A Morphotactic Infrastructure for a Grammar Customization
System

Kelly O'Hara

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Arts

University of Washington

2008

Program Authorized to Offer Degree: Linguistics

University of Washington
Graduate School

This is to certify that | have examined this copy of a mastiérsis by

Kelly O'Hara

and have found that it is complete and satisfactory in apleets,
and that any and all revisions required by the final
examining committee have been made.

Committee Members:

Emily M. Bender

Fei Xia

Date:

In presenting this thesis in partial fulfillment of the reguments for a master’s degree at
the University of Washington, | agree that the Library shadlke its copies freely available
for inspection. | further agree that extensive copying a$ thesis is allowable only for
scholarly purposes, consistent with “fair use” as presdiin the U.S. Copyright Law.
Any other reproduction for any purpose or by any means sloalba allowed without my

written permission.

Signature

Date

University of Washington

Abstract

A Morphotactic Infrastructure for a Grammar Customizat&ystem

Kelly O'Hara

Chair of the Supervisory Committee:
Assistant Professor Emily M. Bender
Linguistics

This thesis presents a morphotactic infrastructure adeasepart of the LinGO Grammar
Matrix customization system. The customization systeraval users to select options
from provided libraries of syntactic and semantic contentreate small but well-formed
grammars designed as a starting place for development cispe grammars. As many
languages have extensive systems of inflectional morpkpibig advantageous to have a
general, system-wide method of creating morphologicalgul' he infrastructure presented
here allows morphemes required by the various contentridgzdo interact properly in
terms of morphotactic constraints such as ordering andccarcence restrictions. It also
allows for the creation of placeholder rules that add mopptomological information but
do not contain any syntactic or semantic content. Developruas driven by test suites for
four typologically and genetically diverse highly inflewgi languages. The system showed
convergence over these tests, demonstrating that theingssystem is general and flexible

enough to used in a cross-linguistic tool such as the Matrix.

TABLE OF CONTENTS

Page
Chapter 1: Introduction. 1
Chapter 2: Literature Review 4
2.1 Aboutthe Grammar Matrix 4
2.2 Morphology e 11
2.3 Morphology in Multilingual Grammar Tools 15
2.4 SUMMAIYo e e e e 20
Chapter 3: DesignGoals 12
3.1 OVEIVIEW . . . o e 21
3.2 CustomizationPage 5 2
3.3 ChoicesFile e 26
3.4 Customization Script e 27
3.5 Summary ... e 32
Chapter 4: Implementation e 33
41 ChoicesFile 33
4.2 Customization Script 36
4.3 SUMMAIY ot e e e e e e e e e 50
Chapter 5: Evaluation 15
51 LanguagesUsed. 51
5.2 TestSuiteDesign 54
5.3 Development And EvaluationProcess bb
54 Results. e 57
Chapter 6: Conclusion 95

Bibliography 06

Appendix A: ChoicesFiles 63
Al Zulu . .. e 63
A2 Slave. . . . 66
A3 Finnish 70
A4 Uzbek e 72

Appendix B: TestSuites e 76
B.1 Zulu e 76
B.2 Slave. 81
B.3 Finnish 94
B.4 Uzbek e 98

Appendix C: Sample Rule Hierarchy 104

ACKNOWLEDGMENTS

| cannot overstate my gratitude to Emily Bender, without sdnguidence, support, pa-
tience, and optimism this thesis would never have been asthiel am also indebted all
the attendees of the Matrix developers meetings, espe@&altt Drellishak and Laurie
Poulson for ideas and feedback at all stages of the develupohe¢his thesis. Fei Xia’s
comments and suggestions helped me see this thesis withyssaaad | am grateful for
all the time effort she gave to improve the clarity and devéimy writing. | must also
thank my husband Ryan for his love and support, which gavetreegth through my most

frustrated times. | couldn’t have done it without you.

This material is based upon work supported by the Nation&rfée Foundation under
Grant No. BCS-0644097.

Chapter 1

INTRODUCTION

This thesis asks the question of how to provide coverage twphologically rich lan-
guages in a cross-linguistic resource for grammar devedopmin particular, | concen-
trate on issues of morphotactics, such as morpheme ordeniagpheme optionality, and
inter-morpheme dependencies. | explore how to create arggmerpose morphotactic
infrastructure that can be linked into the system’s exgsinalyses of various linguistic
phenomena, as well as provide a morphotactic structureealsasis for further grammar

development.

The particular grammar tool | focus on is the LInGO GrammatrigBender et al.
2002). The Matrix is a starter-kit for the creation of braamerage precision gram-
mars using Head-driven Phrase Structure Grammar (HPS@ai@and Sag 1994). Itis
presently accessed through a grammar customization syBemader and Flickinger 2005,
Drellishak and Bender 2005), which elicits informationrfrahe user-linguist through a
typological questionnaire and then outputs a grammar aontathe Matrix core grammar
as well as additional types, rules, and lexical entriesigfized for the language in ques-
tion. These files are intended as a launching point for furdegelopment of the grammar
by the user-linguist. These grammars can be loaded into ktigegrammar development
environment (Copestake 2002), as well as the PET parseln{€al 2000). These sys-
tems can (among other things) parse sentences using tiseandieconstraints defined by
the input grammar. While the Matrix core grammar containskaset of types supporting
lexical rules, the customization system previously did altgw the user to create lexical

rules which interact properly with each other.

The goal of the work presented here is to extend the custtionzsystem to provide a

robust, language-independent infrastructure for crgatinrphological rules. The resulting
system should take the user’s answers to the questionnadreraate language-specific
morphological rules that extend the existing type hienarochthe Matrix core grammar.
The morphological system must also create an infrastredtur building rules that will
apply morphemes in the correct order, taking into accounphmeme optionality and co-
occurrence restrictions. The solution needs to be langnagpendent, because the Matrix
is a multilingual tool. It must also be independent of anytipatar syntactic information,
because it will serve as a general infrastructure for alctisomization system’s syntactic
libraries, as well as creating placeholder rules for thephemes for which the Matrix does
not yet provide an analysis. The concrete goals of this ptaje to define the morphotactic
phenomena that need to be modeled, define how the relatpnbkiween morphemes
can be represented in the questionnaire’s internal forarad, extend the customization
system to be able to construct the morphological rule tyfpi@itiens such that they can be
integrated with the core grammar and existing librariesarde morphologically complex
words as the user intended.

Following Bender and Good (2005), morphosyntax and morpboplogy are treated
as separate systems. The resulting system presented kess an independent layer be-
tween the morphophonology and morphosyntax. It creatéersygsof rule hierarchies mod-
eling the interactions between various morphemes and/gomeme paradigms. Where no
syntactic content is available, the system creates a sketete that applies appropriate
morphotactic information but does not add any syntactiorimfition. The syntax can be
filled in as the user develops an analysis. This also allows syatactic libraries to be
added to the customization system incrementally, withawtrig to disturb already estab-

lished lexical rules.

| assume that the phonological forms provided in the granarearegularized. Thatis, |
assume that morphophonological processing will take ppatside of this system (before-
hand on inputs to parsing, afterwards on outputs of gemeratiPre- or post-processing

might be done with a finite state transducer, as is common torynmorphological pro-

cessing tools. However, FSTs alone would be insufficientifermorphological processing
(including morphosyntax) required by the Matrix. Matrixagimars, based in HPSG, pro-
duce complex feature structures that encode syntactic emdrgtic information. Lexical
rules add to or modify the features of the lexical entriegpotting more detailed feature
structures which can serve as input to further lexical rudesombined with other feature
structures via phrase structure rules. | am attemptingdateran infrastructure for these
lexical rules. The necessary feature structures are commsted structures and could not
be reproduced by an FST.

This thesis is divided as follows: Chapter 2 consists ofexditure review, describing
the Matrix system, the role of morphology in linguisticsdamow morphology has been
handled in other multilingual grammar tools. Chapter 3 alsses the design goals for this
project, both in terms of what linguistic phenomena needdanwodeled, and how to do
so within the Matrix framework. Chapter 4 describes how th&tesm was implemented
and how the design goals were met. Chapter 5 covers the @ealysocedure, and how
the system performs on test suites designed for four mooginedlly rich but genetically

unrelated languages.

Chapter 2
LITERATURE REVIEW

In this section | explore the broader intellectual contextthe work described in this
thesis. In§2.1 | describe the relevant aspects of the Grammar Matrixeiatgr detail§2.2
looks at the linguistic topic of morphology and how it rekate this project. 1r$2.3, | look

at how morphology has been addressed in other multilingsalurces.
2.1 About the Grammar Matrix

2.1.1 Whatis the Matrix

Precision grammars are linguistically-motivated ruledshgrammars designed to model
human language as accurately as possible. Unlike statigtiammars, these systems are
hand-built by grammar engineers, taking into account trggneer’s theory and analysis
for how to best represent various syntactic and semantiagrhena in the language of
interest. While having a system designed with linguistiegwion in mind can help with
tasks as wide ranging as testing linguistic hypotheses chma translation, building such
a system is extremely time consuming and labor intensivadtition, new grammars have
typically been built from scratch; prior work tends to be freely available, or poorly doc-
umented, or too specific to the particular language to peuaidiseful starting point for a
new grammar (but cf. Kim et al. 2003). A side effect of thishattprecision grammars tend
to be substantially different from each other, with no bescpces or common represen-
tations. This makes it difficult to compare grammars or torasétiple grammars within a
larger system. (Exceptions do exist; the ParGram projedtt @ al. 2002) is one example
of multiple grammars developed using a common standard)

The Grammar Matrix was designed as a solution to all of theskl@ms. The initial

design goal was to create a language-independent core guathat could serve both as a
seed for new grammars, and as a common development framédeniler et al. 2002). As

development progressed, it became possible to designaséiearies that covered more
language-specific information (Bender and Flickinger 2@®llishak and Bender 2005).
For example, there is not one universal strategy for majastitnent order, but there is a
known range of possibilities. Providing analyses of knotvatsgies for various syntactic
and semantic phenomena speeds up the grammar developmesdpby creating a larger
and more language-specific grammar from the outset, alfpwhie grammar engineer to
concentrate more on complicated or quirky aspects of thguiage of interest. The li-

braries can be accessed via a web interface where the useeleah the options relevant
to the language they are working on, and the appropriate isodempiled into a starter

grammar. As grammars for more languages are developed tignilatrix, there have

been improvements to the core grammar. However, most duteelopment is concen-
trated on the customization system, both in providing miwr@ties and improving the user

interface.

2.1.2 Core Grammar

Matrix grammars are typed feature structure grammars. Toegist of a hierarchy of
types, which have constraints in the form of feature stmestuthe elements of which are
themselves typed feature structures. A class of typesdcalles include constraints on the
types or features of their daughter(s). The rule must théy ita own constraints with the
constraints on the daughter value, with the output beingpadyeature structure where the
type is the rule type, and the feature structure is the coeubieature structure of the rule
type and its daughter(s). Grammars produced by the Matrir@lde the core grammar
of basic types and rules designed as a general-purposedradkeMatrix grammars.

