-up head-driven parsing strategy to build a feature structure that accounts for

every element of the input string.1 Basic string matching is done to match tokens in the

string to lexical entries in the lexicon. Lexical rules (essentially morphological rules) can

change the orthographic form of the lexical entries, and so the system also attempts string

matching based on the output of lexical rules. Phrase structure rules apply to combine the

lexical entries and lexical rule outputs into larger phrases. The LKB continues applying

rules until all the elements of the input string are accounted for in one feature structure,

or all possibilities are exhausted. All successful parses are returned, and include a phrase

structure tree, and the final feature structure which a semantic representation in Minimal

1The LKB’s built-in efficiency measures include filtering outrules that are guaranteed to fail before at-
tempting unification. See Copestake 2002 for details.

8

Recursion Semantics (MRS) notation.

When running Matrix grammars in the LKB, lexical rules work as unary productions

similar to unary phrase-structure rules. The daughter value is the single input, and the

mother is the output. The output contains any additions or changes made by the rule, with

the remaining content copied up, as specified in the types it inherits from. The output is the

type of the mother. Since the daughter of a lexical rule can only be a lexical entry or another

lexical rule, all lexical rules must apply before phrase structure rules apply. The rule can

optionally be associated with spelling changes, adding or modifying the orthographic form.

Within the core grammar, lexical rules associated with spelling changes inherit from the

typeinflecting-lex-rule, and those that modify feature values without altering the

spelling inherit from the typeconstant-lex-rule. These each inherit directly from

lex-rule. The LKB looks for the particular instances of lexical rule types in two files

separate from the main grammar file: one for constant lexicalrules and one for inflecting

lexical rules. These rule instances inherit from the rule types. For the inflecting rules, the

instances are where information such as the orthographic form and whether the affix is a

prefix or a suffix is stored.

2.1.4 Customization

The core grammar is designed to be useful for developing a grammar in any human lan-

guage. However, there are also a number of linguistic phenomena that, while not entirely

language-independent, have a known set of possibilities cross-linguistically. Building a li-

brary of code providing analyses for e.g. various word orderstrategies allows the user to

simply identify the strategy used in the language of interest and insert the appropriate pre-

written code into their grammar. Creating such libraries was a natural step in improving the

functionality of the Matrix. A number of these libraries nowexist, and more are currently

9

under development.

Rather than forcing users to find and assemble the appropriate library code manually, the

libraries are accessed through a customization system. Users complete an online question-

naire, and a starter grammar is automatically produced based on the options they selected.

The customization system consists of three parts: the customization page, the choices file,

and the customization script.

Customization Page

The in order for the system to create a starter grammar, the required information must be

elicited from the user-linguist. The medium for this elicitation is a web interface.2 On

the main page, the user is presented with an overview of the sections of the questionnaire.

As of this writing, the syntax sections consist of: case, word order, sentential negation,

coordination, and matrix yes-no questions. Each section consists of a series of questions

related to the topic at hand. There is also a section for inputting a basic lexicon. The lexicon

requires a noun, a transitive verb, and an intransitive verb. A second noun, an auxiliary verb,

and up to two determiners can be added if needed or desired. The user may also enter up to

two test sentences, to test the starter grammar’s initial functionality.

Choices File

The options selected by the user are saved in a plain text file,called the choices file. This

file can be saved independently, whether or not the user builds a grammar from the options.

A previously-created choices file can also be uploaded to thecustomization page, which

fills in the customization questions based on that information. The user can then change or

add answers as necessary, and build a new grammar from the newchoices file.

2http://www.delph-in.net/matrix/customize/matrix.cgi

10

The content of the choices file is a list of attribute-value pairs. Although the primary

function of the choices file is as input to a computer script, it is also meant to be human-

readable. Therefore an effort has been made to make the attribute and value labels transpar-

ent and representative, while still remaining concise. In addition, the sections are labeled

within the choices file, although this information is not needed or used by the customization

script. This allows users to easily find and identify choiceswithout uploading the choices

file to the customization page. Here is a sample of the choicesfile format. The language be-

ing described is Zulu (Niger-Congo). The word order is defined as SVO, and the language

does not have determiners as independent words:3

(2) section=language

language=Zulu

section=word-order

word-order=svo

has-dets=no

Before a grammar is built, the choices file is verified to be internally consistent and

contain all the information it needs. For example, if the user specifies that negation or

question marking is carried only on auxiliary verbs, an auxiliary verb must be provided in

the lexicon. Once the choices file is verified, it can then be provided to the customization

script to build a grammar.

Customization Script

Matrix grammars are written in a Type Description Language (TDL). The particular lan-

guage is one developed for usage with the LKB (Copestake 2002), itself based on the syntax

3see Appendix A for full choices file for all the test languages

11

in DISCO/PAGE system (Krieger and Schafer 1994). The customization script is a Python

script that reads in the choices file, and uses the information it contains to select or construct

relevant sections of TDL code. The output is a collection of files containing the language-

specific TDL code. This is then bundled with the core Matrix files to provide a small but

functioning grammar fragment.

2.1.5 Summary

The Grammar Matrix is a grammar engineering tool designed tospeed up and simplify

the development of precision grammars, as well as provide a common framework, mak-

ing the resulting grammars more comparable. The core grammar provides a language-

independent basis for grammar development. The customization system allows users to

easily add language-specific code to their grammar from libraries of analyses of various

linguistic phenomena. The customization page is a web interface to the customization sys-

tem. The user’s choices on the customization page are recorded in a specialized format in

the choices file. This file serves as the input to the customization script, which compiles the

relevant code from the libraries and produces the starter grammar.

2.2 Morphology

The heart of language consists of the mapping between forms and meanings. In this context,

a morpheme is the smallest unit of form and meaning. While some languages are monomor-

phemic, with each morpheme functioning as an independent word, most languages have

some means of combining morphemes into larger units at the word level as well as at the

phrase level. The study of morphology looks at the ways in which languages combine

morphemes into larger words. This typically means looking at bound morphemes, which

cannot serve as independent words, and how they attach to thestems or free morphemes in

12

a language.

Of particular interest to this project is inflectional morphology: those affixes which have

syntactic function in the grammar. Inflectional morphologyis used to encode content such

as tense, aspect, person, number, gender, case, negation, discourse status, evidentiality, and

so on. While these affixes can carry some semantic content of their own, they exist mainly

as a syntactic requirement of the grammar. For example, grammatical gender is assigned

largely at random and can vary widely cross-linguistically, both in the genders that are

encoded and which gender any particular word is assigned.

In this section, I focus on the role of morphology in the context of multilingual re-

sources. I first discuss why morphological coverage is crucial in the development of a

grammar system such as the Matrix. I then set up the differences between morphophonol-

ogy and morphosyntax, and explain why my system focuses on morphosyntax. Finally, I

look at how morphological processing is handled in other multilingual systems.

2.2.1 Why Do We Need Morphology?

Providing coverage for as many languages as possible is an obvious goal for a cross-

linguistic tool. The question then arises of what functionality should be developed first.

In a resource for building precision grammars made up of detailed feature structures, such

as the Matrix, it might seem more worthwhile to focus on providing feature content, and

let the grammar engineer work out how the lexical and phrase-structure rules play out in

the syntax. In addition, the importance of providing coverage for inflectional morphology

may not be immediately apparent to speakers of languages that lack a robust system of

inflection.

For many of the world’s languages however, inflectional affixes are mandatory as part of

even the most basic sentence structures. In previous versions of the customization system,

13

the user needed to either leave off these mandatory affixes atcustomization time, or include

them as part of the lexical entries. While ignoring the messier aspects of the syntax is

expected during customization, we would like the starter grammars to be as linguistically

accurate as possible, including being able to parse morphology. For a language with limited

morphology, it may be possible to store each inflected word asa separate lexical entry, but

some languages have large paradigms and/or many different paradigms, and even if the

rules for combining them are straightforward, creating lexical entries for each possible

combination is simply unfeasible. Some languages have inflectional systems that allow

for repetition or recursion, creating a technically unlimited number of possibilities. For

these languages, modeling the morphological rules is necessary if the goal is complete

grammatical coverage.

In addition, new content libraries are continually under development. Providing a gen-

eral system for building morphological rules is helpful forboth the Matrix library develop-

ers and the users. Instead of writing a morphological rule generator for each new library,

developers can instead plug the feature content into the morphotactic system. An indepen-

dent morphotactic system provides a big-picture view of howthe affixes interact with each

other in the grammar. While users will still need to provide the customization system with

a morphotactic analysis on which to base the rules, the hope is that building the inflectional

rule system at customization time will both be faster than constructing the rules by hand,

and make the starter grammar easier to understand and develop by the user.

2.2.2 Morphophonology vs Morphosyntax

Morphology interacts with different aspects of a language’s grammar. Many phonologi-

cal rules are specifically based in morphology. An example ofthis is the English plural /-s/

suffix which becomes [-z] when following a voiced sound. Thisis change is morphophono-

14

logical, rather than motivated strictly by phonological conditioning, as evidenced by min-

imal pairs such aswins/wince. Many languages leverage morphology to encode syntactic

features, and thus morphology can interact with other aspects of the syntax. The informa-

tion carried by affixes can correspond to (for example) possible word orders, constraints

on arguments or argument structure, the morphology of otherwords in the phrase, or the

semantic interpretation of a phrase. Incorrect affix choice, or omitting affixes altogether

can make an entire phrase ungrammatical.

While morphology overlaps with both phonology and syntax, morphophonology and

morphosyntax can be treated as distinct topics. If one is interested solely in the phonolog-

ical processes necessary to render surface forms of a language, the syntactic function of a

morpheme is not necessarily relevant. Likewise, if one wishes to focus on the syntax of a

language, it is possible to regularize the phonological forms of morphemes of a language

(as influenced by, e.g. phonological processes or irregularforms) and look solely at the

syntactic function of the morphology. From a syntactic view, using morpheme glosses that

don’t encode phonological information at all can be perfectly appropriate.

A complete model of morphology of course requires that the morphophonology and

morphosyntax interact with each other. Focusing on phonology ignores the important syn-

tactic contribution of morphology, and focusing on syntax can lead to glossed representa-

tions that could not be interpreted by a literate native speaker without linguistics training.

One solution to this (as discussed in Bender and Good 2005) isto do the two parts as two

separate systems, using the output of the one part as the input to the other. The Matrix

morphological system is intended as the syntax part of this model.

15

2.2.3 Summary

Morphology is concerned with how units of meaning combine ina language to form larger

words. The information encoded by inflectional morphology varies widely across lan-

guages, as do the rules governing how morphemes can attach. The use of inflectional mor-

phology is extremely common cross-linguistically, and many languages have inflectional

systems that are either large or governed by complex rules. Modeling these languages as

systems of rules that attach morphemes to stems is both more efficient and more linguisti-

cally interesting than storing the morphology as part of a lexical entry. Morphology over-

laps with both phonology and syntax, and it is possible to look at morphological systems

from either a phonological or syntactic perspective. The Matrix and the work discussed in

this thesis are focused particularly on morphosyntax.

2.3 Morphology in Multilingual Grammar Tools

There are many systems available to parse and/or generate inflectional morphology, based

on both knowledge engineering methodologies (e.g., Beesley and Karttunen 2003) and

machine learning (e.g., Goldsmith 2001). There are two maindifferences between these

systems and the Matrix. First, they are not customization systems. Secondly, they are more

concerned with morphophonology, while I focus on morphosyntax. There are tools with an

interest in morphosyntax, such as Maxwell et al. 2002, but these tools do not provide the

in-depth syntactic and semantic analysis found in the Matrix.

2.3.1 XFST

Many tools utilize finite state transducers for morphological parsing. Here I discuss in

particular Xerox/PARC XSFT system (Beesley and Karttunen 2003). It consists of two

parts: the xfst environment for building and running FST-based morphological parsers, and

16

the purpose-created lexc programming language, which allows the user to define a lexicon

(including sorting lexical entries into classes by inflection patterns) and a series of rules

associating orthographic forms of affixes with morpheme glosses. The xfst system can

then compile the FST from the defined grammar. Regular expression filters are used to rule

out linguistically impossible constructions. The system can generate surface forms from

morpheme glosses, as well as glossed forms from surface forms.

While this system is powerful and reliable, it is concentrated mostly on producing accu-

rate string representations, generally over single words.The Matrix builds complex feature

structures modeling many interdependent syntactic and semantic relationships both within

and between words. This information would be difficult at best to reproduce in an FST en-

vironment. However, the two systems are very complementary: the Matrix does not have a

robust system for string manipulation, so it is often easiest to work with morpheme glosses

rather than attempt to produce accurate orthographic forms. These glossed forms could

then be input to an XFST processor, which could produce the surface strings. This has the

additional advantage of making the regular expression filters largely unnecessary: many of

the filters are used to eliminate strings that are syntactically impossible, which would not

be produced or parsed by the Matrix grammars. The Matrix and XFST systems could be

seen as each side of the morphophonology and morphosyntax processing, both necessary

but working on different aspects of morphology.

2.3.2 SIL Morphological Glossing Assistant

One system that focuses on morphosyntax is the SIL Morphological Glossing Assistant

(Maxwell et al. 2002). Marking up interlinear text can be tedious, especially for languages

with complex systems of inflectional morphology. Morphological parsers are often used

to speed this process up, but many languages have a great dealof homophony in their in-

17

flectional morphology. If the morphological parser is basedsolely on morphophonological

information, this can lead to spurious parses. Sorting through these parses for the right one

can be so time consuming as to cancel out the benefit of using the parser in the first place.

Many of these extraneous parses can be eliminated by providing basic morphosyntactic in-

formation. Providing this information may be daunting or impossible for people who do

not have training in morphosyntactic feature systems.

The Morphological Glossing Assistant (MGA) is designed to aid in the process of gloss-

ing interlinear text. It provides a user interface to an ontology of morphosyntactic proper-

ties. The user can then select which properties apply to the particular morphemes in the

language being documented. It is possible for the user to create their own features as well,

as no ontology covers every morphosyntactic feature in every language. The glossing as-

sistant creates feature structures stored in XML format anda general feature system for the

language. Morphemes can be assigned features or complex feature structures, and these

feature structures can be designated as applying to a particular root type. For example,

the feature structure type for a transitive verb could contain a complex feature value cor-

responding to subject agreement, and another for object agreement. These morphological

feature structures contain features designating, e.g. person and number. The feature system

provides the possible values for these features. The MGA is designed to be used in con-

junction with a morphological parser. It is also intended toexist as part of SIL’s larger suite

of tools for language description.

This tool is similar to the Matrix, in that it is morphosyntactically motivated, it uses

feature structures to model the syntactic content of morphemes, and it provides a means

of creating a customized feature system for your language from a language-independent

ontology. The most apparent difference between this systemand the Matrix is that the

MGA is not a grammar tool, but a means of constructing a feature system. It is possible

18

to create a feature specifying which morphological featurestructure can occur to the right

of the current one in the orthographic representation, but there is no system of rules for

combining the feature structures of various affixes, and no rules for combining words into

phrases. And unlike the Matrix, the MGA does not provide any semantic representations.