Of patrticular interest to the work discussed here is the tyge- r ul e. The feature
structure forl ex-rul e (1) contains complex features for specifying the syntaatid

semantic content of the rules (SYNSEM).

(1) lex-rule phrase-or-lexrule & word-or-lexrule
NEEDS-AFFIX bool
SYNSEM LOCAL |cONT [rgrs [UIST]
LAST
Hcons |LIST
LAST
DTR \;vord-or-lexrule & _
3/synsem [[i -
LOCAL |cONT RELS LIST
LAST @
Hcons |H1ST
LAST 0]
ALTS 8]
C-CONT RELs [LIST @]
LAST 1]
HCONS [LIST]
LAST 0]
ALTS
ARGS (B)

The content of these features is unspecified in the basic tgpées that inherit from
| ex-rul e fill in the content of the feature values. Another feature) Bpecifies the
rule daughter, essentially the input of the rule. The daemjistconstrained to be either a
lexical entry or another lexical rule. Rules that inherdrfrl ex- r ul e can place further
constraints on the type of the daughter, as well as the valibe syntactic and/or semantic
features. Lexical rules can only have one daughter valuaulfiple types could in theory

serve as a daughter to the same lexical rule, they need toielaeht from a common

rule type (the Matrix’s allowance of multiple inheritancekes this possible). A rule can
specify its own type or a type it inherits from as a daughteris lalso possible to get
cycles of two or more rules that can feed each other. Infioibg$ can be prevented by
putting additional constraints on the feature content efdaughter that prevents a rule
from applying more than a certain number of times. In the absef this, the LKB sets a
cap on the number of lexical rules that can apply to one warel g¢efault number is 7, but
is adjustable), and will stop parsing once this limit is teedt. The syntactic and semantic
content specified in rules inheriting fronex- r ul e can add or change feature values of

the daughter, but no information can be removed.

2.1.3 LKB Processing

Matrix grammars can parse and generate when loaded intavangaadevelopment envi-
ronment such as the LKB or the PET parser. For this thesisd tlse LKB and concen-
trated solely on parsing, and so will discuss only theseadsp®nce a grammar is loaded
into the LKB, the input to parsing is a sentence or senteragnient. The LKB then ap-
plies a bottom-up head-driven parsing strategy to builchéufe structure that accounts for
every element of the input strifgBasic string matching is done to match tokens in the
string to lexical entries in the lexicon. Lexical rules (@ssally morphological rules) can
change the orthographic form of the lexical entries, anchewsystem also attempts string
matching based on the output of lexical rules. Phrase str@ictiles apply to combine the
lexical entries and lexical rule outputs into larger phgas&€he LKB continues applying
rules until all the elements of the input string are accodrite in one feature structure,
or all possibilities are exhausted. All successful parsegeturned, and include a phrase

structure tree, and the final feature structure which a seémeepresentation in Minimal

The LKB’s built-in efficiency measures include filtering auies that are guaranteed to fail before at-
tempting unification. See Copestake 2002 for details.

Recursion Semantics (MRS) notation.

When running Matrix grammars in the LKB, lexical rules work @nary productions
similar to unary phrase-structure rules. The daughterevauhe single input, and the
mother is the output. The output contains any additions anghs made by the rule, with
the remaining content copied up, as specified in the typakdrits from. The output is the
type of the mother. Since the daughter of a lexical rule cayloma lexical entry or another
lexical rule, all lexical rules must apply before phraseistre rules apply. The rule can
optionally be associated with spelling changes, addingaatifying the orthographic form.
Within the core grammar, lexical rules associated with Ispgglchanges inherit from the
typei nfl ecti ng-1 ex-rul e, and those that modify feature values without altering the
spelling inherit from the typeonst ant - | ex-r ul e. These each inherit directly from
| ex-rul e. The LKB looks for the particular instances of lexical ruyg@es in two files
separate from the main grammar file: one for constant lexidak and one for inflecting
lexical rules. These rule instances inherit from the rufgey For the inflecting rules, the
instances are where information such as the orthographic &#md whether the affix is a

prefix or a suffix is stored.

2.1.4 Customization

The core grammar is designed to be useful for developing mma in any human lan-
guage. However, there are also a number of linguistic phenarthat, while not entirely
language-independent, have a known set of possibilitesselinguistically. Building a li-
brary of code providing analyses for e.g. various word osdeategies allows the user to
simply identify the strategy used in the language of inteaesl insert the appropriate pre-
written code into their grammar. Creating such libraries waatural step in improving the

functionality of the Matrix. A number of these libraries n@wist, and more are currently

under development.

Rather than forcing users to find and assemble the apprejikedry code manually, the
libraries are accessed through a customization systents ldsmplete an online question-
naire, and a starter grammar is automatically produceddbaséhe options they selected.
The customization system consists of three parts: the gussbion page, the choices file,

and the customization script.

Customization Page

The in order for the system to create a starter grammar, théresl information must be
elicited from the user-linguist. The medium for this elation is a web interfacé. On
the main page, the user is presented with an overview of @tess of the questionnaire.
As of this writing, the syntax sections consist of: case,dvorder, sentential negation,
coordination, and matrix yes-no questions. Each sectioists of a series of questions
related to the topic at hand. There is also a section for timué basic lexicon. The lexicon
requires a noun, a transitive verb, and an intransitive.vie&decond noun, an auxiliary verb,
and up to two determiners can be added if needed or desiredusér may also enter up to

two test sentences, to test the starter grammar’s initredtfanality.

Choices File

The options selected by the user are saved in a plain textélied the choices file. This
file can be saved independently, whether or not the userdsaitgammar from the options.
A previously-created choices file can also be uploaded t@tiséomization page, which
fills in the customization questions based on that inforamatlhe user can then change or

add answers as necessary, and build a new grammar from thehogves file.

2http://www.delph-in.net/matrix/customize/matrix.cgi

10

The content of the choices file is a list of attribute-valuegpaAlthough the primary
function of the choices file is as input to a computer scrips also meant to be human-
readable. Therefore an effort has been made to make tHauédtend value labels transpar-
ent and representative, while still remaining concise. dditon, the sections are labeled
within the choices file, although this information is not ded or used by the customization
script. This allows users to easily find and identify choiséhout uploading the choices
file to the customization page. Here is a sample of the chdiledermat. The language be-
ing described is Zulu (Niger-Congo). The word order is defiae SVO, and the language

does not have determiners as independent words:

(2) secti on=|l anguage

| anguage=Zul u

secti on=wor d- or der
wor d- or der =svo

has- det s=no

Before a grammar is built, the choices file is verified to berinally consistent and
contain all the information it needs. For example, if therugeecifies that negation or
guestion marking is carried only on auxiliary verbs, an hari verb must be provided in
the lexicon. Once the choices file is verified, it can then lmidied to the customization

script to build a grammar.

Customization Script

Matrix grammars are written in a Type Description Languabel(). The particular lan-

guage is one developed for usage with the LKB (Copestake)2id8f based on the syntax

3see Appendix A for full choices file for all the test languages

11

in DISCO/PAGE system (Krieger and Schafer 1994). The cutation script is a Python

script that reads in the choices file, and uses the informétemntains to select or construct
relevant sections of TDL code. The output is a collectionlegfcontaining the language-
specific TDL code. This is then bundled with the core Matrigdito provide a small but

functioning grammar fragment.

2.1.5 Summary

The Grammar Matrix is a grammar engineering tool designespted up and simplify
the development of precision grammars, as well as providenaron framework, mak-
ing the resulting grammars more comparable. The core grarpnoides a language-
independent basis for grammar development. The custommzaystem allows users to
easily add language-specific code to their grammar fronadibs of analyses of various
linguistic phenomena. The customization page is a webfaderto the customization sys-
tem. The user’s choices on the customization page are redanch specialized format in
the choices file. This file serves as the input to the custdinizacript, which compiles the

relevant code from the libraries and produces the startengrar.

2.2 Morphology

The heart of language consists of the mapping between farthsxa@anings. In this context,
a morpheme is the smallest unit of form and meaning. Whilessamguages are monomor-
phemic, with each morpheme functioning as an independerd,woost languages have
some means of combining morphemes into larger units at thd iggel as well as at the
phrase level. The study of morphology looks at the ways inclvlanguages combine
morphemes into larger words. This typically means lookihgaund morphemes, which

cannot serve as independent words, and how they attach stettms or free morphemes in

12

a language.

Of particular interest to this project is inflectional mogbbgy: those affixes which have
syntactic function in the grammar. Inflectional morpholagused to encode content such
as tense, aspect, person, number, gender, case, negettourde status, evidentiality, and
so on. While these affixes can carry some semantic contehewfdwn, they exist mainly
as a syntactic requirement of the grammar. For example, gedival gender is assigned
largely at random and can vary widely cross-linguisticaligth in the genders that are
encoded and which gender any particular word is assigned.

In this section, | focus on the role of morphology in the cahtaf multilingual re-
sources. | first discuss why morphological coverage is atuaoi the development of a
grammar system such as the Matrix. | then set up the diffesehetween morphophonol-
ogy and morphosyntax, and explain why my system focuses aphoeyntax. Finally, |

look at how morphological processing is handled in othertiimdual systems.

2.2.1 Why Do We Need Morphology?

Providing coverage for as many languages as possible is @ousbgoal for a cross-
linguistic tool. The question then arises of what functiggashould be developed first.
In a resource for building precision grammars made up ofiléetéeature structures, such
as the Matrix, it might seem more worthwhile to focus on pdawj feature content, and
let the grammar engineer work out how the lexical and phsasesture rules play out in
the syntax. In addition, the importance of providing cogeréor inflectional morphology
may not be immediately apparent to speakers of languagésatiiaa robust system of
inflection.

For many of the world’s languages however, inflectional afiare mandatory as part of

even the most basic sentence structures. In previous wersfdhe customization system,

13

the user needed to either leave off these mandatory affixestimization time, or include
them as part of the lexical entries. While ignoring the marsaspects of the syntax is
expected during customization, we would like the startangnars to be as linguistically
accurate as possible, including being able to parse mavghoFor a language with limited
morphology, it may be possible to store each inflected wo separate lexical entry, but
some languages have large paradigms and/or many diffeagatligms, and even if the
rules for combining them are straightforward, creatingdakentries for each possible
combination is simply unfeasible. Some languages havectidleal systems that allow
for repetition or recursion, creating a technically unteci number of possibilities. For
these languages, modeling the morphological rules is sacgsf the goal is complete
grammatical coverage.

In addition, new content libraries are continually underedlepment. Providing a gen-
eral system for building morphological rules is helpful barth the Matrix library develop-
ers and the users. Instead of writing a morphological ruteeggtor for each new library,
developers can instead plug the feature content into themotactic system. An indepen-
dent morphotactic system provides a big-picture view of tlmsvaffixes interact with each
other in the grammar. While users will still need to provitle tustomization system with
a morphotactic analysis on which to base the rules, the leap@i building the inflectional
rule system at customization time will both be faster thanstaucting the rules by hand,

and make the starter grammar easier to understand and déetbe user.

2.2.2 Morphophonology vs Morphosyntax

Morphology interacts with different aspects of a languaggammar. Many phonologi-
cal rules are specifically based in morphology. An examplaigfis the English plural /-s/

suffix which becomes [-z] when following a voiced sound. Tikishange is morphophono-

14

logical, rather than motivated strictly by phonologicahddioning, as evidenced by min-
imal pairs such awins/wince Many languages leverage morphology to encode syntactic
features, and thus morphology can interact with other dspgd¢he syntax. The informa-
tion carried by affixes can correspond to (for example) fmesiord orders, constraints
on arguments or argument structure, the morphology of otloeds in the phrase, or the
semantic interpretation of a phrase. Incorrect affix chotzeomitting affixes altogether

can make an entire phrase ungrammatical.

While morphology overlaps with both phonology and syntaxrpmophonology and
morphosyntax can be treated as distinct topics. If one es@sted solely in the phonolog-
ical processes necessary to render surface forms of a Igaegtiee syntactic function of a
morpheme is not necessarily relevant. Likewise, if one assio focus on the syntax of a
language, it is possible to regularize the phonologicahiof morphemes of a language
(as influenced by, e.g. phonological processes or irredafans) and look solely at the
syntactic function of the morphology. From a syntactic viesing morpheme glosses that

don’t encode phonological information at all can be petyegppropriate.

A complete model of morphology of course requires that thepimaphonology and
morphosyntax interact with each other. Focusing on phayoignores the important syn-
tactic contribution of morphology, and focusing on syntax ¢ead to glossed representa-
tions that could not be interpreted by a literate native kpewithout linguistics training.
One solution to this (as discussed in Bender and Good 20@5)ds the two parts as two
separate systems, using the output of the one part as thetmthe other. The Matrix

morphological system is intended as the syntax part of tloideh

15

2.2.3 Summary

Morphology is concerned with how units of meaning combina language to form larger
words. The information encoded by inflectional morphologyies widely across lan-
guages, as do the rules governing how morphemes can atthetuse of inflectional mor-
phology is extremely common cross-linguistically, and sneanguages have inflectional
systems that are either large or governed by complex rulesdelihg these languages as
systems of rules that attach morphemes to stems is both rfilcierd and more linguisti-
cally interesting than storing the morphology as part oféckd entry. Morphology over-
laps with both phonology and syntax, and it is possible td labmorphological systems
from either a phonological or syntactic perspective. ThdérMand the work discussed in

this thesis are focused particularly on morphosyntax.

2.3 Morphology in Multilingual Grammar Tools

There are many systems available to parse and/or genefletgional morphology, based
on both knowledge engineering methodologies (e.g., Beemtel Karttunen 2003) and
machine learning (e.g., Goldsmith 2001). There are two rddfarences between these
systems and the Matrix. First, they are not customizatistesys. Secondly, they are more
concerned with morphophonology, while | focus on morphtésynThere are tools with an
interest in morphosyntax, such as Maxwell et al. 2002, begehtools do not provide the

in-depth syntactic and semantic analysis found in the Matri

2.3.1 XFST

Many tools utilize finite state transducers for morpholagiparsing. Here | discuss in
particular Xerox/PARC XSFT system (Beesley and Karttune@3). It consists of two

parts: the xfst environment for building and running FS$dzamorphological parsers, and

16

the purpose-created lexc programming language, whictvallbe user to define a lexicon
(including sorting lexical entries into classes by inflentipatterns) and a series of rules
associating orthographic forms of affixes with morphemesggs. The xfst system can
then compile the FST from the defined grammar. Regular egjeélters are used to rule
out linguistically impossible constructions. The systeam generate surface forms from
morpheme glosses, as well as glossed forms from surfacesform

While this system is powerful and reliable, it is concergdatnostly on producing accu-
rate string representations, generally over single wortle.Matrix builds complex feature
structures modeling many interdependent syntactic andsgorelationships both within
and between words. This information would be difficult attheseproduce in an FST en-
vironment. However, the two systems are very complementaeyMatrix does not have a
robust system for string manipulation, so it is often eds@work with morpheme glosses
rather than attempt to produce accurate orthographic foritese glossed forms could
then be input to an XFST processor, which could produce tHfamistrings. This has the
additional advantage of making the regular expressiondilaggely unnecessary: many of
the filters are used to eliminate strings that are syntdlticapossible, which would not
be produced or parsed by the Matrix grammars. The Matrix alR8TXsystems could be
seen as each side of the morphophonology and morphosyrde&gsing, both necessary

but working on different aspects of morphology.

2.3.2 SIL Morphological Glossing Assistant

One system that focuses on morphosyntax is the SIL Morplhtdb@lossing Assistant
(Maxwell et al. 2002). Marking up interlinear text can beitews, especially for languages
with complex systems of inflectional morphology. Morphatag parsers are often used

to speed this process up, but many languages have a greatfdwashophony in their in-

17

flectional morphology. If the morphological parser is baselgly on morphophonological
information, this can lead to spurious parses. Sortingutindhese parses for the right one
can be so time consuming as to cancel out the benefit of usengaiser in the first place.
Many of these extraneous parses can be eliminated by pnoMudisic morphosyntactic in-
formation. Providing this information may be daunting ompimssible for people who do

not have training in morphosyntactic feature systems.

The Morphological Glossing Assistant (MGA) is designeditbiathe process of gloss-
ing interlinear text. It provides a user interface to an gy of morphosyntactic proper-
ties. The user can then select which properties apply to éinicplar morphemes in the
language being documented. It is possible for the user tietbeir own features as well,
as no ontology covers every morphosyntactic feature inyelagiguage. The glossing as-
sistant creates feature structures stored in XML formateageneral feature system for the
language. Morphemes can be assigned features or complexefestructures, and these
feature structures can be designated as applying to a yarti®ot type. For example,
the feature structure type for a transitive verb could condacomplex feature value cor-
responding to subject agreement, and another for objeeeawnt. These morphological
feature structures contain features designating, e.gopeand number. The feature system
provides the possible values for these features. The MGAsgyded to be used in con-
junction with a morphological parser. It is also intendeéxcst as part of SIL's larger suite

of tools for language description.

This tool is similar to the Matrix, in that it is morphosyntaally motivated, it uses
feature structures to model the syntactic content of mor@se and it provides a means
of creating a customized feature system for your languag® f language-independent
ontology. The most apparent difference between this systednthe Matrix is that the

MGA is not a grammar tool, but a means of constructing a feasystem. It is possible

18

to create a feature specifying which morphological feasirecture can occur to the right
of the current one in the orthographic representation, oertet is no system of rules for
combining the feature structures of various affixes, andutesrfor combining words into

phrases. And unlike the Matrix, the MGA does not provide ayantic representations.

2.3.3 Expedition

The project most similar to our current work is the Expeditjgroject (McShane et al.
2002). While no longer under development, Expedition wasamgnar elicitation toolkit
designed to expedite the process of building grammars fahma translation (MT) pur-
poses. Like the Matrix, Expedition relied on knowledge pded by an active user to build
the grammars, as opposed to extracting information fromtactapus, for example. How-
ever, the design and implementation of Expedition was véfgrént from the Matrix in
several fundamental ways.

Expedition grammars are designed only for MT purposes, amdonly translate to
and from English. Matrix grammars are compatible with theQ@N MT infrastructure
(Oepen et al. 2007) and can therefore (theoretically) ladmdetween any language pair.
Expedition uses a knowledge elicitation system, calledsBoBhe target users for Boas
are a language informant and software engineer, neithethofware required to have a
background in linguistics or grammar engineering. Whilis tthoes allow for grammar
development in cases where there is not explicit lingulstiowledge available (such as a
printed reference grammar), the resulting grammars laglptacision and depth of Matrix
grammars. While Boas and the Matrix customization systech eatomatically generate
grammars based on knowledge elicited from the user via giquesire, the nature of both
the questionnaire and the generated grammars differ signtfy because of the difference

in target users.

19

The difference in system design is especially apparentargémeration of morpholog-
ical rules. Because Boas does not assume explicit lingietwledge, it does not require
the user to identify stems, morpheme boundaries, or pareditnstead, the user tags sur-
face strings with information about the morphological pgans and morphological rules
are generated through a machine learning process. Prddictas are then presented to
the user, who marks them as grammatical or ungrammaticdltras information is fed
back into the morphological learner to further refine thesul

While this system is convenient in the total absence of listiziknowledge, there are
several advantages to assuming expert knowledge in mamgical development. Ma-
chine learning can be imprecise and arbitrary. Matrix grarsare designed to be precise
and linguistically motivated: generalizations and eximps can be made explicit, and the
linguist-user can make decisions about how to model moggichl phenomena (such as
positing a zero morpheme where there is no phonologicalmagteHowever, it may be
beneficial to develop a hybrid approach drawing on the sthengf both models. Such a
system could lower the barrier of entry for would-be grameragineers while still allowing

the user explicit control over the grammars when desired.

2.3.4 Summary

While building multilingual tools that include coverage fimorphological phenomena is
not a huge field, there do exist relevant systems besides #igxM Many systems use
finite state transducers to model morphophonological médion, but these systems do
not encode morphosyntactic information (at least not rtpusThe SIL Morphological

Glossing Assistant provides a customizable system withphmsyntactic content but no
grammar of morphological rules, and the syntactic contenbt as rich as that of the Ma-

trix. The Expedition project was a grammar customizatiostesyr, but the morphological

20

rules were generated via machine learning rather thanattpliesigned by a linguist. In-
deed, both the MGA and Expedition were intended to be usedhylinguists, where the

Matrix is targeted at linguists.

24 Summary

The Grammar Matrix is a tool designed to assist in the creatfgrecision grammars. The
core grammar provides a language-independent base on wehicmstruct the grammars.
The customization system allows users to specify phenomsdagant to their particular
language, with their selections compiled from librariesaoblyses into a starter gram-
mar. Prior to the work described in this thesis, there wasanmobust method of including
inflectional morphology in the customization system. Pdowj such a system is impor-
tant because many languages have inflectional morphologyresl in even the most basic
constructions, but the morphological systems are suffilgieomplex that entering each
possible combination of affixes as lexical entries is difficu impossible. Matrix gram-
mars emphasize morphosyntax over morphophonology, aod atiorphological rules to
be customized and explicitly defined by the user. Some simildtilingual morphological
tools emphasize morphophonology or utilize machine |legrrilgorithms, and no other

tool provides the rich syntactic and semantic informatioumfd in the Matrix.