2.3.3 Expedition

The project most similar to our current work is the Expedition project (McShane et al.

2002). While no longer under development, Expedition was a grammar elicitation toolkit

designed to expedite the process of building grammars for machine translation (MT) pur-

poses. Like the Matrix, Expedition relied on knowledge provided by an active user to build

the grammars, as opposed to extracting information from a text corpus, for example. How-

ever, the design and implementation of Expedition was very different from the Matrix in

several fundamental ways.

Expedition grammars are designed only for MT purposes, and can only translate to

and from English. Matrix grammars are compatible with the LOGON MT infrastructure

(Oepen et al. 2007) and can therefore (theoretically) translate between any language pair.

Expedition uses a knowledge elicitation system, called Boas. The target users for Boas

are a language informant and software engineer, neither of whom are required to have a

background in linguistics or grammar engineering. While this does allow for grammar

development in cases where there is not explicit linguisticknowledge available (such as a

printed reference grammar), the resulting grammars lack the precision and depth of Matrix

grammars. While Boas and the Matrix customization system each automatically generate

grammars based on knowledge elicited from the user via a questionnaire, the nature of both

the questionnaire and the generated grammars differ significantly because of the difference

in target users.

19

The difference in system design is especially apparent in the generation of morpholog-

ical rules. Because Boas does not assume explicit linguistic knowledge, it does not require

the user to identify stems, morpheme boundaries, or paradigms. Instead, the user tags sur-

face strings with information about the morphological paradigms and morphological rules

are generated through a machine learning process. Predicted forms are then presented to

the user, who marks them as grammatical or ungrammatical, and this information is fed

back into the morphological learner to further refine the rules.

While this system is convenient in the total absence of linguistic knowledge, there are

several advantages to assuming expert knowledge in morphological development. Ma-

chine learning can be imprecise and arbitrary. Matrix grammars are designed to be precise

and linguistically motivated: generalizations and exceptions can be made explicit, and the

linguist-user can make decisions about how to model morphological phenomena (such as

positing a zero morpheme where there is no phonological material). However, it may be

beneficial to develop a hybrid approach drawing on the strengths of both models. Such a

system could lower the barrier of entry for would-be grammarengineers while still allowing

the user explicit control over the grammars when desired.

2.3.4 Summary

While building multilingual tools that include coverage for morphological phenomena is

not a huge field, there do exist relevant systems besides the Matrix. Many systems use

finite state transducers to model morphophonological information, but these systems do

not encode morphosyntactic information (at least not robustly). The SIL Morphological

Glossing Assistant provides a customizable system with morphosyntactic content but no

grammar of morphological rules, and the syntactic content is not as rich as that of the Ma-

trix. The Expedition project was a grammar customization system, but the morphological

20

rules were generated via machine learning rather than explicitly designed by a linguist. In-

deed, both the MGA and Expedition were intended to be used by non-linguists, where the

Matrix is targeted at linguists.

2.4 Summary

The Grammar Matrix is a tool designed to assist in the creation of precision grammars. The

core grammar provides a language-independent base on whichto construct the grammars.

The customization system allows users to specify phenomenarelevant to their particular

language, with their selections compiled from libraries ofanalyses into a starter gram-

mar. Prior to the work described in this thesis, there was nota robust method of including

inflectional morphology in the customization system. Providing such a system is impor-

tant because many languages have inflectional morphology required in even the most basic

constructions, but the morphological systems are sufficiently complex that entering each

possible combination of affixes as lexical entries is difficult or impossible. Matrix gram-

mars emphasize morphosyntax over morphophonology, and allow morphological rules to

be customized and explicitly defined by the user. Some similar multilingual morphological

tools emphasize morphophonology or utilize machine learning algorithms, and no other

tool provides the rich syntactic and semantic information found in the Matrix.

21

Chapter 3

DESIGN GOALS

3.1 Overview

As discussed in 2.2.2, the focus of the morphological work inthe Grammar Matrix is on

morphosyntax, or the way in which morphological processes affect the syntactic and se-

mantic combinatorial potential of the word. Within that broader context, the work presented

here focuses on word-level morphotactics, or the constraints on the order and co-occurence

of morphemes with words.

3.1.1 Role of Morphotactics Library in Customization

The task at hand is taking users’ specifications for how affixes apply in a particular lan-

guage, and using that information to build lexical rule types that feed each other in the

correct order, while taking into account rule optionality and inter-rule dependencies. It is

important to keep in mind that this is meant to apply to the current customization system,

and so is to some extent limited by the other capabilities of the system. For example, li-

braries for agreement and for tense/aspect are currently under development, but are not im-

plemented as of this writing. This means that at customization time, inflectional morphol-

ogy associated with these functions will not be able to add appropriate semantic content,

because the customization system doesn’t know what that content is. What I am building is

essentially a skeleton rule structure: I am putting a framework in place to be filled in by the

user as the grammar is developed. As new libraries are added to the customization system,

users can link the affixes with their semantic content, and therefore create more fleshed-out

22

grammars from the outset.

There are several advantages to providing a skeleton rule structure. One benefit is that

the starter grammars are more accurate models of language than those produced by the

previous system, as the users do not, for example, need to input nouns with case affixes

already attached. Another advantage is that users can develop and test whatever morpho-

logical rules they wish, without having to work systematically out from the stem. If the

user wishes to start by adding content to an affix or affix-paradigm that appears third out

from the stem, they can start there without worrying about the semantic content / analysis

of the affixes that apply first or second. The skeleton structure also allows users to account

for affixes whose syntactic and/or semantic content is not yet covered in the customization

libraries. If the rule content for the third affix from the stem can be customized, but the first

and second affixes cannot, creating empty rules for the first two affixes allows the third rule

to be created such that it will apply in the correct order, at customization time.

Note that these skeleton rule systems will overgenerate because I have not created rules

regarding particular paradigm-internal values. While I have rules dictating the morpho-

tactics for an entire paradigm, without any semantic content, it makes it difficult to look

inside the paradigms. Though it would have been technicallypossible to accomplish, it

would require a somewhat complex system of additional features and requirements that

would become redundant and unnecessary once the user filled in the appropriate content in

the feature structure. I decided it would make more practical sense for the user to specify

these requirements at the time that they are filling in the rest of the rule content. New rule

content libraries should provide the user this opportunity; for phenomena not covered by

customization, the rule content can be filled in as the user develops their grammar from the

starter grammar provided.

23

3.1.2 Phenomena Covered

To illustrate some of the morphotactic phenomena that need to be covered, as well as chal-

lenges in implementation that need to be addressed, here areexamples from the Zulu test

suite):1

(3) umu- ntwana u- zo- bon -a in- yoka

C1- child SC1- FUT- see -FV C9- snake

‘The child will see the snake’ [zul]

(4) umu- ntwana u- zo- yi- bon -a in- yoka

C1- child SC1- FUT- OC9- see -FV C9- snake

‘The child will see the snake’ [zul]

Zulu has a system of noun classes, which are analogous to grammatical gender. The

difference is in scale: rather than two or three classes (e.g. masculine, feminine, neuter),

there are about 15 noun classes in Zulu. The C1 and C9 markers in the above example are

the markers for the class that the nouns belong to (i.e. ‘child’ belongs to class 1 and ‘snake’

belongs to class 9). Verbs mandatorily agree with the noun class of their subject,2 and

transitive verbs can optionally agree with the noun class oftheir object.3 This optionality

is illustrated in the two examples above. FUT is a tense marker (specifically indicating the

remote future). FV stands for “final vowel” and is essentially a thematic vowel, typical of

Bantu languages. I will return to this Zulu example throughout this thesis.

1Zulu examples were constructed using the information in Nyembezi and Doke 1979 and Poulos and
Bosch 1997 and have not been vetted by a native speaker

2SC1 in the examples above indicate the subject agreement marker. SC stands for “subject concord”; the
1 corresponds to noun class 1

3OC9 in (2) is the “object concord” for noun class 9

24

These examples illustrate several phenomena that need to beaccounted for. First, the

system needs to be able to attach morphemes only to particular root or stem types. In the

Zulu example, the class markers (umu-and in- in this case) need to only attach to nouns,

while the subject and object concords, tense markers, and final vowel can only attach to

verbs. The system needs to be able to specify what sort of roots a morpheme can attach to.

Some morphemes may also attach to multiple root types, and this needs to be accounted

for as well. While the system does not have any preconceived notions of what sorts of

inflection root types take, it does need to be able to account for these restrictions in any

particular language.

In a highly-inflecting language, most morphemes won’t appear immediately preceding

or following the root, as there will be other morphemes intervening. Therefore the gram-

mars need to apply the morphemes in the correct order. However, in many languages some

morphemes are optional while others are obligatory. In order to accurately model the order

in which morphemes appear, the system needs to be able to account for morpheme option-

ality. In the Zulu example, the object concord attaches directly to the verb, but is optional.

The tense marker attaches to the object concord if it is present, but will attach directly to

the verb if the object concord has been omitted, or if the verbis intransitive. The system

must allow the tense marker to attach in either position.

Other issues arise regarding restrictions and dependencies between various morphemes.

This does not come up in the Zulu example, but it was an issue inanother test language,

Slave (Na-Dene). For example, in Slave, there is one morpheme slot indicating that the

subject is plural and a separate, non-consecutive slot indicating that the subject is dual.

Both affixes cannot occur in the same word. Since the Matrix applies morphological rules

consecutively, each morpheme can only “see” the rule that applied immediately before it. I

need to create a way to keep track of non-consecutive requirements, and expose the relevant

25

information to the rules that need it. So, in the Slave example, there needs to be a way for

the dual marker rule to tell whether or not the plural marker has already applied, even if

subsequent morphemes have been added after the plural marker. While these restrictions

could be caught and rejected by, for example, an XFST system doing morphophonological

processing over the output of generation. However, the efficiency of the whole system is

improved if these restrictions are modeled in the grammars,so that it is not wasting time

on constructions known to be ungrammatical.

I also want to be able to represent zero morphemes, without necessarily forcing the

user to explicitly represent them in the orthographic form.That is, I want to provide the

option of having a rule apply without modifying the surface string, as opposed to having the

orthographic form of a an affix be, for example, ‘-Ø’. This is especially useful to complete

paradigms where one element does not have an overt phonological representation.

3.1.3 Summary

My goal is to create a system that allows a user to customize aninfrastructure of morpho-

logical rules, as part of a multilingual grammar development tool. This system should tie

into the larger tool’s syntactic analyses, where possible.Where there is not an analysis pro-

vided, the system should build a skeleton rule structure to provide a framework for the user

to continue the development of their grammar. This skeletonrule structure should be able

to capture the morphotactics of the language, which means accounting for rule ordering,

rule optionality, and co-occurrence restrictions.

3.2 Customization Page

As discussed in§2.1.3, the user interface for the customization system is a website known

as the customization page. The format of this page is a questionnaire. Options are currently

26

input in one of three ways: by marking an option by clicking a check box or radio button;

by selecting an option from a drop down menu, or by inputting text into a text field (for

providing orthographic forms). These selections are then used to create the choices file.

This system will need to be updated to accommodate the morphological interface. I have

chosen here to focus on the back-end issues of the choices fileformat and customization

script, and leave the user interface for future work. This decision meant I needed to create

the choices files discussed in the next section and shown in Appendix A by hand.

However, it is important within this project to keep in mind that the customization page

is still the starting point for the customization system. Assuch, the morphotactics system

is somewhat constrained by the information available. For example, the parts of speech

provided in the lexicon consist of nouns, verbs, and determiners. Consequently, the system

presented here is only designed to handle these sorts of lexical items. It should be trivial to

add further lexical types, but types such as adjectives werenot explicitly handled or tested.

3.3 Choices File

The choices file is output of the customization page and inputto the script that produces

the starter grammars. While the user interface for the morphotactics system is yet to be

developed, it is still necessary to design a specification for the choices file format. I first

need to identify what information needs to be encoded by the choices file.

It is useful in this case to divide the information into two basic types: paradigm in-

formation and meta-paradigm information. A paradigm in this context can be thought of

as an affix “slot” or position. A paradigm may have many possible values. For example,

a paradigm indicating number could have values such as singular, dual, or plural. Other

affixes, such as question or negation markers, often only have one possible value, but I still

refer to them as paradigms in this context. In the choices file, I need to encode 1) a name

27

for the paradigm (e.g. “noun class” in the Zulu example) 2) ifthere is only one possible

value, what its orthographic form is, and 3) if there are multiple paradigm-internal values,

labels for those values (e.g. the list of noun classes in Zulu) and their orthographic forms.

Meta-paradigm information covers how this paradigm behaves with regards to other

affixes and the root. In particular we need to encode 1) if thisaffix is a prefix or a suffix,

2) where this paradigm can attach (e.g. Zulu’s tense marker can attach to the verb or the

object concord), 3) if it is optional or not, and 4) any co-occurrence restrictions (i.e. any

morpheme paradigms that must or cannot co-occur with morphemes in the paradigm in

question).

3.4 Customization Script

The customization script takes the choices file and uses the information encoded to produce

lexical rules. In particular, it needs to take the information about where each morpheme can

attach and create a structure of rules that feed into each other in the correct order. Two more

specific goals include designating the input and output of a rule as a lexeme or a word, and

keeping track of co-occurrence restrictions.

3.4.1 Lexeme or Word

Within the Matrix, lexical entries and the products of lexical rules can be eitherlexemesor

words. Essentially, a word is well-formed and can be the daughter of a phrase structure rule.

A lexeme is not yet sufficiently well-formed and requires additional information (added via

lexical rules) before it can interact with phrase structurerules. Words and lexemes are dis-

tinguished by a boolean feature.4 Each rule needs to be designated as a lexeme-to-word

(ltow) rule, a lexeme-to-lexeme (ltol) rule, or a word-to-lexeme (wtol) rule. This designa-

4[INFLECTED +] for words, [INFLECTED -] for lexemes

28

tion specifies whether, after the application of this rule, the lexical item changes status as

to whether it is a well-formed word, or if it requires more inflection to be grammatical. A

ltol rule (despite its name) is one whose status does not change between the input and the

output. Here is the Zulu example from above:

(5) umu-ntwana u-zo-bon-a in-yoka

C1- child SC1- FUT- see -FV C9- snake

‘The child will see the snake’

The lexical entry forbon “see” is not a well-formed word. The first morpheme to be

applied is the tense marker, in this case the future tense markerzo-. However, applying this

morpheme does not make the verb well-formed. Because the status didn’t change, the rule

applying the tense marker is ltol. Ltol rules also include additional morphemes attached

to well-formed words. For example, if an additional negation marker is added to the well-

formedu- zo- bon -a, the input and output are both well-formed words, which makes the

negation rule a ltol rule.

The type word-to-word does not exist, as it is functionally the same as lexeme-to-

lexeme. In both cases, the word vs. lexeme status is the same in the mother and the daughter.

It would be unnecessarily redundant to create one rule type where the input and output were

both words, and another where they were both lexemes.

A ltow rule takes a not-fully-formed lexeme as input, and outputs a well-formed word.