21

Chapter 3
DESIGN GOALS

3.1 Overview

As discussed in 2.2.2, the focus of the morphological wortha Grammar Matrix is on
morphosyntax, or the way in which morphological process$festathe syntactic and se-
mantic combinatorial potential of the word. Within that ader context, the work presented
here focuses on word-level morphotactics, or the condgramthe order and co-occurence

of morphemes with words.

3.1.1 Role of Morphotactics Library in Customization

The task at hand is taking users’ specifications for how affiexeply in a particular lan-
guage, and using that information to build lexical rule typleat feed each other in the
correct order, while taking into account rule optionalitydanter-rule dependencies. It is
important to keep in mind that this is meant to apply to theenircustomization system,
and so is to some extent limited by the other capabilitiehefdystem. For example, li-
braries for agreement and for tense/aspect are currerdgrutevelopment, but are not im-
plemented as of this writing. This means that at custonmonaime, inflectional morphol-
ogy associated with these functions will not be able to adqu@wiate semantic content,
because the customization system doesn’'t know what thatiebis. What | am building is
essentially a skeleton rule structure: | am putting a fraorkwn place to be filled in by the
user as the grammar is developed. As new libraries are addbd tustomization system,

users can link the affixes with their semantic content, apcetfiore create more fleshed-out

22

grammars from the outset.

There are several advantages to providing a skeleton mnuletste. One benefit is that
the starter grammars are more accurate models of languagehbse produced by the
previous system, as the users do not, for example, need Wb mguns with case affixes
already attached. Another advantage is that users canogeaetl test whatever morpho-
logical rules they wish, without having to work systematicaut from the stem. If the
user wishes to start by adding content to an affix or affix-ghgra that appears third out
from the stem, they can start there without worrying aboatsdmantic content / analysis
of the affixes that apply first or second. The skeleton strectiso allows users to account
for affixes whose syntactic and/or semantic content is nbtgeered in the customization
libraries. If the rule content for the third affix from the stean be customized, but the first
and second affixes cannot, creating empty rules for theWsaffixes allows the third rule

to be created such that it will apply in the correct order,ustemization time.

Note that these skeleton rule systems will overgenerat@usecl have not created rules
regarding particular paradigm-internal values. While Véhaules dictating the morpho-
tactics for an entire paradigm, without any semantic caniémakes it difficult to look
inside the paradigms. Though it would have been technigaisible to accomplish, it
would require a somewhat complex system of additional featand requirements that
would become redundant and unnecessary once the usertiilled appropriate content in
the feature structure. | decided it would make more pracsiease for the user to specify
these requirements at the time that they are filling in theatthe rule content. New rule
content libraries should provide the user this opportyridy phenomena not covered by
customization, the rule content can be filled in as the usezldps their grammar from the

starter grammar provided.

23

3.1.2 Phenomena Covered

To illustrate some of the morphotactic phenomena that nebd tovered, as well as chal-
lenges in implementation that need to be addressed, heexanaples from the Zulu test

suite)?

(3) umu- ntwana u- zo- bon -a in- yoka
C1- child SC1- FUT- see -FV C9- snake

‘The child will see the snake’ [zul]

(4) umu- ntwana u- zo-yi- bon -a in- yoka
C1- child SC1- FUT- OC9- see -FV C9- snake

‘The child will see the snake’ [zul]

Zulu has a system of noun classes, which are analogous tavgatical gender. The
difference is in scale: rather than two or three classes feagculine, feminine, neuter),
there are about 15 noun classes in Zulu. The C1 and C9 mark#rs above example are
the markers for the class that the nouns belong to (i.e.dthélongs to class 1 and ‘snake’
belongs to class 9). Verbs mandatorily agree with the noasscbf their subjec,and
transitive verbs can optionally agree with the noun clasheir object® This optionality
is illustrated in the two examples above. FUT is a tense midggecifically indicating the
remote future). FV stands for “final vowel” and is essenyiallithematic vowel, typical of

Bantu languages. | will return to this Zulu example througgtbis thesis.

1Zulu examples were constructed using the information inrlyezi and Doke 1979 and Poulos and
Bosch 1997 and have not been vetted by a native speaker

2SC1 in the examples above indicate the subject agreemekem&C stands for “subject concord”; the
1 corresponds to noun class 1

30C9in (2) is the “object concord” for noun class 9

24

These examples illustrate several phenomena that needaocbented for. First, the
system needs to be able to attach morphemes only to partrogior stem types. In the
Zulu example, the class markersfu-andin- in this case) need to only attach to nouns,
while the subject and object concords, tense markers, aabvimvel can only attach to
verbs. The system needs to be able to specify what sort of eowtorpheme can attach to.
Some morphemes may also attach to multiple root types, asdchéleds to be accounted
for as well. While the system does not have any preconceiagidnms of what sorts of
inflection root types take, it does need to be able to accaumthise restrictions in any

particular language.

In a highly-inflecting language, most morphemes won'’t apjpeanediately preceding
or following the root, as there will be other morphemes weaing. Therefore the gram-
mars need to apply the morphemes in the correct order. Howiaveany languages some
morphemes are optional while others are obligatory. Inot@accurately model the order
in which morphemes appear, the system needs to be able toradoo morpheme option-
ality. In the Zulu example, the object concord attachesctliyeo the verb, but is optional.
The tense marker attaches to the object concord if it is ptebat will attach directly to
the verb if the object concord has been omitted, or if the v@ibtransitive. The system

must allow the tense marker to attach in either position.

Other issues arise regarding restrictions and dependsnei@een various morphemes.
This does not come up in the Zulu example, but it was an issa@aather test language,
Slave (Na-Dene). For example, in Slave, there is one morph&at indicating that the
subject is plural and a separate, non-consecutive slotatidg that the subject is dual.
Both affixes cannot occur in the same word. Since the Matmptiap morphological rules
consecutively, each morpheme can only “see” the rule thaltegpimmediately before it. |

need to create a way to keep track of non-consecutive regaits, and expose the relevant

25

information to the rules that need it. So, in the Slave examplere needs to be a way for
the dual marker rule to tell whether or not the plural markas hlready applied, even if
subsequent morphemes have been added after the pluralrm@tkée these restrictions
could be caught and rejected by, for example, an XFST systeng dnorphophonological
processing over the output of generation. However, theiefity of the whole system is
improved if these restrictions are modeled in the gramnsarghat it is not wasting time
on constructions known to be ungrammatical.

| also want to be able to represent zero morphemes, withaéssarily forcing the
user to explicitly represent them in the orthographic forfinat is, | want to provide the
option of having a rule apply without modifying the surfatersy, as opposed to having the
orthographic form of a an affix be, for example, -@’. This gpecially useful to complete

paradigms where one element does not have an overt phocalogpresentation.

3.1.3 Summary

My goal is to create a system that allows a user to customizefeastructure of morpho-
logical rules, as part of a multilingual grammar developtitenl. This system should tie
into the larger tool’s syntactic analyses, where possiMeere there is not an analysis pro-
vided, the system should build a skeleton rule structuredaige a framework for the user
to continue the development of their grammar. This skelet@astructure should be able
to capture the morphotactics of the language, which mearmuating for rule ordering,

rule optionality, and co-occurrence restrictions.

3.2 Customization Page

As discussed i1§2.1.3, the user interface for the customization system iglasite known

as the customization page. The format of this page is a questire. Options are currently

26

input in one of three ways: by marking an option by clickingneck box or radio button;
by selecting an option from a drop down menu, or by inputtexg tnto a text field (for
providing orthographic forms). These selections are theduo create the choices file.
This system will need to be updated to accommodate the mtpical interface. | have
chosen here to focus on the back-end issues of the choicdsrfibat and customization
script, and leave the user interface for future work. Thigglen meant | needed to create
the choices files discussed in the next section and shownpergix A by hand.

However, it is important within this project to keep in mirdhat the customization page
is still the starting point for the customization system. sAgh, the morphotactics system
is somewhat constrained by the information available. Kan®le, the parts of speech
provided in the lexicon consist of nouns, verbs, and deteersi Consequently, the system
presented here is only designed to handle these sorts oalédams. It should be trivial to

add further lexical types, but types such as adjectives netrexplicitly handled or tested.

3.3 ChoicesFile

The choices file is output of the customization page and itgtite script that produces
the starter grammars. While the user interface for the nuaigutics system is yet to be
developed, it is still necessary to design a specificatioritfe choices file format. | first
need to identify what information needs to be encoded by tiogces file.

It is useful in this case to divide the information into twoskatypes: paradigm in-
formation and meta-paradigm information. A paradigm irs ttontext can be thought of
as an affix “slot” or position. A paradigm may have many pdssualues. For example,
a paradigm indicating number could have values such as lainglual, or plural. Other
affixes, such as question or negation markers, often onlg bae possible value, but I still

refer to them as paradigms in this context. In the choiceslfileed to encode 1) a name

27

for the paradigm (e.g. “noun class” in the Zulu example) Zhdre is only one possible
value, what its orthographic form is, and 3) if there are iplétparadigm-internal values,
labels for those values (e.g. the list of noun classes in)zrid their orthographic forms.
Meta-paradigm information covers how this paradigm bebtavith regards to other
affixes and the root. In particular we need to encode 1) ifdffig is a prefix or a suffix,
2) where this paradigm can attach (e.g. Zulu's tense maikerattach to the verb or the
object concord), 3) if it is optional or not, and 4) any co-@gence restrictions (i.e. any
morpheme paradigms that must or cannot co-occur with maonpkédn the paradigm in

question).
3.4 Customization Script

The customization script takes the choices file and usesitbemation encoded to produce
lexical rules. In particular, it needs to take the inforraatabout where each morpheme can
attach and create a structure of rules that feed into eaeh iotkthe correct order. Two more
specific goals include designating the input and output of@as a lexeme or a word, and

keeping track of co-occurrence restrictions.

3.4.1 Lexeme or Word

Within the Matrix, lexical entries and the products of ledicules can be eithéexemesr
words Essentially, a word is well-formed and can be the daugtitepbrase structure rule.