These are generally identified as the last non-optional morpheme to be applied, but may

also be created in conjunction with a wtol rule; see below. Inthe analysis used in the Zulu

grammar, the last non-optional rule for the verb is the final vowel. After the final vowel

is applied, the verb is considered a well-formed word by the grammar, and can be used in

larger syntactic constructions.

29

Wtol rules take well-formed words and output lexemes that require more inflection to

become well-formed again. They did not exist in the Matrix prior to this project; I found

them to be necessary for encoding co-occurrence phenomena,as described below. For wtol

rules, three conditions need to be true: 1) The rule is itselfoptional. 2) the lexical item

it attaches to is already considered well-formed by the grammar (either the lexical entry

is a well-formed word on its own, or a ltow rule has previouslyapplied). 3) The choices

file specifies that if this rule applies, another, subsequentrule must also apply in order for

the word to be well-formed. For example, in Slave, the lexical entries are generally well-

formed words before the application of any lexical rules. Most lexical rules are therefore

ltol rules, as both the input and output are well-formed. However, after the application of

an incorporated postposition, the word is no longer well-formed until the application of an

affix marking the object of the incorporated postposition.

(6) be-keh-na-be-ne-w-n-h-tah

3SG-into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot

‘I kick him/her into it (e.g. hole).’

Affixes are applied one at a time starting from the root. In this example, the first affix

applied would be the first person singular markerh-, followed by the perfective marker, and

so on. Until the incorporated postpositionkeh- ‘into’ is applied, the word is well-formed

both before and after the application of each affix. However,if an incorporated postposition

is added, it must be be accompanied by a pronominal affix corresponding to its object.

Because the affixes are applied from the root out, the object (in this case the third person

singular markerbe-) is applied after the incorporated postposition. If just the postposition is

applied, without being followed by its object, the word is nolonger well-formed. Therefore,

the incorporated postposition rule needs to be a wtol rule: the output of the rule is marked

30

as a lexeme and a subsequent ltow rule must apply to make the word well-formed again. In

this case, the postpositional object marker would be the corresponding ltow rule.

3.4.2 Co-occurrence Restrictions

There are three types of co-occurence restrictions I wish tocover: 1) Affixes that can only

apply if a another affix has not applied. I previously mentioned a Slave example where a

plural marker cannot occur if a separate dual marker has already applied. 2) Affixes that

can only occur if another affix has already applied. In the discussion of word-to-lexeme

rules above, I mentioned an incorporated postposition and its object. In this case, the object

cannot apply if the postposition has not occurred. 3) Affixesthat, if they appear, force a

subsequent morpheme to appear. This is the case with the incorporated postposition in the

Slave example. If it occurs, its object must also occur. There needs to be special handling of

these cases, because these morphemes can be otherwise optional. That is, none of them are

needed to create a well-formed word, but the appearance of one can govern the appearance

of others.

The difficulty in our situation is that many of these rules will not have any syntactic or

semantic content in the grammar as output by the customization system. While I do not

intend to look inside paradigms, it is useful for the grammarengineer to be able to account

for restrictions over entire paradigms. However, since these rules are not necessarily con-

secutive, I need to provide a way for the system to keep track of which rules have already

applied. In addition, some morphemes can be thematic: required by the syntax but not ac-

tually adding any syntactic and semantic content of their own. In Slave many of the verbs

have discontinuous stems: in addition to the root word, the stem must have a one or more

thematic prefixes that are either meaningless or have becomeabstracted from the original

meaning and are now simply required by the stem. However, other prefixes can occur be-

31

tween the thematic affixes. For example:

(7) go-Ø-deeh

THM-VERB.PREFIX-talk

‘talk’

(8) textitgo-h-Ø-deeh

THM-1SG-VERB.PREFIX-talk

‘I talk’

The verb prefix is required by all verb roots and can be treatedas part of the lexical

entry. The thematic prefix textitgo- is required by the lexical entry, but other affixes, such

as the subject marker in (8), can intervene between the verb root and the thematic affixes.

I did not explicitly handle this phenomenon in my system, as it is lexically defined and not

inflectional morphology per se, the machinery for tracking co-occurrence restrictions could

also be leveraged to track the occurrence of these semantical empty prefixes in the future.

3.4.3 Summary

The customization script produces lexical rules based on the user’s selections in the choices

file. At a minimum the implementation should include a means of setting rule types and

daughter values such that the rules can apply in the correct order. Two challenges I wish to

address in the system are identifying which rules change thestatus of a lexeme to a word

(or vice versa), and keeping track of co-occurence restrictions between non-consecutive

morphemes.

32

3.5 Summary

The customization system consists of the customization page, the choices file, and the cus-

tomization script. The design goals for the morphological customization are strictly back-

end, so the customization page is currently unmodified. The choices file needs to define

new types and structure to encode relevant information regarding the content of morpho-

logical paradigms, as well as meta-paradigm information regarding the morphotactics. The

customization script needs to create lexical rules that apply in the right order based on the

choices file. Additional goals for customization include identifying whether or not the rule

changes the status between lexemes and words, and tracking co-occurence constraints.

33

Chapter 4

IMPLEMENTATION

In this section, I present how I met the design goals laid out in Chapter 3.§4.1 describes

the choices file format.§4.2 covers the changes to the customization system, by providing

an overview of the algorithm followed by more in-depth presentation of each of the design

goals of creating intermediate rules, identifying rules asinflecting or constant, identifying

lexeme-to-lexeme, lexeme-to-word, and word-to-lexeme rules, and tracking co-occurrence

restrictions.

4.1 Choices File

The design goals for the choices file are to encode certain information about the content of

the paradigm, and meta-paradigm information necessary to model the morphotactics. I de-

cided to store this information in two separate sections. The first new section of the choices

file is the paradigm information, which stores the information about what a paradigm en-

codes (e.g. case), as well as the individual items within theparadigm (e.g. the specific

cases encoded in the language: nominative, accusative, dative, etc.). In the work done for

this thesis, the paradigms are not tied to specific syntacticor semantic content, and so the

paradigm elements consist solely of orthographic information. Each paradigm has the at-

tributename, the name for the general paradigm. This name is provided by the user, and

is intended as a descriptive label, as it will be used as the name for the paradigm supertype

rule in the grammar. If there is only one value in this “paradigm” (e.g. a question marker

that is either present or absent, but has only one form), the paradigm has an attributeorth,

34

the value of which is the orthographic form for the morpheme.If there are multiple val-

ues possible, these are stored in the iterable attributeaff, each of which contains its own

name (again a descriptive label to be used as the rule name) andorth values. Here is an

example from the choices file for Slave:

(9) pdm2 name=subject

pdm2 aff1 name=1SG

pdm2 aff1 orth=h-

pdm2 aff2 name=1PL

pdm2 aff2 orth=id-

...

pdm16 name=negation

pdm16 orth=du-

pdm2 is the paradigm for subject agreement marking, and is given the descriptive name

“subject”. There are many values in this paradigm; I have included here the affixes for first

person singular and first person plural subjects.pdm16, the negation marker, contains one

element. Therefore it has no iterableaff values and instead has its ownorth value.

Some elements of a paradigm may not have an overt orthographic (or phonological)

form, but still add syntactic information as part of the paradigm. In this case, the ortho-

graphic form is specified as ‘NONE’, which allows the customization script to create a

non-inflecting lexical rule.

The second new section is meta-paradigm information, that is, information govern-

ing the morphotactics of an entire paradigm. Each meta-paradigm (labeledmorph in the

example below) is associated with a series of attributes, whose values contain information

needed to construct the lexical rules. Mandatory attributes aretype, which specifies which

paradigm this morph is associated with (e.g.type=pdm2 in the same Slave choices file

35

shown in (7) indicates the meta-paradigm information corresponds to the subject marker

paradigm),aff, marking whether this morpheme is a prefix or a suffix (not to becon-

fused with the paradigm attributeaff), andopt, which indicates whether this morpheme

is mandatory or optional. The attributedtr corresponds to the lexical rule or lexical type

that can serve as input to this rule. Any number of daughters can be listed, but if the possible

daughters are due solely to those morphemes being optional,only the outermost possible

daughter needs to be listed. Example (8) is a segment of the Zulu choices file.pdm3 marks

the object concord, which can attach to transitive verbs (asintransitives will not have an

object to mark), andpdm4 is the tense marker which can attach to either an intransitive

verb or to the object concord. The object concord is optional, and so the tense marker can

also attach directly to transitive verbs, but the customization script is designed to discover

and account for this optionality (See§4.2).

(10) morph2 type=pdm3

morph2 aff=prefix

morph2 opt=yes

morph2 dtr1 type=tverb

morph3 type=pdm4

morph3 aff=prefix

morph3 opt=no

morph3 dtr1 type=iverb

morph3 dtr2 type=morph2

Optional leaf values not illustrated here includeforces, which indicates that a sub-

sequent rule must be applied if this rule applies,req which indicates that this rule can

only apply if a previous, non-consecutive rule has already applied, anddisreq, which

indicates that this rule can only apply if a previous, non-consecutive rule has not applied.

36

4.1.1 Summary

The choices file needs to encode the information about inflectional paradigms and their

morphotactics in attribute-value pairs, for use by the customization script. For the paradigm

information, I create a series of embedded values containing labels for the overall paradigm,

and the labels and orthographic forms for affixes contained in this paradigm. For the meta-

paradigm (morphotactic) information I create a series of attributes encoding the optionality,

affix type, daughters, and co-occurrence restrictions associated with a particular paradigm.

4.2 Customization Script

Once the choices file is complete, it can be processed by the customization script. In this

section I will look at an overview of the general algorithm used to create the morphological

rules, followed by discussion of how various design goals were implemented in the system.

4.2.1 Algorithm Overview

To implement the morphological infrastructure, I needed towrite additional functions for

the customization script to handle the updated choices file information. Here I discuss

the main algorithm for creating morphological rules,CUSTOMIZE INFLECTION(), and the

functionFIND DAUGHTERTYPE(). Pseudocode for the main algorithmCUSTOMIZE INFLECTION()

is given in (11) and forFIND DAUGHTERTYPE() in (12). Additional functions are discussed

in the subsequent sections, as laid out below. Some helper functions, for example one that

finds what lexical types serve as the roots that an affix indirectly attaches to, are not shown.

The basic algorithm is simply a while loop over themorph entries in the choices file.

Assuming a well-formed choices file, the algorithm will continue iterating over themorph

entries, and terminate when there are no more.

The rule’s DTR value is set by the functionFIND DAUGHTERTYPE(), discussed below.

37

(11) 1 function CUSTOMIZE INFLECTION():
tracks← []
while CHOICES.HAS MORE MORPHS():

morph← CHOICES.GET NEXT MORPH()
5 basetypes← FIND BASETYPES(morph)

daughtertype← FIND DAUGHTERTYPE(morph, basetypes)
ruletype← FIND RULETYPE(morph, basetypes)
rulename← CHOICES.GET NAME(CHOICES.GET PARADIGM(morph)) +

‘-lex rule’
10 CREATE BASIC RULE TYPE(morph, basetypes, daughtertype,

ruletype, rulename)
CREATE RULE SUBTYPES(CHOICES.GET PARADIGM(morph), rulename)
tracks.APPEND(CREATE TRACK FEATURES(morph, basetypes))

if tracks:
ADD SINGLE TRACKS(tracks)

15 COPY ALL TRACKS(tracks)

I then check to see if this rule is a lexeme-to-lexeme, lexeme-to-word, or word-to-lexeme

rule in the functionFIND RULETYPE() (15), described in§4.2.3. These types cross-classify

with constant and inflecting lexical rules. Assignment of inflecting vs constant and the

creation of the rule type definitions occurs inCREATE BASIC RULE TYPE() (16) andCRE-

ATE RULE SUBTYPES() (19), which are discussed further in§4.2.4.

If the choices file indicates areq, disreq, and/orforces value, that information is

recorded byCREATE TRACK FEATURES() (20) until all the morphemes have been iterated

over. Once all the rules have been created, values for the complex feature TRACK are added

if necessary inADD SINGLE TRACKS() (21) or the TRACK feature is copied up wholesale

in COPY ALL TRACKS() (22). Discussion of TRACK features and co-occurrence restric-

tions appears in§4.2.5

The first function called isFIND DAUGHTERTYPE() (12). The lexical rule being created

will have a feature DTR, with the value set as the rule type that can serve as input to this rule.

38

(12) 1 function FIND DAUGHTERTYPE(morph, basetypes):
if NUM DAUGHTERS(morph) == 1:

daughter← CHOICES.GET NEXT DAUGHTER(morph)
if daughteris a lexical type:

5 daughtertype← daughter
else:

if CHOICES.GET OPT(morph) == yes:
nonopt, daughtertype← INTERMEDIATE RULE(morph, basetypes):
if nonopt== False:

10 for type in basetypes:
GRAMMAR.ADD(bt + ‘:=’ + daughtertype)

else:
daughtertype← CHOICES.GET NAME(CHOICES.GET PARADIGM(

morph))
else:

15 nonopt, daughtertype← INTERMEDIATE RULE(morph, basetypes):
if nonopt== False:

for type in basetypes:
GRAMMAR.ADD(bt + ‘:=’ + daughtertype)

return daughtertype

FIND DAUGHTERTYPE() (12) determines what this value is. If the choices file specifies one

daughter (line 2), and that daughter is non-optional (line 13) or a lexical type (line 4), then

the daughter’s type is designated as the DTR value. If the single daughter is optional (line

7) or if multiple daughters are listed (line 14), then it is necessary to create an intermediate

type that all possible daughters can inherit from. The function INTERMEDIATE RULE() is

shown in (13) and discussed in§4.2.2.

4.2.2 Intermediate Rule Types

The Matrix only allows one daughter value to be listed for each rule. If there is only

one daughter listed in the choices file, and it is either a roottype (e.g. noun) or a non-

optional inflectional rule, then that is the only possible daughter. If there are multiple

39

daughters listed, or the single listed daughter is optional, then I need to provide a way

to designate all these daughters as being of a single type. This is accomplished through

multiple inheritance. The system creates an intermediate type in the hierarchy and have

all the possible daughters inherit from this type. That typeis then designated as single

daughter value for the rule in question. When creating intermediate rules for daughters that

are optional, the script traverses the tree of possible ruleorderings recursively, based on the

choices file. The daughters and the daughters’ daughters allinherit from the intermediate

type, stopping after reaching a root or non-optional morpheme. This feature allows the user

to only specify the outermost position where the meta-paradigm in question can appear,

and not have to explicitly list all the possible morphemes itcan appear next to once rule

optionality is accounted for. Pseudocode forINTERMEDIATE RULE() appears in (13).

For an example, I return to the optionality of the object concord in Zulu. The outermost

affix the tense marker can attach to is the object concord. However, the object concord is

optional, and does not apply at all in the case of intransitive verbs. Therefore, the rule needs

to specify that the daughter can be either the object agreement (OC for object concord) or

a verb root. To illustrate how this function works, I will walk through an example using the

choices file fragment from example (8), beginning withmorph3.

When the function first gets called, it is called with the arguments(morph3, dtr=null,

depth=0). Since thedtr value is null, the first step is to create a dtr type (lines 2-5). The

function CHOICES.GET NAME() takes the morph, looks at its associated paradigm value,

then looks at that paradigm and returns the top-level name. In this case the name is ‘tense’

(This is not shown in the choices file fragment, but can be seenin the full choices file in the

appendix.) The algorithm creates a type calledtense-rule-dtr.

morph3 is not a lexical type (line 6), so the function moves on to lookat the daughters

(line 11).morph3 has twodtr values:iverb andmorph2. iverb is a lexical type, so

40

(13) 1function INTERMEDIATE RULE(morph, basetypes,
dtr=null, depth=0, nonopt=false):

if not dtr:
name← CHOICES.GET NAME(CHOICES.GET PARADIGM(morph))
dtr← name+ ‘-rule-dtr’

5 GRAMMAR.ADD(dtr + ‘:= word-or-lexrule’)
if morph is a lexical type:

return nonopt, dtr
if (depth>0) and CHOICES.GET OPT(morph) == ‘no’:

nonopt← True
10 return nonopt, dtr

while CHOICES.HAS MORE DAUGHTERS(morph):
daughter← CHOICES.GET NEXT DAUGHTER(morph)
if daughternot in basetypes:

GRAMMAR.ADD(daughter+ ‘-lex-rule := ’ + dtr)
15 if CHOICES.GET OPT(daughter) == ‘yes’:

while CHOICES.HAS MORE DAUGHTERS(daughter):
granddaughter← CHOICES.GET NEXT DAUGHTER(daughter)
if granddaughternot in basetypes:

nonopt, dtr← INTERMEDIATE RULE(granddaughter,
basetypes, dtr,depth+1)

20 return nonopt, dtr

it has no daughters to check. It will also need to inherit fromthe intermediate type eventu-

ally, but it is added outside of this function.morph2 is not a lexical type, so its lexical rule

needs to inherit from thedtr type (line 14). Lexical rule names always take the form of the

paradigm name plus ‘-lex-rule’. In this casemorph2’s rule isoc-lex-rule, which is

then set as inheriting fromtense-rule-dtr. Sincemorph2 is optional, the next step

is to look atmorph2’s daughters (lines 14-15), which in this case is just a transitive verb.

This is a root type, so no recursion occurs (line 16). The function returns thedtr value (in

this casetense-rule-dtr) as well as whether the last daughter it looked at was optional

or not (line 20). Notice that once thedtr is created, it is not changed. When the recursion

41

occurs, its goal is to have each of the intervening rules inherit from the intermediate type.

In the functionFIND DAUGHTERTYPE() (12), each lexical type that is the root type that

morph3 attaches to (directly or indirectly) is set as inheriting from tense-rule-dtr

as well. This is not done within the intermediate types algorithm, because we want to

put the constraint at the highest level possible. In this Zulu example, the intermediate

types algorithm saw that the tense affix can attach to intransitive verbs and transitive verbs.

However, both of these types inherit from the typeverb-lex, so I makeverb-lex

inherit from tense-rule-dtr, and both transitive and intransitive verbs will inherit

this type from the supertype. Similarly, all the particularobject concord rule types inherit

from oc-lex-rule, and therefore also inherit the typetense-rule-dtr from their

mother. Here is what the type hierarchy then looks like:1

(14) tense-rule-dtrhhhhhhhhhh

((((((((((
verb-lex
XXXXXX
������

intransitive-verb-lex transitive-verb-lex

oc-lex-rule``````@@

oc1-lex-rule oc9-lex-rule . . .

4.2.3 Word vs. Lexeme

As previously discussed, a “word” in the context of Matrix grammars is a lexical entry or

lexical rule instance that has received all the inflection itneeds to serve as the daughter

of a phrase structure rule. This status is indicated by the feature INFLECTED. This value

can change between the daughter and the mother, or remain thesame. Lexeme-to-word

rules are identified by being the outermost non-optional rule. Pseudocode for the function

FIND RULETYPE() appears in (15). As each affix is being processed, I search the choices

file for rules that this rule can serve as the daughter to. If itcan be the daughter of another

1See Appendix C for a tree of the full rule hierarchy for Zulu

42

(15) 1 function FIND RULETYPE(morph, basetypes):
if CHOICES.GET OPT(morph) == ‘no’ and

IS LAST NONOPT(morph) == yes:
return ‘lexeme-to-word’

else if CHOICES.GET OPT(morph) == ‘yes’ or
IS LAST NONOPT(morph) == yes:

5 return ‘word-to-lexeme’
else if IS FORCED(morph):

return ‘lexeme-to-word’
else:

return ‘lexeme-to-lexeme’

non-optional rule, then it is not a lexeme to word rule. If it is non-optional but it can

be the daughter of an optional rule, I recursively search thechoices files to see if there

is another non-optional rule that can occur after this one. (This occurs in the function

IS LAST NONOPT()). If this rule is non-optional and there are no non-optional rules that

could follow this one or if this rule cannot be the daughter ofanother rule, then it is a

lexeme-to-word rule (lines 2-3). It may also be a lexeme-to-word rule if this rule is listed

as theforces value of another morpheme in the choices file, if that morpheme is a word-

to-lexeme rule (lines 6-7). The rule is a word-to-lexeme rule if it cannot be followed by

a non-optional rule, but it has designated aforces value in the choices file (lines 4-5).

If none of the conditions described in this paragraph apply,the rule is a lexeme-to-lexeme

rule (lines 8-9). Because this is an if-else structure, one of these options is always selected.

4.2.4 Inflecting vs. Constant Rules

The other piece of information needed to create a new rule is whether this rule is an in-

flecting rule or a constant rule. Inflecting rules add or modify orthographic material, while

constant rules leave the orthography unchanged between input and output. The inflecting vs

43

constant distinction introduces a different sort of complication than determining the daugh-

ter value or if this is a ltow, wtol, or ltow, because it involves knowledge about the paradigm

itself. As mentioned above, some paradigms have a single possible value, while others have

a range of values. The way this is specified in the grammar is tohave a parent rule type

for the paradigm as a whole, and the individual values inherit from that type. So if there

is an inflectional paradigm that specifies tense, there wouldbe a supertype type containing

all the rule information common to all the tense rules, and then individual subtype rules for

the specific paradigm values, e.g. past or non-past. If this paradigm has rule subtypes, it

is these subtypes that would specify the orthographic form (or lack thereof) rather than the

supertype. Since I want to push as much information onto the supertype as possible, the

system determines whether the subtypes are all inflectionalrules, or a mix of constant and

inflectional rules.2 If the subtypes are all inflectional, the supertype can be defined as an

inflectional rule type. Note that this does not make the supertype itself a valid inflectional

rule, and it will not have an associated spelling-change rule instance.

In CREATE BASIC RULE TYPE() (16), the sole rule or supertype rule is created. If this

paradigm has an orth value of ‘NONE’ either on the top-level paradigm or in one of the

subtypes, there has to be a constant-lex-rule (HAS CONSTANT RULE() (line 2)). If there

are subtype rules (line 3), then there must also be inflectional subtype rules, because I

am assuming there is not a paradigm containing multiple constant rules. The parent type

therefore can’t specify whether the rule is inflecting or constant, and so in line 4, the first

rule definition is created, with the rule type inheriting from the ltow, wtol, or ltol type, as

was determined byFIND RULETYPE(). If there are no subtypes, then the rule definition

2I assume that a paradigm with multiple values would not contain only constant rules. Such a grammar
could be constructed in this framework, but each rule subtype would be individually designated as constant,
rather than pushing this constraint onto the supertype.

44

(16) 1 function CREATE BASIC RULE TYPE(morph, basetypes, daughtertype,
ruletype, rulename):

if HAS CONSTANT RULE(CHOICES.GET PARADIGM(morph)):
if CHOICES.GET ORTH(CHOICES.GET PARADIGM(morph)) != ‘NONE’:

GRAMMAR.ADD(rulename+ ‘:=’ + ruletype)
5 else:

GRAMMAR.ADD(rulename+ ‘:=’ + ruletype+ ‘& constant-lex-rule’)
LRULES.ADD(rulename)

else:
GRAMMAR.ADD(rulename+ ‘:=’ + ruletype+ ‘& inflecting-lex-rule’)

10 GRAMMAR.ADD(rulename+ ‘:= [DTR ’+ daughtertype+ ‘]’)
if ruletype== ‘lexeme-to-word’:

for basetypein basetypes:
GRAMMAR.ADD(basetype+ ‘:= [INFLECTED -]’)

if LENGTH.(basetypes) == 1 and CHOICES.NUM FORCES(basetype[0]) == 1:
15 GRAMMAR.ADD(rulename+ ‘:= [INFLECTED -]’)

can also inherit from constant-lex-rule (line 6).3 A rule instance inheriting from this type

is added to the list of constant lexical rules (line 7). If there are no constant rules, then the

whole paradigm must be inflecting. At this point we can have this lexical rule inherit from

inflecting-lex-rule (lines 8-9). In the Zulu tense example, the rule at this pointis:

(17) tense-lex-rule := lexeme-to-lexeme-rule.

Once the basic rule definition is created, we can add things toit. There customization

system includes helper functions for adding new rules and extending rule definitions. After

the initial rule name and inheritance is defined, we can add some further constraints on

the feature structure, including the daughter value as defined earlier. So, in the Zulu tense

example, the rule definition ends up as:

3These types are cross-classified in the actual grammar, making e.g.constant-ltow-rule, but I did
not include this in the pseudocode

45

(18) tense-lex-rule := lexeme-to-lexeme-rule &
[DTR tense-rule-dtr].

(19) 1 function CREATE RULE SUBTYPES(pdm, rulename):
if CHOICES.HAS MORE AFFS(pdm):

whileCHOICES.HAS MORE AFFS(pdm):
aff ← CHOICES.GET NEXT AFF(pdm)

5 affrulename← CHOICES.GET NAME(aff) + ‘-lex-rule’
if CHOICES.GET ORTH(aff) == ‘NONE’:

GRAMMAR.ADD(affrulename+ ‘:=’ + rulename+
‘& constant-lex-rule’)

LRULES.ADD(affrulename)
10 else:

if HAS CONSTANT RULE(pdm):
GRAMMAR.ADD(affrulename+ ‘:=’ + rulename+

‘& inflecting-lex-rule’)
else:

15 GRAMMAR.ADD(rulename+ ‘:=’ + rulename)
IRULES.ADD(affrulename, CHOICES.GET ORTH(aff))

else:
if CHOICES.GET ORTH(pdm) != ‘NONE’:

IRULES.ADD(rulename, CHOICES.GET ORTH(pdm))

In CREATE RULE SUBTYPES() (19), this process is essentially repeated for each of the

subtype affixes, if any. After the creation of each rule, it isadded to the appropriate list of

rule instances, as discussed in§2.1.2.

4.2.5 Tracking co-occurrence constraints

If the choices file indicates that this rule must or cannot co-occur with another rule, I need

a way to check if the required (or disallowed) rule has already applied. Rules can only

see the rule that previously applied, as the type of their daughter value. To solve this

problem, I create the complex feature TRACK, and add it to thelexical rule type definitions

46

if necessary for the language. The TRACK feature, if required, is added as a top-level

feature to the type word-or-lexrule. Each rule that is addedgets a feature within the track

feature that is named after the rule name.

(20) 1 function CREATE TRACK FEATURES(morph, basetypes):
tracks← []
while CHOICES.HAS MORE FORCES(morph):

forces← CHOICES.GET FORCES(morph)
5 trackfeature← CHOICES.GET NAME(CHOICES.GET PARADIGM(forces))

for basetypein basetypes:
GRAMMAR.ADD(basetype+ ‘:= [TRACK.f-’ + trackfeature+ ‘ −]’)

while CHOICES.HAS MORE REQS(morph):
reqs← CHOICES.GET REQS(morph)

10 trackfeature← CHOICES.GET NAME(CHOICES.GET PARADIGM(reqs))
for basetypein basetypes:

GRAMMAR.ADD(basetype+ ‘:= [TRACK.r-’ + trackfeature+ ‘ −]’)
tracks.APPEND(morph)

while CHOICES.HAS MORE DISREQS(morph):
15 disreqs← CHOICES.GET DISREQS(morph)

trackfeature← CHOICES.GET NAME(CHOICES.GET PARADIGM(disreqs))
for basetypein basetypes:

GRAMMAR.ADD(basetype+ ‘:= [TRACK.d-’ + trackfeature+ ‘ +]’)
tracks.APPEND(morph)

20 return tracks

As I iterate over each morpheme, I callCREATE TRACK FEATURES() (20) to see if

this morpheme has anyreq, disreq, or forces values specified in the choices file. If

so, I add the TRACK feature to the definition of the lexical types that this rule ultimately

attaches to (lines 6-7, 11-12, 17-18). The value of TRACK is itself a bundle of features: the

features are the names of lexical rules, and the values are boolean values indicating whether

that rule is valid to apply or not.

After iterating over all the morphemes, I then add the TRACK feature to the lexical

47

(21) 1functionADD SINGLE TRACKS(tracks):
for track in tracks:

mother← CHOICES.GET NAME(CHOICES.GET PARADIGM(track))
while CHOICES.HAS MORE MORPHS():

5 morph← CHOICES.GET NEXT MORPH()
daughter← CHOICES.GET NAME(CHOICES.GET PARADIGM(morph))
if CHOICES.FORCED BY(track, morph):

GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.f-’ + mother+ ‘−]’)
GRAMMAR.ADD(daughter+ ‘-lex-rule := [TRACK.f-’ + mother+ ‘+]’)

10 GRAMMAR.ADD(daughter+ ‘-lex-rule := [DTR.TRACK.f-’ + mother+ ‘ −]’)
else if morphin tracks:

GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.f-’ + mother+ ‘ #]’)
GRAMMAR.ADD(daughter+ ‘-lex-rule := [TRACK.f-’ + mother+ ‘ #]’)

if CHOICES.REQUIRED BY(track, morph):
15 GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.r-’ + mother+ ‘−]’)

GRAMMAR.ADD(mother+ ‘-lex-rule := [DTR.TRACK.r-’ + mother+ ‘ +]’)
GRAMMAR.ADD(daughter+ ‘-lex-rule := [TRACK.r-’ + mother+ ‘+]’)
GRAMMAR.ADD(daughter+ ‘-lex-rule := [DTR.TRACK.r-’ + mother+ ‘−]’)

else if morphin tracks:
20 GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.r-’ + mother+ ‘ #]’)

GRAMMAR.ADD(daughter+ ‘-lex-rule := [TRACK.r-’ + mother+ ‘ #]’)
if CHOICES.DISALLOWED BY(track, morph):

GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.d-’ + mother+ ‘−]’)
GRAMMAR.ADD(mother+ ‘-lex-rule := [DTR.TRACK.d-’ +mother+ ‘+]’)

25 GRAMMAR.ADD(daughter+ ‘-lex-rule := [TRACK.d-’ + mother+ ‘−]’)
GRAMMAR.ADD(daughter+ ‘-lex-rule := [DTR.TRACK.d-’ +mother+ ‘+]’)

else if morphin tracks:
GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.d-’ + mother+ ‘ #]’)
GRAMMAR.ADD(mother+ ‘-lex-rule := [DTR.TRACK.d-’ +mother+ ‘ #]’)

rules inADD SINGLE TRACKS() (21). Every rule that has a co-occurance restriction listed

in the choices file constrains its DTR to have the track feature corresponding to itself (that

is, the mother) to be positive, indicating that this rule canapply (lines 8, 15, 23). Every rule

that is required or disallowed by another rule toggles the TRACK feature corresponding

to the rule placing the constraint, indicating that the requirement has been fulfilled or that

48

(22) 1 function COPY ALL TRACKS(tracks)
while CHOICES.HAS MORE MORPHS():

morph← CHOICES.GET NEXT MORPH()
if morphnot in tracks:

5 rulename← CHOICES.GET NAME(CHOICES.GET PARADIGM(morph))
GRAMMAR.ADD(rulename+ ‘-lex-rule := [TRACK ‘#]’)
GRAMMAR.ADD(rulename+ ‘-lex-rule := [DTR.TRACK ‘ #]’)

the rule can no longer apply (lines 9-10, 16-18, 24-26). Then, if there are other features

being tracked that aren’t relevant to the current rule, all those features need to be explicitly

copied between the daughter and the mother, to prevent that information from being lost

(lines 11-13, 19-21, 27-29). Rules are not involved in co-occurrance restrictions (neither

placing requirements or being required) copy the entire TRACK feature up unmodified in

COPY ALL TRACKS() (22).