A lexeme is not yet sufficiently well-formed and requiresigiddal information (added via
lexical rules) before it can interact with phrase structutes. Words and lexemes are dis-
tinguished by a boolean featuteEach rule needs to be designated as a lexeme-to-word

(Itow) rule, a lexeme-to-lexeme (Itol) rule, or a word-exéme (wtol) rule. This designa-

4[INFLECTED +] for words, [INFLECTED -] for lexemes

28

tion specifies whether, after the application of this rute kexical item changes status as
to whether it is a well-formed word, or if it requires more atdtion to be grammatical. A
Itol rule (despite its name) is one whose status does notgehbetween the input and the

output. Here is the Zulu example from above:

(5) umu-ntwana u-zo-bon-a in-yoka
C1- child SC1- FUT- see -FV C9- snake

‘The child will see the snake’

The lexical entry folbon“see” is not a well-formed word. The first morpheme to be
applied is the tense marker, in this case the future tenskeamay- However, applying this
morpheme does not make the verb well-formed. Because ttus stiain’t change, the rule
applying the tense marker is Itol. Ltol rules also includéiidnal morphemes attached
to well-formed words. For example, if an additional negatioarker is added to the well-
formedu- zo- bon -athe input and output are both well-formed words, which nsatke
negation rule a Itol rule.

The type word-to-word does not exist, as it is functionalg same as lexeme-to-
lexeme. In both cases, the word vs. lexeme status is the setimerinother and the daughter.
It would be unnecessarily redundant to create one rule typavhe input and output were
both words, and another where they were both lexemes.

A ltow rule takes a not-fully-formed lexeme as input, andput$ a well-formed word.
These are generally identified as the last non-optional here to be applied, but may
also be created in conjunction with a wtol rule; see belowh&analysis used in the Zulu
grammar, the last non-optional rule for the verb is the firali®l. After the final vowel
is applied, the verb is considered a well-formed word by tteargnar, and can be used in

larger syntactic constructions.

29

Witol rules take well-formed words and output lexemes thgtir@ more inflection to
become well-formed again. They did not exist in the Matrisopto this project; | found
them to be necessary for encoding co-occurrence phenoredascribed below. For wtol
rules, three conditions need to be true: 1) The rule is itgptional. 2) the lexical item
it attaches to is already considered well-formed by the gnam(either the lexical entry
is a well-formed word on its own, or a ltow rule has previouapplied). 3) The choices
file specifies that if this rule applies, another, subsequdatmust also apply in order for
the word to be well-formed. For example, in Slave, the lexérdries are generally well-
formed words before the application of any lexical rules. siMexical rules are therefore
Itol rules, as both the input and output are well-formed. ideer, after the application of
an incorporated postposition, the word is no longer waltrfed until the application of an

affix marking the object of the incorporated postposition.

(6) be-keh-na-be-ne-w-n-h-tah
3SG-into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo

‘| kick him/her into it (e.g. hole).

Affixes are applied one at a time starting from the root. Iis #stample, the first affix
applied would be the first person singular markerfollowed by the perfective marker, and
so on. Until the incorporated postpositikah-‘into’ is applied, the word is well-formed
both before and after the application of each affix. Howea¥an incorporated postposition
is added, it must be be accompanied by a pronominal affix sporeding to its object.
Because the affixes are applied from the root out, the objechis case the third person
singular markebe-) is applied after the incorporated postposition. If jugt plostposition is
applied, without being followed by its object, the word islanger well-formed. Therefore,

the incorporated postposition rule needs to be a wtol rile:output of the rule is marked

30

as a lexeme and a subsequent ltow rule must apply to make tigewedl-formed again. In

this case, the postpositional object marker would be theesponding Itow rule.

3.4.2 Co-occurrence Restrictions

There are three types of co-occurence restrictions | wistover: 1) Affixes that can only
apply if a another affix has not applied. | previously mengidm Slave example where a
plural marker cannot occur if a separate dual marker haadyrapplied. 2) Affixes that
can only occur if another affix has already applied. In thewlsion of word-to-lexeme
rules above, | mentioned an incorporated postpositiontgrabject. In this case, the object
cannot apply if the postposition has not occurred. 3) Affittest, if they appear, force a
subsequent morpheme to appear. This is the case with theporated postposition in the
Slave example. If it occurs, its object must also occur. €mereds to be special handling of
these cases, because these morphemes can be otherwisaloptinat is, none of them are
needed to create a well-formed word, but the appearanceeofamgovern the appearance
of others.

The difficulty in our situation is that many of these ruleslwibt have any syntactic or
semantic content in the grammar as output by the custorizatistem. While | do not
intend to look inside paradigms, it is useful for the grameragineer to be able to account
for restrictions over entire paradigms. However, sincasé¢heiles are not necessarily con-
secutive, | need to provide a way for the system to keep tragkhah rules have already
applied. In addition, some morphemes can be thematic: nedjbly the syntax but not ac-
tually adding any syntactic and semantic content of theim.olw Slave many of the verbs
have discontinuous stems: in addition to the root word, tamsnust have a one or more
thematic prefixes that are either meaningless or have beabsteacted from the original

meaning and are now simply required by the stem. Howeveer gitefixes can occur be-

31

tween the thematic affixes. For example:

(7) go-B-deeh
THM-VERB.PREFIX-talk
‘talk’

(8) textitgo-h-@-deeh
THM-1SG-VERB.PREFIX-talk

‘I talk’

The verb prefix is required by all verb roots and can be treategart of the lexical
entry. The thematic prefix textitgo- is required by the lekxientry, but other affixes, such
as the subject marker in (8), can intervene between the vetband the thematic affixes.
| did not explicitly handle this phenomenon in my system tas liexically defined and not
inflectional morphology per se, the machinery for trackingoccurrence restrictions could

also be leveraged to track the occurrence of these semiaaridly prefixes in the future.

3.4.3 Summary

The customization script produces lexical rules based ensler’s selections in the choices
file. At a minimum the implementation should include a meaisetting rule types and
daughter values such that the rules can apply in the corrdet.oTwo challenges | wish to
address in the system are identifying which rules changstttes of a lexeme to a word
(or vice versa), and keeping track of co-occurence regiristbetween non-consecutive

morphemes.

32

3.5 Summary

The customization system consists of the customizatioe,dag choices file, and the cus-
tomization script. The design goals for the morphologicstomization are strictly back-
end, so the customization page is currently unmodified. Twéces file needs to define
new types and structure to encode relevant informationrdagg the content of morpho-
logical paradigms, as well as meta-paradigm informatigarging the morphotactics. The
customization script needs to create lexical rules thalyapghe right order based on the
choices file. Additional goals for customization includemtifying whether or not the rule

changes the status between lexemes and words, and trackouguarence constraints.

33

Chapter 4
IMPLEMENTATION

In this section, | present how | met the design goals laidlm@hapter 354.1 describes
the choices file format§4.2 covers the changes to the customization system, bygnoyi
an overview of the algorithm followed by more in-depth praséion of each of the design
goals of creating intermediate rules, identifying rulesndlecting or constant, identifying
lexeme-to-lexeme, lexeme-to-word, and word-to-lexenhesruand tracking co-occurrence

restrictions.
4.1 ChoicesFile

The design goals for the choices file are to encode certamnnrEtion about the content of
the paradigm, and meta-paradigm information necessarytiehthe morphotactics. | de-
cided to store this information in two separate section® first new section of the choices
file is the paradigm information, which stores the inforraatabout what a paradigm en-
codes (e.g. case), as well as the individual items withinpheadigm (e.g. the specific
cases encoded in the language: nominative, accusativeg detic.). In the work done for

this thesis, the paradigms are not tied to specific syntactsemantic content, and so the
paradigm elements consist solely of orthographic inforomatEach paradigm has the at-
tribute nane, the name for the general paradigm. This name is providetidyser, and

is intended as a descriptive label, as it will be used as theerfar the paradigm supertype
rule in the grammar. If there is only one value in this “pagadi (e.g. a question marker

that is either present or absent, but has only one form),dredigm has an attribute t h,

34

the value of which is the orthographic form for the morpherighere are multiple val-
ues possible, these are stored in the iterable attriiute each of which contains its own
name (again a descriptive label to be used as the rule namepant values. Here is an

example from the choices file for Slave:

(9) pdn2_nane=subj ect
pdnR_af f 1_name=1SG
pdn?_af f 1_ort h=h-
pdn_af f 2_name=1PL
pdnR_af f 2_ort h=i d-

pdml6_nanme=negat i on

pdmL6_ort h=du-

pdn? is the paradigm for subject agreement marking, and is givedescriptive name
“subject”. There are many values in this paradigm; | havéuithed here the affixes for first
person singular and first person plural subjeptdnl 6, the negation marker, contains one
element. Therefore it has no iteralalef values and instead has its ownt h value.

Some elements of a paradigm may not have an overt orthogrémhphonological)
form, but still add syntactic information as part of the mhgan. In this case, the ortho-
graphic form is specified as ‘NONE’, which allows the custeation script to create a
non-inflecting lexical rule.

The second new section is meta-paradigm information, ghainformation govern-
ing the morphotactics of an entire paradigm. Each metadigma(labeledror ph in the
example below) is associated with a series of attributesselvalues contain information
needed to construct the lexical rules. Mandatory attribatet ype, which specifies which

paradigm this morph is associated with (¢.gpe=pdn® in the same Slave choices file

35

shown in (7) indicates the meta-paradigm information spoads to the subject marker
paradigm),af f , marking whether this morpheme is a prefix or a suffix (not tacbe-
fused with the paradigm attribugd f), andopt , which indicates whether this morpheme
is mandatory or optional. The attributke r corresponds to the lexical rule or lexical type
that can serve as input to this rule. Any number of daughterde listed, but if the possible
daughters are due solely to those morphemes being optmmiglthe outermost possible
daughter needs to be listed. Example (8) is a segment of tluecAaices file. pdnB8 marks
the object concord, which can attach to transitive verbsnmansitives will not have an
object to mark), anggdm4 is the tense marker which can attach to either an intraesitiv
verb or to the object concord. The object concord is opticenradl so the tense marker can
also attach directly to transitive verbs, but the custotionescript is designed to discover

and account for this optionality (S€é.2).

(10) nor ph2_t ype=pdn8
nor ph2_af f =prefi x
nor ph2_opt =yes
nor ph2_dtr1_type=tverb
nor ph3_t ype=pdmi}
nor ph3_af f =prefi x
nmor ph3_opt =no
nmor ph3_dtr 1 type=iverb
nor ph3_dtr 2_t ype=nor ph2

Optional leaf values not illustrated here includer ces, which indicates that a sub-
sequent rule must be applied if this rule applieeg which indicates that this rule can
only apply if a previous, non-consecutive rule has alregaliad, anddi sr eq, which

indicates that this rule can only apply if a previous, nonsexutive rule has not applied.

36

4.1.1 Summary

The choices file needs to encode the information about irdleait paradigms and their
morphotactics in attribute-value pairs, for use by theamstation script. For the paradigm
information, | create a series of embedded values conlabels for the overall paradigm,
and the labels and orthographic forms for affixes containetis paradigm. For the meta-
paradigm (morphotactic) information | create a seriestoitattes encoding the optionality,

affix type, daughters, and co-occurrence restrictionscaatsal with a particular paradigm.