Here’s a sample rule from Slave. This is the incorporated postposition rule, which is

a word-to-lexeme rule. It is tracking the feature TRACK.POSTPOS-OBJECT. The other

TRACK feature number is unchanged and so copied up between the mother and the daugh-

ter:

incorp-postpos-lex-rule := word-to-lexeme-rule &
inflecting-lex-rule &
postpos-object-lex-rule-dtr &
negation-rule-dtr &

[TRACK [POSTPOS-OBJECT +,
NUMBER #track] ,

DTR incorp-postpos-rule-dtr &
[TRACK [POSTPOS-OBJECT -,

NUMBER #track]]].

The value of DTR.TRACK.POSTPOS-OBJECT is set to− because the postpositional

49

object affix could not apply to the daughter. The postpositional object affix requires that the

incorporated postposition is applied before it.4 On the rule output, the POSTPOS-OBJECT

feature is set to +, indicating that it is now able to be applied.

postpos-object-lex-rule := word-to-lexeme-rule &
inflecting-lex-rule &
negation-rule-dtr &

[TRACK [POSTPOS-OBJECT -,
NUMBER #track] ,

DTR incorp-postpos-rule-dtr &
[TRACK [POSTPOS-OBJECT +,

NUMBER #track]]].

Similarly, the postpos-object lexical rule requires that the input is DTR.TRACK.POSTPOS-

OBJECT be set to +, meaning that it can only occur if the incorporated postposition has

been applied. The output sets the feature value back to− to indicate that the requirement

has been met.

4.2.6 Summary

The customization script does the work of creating lexical rules based on the choices file. I

presented here an overview of the algorithm that builds the lexical rules. The design goals

of ordering lexical rules, identifying lexeme vs word status, and tracking co-occurance re-

strictions have all been implemented. In addition, this implementation can identify constant

vs inflecting rules and apply this information at the correctlevel in the rule hierarchy, and

create intermediate rule types where necessary to aid in rule ordering.

4These morphemes are prefixes being applied right to left, so the resulting word will have the postposition
following the postpositional object. See example (6) in§3.4.1

50

4.3 Summary

In this section, I have outlined the implementation of the morphotactic customization sys-

tem. I have implemented a new range of values in the choices file, specifying paradigm

information and meta-paradigm information needed to definea system of lexical rule types.

I then updated our customization script to process the new choices file, creating a skeleton

structure of lexical rules and type hierarchy.

51

Chapter 5

EVALUATION

The goal of this work is to create a system that will work for any natural language.

With this goal in mind, the system is developed by iteratively creating test suites for a

series of typologically and genetically diverse languages, and modifying the choices file

specifications and the customization script to cover any phenomena necessary to accurately

parse all the languages covered up to that point. I evaluate the system by measuring the

system performance on each test suite, as well as the amount of work necessary to bring

the new system up to 100% on each successive language. The languages used for testing

were Zulu, Slave, Finnish, and Uzbek. These languages are typologically diverse, and come

from different language families (Niger-Congo, Na-Dene, Uralic and Altaic, respectively)

but each is morphologically complex. I was able to obtain 100% coverage across these

language for the phenomena I was addressing. In fact, after reaching 100% on the first

three languages, no additional modification was necessary to get 100% on the Uzbek test

suite.

5.1 Languages Used

5.1.1 Zulu

Zulu is Bantu language mainly spoken in South Africa. Bantu languages are distinctive for

having a large variety of noun classes. These classes are equivalent to grammatical gender,

but rather than two or three genders as is typical, Zulu has about 15 noun classes. In my

Zulu grammar, nouns inflect to show their noun class, and verbs can inflect to show tense,

52

negation, and agreement with the noun class of the subject and object. There is also final

suffix that can take various values that contribute some syntactic features, but also has a

default value if no special cases apply. The Zulu morphological information was derived

from Nyembezi and Doke 1979 and Poulos and Bosch 1997.

5.1.2 Slave

Slave is an Athabaskan language spoken in western Canada. This language was selected

precisely because of its wide array of inflectional morphology. There are 16 affix types

that can attach to a verb, with some affix types able to appear more than once. While I do

not claim a native speaker would accept this particular sample, here is one test suite item I

constructed, based on Rice’s (1989) descriptive grammar:

(23) du-be-keh-na-ya-dlo-leh-ele-ne-i-w-n-id-d-tah

NEG-3SG-into-THM-DISTR-laugh-DU-RECP-THM-SER-wCONJ-PFV-1DU-RECP-

move.foot

‘We two didn’t kick each other into it (e.g. a hole) repeatedly while laughing.’

5.1.3 Finnish

Finnish is a Uralic language spoken mainly in Finland. WhileFinnish does have extensive

derivational morphology, I chose here to focus on the inflectional morphology. Nouns are

marked for number, case, possession, and can also take a variety of particles that mark ques-

tions or emphasis. Verbal inflection consists of person/number agreement with the subject,

tense and mood markers and a passive or indefinite marker. Verbs can also take a number

of the same particles that apply to the nouns. I based this test suite on the description in

Karlsson 1983.

53

5.1.4 Uzbek

Uzbek is an Altaic language spoken mainly in Uzbekistan. Thetest suite I created was

guided by the description in Sjoberg 1963. The inflectional morphology I concentrated

on was plural marking, possession, and case for the nouns, and negation, two levels of

tense/aspect/modality (TAM) marking, person and number agreement, and question mark-

ing for verbs. Uzbek has a complex system of agreement between the TAM markers and

the surface forms of the person/number markers. There are 4 series of subject markers that

vary in form based on which TAM marker is used. For example:

(24) kel-gan-miz

come-PST.PRF-1PL

‘We came, we have come.’

(25) kel-di-k

come-PRET-1PL

‘We came.’

In (13), the TAM marker is past perfect, while in (14) it is preterite. Each of these tenses

chooses from a different set of person/number markers. Thisprovides a good example

of the differentiation between morphophonology and morphosyntax. The variation is in

the surface form only; while it would be possible to model this distinction in the syntax

(i.e. have the verb choose the person marker based on the TAM marker), there is not a

meaning difference between the person/number markers in the two examples. For present

purposes, I chose to handle them on the string level, workingwith morpheme glosses rather

than creating rules pairing sets of person+number markers with particular combinations

of tense/aspect/modality markers. This allows the constructed words to be linguistically

54

accurate without building excessive complication into thegrammar. The differentiation

could still be made later, once the rules have access to the necessary syntactic information.

5.2 Test Suite Design

For each language, I designed a test suite of grammatical andungrammatical items to il-

lustrate the interesting morphotactic phenomena for that language. For Zulu, Finnish, and

Uzbek, test suites had previously been developed in conjunction with more extensive gram-

mars.1 These test suites were more extensive both in phenomena covered and vocabulary

used than the testsuites required for our purposes, but theywere useful as a starting point

and reference. The Slave test suite was built from scratch. All the test suites have been

regularized for morphophonology, in some cases going so faras to use morpheme glosses.

Vocabulary was limited to that which could be input on the customization page, as I am

testing the abilities of customization rather than Matrix grammars in general. Vocabulary

consisted of two nouns, a transitive verb, and an intransitive verb. When an inflectional

paradigm had more than two or three possible values, I used only a subset of these to

illustrate the morphotactic phenomena.

Specific test items were created by starting with the shortest well-formed string (that

is, one without any optional morphemes) and permuting the order of the affixes to create

ungrammatical examples. Optional morphemes were then added individually, and ungram-

matical examples created by shifting the new affix to each position in the string, rather

than creating every new permutation, as this would have increased the test suite size ex-

ponentially as new morphemes were added. The last item in thetest suite was the longest

grammatical string that could be constructed, using as manyaffixes as possible.

I previously listed many phenomena this system was not designed to cover, includ-

1The Zulu grammar was developed by me, the Finnish grammar by Ryan Mattson, and the Uzbek grammar
by Michael Tepper in the context of LING 567 at the Universityof Washington (Bender 2007)

55

ing effects of morphology on phrase-level syntax, and any restrictions that require some

knowledge about the meaning of the particular affixes. Thesephenomena were intention-

ally excluded from the test suites, because correctly parsing these sentences was not the

intention of the current project.

Test suites were run and their performance tracked using[incr tsdb()] test environment

(Oepen 2001).

5.3 Development And Evaluation Process

The first language used as a reference for development was Zulu. A choices file was

written by hand, and the customization script expanded to process the choices file. As I

added/changed code in the customization script, I would build a grammar using the choices

file, and use the resulting grammar to run the test suite. I continued this process until the

grammar could parse all and only the grammatical strings in the test suite.

Once the customization system produced a grammar for Zulu, Ibuilt a test suite and

choices file for Slave. I created a Slave grammar using the “version Zulu” system, that

is, the customization script that was sufficient to create anadequate Zulu grammar. The

Slave grammar on the version Zulu system was not able to get 100% on the test suite, so

I revised the customization script, and in this case the choices file specifications, until the

Slave grammar was at 100% on the test suite. I then repeated this process for Finnish and

Uzbek. While additional modifications were required to bring Finnish up to 100% on the

test suite, Uzbek did not expose any additional oversights in either the choices file format

or the customization script.

Each test suite was developed at the time I began work on that language version. While

this did allow me to create each test suite with the knowledgeacquired from the previous

versions in mind, it did not allow me to run the version in development over the test suites

56

v.Zulu v.Slave v.Finnish
Zulu 100.0/0.0 100.0/0.0 100.0/0.0
Slave 76.5/9.6 100.0/0.0 100.0/0.0
Finnish 42.9/9.1 */* 100.0/0.0
Uzbek 25.0/0.0 100.0/0.0 100.0/0.0

Table 5.1: Test suite performance on each version of the choices file and customization
script, given by percent coverage / percent overgeneration. Version Slave customization
was unable to produce a valid grammar for Finnish, and was therefore untestable.

for languages I had not tested for yet. However, I did run versions in development over

the test suites for previous languages as a form of regression testing. For example, at the

start of development for Version Slave, the system got 100% on the Zulu test suite. After I

reached 100% on the Slave test suite, I made sure I was still getting 100% on the Zulu test

suite before starting development on Version Finnish.

As each version was determined complete, the system was frozen in that form. This

was done by tagging that revision in our Subversion repository. After development for all

versions was complete, I took each frozen version and used itto build grammars for all the

languages, and ran the test suites. I recorded the percentage coverage and overgeneration

as:

(26) coverage = (number of grammatical test suite items parsed / total grammatical items)

(27) overgeneration = (number of ungrammatical test items parsed / total ungrammatical

items).

These results are shown in table 5.1.

I also wanted to measure how much work was required to bring a new language up to

100%. While not necessarily a good measure of how much time ormental energy was

57

no inflection to Zulu 7%
Zulu to Slave 10%
Slave to Finnish 2%
Finnish to Uzbek 0%

Table 5.2: Percent change in the customization script to get100% test suite accuracy, cal-
culated as (number of lines added + number of lines removed) /number of lines in starting
version.

required, I chose to look at how much the customization script changed between versions.

I ran a diff between consecutive pairs of versions and calculated the percent change as :

(28) (number of lines added + number of lines removed) / totalnumber of lines in the

script before the change

So for version Zulu to version Slave, I took:

(29) (number of lines added in v.Slave + number of lines removed from v.Zulu) / total

number of lines in v.Zulu

These results are shown in table 5.2.

5.4 Results

Version Zulu was “blind” to the other languages, as no feedback from the performance of

other languages went into its development. Similarly, Version Slave was “blind” to Uzbek

and Finnish, as was Version Finnish to Uzbek. It is thereforeunsurprising that the other

languages did not do as well in Version Zulu. The codebase changed more between version

Zulu and version Slave than between the pre-inflection system and version Zulu. I expected

the other three languages to perform equal or better in version Slave than in version Zulu.

This is in fact the case for Zulu and Uzbek (and trivially Slave), but version Slave was

58

unable to produce a valid grammar for Finnish at all, and so was untestable. This was due

to a minor oversight,2 and so with relatively few changes to the customization script, I was

able to get Finnish working. Version Finnish is able to produce adequate grammars for all

four languages. No modifications were necessary to get 100% on the Uzbek test suite, so

no additional version was created.

I find these results promising. While there are certainly more morphotactic phenomena

that need to be developed and tested, I was able to reach a point of convergence for four

disparate languages. This suggests that the current systemwould work for a much larger

number of the world’s languages.

2Version Slave did not allow for an affix to attach to multiple lexical types, a phenomenon which occurs
in Finnish. This produced a python error when running the customization script. It was easily corrected by
storing the lexical types as a list rather than a single variable

59

Chapter 6

CONCLUSION

The goal of the Grammar Matrix is to provide a cross-linguistic resource for creating

rule-based precision grammars. The customization system is meant to provide a fast and

straightforward way to create starter grammars to jump-start the development process. The

more structure and functionality provided in the customization system, the more complete

the starter-grammars will be. Languages utilize inflectional morphology for a wide range

of syntactic and semantic functions. By providing a generalmorphotactic framework, I

provide a general resource for future development of the customization system. As more

functionality is added, the relevant feature structures can be added to the lexical rules. A

common method for creating lexical rules provides consistency in rule naming, typing, and

structure across the grammar and ensures that lexical rulesadded for different grammatical

phenomena interact properly with each other.

60

BIBLIOGRAPHY

Beesley, Kenneth R., and Lauri Karttunen. 2003.Finite State Morphology. Stanford CA:
CSLI Publications.