4.2 Customization Script

Once the choices file is complete, it can be processed by #teroization script. In this
section | will look at an overview of the general algorithneddo create the morphological

rules, followed by discussion of how various design goalsaimplemented in the system.

4.2.1 Algorithm Overview

To implement the morphological infrastructure, | neededitidte additional functions for
the customization script to handle the updated choicesrfl@rmation. Here | discuss

the main algorithm for creating morphological rulesjSTOMIZE_INFLECTION(), and the

functionFIND_DAUGHTERTYPE(). Pseudocode for the main algoritl@aSTOMIZE_INFLECTION()

isgivenin (11) and foFIND_DAUGHTERTYPK() in (12). Additional functions are discussed
in the subsequent sections, as laid out below. Some helpetidns, for example one that
finds what lexical types serve as the roots that an affix ietlyattaches to, are not shown.

The basic algorithm is simply a while loop over theer ph entries in the choices file.
Assuming a well-formed choices file, the algorithm will cionte iterating over theor ph
entries, and terminate when there are no more.

The rule’s DTR value is set by the functiemD_DAUGHTERTYPH), discussed below.

37

(11) 1 function CUSTOMIZE_INFLECTION():
tracks«< []
while CHOICESHAS_MORE_MORPHY)):
morph« CHOICESGET_NEXT_MORPH()
5 basetypes— FIND_BASETYPESmorph)
daughtertype— FIND_DAUGHTERTYPEmMorph, basetypés
ruletype< FIND_RULETYPE(morph, basetypgs
rulename— CHOICESGET_NAME (CHOICESGET_PARADIGM(morph) +
“lex rule’
10 CREATE_BASIC_RULE_TYPE(morph, basetypes, daughtertype,
ruletype, rulenampe
CREATE_.RULE_SUBTYPEY CHOICESGET_PARADIGM(morph), rulenameg
trackSAPPEND(CREATE_TRACK_FEATURESmorph, basetypgs
if tracks
ADD _SINGLE_TRACKS(trackg
15 COPY_ALL _TRACKS(tracks

| then check to see if this rule is a lexeme-to-lexeme, lexéwnsord, or word-to-lexeme
rule in the functiorFIND_RULETYPE() (15), described if§j4.2.3. These types cross-classify
with constant and inflecting lexical rules. Assignment difdating vs constant and the
creation of the rule type definitions occursdiREATE_BASIC_RULE_TYPE() (16) andCRE-

ATE_RULE_SUBTYPEY) (19), which are discussed further§a.2.4.

If the choices file indicatesiaeq, di sr eq, and/orf or ces value, that information is
recorded byCREATE_TRACK_FEATUREY)) (20) until all the morphemes have been iterated
over. Once all the rules have been created, values for thplearfeature TRACK are added
if necessary ilh\DD _SINGLE_TRACKS() (21) or the TRACK feature is copied up wholesale
in COPY_ALL _TRACKS() (22). Discussion of TRACK features and co-occurrencéries
tions appears i§4.2.5

The first function called isSIND_DAUGHTERTYPE() (12). The lexical rule being created

will have a feature DTR, with the value set as the rule typedha serve as input to this rule.

38

(12) 1 function FIND_DAUGHTERTYPE(morph, basetypés
if NUM_DAUGHTERS(morph) == 1:
daughter— CHOICESGET_NEXT_DAUGHTER(morph
if daughteris a lexical type:
5 daughtertype— daughter
else
if CHOICESGET_OPT(morph == yes:
nonopt, daughtertype- INTERMEDIATE_RULE(morph, basetyp@s
if nonopt== False:
10 for type in basetypes:
GRAMMAR.ADD (bt + .=’ + daughtertypg
else
daughtertype— CHOICESGET_NAME (CHOICESGET_PARADIGM(
morph))
else:
15 nonopt, daughtertype- INTERMEDIATE_RULE(morph, basetypés
if nonopt== False:
for type in basetypes:
GRAMMAR.ADD(bt + “:=" + daughtertypg
return daughtertype

FIND_DAUGHTERTYPK() (12) determines what this value is. If the choices file gpErone
daughter (line 2), and that daughter is non-optional (liBedr a lexical type (line 4), then
the daughter’s type is designated as the DTR value. If trglesishaughter is optional (line
7) or if multiple daughters are listed (line 14), then it icassary to create an intermediate
type that all possible daughters can inherit from. The fi@maNTERMEDIATE_RULE() is

shown in (13) and discussedia.2.2.

4.2.2 Intermediate Rule Types

The Matrix only allows one daughter value to be listed forreade. If there is only
one daughter listed in the choices file, and it is either a tgoé (e.g. noun) or a non-

optional inflectional rule, then that is the only possiblaiglater. If there are multiple

39

daughters listed, or the single listed daughter is optiothedn | need to provide a way
to designate all these daughters as being of a single typis. iSccomplished through
multiple inheritance. The system creates an intermedygte in the hierarchy and have
all the possible daughters inherit from this type. That tigoéhen designated as single
daughter value for the rule in question. When creating méstiate rules for daughters that
are optional, the script traverses the tree of possibleauaerings recursively, based on the
choices file. The daughters and the daughters’ daughteirshaltit from the intermediate
type, stopping after reaching a root or non-optional monpeT his feature allows the user
to only specify the outermost position where the meta-pgmadn question can appear,
and not have to explicitly list all the possible morphemesaih appear next to once rule

optionality is accounted for. Pseudocode foTERMEDIATE _RULE() appears in (13).

For an example, | return to the optionality of the object ayddn Zulu. The outermost
affix the tense marker can attach to is the object concord. edewnythe object concord is
optional, and does not apply at all in the case of intrarsiterbs. Therefore, the rule needs
to specify that the daughter can be either the object agnee{@®¢€ for object concord) or
a verb root. To illustrate how this function works, I will vikiahrough an example using the

choices file fragment from example (8), beginning withr ph3.

When the function first gets called, it is called with the angunt(nor ph3, dtr=nul I ,
dept h=0) . Since thalt r value is null, the first step is to create a dtr type (lines ZFbe
function CHOICESGET_NAME () takes the morph, looks at its associated paradigm value,
then looks at that paradigm and returns the top-level namthig case the name is ‘tense’
(This is not shown in the choices file fragment, but can be setre full choices file in the

appendix.) The algorithm creates a type catleshse-r ul e-dtr.

nor ph3 is not a lexical type (line 6), so the function moves on to labkhe daughters

(line 11).nor ph3 has twodt r values:i ver b andnor ph2.i ver b is a lexical type, so

40

(13) 1function INTERMEDIATE_RULE(morph, basetypes,

10

15

20

dtr=null, depth=0, nonopt=falsg
if not dtr:
name«— CHOICESGET_NAME (CHOICESGET_PARADIGM(morph)
dtr — name+ *-rule-dtr’
GRAMMAR.ADD (dtr + “:= word-or-lexrule”)
if morph is a lexical type:
return nonopt, dtr
if (depth>0) and CHOICESGET_OPT(morph == ‘no’:
nonopt« True
return nonopt, dtr
while CHOICESHAS_MORE_DAUGHTERSmorph):
daughter— CHOICESGET_NEXT_DAUGHTER(morph
if daughtemot in basetypes
GRAMMAR.ADD (daughter+ *-lex-rule := " + dtr)
if CHOICESGET_OPT(daughte) == ‘yes’:
while CHOICESHAS_MORE_DAUGHTERSdaughtej:
granddaughter— CHOICESGET_NEXT_DAUGHTER(daughte)
if granddaughtenot in basetypes
nonopt, dtr< INTERMEDIATE_RULE(granddaughter,
basetypes, dtdepth+1)
return nonopt, dtr

it has no daughters to check. It will also need to inherit fitb intermediate type eventu-

ally, but it is added outside of this functiomor ph2 is not a lexical type, so its lexical rule

needs to inherit from thet r type (line 14). Lexical rule names always take the form of the

paradigm name plus ‘-lex-rule’. In this caser ph2’s rule isoc- | ex- r ul e, which is

then set as inheriting fromense- r ul e- dt r . Sincenor ph2 is optional, the next step

is to look atnor ph2’s daughters (lines 14-15), which in this case is just a iteesverb.

This is a root type, so no recursion occurs (line 16). Thetionaeturns thelt r value (in

this casd ense- r ul e- dt r) as well as whether the last daughter it looked at was optiona

or not (line 20). Notice that once tltk r is created, it is not changed. When the recursion

41

occurs, its goal is to have each of the intervening rulesrinfrem the intermediate type.

In the functionFIND_DAUGHTERTYPK() (12), each lexical type that is the root type that
nor ph3 attaches to (directly or indirectly) is set as inheritingrfrt ense-rul e-dtr
as well. This is not done within the intermediate types atbor, because we want to
put the constraint at the highest level possible. In thisuZerample, the intermediate
types algorithm saw that the tense affix can attach to intreeserbs and transitive verbs.
However, both of these types inherit from the typer b- | ex, so | makever b- | ex
inherit fromt ense-rul e-dtr, and both transitive and intransitive verbs will inherit
this type from the supertype. Similarly, all the particutdject concord rule types inherit
from oc- | ex-rul e, and therefore also inherit the typ@ense- r ul e- dt r from their

mother. Here is what the type hierarchy then looks fike:

(14) tense-rule-dtr

//\

verb-lex oc-lex-rule

intransitive-verb-lex transitive-verb-lexocl-lex-rule oc9-lex-rule

4.2.3 Word vs. Lexeme

As previously discussed, a “word” in the context of Matriagmmars is a lexical entry or
lexical rule instance that has received all the inflectioneieéds to serve as the daughter
of a phrase structure rule. This status is indicated by taeife INFLECTED. This value
can change between the daughter and the mother, or remagathe Lexeme-to-word
rules are identified by being the outermost non-optiona.riiseudocode for the function
FIND_RULETYPE() appears in (15). As each affix is being processed, | sehecbhoices

file for rules that this rule can serve as the daughter to.déiit be the daughter of another

1See Appendix C for a tree of the full rule hierarchy for Zulu

42

(15) 1 function FIND_RULETYPE(morph, basetypés
if CHOICESGET_OPT(morph == ‘no’ and
IS_.LAST_NONOPT(morph) == yes:
return ‘lexeme-to-word’
elseif CHOICESGET_OPT(morph) == ‘yes’ or
IS_.LAST_NONOPT(morph) == yes:
5 return ‘word-to-lexeme’
elseif IS_.FORCED(morph):
return ‘lexeme-to-word’
else:
return ‘lexeme-to-lexeme’

non-optional rule, then it is not a lexeme to word rule. Ifgtrion-optional but it can
be the daughter of an optional rule, | recursively searchctiwces files to see if there
is another non-optional rule that can occur after this oriEnis(occurs in the function
IS_.LAST_NONOPT()). If this rule is non-optional and there are no non-opdiomles that
could follow this one or if this rule cannot be the daughteraabther rule, then it is a
lexeme-to-word rule (lines 2-3). It may also be a lexemevtwd rule if this rule is listed
as thef or ces value of another morpheme in the choices file, if that morphena word-
to-lexeme rule (lines 6-7). The rule is a word-to-lexemenifllit cannot be followed by
a non-optional rule, but it has designatefl@ ces value in the choices file (lines 4-5).
If none of the conditions described in this paragraph aghbyrule is a lexeme-to-lexeme

rule (lines 8-9). Because this is an if-else structure, dribese options is always selected.