Bender, Emily M. 2007. Combining research and pedagogy in the development of a
crosslinguistic grammar resource. In T. H. King and E. M. Bender (Eds.),Proceedings
of the GEAF07 Workshop, 26–45, Stanford, CA. CSLI.

Bender, Emily M., and Dan Flickinger. 2005. Rapid prototyping of scalable grammars:
Towards modularity in extensions to a language-independent core. InProceedings of
the 2nd International Joint Conference on Natural LanguageProcessing IJCNLP-05
(Posters/Demos), Jeju Island, Korea.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix: An
open-source starter-kit for the rapid development of cross-linguistically consistent
broad-coverage precision grammars. InProceedings of the Workshop in Grammar
Engineering and Evaluation at the 19th International Conference on Computational
Linguistics, 8–14, Taipei, Taiwan.

Bender, Emily M., and Jeff Good. 2005. Implementation for discovery: A bipartite lexicon
to support morphological and syntactic analysis. InProceedings of the 41st Annual
Meeting of the Chicago Linguistic Society.

Bender, Emily M., Laurie Poulson, Scott Drellishak, and Chris Evans. 2007. Validation and
regression testing for a cross-linguistic grammar resource. In ACL 2007 Workshop
on Deep Linguistic Processing, 136–143, Prague, Czech Republic. Association for
Computational Linguistics.

Booij, G.E. 2005.The grammar of words: an introduction to linguistic morphology. Ox-
ford: Oxford University press.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian Rohrer.
2002. The parallel grammar project. In J. Carroll, N. Oostdijk, and R. Sutcliffe (Eds.),
Proceedings of the Workshop on Grammar Engineering and Evaluation at the 19th
International Conference on Computational Linguistics, 1–7.

61

Callmeier, Ulrich. 2000. PET — A platform for experimentation with efficient HPSG
processing techniques.Natural Language Engineering6 (1) (Special Issue on Efficient
Processing with HPSG):99 – 108.

Comrie, Bernard. 1981.Language universals and linguistic typology: syntax and morphol-
ogy. Chicago: University of Chicago Press.

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. Stanford, CA:
CSLI Publications.

Drellishak, Scott, and Emily M. Bender. 2005. A coordination module for a crosslinguistic
grammar resource. In S. Müller (Ed.),The Proceedings of the 12th International
Conference on Head-Driven Phrase Structure Grammar, Department of Informatics,
University of Lisbon, 108–128, Stanford. CSLI Publications.

Goldsmith, John. 2001. Unsupervised learning of the morphology of a natural language.
Computational Linguistics27(2):153–198.

Karlsson, Fred. 1983.Finnish Grammar. Porvoo, Finland: WSOY.

Kim, Roger, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King, Hiroshi Ma-
suichi, and Tomoko Ohkuma. 2003. Multlingual grammar development via grammar
porting. In E. M. Bender, D. Flickinger, F. Fouvry, and M. Siegel (Eds.),Proceed-
ings of the ESSLLI 2003 Workshop “Ideas and Strategies for Multilingual Grammar
Development”, 49–56, Vienna, Austria.

Koskenniemi, Kimmo. 1984. A general computational model for word-form recognition
and production. InProceedings of the 10th International Conference on Computa-
tional Linguistics.

Krieger, Hans-Ulrich, and Ulrich Schafer. 1994. Tdl – a typedescription language for
constraint-based grammars. InProceedings of the 15th international Conference on
Computational Linguistics, 893–899, Kyoto, Japan.

Maxwell, Mike. 2002. Resources for morphology learning andevaluation. InLREC 2002:
Third International Conference on Language Resources and Evaluation, Vol. III, 967–
974.

Maxwell, Mike, Gary Simons, and Larry Hayashi. 2002. A morphological glossing assis-
tant. InProceedings of the International LREC Workshop on Resources and Tools in
Field Linguistics.

62

McShane, Marjorie, and Sergei Nirenberg. 2003. Blasting open a choice space: Learning
inflectional morphology for NLP.Computational Intelligence19(2):111–135.

McShane, Marjorie, Sergei Nirenburg, Jim Cowie, and Ron Zacharski. 2002. Embedding
knowledge elicitation and mt systems within a single architecture.Machine Transla-
tion 17(4):271–305.

Nyembezi, CL Sibusiso, and Clement Martyn Doke. 1979.Learn Zulu. Pietermaritzburg:
Shuter and Shooter.

Oepen, Stephan. 2001.[incr tsdb()] — Competence and performance laboratory. User
manual. Technical report, COLI, Saarbrücken, Germany.

Oepen, Stephan, Erik Velldal, Jan Tore Lnning, Paul Meurer,Victoria Rosn, and Dan
Flickinger. 2007. Towards hybrid quality-oriented machine translation. On linguis-
tics and probabilities in MT. InTMI:07, Skvde, Sweden.

Pollard, Carl, and Ivan A. Sag. 1994.Head-Driven Phrase Structure Grammar. Chicago,
IL and Stanford, CA: The University of Chicago Press and CSLIPublications.

Poulos, G, and Sonja E Bosch. 1997.Zulu. Munich: LINCOM Europa.

Rice, Keren. 1989.A grammar of Slave. Vol. 5 of Mouton grammar library. Berlin:
Mouton de Gruyter.

Salminen, Tapani. 1997.Tundra Nenets inflection. Helsinki: Suomalais-ugrilainen seura.

Sjoberg, Andreè F. 1963.Uzbek Structural Grammar. Vol. 18 ofUralic and Altaic Series.
Bloomington: Indiana University.

63

Appendix A

CHOICES FILES

These are the choices files from which the test grammars were created. Please note that

these were designed for modeling and testing a particular set of morphological phenomena,

and not as true starter grammars for the languages in question. For example most of the

morpheme paradigms have only one or two affixes listed, wherein the actual language there

are many more. They also contain a hodgepodge of orthographic forms and morpheme

glosses, largely depending on which was the simplest for me to encode. Some decisions I

made regarding morpheme ordering will probably be different than the analysis of a linguist

more familiar with the language. In addition, I did not answer parts of the questionnaire

not directly relevant to my work. I am including these documents here simply as examples

of the choices file format.

A.1 Zulu

version=2
section=language
language=Zulu

section=word-order
word-order=svo
has-dets=no

section=sentential-negation
infl-neg=on
neg-infl-type=main
neg-aff=prefix
neg-aff-orth=NEG-

64

section=coordination

section=matrix-yes-no
q-part=on
q-part-order=after
q-part-orth=na

section=inflection
morph1type=pdm1
morph1aff=prefix
morph1opt=no
morph1dtr1 type=noun
morph2type=pdm3
morph2aff=prefix
morph2opt=yes
morph2dtr1 type=tverb
morph3type=pdm4
morph3aff=prefix
morph3opt=yes
morph3dtr1 type=iverb
morph3dtr2 type=morph2
morph4type=pdm2
morph4aff=prefix
morph4opt=no
morph4dtr1 type=morph3
morph5type=pdm5
morph5aff=suffix
morph5opt=no
morph5dtr1 type=morph4
morph5dtr2 type=morph6
morph6type=pdm6
morph6aff=prefix
morph6opt=yes
morph6dtr1 type=morph4

section=infl-paradigms
pdm1name=NC
pdm1aff1 name=C1
pdm1aff1 orth=C1-
pdm1aff2 name=C9
pdm1aff2 orth=C9-

65

pdm2name=SC
pdm2aff1 name=SC1
pdm2aff1 orth=SC1-
pdm2aff2 name=SC9
pdm2aff2 orth=SC9-
pdm3name=OC
pdm3aff1 name=OC1
pdm3aff1 orth=OC1-
pdm3aff2 name=OC9
pdm3aff2 orth=OC9-
pdm4name=tense
pdm4aff1 name=fut-tense
pdm4aff1 orth=FUT-
pdm4aff2 name=pres-tense
pdm4aff2 orth=PRES-
pdm5name=FV
pdm5aff1 name=default-FV
pdm5aff1 orth=-a
pdm5aff2 name=neg-FV
pdm5aff2 orth=-e
pdm6name=negation
pdm6orth=NEG-

section=basic-lexicon
noun1=ntwana
noun1pred=child n rel
noun1det=imp
noun2=yoka
noun2pred=snaken rel
noun2det=imp
iverb=dlal
iverb-pred=play v rel
iverb-subj=np
tverb=bon
tverb-pred=seev rel
tverb-subj=np
tverb-obj=np

section=test-sentences
sentence1=C1-ntwana SC1-FUT-dlal-a
sentence2=C1-ntwana SC1-FUT-bon-a C9-yoka

66

A.2 Slave

version=2

section=language
language=Slave

section=word-order
word-order=sov
has-dets=no

section=sentential-negation

section=coordination

section=matrix-yes-no

section=inflection
morph1type=pdm1
morph1aff=prefix
morph1opt=yes
morph1dtr1 type=verb
morph2type=pdm2
morph2aff=prefix
morph2opt=no
morph2dtr1 type=morph1
morph3type=pdm3
morph3aff=prefix
morph3opt=no
morph3dtr1 type=morph2
morph4type=pdm4
morph4aff=prefix
morph4opt=yes
morph4dtr1 type=morph3
morph5type=pdm5
morph5aff=prefix
morph5opt=yes
morph5dtr1 type=morph4
morph6type=pdm6

67

morph6aff=prefix
morph6opt=yes
morph6dtr1 type=morph5
morph7type=pdm7
morph7aff=prefix
morph7opt=yes
morph7dtr1 type=morph6
morph8type=pdm8
morph8aff=prefix
morph8opt=yes
morph8dtr1 type=morph7
morph9type=pdm9
morph9aff=prefix
morph9opt=yes
morph9dtr1 type=morph8
morph9disreq1type=morph7
morph10type=pdm10
morph10aff=prefix
morph10opt=yes
morph10dtr1 type=morph9
morph11type=pdm11
morph11aff=prefix
morph11opt=yes
morph11dtr1 type=morph10
morph12type=pdm12
morph12aff=prefix
morph12opt=yes
morph12dtr1 type=morph10
morph13type=pdm13
morph13aff=prefix
morph13opt=yes
morph13dtr1 type=morph11
morph13dtr2 type=morph12
morph14type=pdm14
morph14aff=prefix
morph14opt=yes
morph14dtr1 type=morph13
morph14forces1type=morph15
morph15type=pdm15
morph15aff=prefix
morph15opt=yes

68

morph15dtr1 type=morph14
morph15req1 type=morph14
morph16type=pdm16
morph16aff=prefix
morph16opt=yes
morph16dtr1 type=morph15

section=infl-paradigms
pdm1name=classifier
pdm1aff1 name=reciprocal
pdm1aff1 orth=d-
pdm2name=subject
pdm2aff1 name=1SG-SUBJ
pdm2aff1 orth=h-
pdm2aff2 name=1PL-SUBJ
pdm2aff2 orth=id-
pdm2aff3 name=3-SUBJ
pdm2aff3 orth=NONE
pdm3name=mode
pdm3aff1 name=perfective
pdm3aff1 orth=n-
pdm3aff2 name=imperfective
pdm3aff2 orth=NONE
pdm4name=conjugation
pdm4aff1 name=yconj
pdm4aff1 orth=y-
pdm4aff2 name=wconj
pdm4aff2 orth=w-
pdm5name=aspect
pdm5aff1 name=inceptive
pdm5aff1 orth=de-
pdm5aff2 name=serative
pdm5aff2 orth=i-
pdm6name=theme
pdm6aff1 name=theme1
pdm6aff1 orth=ne-
pdm7name=deixis
pdm7aff1 name=3PL
pdm7aff1 orth=ke-
pdm8name=object
pdm8aff1 name=3SG

69

pdm8aff1 orth=be-
pdm8aff2 name=1SG-OBJ
pdm8aff2 orth=se-
pdm8aff3 name=reciprocal-object
pdm8aff3 orth=ele-
pdm9name=number
pdm9aff1 name=dual
pdm9aff1 orth=leh-
pdm10name=incorporated-stem
pdm10aff1 name=laugh
pdm10aff1 orth=dlo-
pdm11name=customary
pdm11orth=na-
pdm12name=distributive
pdm12orth=ya-
pdm13name=adverbial
pdm13aff1 name=avbl1
pdm13aff1 orth=na-
pdm14name=incorporated-postposition
pdm14aff1 name=into
pdm14aff1 orth=keh-
pdm15name=postpos-object
pdm15aff1 name=3-POSTPOS-OBJ
pdm15aff1 orth=be-
pdm16name=negation
pdm16orth=du-

section=basic-lexicon
noun1=teere
noun1pred=girl n rel
noun1det=imp
noun2=soba
noun2pred=moneyn rel
noun2det=imp
iverb=d-shin
iverb-pred=sing v rel
iverb-subj=np
tverb=tah
tverb-pred=kick v rel
tverb-subj=np
tverb-obj=np

70

section=test-sentences
sentence1=teere d-shin
sentence2=h-d-shin

A.3 Finnish

version=2

section=language
language=Finnish

section=word-order
word-order=svo
has-dets=no

section=sentential-negation

section=coordination

section=matrix-yes-no

section=basic-lexicon
noun1=opiskelija
noun1pred=studentn rel
noun1det=imp
noun2=omena
noun2pred=applen rel
noun2det=imp
iverb=kAvele
iverb-pred=walk v rel
iverb-subj=np
tverb=pidA
tverb-pred=like v rel
tverb-subj=np
tverb-obj=np

section=inflection
morph1type=pdm1
morph1aff=suffix

71

morph1opt=no
morph1dtr1 type=noun
morph2type=pdm2
morph2aff=suffix
morph2opt=no
morph2dtr1 type=morph1
morph3type=pdm3
morph3aff=suffix
morph3opt=yes
morph3dtr1 type=morph2
morph4type=pdm4
morph4aff=suffix
morph4opt=yes
morph4dtr1 type=morph3
morph4dtr2 type=morph8
morph5type=pdm8
morph5aff=suffix
morph5opt=yes
morph5dtr1 type=verb
morph6type=pdm6
morph6aff=suffix
morph6opt=yes
morph6dtr1 type=morph5
morph7type=pdm7
morph7aff=suffix
morph7opt=yes
morph7dtr1 type=morph5
morph8type=pdm5
morph8aff=suffix
morph8opt=no
morph8dtr1 type=morph6
morph8dtr2 type=morph7

section=infl-paradigms
pdm1name=number
pdm1aff1 name=plural
pdm1aff1 orth=-PL
pdm1aff2 name=singular
pdm1aff2 orth=NONE
pdm2name=case

72

pdm2aff1 name=elative
pdm2aff1 orth=-ELAT
pdm2aff2 name=nominative
pdm2aff2 orth=NONE
pdm3name=possessive
pdm3aff1 name=1SG-POSS
pdm3aff1 orth=-POSS1SG
pdm4name=particle
pdm4aff1 name=also
pdm4aff1 orth=-kin
pdm5name=pernum-agr
pdm5aff1 name=1SG
pdm5aff1 orth=-1SG
pdm5aff2 name=3SG
pdm5aff2 orth=-3SG
pdm5aff3 name=indefinite
pdm5aff3 orth=-INDEF
pdm6name=tense
pdm6aff1 name=past
pdm6aff1 orth=-PAST
pdm6aff2 name=nonpast
pdm6aff2 orth=NONE
pdm7name=mood
pdm7aff1 name=conditional
pdm7aff1 orth=-COND
pdm8name=passive
pdm8orth=-PASS

section=test-sentences
sentence1=opiskelija pidA-3SG omena-ELAT
sentence2=kAvele-1SG