4.2.4 Inflecting vs. Constant Rules

The other piece of information needed to create a new rulenether this rule is an in-
flecting rule or a constant rule. Inflecting rules add or mpdithographic material, while

constant rules leave the orthography unchanged betweetand output. The inflecting vs

43

constant distinction introduces a different sort of corggion than determining the daugh-
ter value or if this is a Itow, wtol, or ltow, because it invelvknowledge about the paradigm
itself. As mentioned above, some paradigms have a sing@lgesalue, while others have
a range of values. The way this is specified in the grammar mte a parent rule type
for the paradigm as a whole, and the individual values inligyim that type. So if there
is an inflectional paradigm that specifies tense, there woeld supertype type containing
all the rule information common to all the tense rules, amshtimdividual subtype rules for
the specific paradigm values, e.g. past or non-past. If thiagigm has rule subtypes, it
is these subtypes that would specify the orthographic famtaCk thereof) rather than the
supertype. Since | want to push as much information onto tipersype as possible, the
system determines whether the subtypes are all inflectraked, or a mix of constant and
inflectional rules’ If the subtypes are all inflectional, the supertype can benddfas an
inflectional rule type. Note that this does not make the syperitself a valid inflectional

rule, and it will not have an associated spelling-change indtance.

In CREATE_BASIC_RULE_TYPE() (16), the sole rule or supertype rule is created. If this
paradigm has an orth value of ‘NONE’ either on the top-lewalgoligm or in one of the
subtypes, there has to be a constant-lex-rakes(CONSTANT_RULE() (line 2)). If there
are subtype rules (line 3), then there must also be infleakisnbtype rules, because |
am assuming there is not a paradigm containing multipletanhsules. The parent type
therefore can't specify whether the rule is inflecting or stamt, and so in line 4, the first
rule definition is created, with the rule type inheritingrfrahe Itow, wtol, or Itol type, as

was determined byIND_RULETYPE(). If there are no subtypes, then the rule definition

2] assume that a paradigm with multiple values would not daraaly constant rules. Such a grammar
could be constructed in this framework, but each rule subtypuld be individually designated as constant,
rather than pushing this constraint onto the supertype.

44

(16) 1 function CREATE_BASIC_RULE_TYPE(morph, basetypes, daughtertype,
ruletype, rulenamge
iIf HAS_.CONSTANT_RULE(CHOICESGET_PARADIGM(morph):
if CHOICESGET_ORTH(CHOICESGET_PARADIGM(morph) != ‘NONE’:
GRAMMAR.ADD (rulename+ “:=’ + ruletypg
5 else
GRAMMAR.ADD (rulename- =" + ruletype+ ‘& constant-lex-rule’)
LRULES.ADD (rulenamé
else:
GRAMMAR.ADD (rulename+ “:=’ + ruletype+ ‘& inflecting-lex-rule’)
10 GRAMMAR.ADD(rulename+ = [DTR '+ daughtertype- ‘1)
if ruletype== ‘lexeme-to-word’:
for basetypen basetypes
GRAMMAR.ADD (basetyper “:= [INFLECTED -])
If LENGTH.(basetypes==1and CHOICESNUM_FORCEgbasetypfd]) == 1:
15 GRAMMAR.ADD (rulename+ “:= [INFLECTED -])

can also inherit from constant-lex-rule (line %A rule instance inheriting from this type
is added to the list of constant lexical rules (line 7). Ifrihare no constant rules, then the
whole paradigm must be inflecting. At this point we can havg l#xical rule inherit from

i nflecting-Iex-rul e (lines8-9). Inthe Zulu tense example, the rule at this pisint

(17) tense-lex-rule : = | exene-to-1 exenme-rul e.

Once the basic rule definition is created, we can add things Tthere customization
system includes helper functions for adding new rules atehebng rule definitions. After
the initial rule name and inheritance is defined, we can addesfurther constraints on
the feature structure, including the daughter value as egfarlier. So, in the Zulu tense

example, the rule definition ends up as:

3These types are cross-classified in the actual grammarnmaky.const ant - | t ow r ul e, but | did
not include this in the pseudocode

45

(18) tense-lex-rule := | exene-to-l exene-rule &
[DIR tense-rule-dtr].

(19) 1 function CREATE_RULE_SUBTYPEYpdm, rulenamg
if CHOICESHAS_MORE_AFFS(pdm):
whileCHOICESHAS_MORE_AFFS(pdm):
aff «— CHOICESGET_NEXT_AFF(pdm)
5 affrulename— CHOICESGET_NAME (aff) + ‘-lex-rule’
if CHOICESGET_ORTH(aff) == ‘NONE":
GRAMMAR.ADD (affrulenamet =" + rulenamet
‘& constant-lex-rule’)
LRULES.ADD (affrulenamé
10 else:
if HAS_.CONSTANT_RULE(pdm):
GRAMMAR.ADD (affrulenamet *:=" + rulenamet
‘& inflecting-lex-rule’)
else:
15 GRAMMAR.ADD (rulename+ “:=’ + rulename
IRULES.ADD (affrulename CHOICESGET_ORTH(aff))
else
if CHOICESGET_ORTH(pdm) != ‘NONE:
IRULES.ADD (rulename CHOICESGET_ORTH(pdm))

In CREATE_LRULE_SUBTYPEY) (19), this process is essentially repeated for each of the
subtype affixes, if any. After the creation of each rule, sdsled to the appropriate list of

rule instances, as discussed;thl.2.

4.2.5 Tracking co-occurrence constraints

If the choices file indicates that this rule must or cannobcour with another rule, | need
a way to check if the required (or disallowed) rule has alyeapplied. Rules can only
see the rule that previously applied, as the type of theightar value. To solve this

problem, | create the complex feature TRACK, and add it tdekieal rule type definitions

46

if necessary for the language. The TRACK feature, if reqljiie added as a top-level

feature to the type word-or-lexrule. Each rule that is adgletd a feature within the track

feature that is named after the rule name.

(20) 1 function CREATE_TRACK_FEATURESmorph, basetypes

10

15

20

tracks« []
while CHOICESHAS_MORE_FORCEmMorph):
forces«— CHOICESGET_FORCE{morph)
trackfeature— CHOICESGET_NAME (CHOICESGET_PARADIGM(forceg)
for basetypen basetypes
GRAMMAR.ADD (basetyper “:= [TRACK.f-" + trackfeature-‘ —])
while CHOICESHAS_MORE_REQYmorph):
reqs«<— CHOICESGET_REQYmorph
trackfeature— CHOICESGET_NAME (CHOICESGET_PARADIGM(reqs)
for basetypen basetypes
GRAMMAR.ADD (basetyper := [TRACK.r-" + trackfeature‘ —])
tracksaAPPEND(Morph
while CHOICESHAS_MORE_DISREQYmorph):
disreqs— CHOICESGET_DISREQYmorph
trackfeature— CHOICESGET_NAME (CHOICESGET_PARADIGM(disreq3)
for basetypen basetypes
GRAMMAR.ADD (basetypet ‘.= [TRACK.d-" + trackfeature-* +]’)
tracksaAPPEND(Morph
return tracks

As | iterate over each morpheme, | calREATE_.TRACK_FEATUREY) (20) to see if

this morpheme has ameq, di sr eq, orf or ces values specified in the choices file. If

so, | add the TRACK feature to the definition of the lexicaldgghat this rule ultimately

attaches to (lines 6-7, 11-12, 17-18). The value of TRACKsislf a bundle of features: the

features are the names of lexical rules, and the values atedovalues indicating whether

that rule is valid to apply or not.

After iterating over all the morphemes, | then add the TRA@&tlire to the lexical

47

(21) 1functionADD _SINGLE_TRACKS(tracks):
for trackin tracks
mother«— CHOICESGET_NAME (CHOICESGET_PARADIGM(track))
while CHOICESHAS_MORE_MORPHY)):
5 morph« CHOICESGET_NEXT_MORPH()
daughter— CHOICESGET_NAME (CHOICESGET_PARADIGM(morph))
if CHOICESFORCED.BY (track, morph)
GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.f- + mother+ *—]’)
GRAMMAR.ADD (daughter+ ‘-lex-rule := [TRACK.f-" + mother+ ‘+])
10 GRAMMAR.ADD (daughter+ ‘-lex-rule := [DTR.TRACK.f-" + mother+* —]’)
elseif morphin tracks
GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.f-" + mother+ * #]")
GRAMMAR.ADD (daughter+ ‘-lex-rule := [TRACK.f-" + mother+ ‘ #]’)
if CHOICESREQUIRED_BY (track, morph)

15 GRAMMAR.ADD(mother+ ‘*-lex-rule := [TRACK.r-" + mother+ *—]’)
GRAMMAR.ADD(mother+ ‘-lex-rule := [DTR.TRACK.r-" + mother+ * +])
GRAMMAR.ADD (daughter+ ‘-lex-rule := [TRACK.r-" + mother+ ‘+]")
GRAMMAR.ADD (daughter+ ‘-lex-rule := [DTR.TRACK.r-" + mother+ ‘—]’)

elseif morphin tracks

20 GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.r-" + mother+ * #]')
GRAMMAR.ADD (daughter+ ‘-lex-rule := [TRACK.r-" + mother+ * #]")

if CHOICESDISALLOWED_BY (track, morph)
GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.d-" + mother+ ‘-]’
GRAMMAR.ADD(mother+ ‘-lex-rule := [DTR.TRACK.d-" + mother+ ‘+])

25 GRAMMAR.ADD (daughter+ ‘-lex-rule := [TRACK.d-" + mother+ ‘—]’)

GRAMMAR.ADD (daughter+ ‘-lex-rule := [DTR.TRACK.d-’ + mother+ ‘+]’)
elseif morphin tracks

GRAMMAR.ADD(mother+ ‘-lex-rule := [TRACK.d-" + mother+ * #]’)

GRAMMAR.ADD(mother+ ‘*-lex-rule := [DTR.TRACK.d-" + mother+ ‘ #]’)

rules inADD_SINGLE_TRACKS() (21). Every rule that has a co-occurance restrictioedist
in the choices file constrains its DTR to have the track featorresponding to itself (that
is, the mother) to be positive, indicating that this rule agply (lines 8, 15, 23). Every rule
that is required or disallowed by another rule toggles thé&CR feature corresponding

to the rule placing the constraint, indicating that the rezraent has been fulfilled or that

48

(22) 1 function COPY_ALL _TRACKS(trackg
while CHOICESHAS_MORE_MORPHY)):
morph«— CHOICESGET_NEXT_MORPH()
if morphnot in tracks
5 rulename— CHOICESGET_NAME (CHOICESGET_PARADIGM(morph)
GRAMMAR.ADD (rulename+ ‘-lex-rule := [TRACK ‘#]’)
GRAMMAR.ADD (rulename+ ‘-lex-rule := [DTR.TRACK ‘ #]")

the rule can no longer apply (lines 9-10, 16-18, 24-26). Tliethere are other features
being tracked that aren’t relevant to the current rule helse features need to be explicitly
copied between the daughter and the mother, to preventrifaatriation from being lost
(lines 11-13, 19-21, 27-29). Rules are not involved in coupance restrictions (neither
placing requirements or being required) copy the entire TRAeature up unmodified in
COPY_ALL _TRACKS() (22).