A.4 Uzbek

version=2

section=language
language=Uzbek

section=word-order

73

word-order=sov
has-dets=no

section=sentential-negation

section=coordination

section=matrix-yes-no

section=inflection
morph1type=pdm1
morph1aff=suffix
morph1opt=yes
morph1dtr1 type=noun
morph2type=pdm2
morph2aff=suffix
morph2opt=yes
morph2dtr1 type=morph1
morph3type=pdm3
morph3aff=suffix
morph3opt=no
morph3dtr1 type=morph2
morph4type=pdm4
morph4aff=suffix
morph4opt=yes
morph4dtr1 type=verb
morph5type=pdm5
morph5aff=suffix
morph5opt=no
morph5dtr1 type=morph4
morph6type=pdm6
morph6aff=suffix
morph6opt=yes
morph6dtr1 type=morph5
morph7type=pdm7
morph7aff=suffix
morph7opt=no
morph7dtr1 type=morph6
morph8type=pdm8
morph8aff=suffix
morph8opt=yes

74

morph8dtr1 type=morph7

section=infl-paradigms
pdm1name=plural
pdm1orth=-PL
pdm2name=possessive
pdm2aff1 name=1SGPOS
pdm2aff1 orth=-1SGPOS
pdm3name=case
pdm3aff1 name=accusative
pdm3aff1 orth=-ACC
pdm3aff2 name=nominative
pdm3aff2 orth=NONE
pdm4name=negation
pdm4orth=-NEG
pdm5name=TAM1
pdm5aff1 name=nonpast
pdm5aff1 orth=-NONPST
pdm5aff2 name=past-perfective
pdm5aff2 orth=-PSTPRF
pdm6name=TAM2
pdm6aff1 name=nonhabitual
pdm6aff1 orth=-NONHAB
pdm7name=subject-agr
pdm7aff1 name=1SG
pdm7aff1 orth=-1SG
pdm7aff2 name=3SG
pdm7aff2 orth=-3SG
pdm8name=question
pdm8orth=-QUES

section=basic-lexicon
noun1=oquwci
noun1pred=studentn rel
noun1det=imp
noun2=olma
noun2pred=applen rel
noun2det=imp
iverb=kel
iverb-pred=comev rel
iverb-subj=np

75

tverb=ye
tverb-pred=eat v rel
tverb-subj=np
tverb-obj=np

section=test-sentences
sentence1=kel-PSTPRF-1SG
sentence2=oquwci olma-ACC ye-NONPST-3SG

76

Appendix B

TEST SUITES

B.1 Zulu

Judgment: ungrammatical
NC-ntwana SC-TENSE-dlal-FV
“the child play”

Judgment: grammatical
C1-ntwana SC1-FUT-dlal-a
“The child will play”

Judgment: grammatical
C1-ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: grammatical
C1-ntwana SC1-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana SC1-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana dlal-a
“The child plays”

77

Judgment: ungrammatical
C1-ntwana dlal-a
“The child plays”

Judgment: ungrammatical
C1-ntwana PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana-C1 SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
C1-ntwana PRES-SC1-dlal-a
“The child plays”

Judgment: ungrammatical
C1-ntwana PRES-a-SC1-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana PRES-SC1-a-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana a-PRES-SC1-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana a-SC1-PRES-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana SC1-a-PRES-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana SC1-PRES-a-dlal
“The child plays”

Judgment: ungrammatical

78

C1-ntwana a-SC1-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana SC1-a-dlal
“The child plays”

Judgment: ungrammatical
C1-ntwana SC1-dlal-PRES-a
“The child plays”

Judgment: ungrammatical
C1-ntwana PRES-dlal-SC1-a
“The child plays”

Judgment: ungrammatical
C1-ntwana dlal-PRES-SC1-a
“The child plays”

Judgment: ungrammatical
C1-ntwana dlal-a-PRES-SC1
“The child plays”

Judgment: ungrammatical
C1-ntwana dlal-PRES-a-SC1
“The child plays”

Judgment: ungrammatical
C1-ntwana dlal-a-SC1-PRES
“The child plays”

Judgment: ungrammatical
C1-ntwana dlal-SC1-a-PRES
“The child plays”

Judgment: ungrammatical
SC1-ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
PRES-ntwana SC1-PRES-dlal-a

79

“The child plays”

Judgment: ungrammatical
C1-ntwana SC1-FUT-OC-bon-a NC-yoka
“The child will see the snake”

Judgment: grammatical
C1-ntwana SC1-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
C1-ntwana SC1-FUT-OC9-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
C1-ntwana SC1-FUT-OC9-bon-a
“The child will see it”

Judgment: grammatical
SC1-FUT-OC9-bon-a C9-yoka
“He/she will see the snake”

Judgment: grammatical
SC1-FUT-OC9-bon-a
“He/she will see it”

Judgment: ungrammatical
C1-ntwana OC9-SC1-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
C1-ntwana SC1-OC9-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
C1-ntwana SC1-FUT-bon-OC9-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
C1-ntwana SC1-FUT-bon-a-OC9 C9-yoka
“The child will see the snake”

80

Judgment: ungrammatical
C1-ntwana SC1-FUT-OC9-bon-a OC9-yoka
“The child will see the snake”

Judgment: ungrammatical
C1-ntwana SC1-FUT-C9-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
C1-ntwana NEG-SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
NEG-C1-ntwana SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
NEG-ntwana SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
C1-ntwana-NEG SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
C1-ntwana SC1-NEG-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
C1-ntwana SC1-PRES-NEG-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
C1-ntwana SC1-PRES-dlal-NEG-e
“The child doesn’t play”

Judgment: ungrammatical
C1-ntwana SC1-PRES-dlal-e-NEG
“The child doesn’t play”

81

B.2 Slave

Judgment: grammatical
h-d-shin
1SG-d-shin
I sing.

Judgment: ungrammatical
d-shin-h
d-sing-1SG
I sing.

Judgment: grammatical
d-shin
d-sing
S/he sings.

Judgment: grammatical
ke-d-shin
3Pl.Human-d-sing
They sing.

Judgment: ungrammatical
d-shin-ke
d-sing-3PL.Human
They sing.

Judgment: grammatical
de-h-d-shin
INCEP-1SG-d-sing
I start to sing.

Judgment: ungrammatical
h-d-shin-de
1SG-d-sing-INCEP
I start to sing.

Judgment: ungrammatical
h-de-d-shin
1SG-INCEP-d-sing
I start to sing.

82

Judgment: grammatical
y-n-h-d-shin
yCONJ-PFV-1SG-d-sing
I sang.

Judgment: ungrammatical
n-y-h-d-shin
PFV-yCONJ-1SG-d-sing
I sang

Judgment: ungrammatical
y-h-n-d-shin
yCONJ-1SG-PVF-d-sing
I sang.

Judgment: ungrammatical
h-y-n-d-shin
1SG-yCONJ-PFV-d-sing
I sang.

Judgment: ungrammatical
h-y-d-shin-n
1SG-yCONJ-d-sing-PFV
I sang.

Judgment: ungrammatical
h-n-d-shin-y
1SG-PFV-d-sing-yCONJ
I sang.

Judgment: ungrammatical
h-d-shin-n-y
1SG-d-sing-PFV-yCONJ
I sang.

Judgment: ungrammatical
h-d-shin-y-n
1SG-d-sing-yCONJ-PFV
I sang.

83

Judgment: grammatical
y-n-d-shin
yCONJ-PFV-d-sing
S/He sang.

Judgment: grammatical
ke-de-y-n-d-shin
3PL.Human-INCEP-yCONJ-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-ke-y-n-d-shin
INCEP.3PL.Human-yCONJ-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-y-ke-n-d-shin
INCEP-yCONJ-3PL.Human-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-y-n-ke-d-shin
INCEP-yCONJ-PFV-3PL.Human-d-sing
They started to sing.

Judgment: ungrammatical
ke-y-de-n-d-shin
3PL.Human-yCONJ-INCEP-PFV-d-sing
They started to sing.

Judgment: ungrammatical
ke-y-n-de-d-shin
3PL.Human-yCONJ-PFV-INCEP-d-sing
They started to sing.

Judgment: ungrammatical
y-n-ke-de-d-shin
yCONJ-PVF-3PL.Human-INCEP-d-sing
They started to sing

Judgment: ungrammatical

84

y-n-de-ke-d-shin
yCONJ-PFV-INCEP-3PL.Human-d-sing
They started to sing.

Judgment: grammatical
na-h-d-shin
HAB-1SG-d-sing
I sing customarily/habitually.

Judgment: ungrammatical
h-na-d-shin
1SG-HAB-d-sing
I sing habitually.

Judgment: ungrammatical
h-d-shin-na
1SG-d-sing-HAB
I sing habitually.

Judgment: grammatical
du-h-d-shin
NEG-1SG-d-sing
I don’t sing.

Judgment: ungrammatical
h-du-d-shin
1SG-NEG-d-sing
I don’t sing.

Judgment: ungrammatical
h-d-shin-du
1SG-d-sing-NEG
I don’t sing.

Judgment: grammatical
na-be-ne-w-n-h-tah
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her.

Judgment: grammatical
na-ne-w-n-h-tah

85

THM1-THM8-wCONj-PFV-1sg-move.foot
I kicked him/her.

Judgment: ungrammatical
ne-na-w-n-h-tah
THM8-THM1-wCONJ-PVF-h-move.foot
I kicked him/her.

Judgment: ungrammatical
na-w-ne-n-h-tah
THM1-wCONJ-THM8-PFV-1SG-move.foot
I kicked him/her.

Judgment: ungrammatical
na-w-n-ne-h-tah
THM1-wCONJ-PFV-THM8-1SG-move.foot
I kicked him/her.

Judgment: ungrammatical
na-w-n-h-ne-tah
THM1-wCONJ-PFV-1SG-THM8-move.foot
I kicked him/her

Judgment: ungrammatical
na-w-n-h-tah-ne
THM1-wCONJ-PFV-1SG-THM8-move.foot
I kicked him/her.

Judgment: ungrammatical
be-na-ne-w-n-h-tah
3SG.Human-THM1-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her.

Judgment: ungrammatical
na-ne-be-w-n-h-tah
THM1-THM8-3SG.Human-wCONJ-PFV-1SG-move.foot
I kicked him/her.

Judgment: ungrammatical
na-ne-w-be-n-h-tah
THM1-THM8-wCONJ-3SG.Human-PFV-1SG-move.foot

86

I kicked him/her.

Judgment: ungrammatical
na-ne-w-n-be-h-tah
THM1-THM8-wCONJ-PFV-3SG.Human-1SG-move.foot
I kicked him/her.

Judgment: ungrammatical
na-ne-w-n-h-be-tah
THM1-THM8-wCONJ-PFV-1SG-3SG.Human-move.foot
I kicked him/her.

Judgment: ungrammatical
na-ne-w-n-h-tah-be
THM1-THM8-wCONJ-PFV-1SG-move.foot-3SG.Human
I kicked him/her.

Judgment: grammatical
na-ele-ke-ne-w-n-d-tah
THM1-RECP-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
ele-na-ke-ne-w-n-d-tah
RECP-THM1-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
na-ke-ele-ne-w-n-d-tah
THM1-3PL.Human-RECP-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
na-ke-ne-ele-w-n-d-tah
THM1-3PL.Human-THM8-RECP-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
na-ke-ne-w-ele-n-d-tah
THM1-3PL.Human-THM8-wCONJ-RECP-PFV-RECP-move.foot
They kicked each other.

87

Judgment: ungrammatical
na-ke-ne-w-n-ele-d-tah
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
na-ke-ne-w-n-d-ele-tah
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-RECP-move.foot
They kicked each other.

Judgment: ungrammatical
na-ke-ne-w-n-d-tah-ele
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot-RECP
They kicked each other.

Judgment: grammatical
na-leh-ele-ne-w-n-d-tah
THM1-DU-RECP-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
na-leh-ele-ke-ne-w-n-d-tah
THM1-DU-RECP-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
leh-na-ele-ne-w-n-d-tah
DU-THM1-RECP-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
na-ele-leh-ne-w-n-d-tah
THM1-RECP-DU-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
na-ele-ne-leh-w-n-d-tah
THM1-RECP-THM8-DU-wCONJ-PFV-RECP-move.foot
They two kicked each other.

88

Judgment: ungrammatical
na-ele-ne-w-leh-n-d-tah
THM1-RECP-THM8-wCONJ-DU-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
na-ele-ne-w-n-leh-d-tah
THM1-RECP-THM8-wCONJ-PFV-DU-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical
na-ele-ne-w-n-d-leh-tah
THM1-RECP-THM8-wCONJ-PFV-RECP-DU-move.foot
They two kicked each other.

Judgment: ungrammatical
na-ele-ne-w-n-d-tah-leh
THM1-RECP-THM8-wCONJ-PFV-RECP-move.foot-DU
They two kicked each other.

Judgment: grammatical
na-dlo-be-ne-w-n-h-tah
THM1-laugh-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
dlo-na-be-ne-w-n-h-tah
laugh-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
na-be-dlo-ne-w-n-h-tah
THM1-3SG.Human-laugh-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
na-be-ne-dlo-w-n-h-tah
THM1-3SG.Human-THM8-laugh-wCONJ-PFV-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical

89

na-be-ne-w-dlo-n-h-tah
THM1-3SG.Human-THM8-wCONJ-laugh-PFV-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
na-be-ne-w-n-dlo-h-tah
THM1-3SG.Human-THM8-wCONJ-PFV-dlo-1SG-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
na-be-ne-w-n-h-dlo-tah
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-dlo-move.foot
I kicked him/her while laughing.

Judgment: ungrammatical
na-be-ne-w-n-h-tah-dlo
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot-laugh
I kicked him/her while laughing.

Judgment: grammatical
na-ya-be-ne-i-w-n-h-tah
THM1-DISTR-3SG.Human-THM8-SER-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
i-na-ya-be-ne-w-n-h-tah
SER-THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-i-ya-be-ne-w-n-h-tah
THM1-SER-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-i-be-ne-w-n-h-tah
THM1-DISTR-SER-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-i-ne-w-n-h-tah

90

THM1-DISTR-3SG.Human-SER-THM8-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-ne-w-i-n-h-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-SER-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-ne-w-n-i-h-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-SER-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-ne-w-n-h-i-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-SER-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-ne-w-n-h-tah-i
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot-SER
I kicked him/her repeatedly.

Judgment: ungrammatical
ya-na-be-ne-i-w-n-h-tah
DISTR-THM1-3SG.Human-THM8-SER-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ya-ne-i-w-n-h-tah
THM1-3SG.Human-DISTR-THM8-SER-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-ya-i-w-n-h-tah
THM1-3SG.Human-THM8-DISTR-SER-wCONJ-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-ya-w-n-h-tah
THM1-3SG.Human-THM8-SER-DISTR-wCONJ-PFV-1SG-move.foot

91

I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-w-ya-n-h-tah
THM1-3SG.Human-THM8-SER-wCONJ-DISTR-PFV-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-w-n-ya-h-tah
THM1-3SG.Human-THM8-SER-wCONJ-PFV-DISTR-1SG-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-w-n-h-ya-tah
THM1-3SG.Human-THM8-SER-wCONJ-PFV-1SG-DISTR-move.foot
I kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-w-n-h-tah-ya
THM1-3SG.Human-THM8-SER-wCONJ-PFV-1SG-move.foot-DISTR
I kicked him/her repeatedly.

Judgment: grammatical
be-keh-na-be-ne-w-n-h-tah
3SG-into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-w-n-h-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-be-na-be-ne-w-n-h-tah
into-3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

92

Judgment: ungrammatical
keh-na-be-be-ne-w-n-h-tah
into-THM1-3SG-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-be-w-n-h-tah
into-THM1-3SG.Human-THM8-3SG-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-w-be-n-h-tah
into-THM1-3SG.Human-THM8-wCONJ-3SG-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-w-n-be-h-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-3SG-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-w-n-h-be-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-3SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
keh-na-be-ne-w-n-h-tah-be
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot-3SG
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-keh-be-ne-w-n-h-tah
3SG-THM1-into-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

93

Judgment: ungrammatical
be-na-be-keh-ne-w-n-h-tah
3SG-THM1-3SG.Human-into-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-keh-w-n-h-tah
3SG-THM1-3SG.Human-THM8-into-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-keh-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-into-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-n-keh-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-into-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-n-h-keh-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-into-move.foot
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
be-na-be-ne-w-n-h-tah-keh
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot-into
I kick him/her into it (e.g. hole).

Judgment: ungrammatical
na-be-keh-be-ne-w-n-h-tah
THM1-3SG-into-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
I kick him/her into it (e.g. hole).

Judgment: grammatical
du-be-keh-na-ya-dlo-leh-ele-ne-i-w-n-id-d-tah
NEG-3SG-into-THM-DISTR-laugh-DU-RECP-THM-SER-wCONJ-PFV-1DU-RECP-
move.foot
We two didn’t kick each other into it (e.g. a hole) repeatedlywhile laughing.

94

B.3 Finnish

Judgment: grammatical
opiskelija pidA-3SG omena-ELAT
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: ungrammatical
opiskelija 3SG-pidA ELAT-omena
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: ungrammatical
opiskelija pidA-ELAT omena-3SG
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: grammatical
opiskelija pidA-3SG omena-PL-ELAT
student(NOM) like-3SG apple-PL-ELAT
“The student likes the apples”

Judgment: ungrammatical
opiskelija pidA-3SG omena-ELAT-PL
student(NOM) like-3SG apple-ELAT-PL
“The student likes the apples”

Judgment: ungrammatical
opiskelija pidA-3SG PL-omena-ELAT
student(NOM) like-3SG PL-apple-ELAT
“The student likes the apples”

Judgment: ungrammatical
opiskelija pidA-3SG-PL omena-ELAT
student(NOM) like-3SG-PL apple-ELAT
“The student likes the apples”

Judgment: ungrammatical
opiskelija pidA-PL-3SG omena-ELAT
student(NOM) like-PL-3SG apple-ELAT
“The student likes the apples”

95

Judgment: grammatical
opiskelija pidA-3SG omena-PL-ELAT-POSS1SG
student(NOM) like-3SG apple-Pl-ELAT-POSS1SG
“The student likes my apples”

Judgment: ungrammatical
opiskelija pidA-3SG omena-PL-POSS1SG-ELAT
student(NOM) like-3SG apple-Pl-POSS1SG-ELAT
“The student likes my apples”

Judgment: ungrammatical
opiskelija pidA-3SG omena-POSS1SG-PL-ELAT
student(NOM) like-3SG apple-POSS1SG-PL-ELAT
“The student likes my apples”

Judgment: grammatical
opiskelija pidA-3SG omena-ELAT-POSS1SG
student(NOM) like-3SG apple-ELAT-POSS1SG
“The student likes my apple”

Judgment: ungrammatical
opiskelija pidA-3SG-POSS1SG omena-ELAT
student(NOM) like-3SG-POSS1SG apple-ELAT
“The student likes my apple”

Judgment: ungrammatical
opiskelija pidA-POSS1SG-3SG omena-ELAT
student(NOM) like-POSS1SG-3SG apple-ELAT
“The student likes my apple”

Judgment: grammatical
opiskelija pidA-3SG omena-ELAT-POSS1SG
student(NOM) like-3SG apple-ELAT-POSS1SG
“The student likes my apple”

Judgment: grammatical
opiskelija pidA-3SG omena-PL-ELAT-POSS1SG-kin
student like-3SG apple-PL-ELAT-POSS1SG-also
“The student likes my apples also (in addition to liking other things).”

96

Judgment: grammatical
opiskelija kAvele-3SG
student(NOM) walk-3SG
“The student walks”

Judgment: grammatical
kAvele-1SG
walk-1SG
“I walk”

Judgment: grammatical
kAvele-PAST-1SG
walk-PAST-1SG
“I walked”

Judgment: ungrammatical
kAvele-1SG-PAST
walk-1SG-PAST
“I walked”

Judgment: ungrammatical
kAvele-PAST
walk-PAST
“I walked”

Judgment: grammatical
kAvele-COND-1SG
walk-COND-1SG
“I would walk”

Judgment: ungrammatical
kAvele-1SG-COND
walk-1SG-COND
“I would walk”

Judgment: ungrammatical
kAvele-COND
walk-COND
“I walked”

Judgment: ungrammatical

97

kAvele-COND-PAST-1SG
walk-COND-PAST-1SG
“I would have walked”

Judgment: ungrammatical
kAvele-PAST-COND-1SG
walk-PAST-COND-1SG
“I would have walked”

Judgment: grammatical
kAvele-PASS-INDEF
walk-PASS-INDEF
“One walks”

Judgment: grammatical
kAvele-PASS-PAST-INDEF
walk-PASS-PAST-INDEF
“One walked”

Judgment: grammatical
kavele-PASS-COND-INDEF
walk-PASS-COND-INDEF
“One would walk”

Judgment: grammatical
kavele-PASS-COND-INDEF-kin
walk-PASS-COND-INDEF-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-PASS-INDEF-kin
walk-COND-PASS-INDEF-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-INDEF-PASS-kin
walk-COND-INDEF-PASS-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-INDEF-kin-PASS

98

walk-COND-INDEF-also-PASS
“One would also walk”

Judgment: ungrammatical
kavele-PASS-COND-kin-INDEF
walk-PASS-COND-also-INDEF
“One would also walk”

Judgment: ungrammatical
kavele-PASS-kin-COND-INDEF
walk-PASS-also-COND-INDEF
“One would also walk”

Judgment: ungrammatical
kavele-also-PASS-COND-INDEF
walk-also-PASS-COND-INDEF
“One would also walk”

B.4 Uzbek

Judgment: grammatical
kel-PSTPRF-1SG
come-PST.PRF-1SG
”I came, I have come”

Judgment: ungrammatical
1SG-kel-PSTPRF
1SG-come-PST.PRF
”I came, I have come”

Judgment: ungrammatical
kel-1SG-PSTPRF
come-1SG-PST.PRF
”I came, I have come”

Judgment: ungrammatical
PSTPRF-kel-1SG
PSTPRF-come-1SG
”I came, I have come”

99

Judgment: ungrammatical
kel-1SG
come-1SG
”I came, I have come”

Judgment: grammatical
oquwci kel-PSTPRF-3SG
student come-PST.PRF-3SG
”The student came”

Judgment: ungrammatical
oquwci-3SG kel-PSTPRF
student come-PST.PRF
”The student came”

Judgment: ungrammatical
oquwci-PSTPRF kel-3SG
student-PST.PRF come-3SG
”The student came”

Judgment: grammatical
kel-NEG-PSTPRF-1SG
come-NEG-PST.PRF-1SG
”I didn’t come”

Judgment: ungrammatical
NEG-kel-PSTPRF-1SG
NEG-come-PST.PRF-1SG
”I didn’t come”

Judgment: ungrammatical
kel-PSTPRF-NEG-1SG
come-PST.PRF-NEG-1SG
”I didn’t come”

Judgment: ungrammatical
kel-PSTPRF-1SG-NEG
come-PST.PRF-1SG-NEG
”I didn’t come”

Judgment: grammatical

100

kel-NEG-PSTPRF-1SG-QUES
come-NEG-PST.PRF-1SG-QUES
”Didn’t I come?”

Judgment: ungrammatical
QUES-kel-NEG-PSTPRF-1SG
QUES-come-NEG-PST.PRF-1SG
”Didn’t I come?”

Judgment: ungrammatical
kel-QUES-NEG-PSTPRF-1SG
come-QUES-NEG-PST.PRF-1SG
”Didn’t I come?”

Judgment: ungrammatical
kel-NEG-QUES-PSTPRF-1SG
come-NEG-QUES-PST.PRF-1SG
”Didn’t I come?”

Judgment: ungrammatical
kel-NEG-PSTPRF-QUES-1SG
come-NEG-PST.PRF-QUES-1SG
”Didn’t I come?”

Judgment: grammatical
oquwci kel-NEG-PSTPRF-3SG
student come-NEG-PST.PRF-3SG
”The student didn’t come”

Judgment: ungrammatical
oquwci-NEG kel-PSTPRF-3SG
student come-PST.PRF-3SG
”The student didn’t come”

Judgment: grammatical
oquwci kel-PSTPRF-3SG-QUES
student come-PST.PRF-3SG-QUES
”Did the student come?”

Judgment: ungrammatical
oquwci-QUES kel-PSTPRF-3SG

101

student come-PST.PRF-3SG
”Did the student come?”

Judgment: grammatical
oquwci olma-ACC ye-NONPST-3SG
student apple-ACC eat-NONPST-3SG
”The student eats/will eat the apple”

Judgment: ungrammatical
oquwci ACC-olma ye-NONPST-3SG
student ACC-apple eat-NONPST-3SG
”The student eats/will eat the apple”

Judgment: ungrammatical
oquwci olma ye-NONPST-3SG-ACC
student apple eat-NONPST-3SG-ACC
”The student eats/will eat the apple”

Judgment: ungrammatical
oquwci olma ye-NONPST-ACC-3SG
student apple eat-NONPST-ACC-3SG
”The student eats/will eat the apple”

Judgment: ungrammatical
oquwci olma ye-ACC-NONPST-3SG
student apple eat-ACC-NONPST-3SG
”The student eats/will eat the apple”

Judgment: ungrammatical
oquwci olma ACC-ye-NONPST-3SG
student apple ACC-eat-NONPST-3SG
”The student eats/will eat the apple”

Judgment: grammatical
oquwci olma-PL-ACC ye-NONPST-3SG
student apple-PL-ACC eat-NONPST-3SG
”The student eats/will eat the apples”

Judgment: grammatical
oquwci-PL olma-ACC ye-NONPST-3SG
student-PL apple-ACC eat-NONPST-3SG

102

”The students eat/will eat the apple”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-NONPST-3SG-PL
student apple-PL-ACC eat-NONPST-3SG-PL
”The student eats/will eat the apples”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-NONPST-PL-3SG
student apple-PL-ACC eat-NONPST-PL-3SG
”The student eats/will eat the apples”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-PL-NONPST-3SG
student apple-PL-ACC eat-PL-NONPST-3SG
”The student eats/will eat the apples”

Judgment: ungrammatical
oquwci olma-PL-ACC PL-ye-NONPST-3SG
student apple-PL-ACC PL-eat-NONPST-3SG
”The student eats/will eat the apples”

Judgment: grammatical
oquwci olma-PL-1SGPOS-ACC ye-NONPST-3SG
student apple-PL-1SG.POS-ACC eat-NONPST-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci 1SGPOS-olma-PL-ACC ye-NONPST-3SG
student 1SG.POS-apple-PL-ACC eat-NONPST-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci olma-1SGPOS-PL-ACC ye-NONPST-3SG
student apple-1SG.POS-PL-ACC eat-NONPST-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci olma-PL-ACC-1SGPOS ye-NONPST-3SG
student apple-PL-ACC-1SG.POS eat-NONPST-3SG
”The student eats/will eat my apples”

103

Judgment: ungrammatical
oquwci olma-PL-ACC 1SGPOS-ye-NONPST-3SG
student apple-PL-ACC 1SG.POS-eat-NONPST-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-1SGPOS-NONPST-3SG
student apple-PL-ACC eat-1SG.POS-NONPST-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-NONPST-1SGPOS-3SG
student apple-PL-ACC eat-NONPST-1SG.POS-3SG
”The student eats/will eat my apples”

Judgment: ungrammatical
oquwci olma-PL-ACC ye-NONPST-3SG-1SGPOS
student apple-PL-ACC eat-NONPST-3SG-1SGPOS
”The student eats/will eat my apples”

Judgment: grammatical
oquwci olma-ACC ye-NONPST-NONHAB-3SG
student apple-ACC eat-NONPST-NONHAB-3SG
”The student is eating the apple”

Judgment: ungrammatical
oquwci olma-ACC NONHAB-ye-NONPST-3SG
student apple-ACC NONHAB-eat-NONPST-3SG
”The student is eating the apple”

Judgment: ungrammatical
oquwci olma-ACC ye-NONPST-3SG-NONHAB
student apple-ACC eat-NONPST-3SG-NONHAB
”The student is eating the apple”

Judgment: grammatical
oquwci olma-PL-1SGPOS-ACC ye-NEG-NONPST-NONHAB-3SG-QUES
student apple-PL-1SG.POS-ACC eat-NEG-NONPST-NONHAB-3SG-QUES
”Isn’t the student eating the apple?”

104

Appendix C

SAMPLE RULE HIERARCHY

This is rule hierarchy for the section of the Zulu grammar relevant to the lexical rule
types. Any parts of the grammar not created or changed by the morphotactic system are
omitted. Also please note that this is the hierarchy from thegrammar generated by the
sample choices file, which was used to model various morphotactic phenomena for testing
purposes. As such, it was not necessary to include the full paradigm for every morpheme
slot. A complete grammar for Zulu would have a much more extensive hierarchy.

word-or-lexrule

basic-verb-lex lex-rule SC-rule-dtr tense-rule-dtr FV-rule-dtr

verb-lex inflecting-lex-rule constant-lex-rule ltow-rule ltol-rule

NC-lex-rule OC-lex-rule tense-lex-rule SC-lex-rule neg-lex-rule FV-lex-rule

intrans-verb trans-verb OC1-lex-rule OC9-lex-rule

C1-lex-rule C9-lex-rule SC1-lex-rule SC9-lex-rule

future-lex-rule present-lex-rule default-FV-lex-rule neg-FV-lex-rule