Here’s a sample rule from Slave. This is the incorporatedgasstion rule, which is
a word-to-lexeme rule. It is tracking the feature TRACK.P®®S-OBJECT. The other
TRACK feature number is unchanged and so copied up betweendkher and the daugh-

ter:

i ncor p- postpos-lex-rule : = word-to-lexene-rule &
inflecting-lex-rule &
post pos-obj ect-lex-rule-dtr &
negation-rule-dtr &
[TRACK [POSTPOS- OBJECT +,
NUMBER #track] ,
DTR i ncor p- post pos-rul e-dtr &
[TRACK [POSTPOS- OBJECT -,
NUMBER #track]]].

The value of DTR.TRACK.POSTPOS-OBJECT is settdecause the postpositional

49

object affix could not apply to the daughter. The postposéi@bject affix requires that the
incorporated postposition is applied beforé @n the rule output, the POSTPOS-OBJECT

feature is set to +, indicating that it is now able to be agplie

post pos-object-lex-rule := word-to-1lexene-rule &
inflecting-lex-rule &
negation-rule-dtr &
[TRACK [POSTPOS- OBJECT -,
NUMBER #track | ,
DTR i ncor p- post pos-rul e-dtr &
[TRACK [POSTPOS- OBJECT +,
NUMBER #track 1]].

Similarly, the postpos-object lexical rule requires th&tinputis DTR.TRACK.POSTPOS-
OBJECT be set to +, meaning that it can only occur if the inooafed postposition has
been applied. The output sets the feature value baektmindicate that the requirement

has been met.

4.2.6 Summary

The customization script does the work of creating lexiodds based on the choices file. |
presented here an overview of the algorithm that buildsekiedl rules. The design goals
of ordering lexical rules, identifying lexeme vs word sgtand tracking co-occurance re-
strictions have all been implemented. In addition, thislenpentation can identify constant
vs inflecting rules and apply this information at the cordegel in the rule hierarchy, and

create intermediate rule types where necessary to aiderordering.

4These morphemes are prefixes being applied right to lefhescesulting word will have the postposition
following the postpositional object. See example (6§3M.1

50

4.3 Summary

In this section, | have outlined the implementation of thephotactic customization sys-
tem. | have implemented a new range of values in the choiagssfiecifying paradigm
information and meta-paradigm information needed to defisyggstem of lexical rule types.
| then updated our customization script to process the n@iceh file, creating a skeleton

structure of lexical rules and type hierarchy.

51

Chapter 5
EVALUATION

The goal of this work is to create a system that will work fol aratural language.
With this goal in mind, the system is developed by iteragiveleating test suites for a
series of typologically and genetically diverse languagesl modifying the choices file
specifications and the customization script to cover anyphena necessary to accurately
parse all the languages covered up to that point. | evalbatesystem by measuring the
system performance on each test suite, as well as the ambwoatrlo necessary to bring
the new system up to 100% on each successive language. Theatms used for testing
were Zulu, Slave, Finnish, and Uzbek. These languages jpoéotyically diverse, and come
from different language families (Niger-Congo, Na-Deneali¢ and Altaic, respectively)
but each is morphologically complex. | was able to obtain%Q0fbverage across these
language for the phenomena | was addressing. In fact, afgehmg 100% on the first
three languages, no additional modification was neceseaggtt100% on the Uzbek test

suite.

5.1 Languages Used

5.1.1 Zulu

Zulu is Bantu language mainly spoken in South Africa. Baangluages are distinctive for
having a large variety of noun classes. These classes araksni to grammatical gender,
but rather than two or three genders as is typical, Zulu hastatb noun classes. In my

Zulu grammar, nouns inflect to show their noun class, andsveah inflect to show tense,

52

negation, and agreement with the noun class of the subjdoblaject. There is also final
suffix that can take various values that contribute someastictfeatures, but also has a
default value if no special cases apply. The Zulu morphalignformation was derived

from Nyembezi and Doke 1979 and Poulos and Bosch 1997.

5.1.2 Slave

Slave is an Athabaskan language spoken in western Canadalamguage was selected
precisely because of its wide array of inflectional morpggloThere are 16 affix types
that can attach to a verb, with some affix types able to appeae than once. While | do

not claim a native speaker would accept this particular sanfere is one test suite item |

constructed, based on Rice’s (1989) descriptive grammar:

(23) du-be-keh-na-ya-dlo-leh-ele-ne-i-w-n-id-d-tah
NEG-3SG-into-THM-DISTR-laugh-DU-RECP-THM-SER-wCONRFV-1DU-RECP-
move.foot

‘We two didn’t kick each other into it (e.g. a hole) repeatedhile laughing.’

5.1.3 Finnish

Finnish is a Uralic language spoken mainly in Finland. WHilenish does have extensive
derivational morphology, | chose here to focus on the infb@a morphology. Nouns are
marked for number, case, possession, and can also takegy\amparticles that mark ques-
tions or emphasis. Verbal inflection consists of personkemagreement with the subject,
tense and mood markers and a passive or indefinite markdss ¢dan also take a number
of the same particles that apply to the nouns. | based thisté® on the description in

Karlsson 1983.

53

5.1.4 Uzbek

Uzbek is an Altaic language spoken mainly in Uzbekistan. Ese suite | created was
guided by the description in Sjoberg 1963. The inflectionafrphology | concentrated
on was plural marking, possession, and case for the noudshegmation, two levels of
tense/aspect/modality (TAM) marking, person and numbegeagent, and question mark-
ing for verbs. Uzbek has a complex system of agreement batiheeTAM markers and
the surface forms of the person/number markers. There a¥gets ©f subject markers that

vary in form based on which TAM marker is used. For example:

(24) kel-gan-miz
come-PST.PRF-1PL

‘We came, we have come.’

(25) kel-di-k
come-PRET-1PL

‘We came.’

In (13), the TAM marker is past perfect, while in (14) it is prete. Each of these tenses
chooses from a different set of person/number markers. fitmgides a good example
of the differentiation between morphophonology and mosyintax. The variation is in
the surface form only; while it would be possible to modektdistinction in the syntax
(i.e. have the verb choose the person marker based on the TaMen), there is not a
meaning difference between the person/number markergitwih examples. For present
purposes, | chose to handle them on the string level, workittgmorpheme glosses rather
than creating rules pairing sets of person+number markéhs particular combinations

of tense/aspect/modality markers. This allows the coosttlwords to be linguistically

54

accurate without building excessive complication into ¢gmammar. The differentiation

could still be made later, once the rules have access to ttessary syntactic information.

5.2 Test Suite Design

For each language, | designed a test suite of grammaticalilapchmmatical items to il-
lustrate the interesting morphotactic phenomena for #regage. For Zulu, Finnish, and
Uzbek, test suites had previously been developed in cotipmeith more extensive gram-
mars! These test suites were more extensive both in phenomeneedoared vocabulary
used than the testsuites required for our purposes, butibey useful as a starting point
and reference. The Slave test suite was built from scratdhth@ test suites have been
regularized for morphophonology, in some cases going sasfém use morpheme glosses.

Vocabulary was limited to that which could be input on thetonszation page, as | am
testing the abilities of customization rather than Matnigrgmars in general. Vocabulary
consisted of two nouns, a transitive verb, and an intrargsiterb. When an inflectional
paradigm had more than two or three possible values, | usBdaosubset of these to
illustrate the morphotactic phenomena.

Specific test items were created by starting with the shiowe#-formed string (that
is, one without any optional morphemes) and permuting thleroof the affixes to create
ungrammatical examples. Optional morphemes were therdaddiidually, and ungram-
matical examples created by shifting the new affix to eachtipasin the string, rather
than creating every new permutation, as this would haveeaszd the test suite size ex-
ponentially as new morphemes were added. The last item itetesuite was the longest
grammatical string that could be constructed, using as raffixges as possible.

| previously listed many phenomena this system was not dedigo cover, includ-

The Zulu grammar was developed by me, the Finnish grammayhg Rlattson, and the Uzbek grammar
by Michael Tepper in the context of LING 567 at the UniversifyWashington (Bender 2007)

55

ing effects of morphology on phrase-level syntax, and asyricions that require some
knowledge about the meaning of the particular affixes. Tipp®momena were intention-
ally excluded from the test suites, because correctly padiese sentences was not the
intention of the current project.

Test suites were run and their performance tracked Usingtsdb()] test environment

(Oepen 2001).

5.3 Development And Evaluation Process

The first language used as a reference for development was Zlchoices file was
written by hand, and the customization script expanded tag®s the choices file. As |
added/changed code in the customization script, | wouldl lBugrammar using the choices
file, and use the resulting grammar to run the test suite. fimoed this process until the
grammar could parse all and only the grammatical stringertest suite.

Once the customization system produced a grammar for Zuduilt a test suite and
choices file for Slave. | created a Slave grammar using thesiwe Zulu” system, that
is, the customization script that was sufficient to createdequate Zulu grammar. The
Slave grammar on the version Zulu system was not able to @& Xh the test suite, so
| revised the customization script, and in this case thead®ofile specifications, until the
Slave grammar was at 100% on the test suite. | then repeaseprttess for Finnish and
Uzbek. While additional modifications were required to grifinnish up to 100% on the
test suite, Uzbek did not expose any additional oversighesther the choices file format
or the customization script.

Each test suite was developed at the time | began work onahgtiage version. While
this did allow me to create each test suite with the knowletgpiired from the previous

versions in mind, it did not allow me to run the version in depenent over the test suites

56

v.Zulu v.Slave | v.Finnish
Zulu 100.0/0.0| 100.0/0.0| 100.0/0.0
Slave 76.5/9.6 | 100.0/0.0] 100.0/0.0
Finnish| 42.9/9.1 *[* 100.0/0.0
Uzbek | 25.0/0.0 | 100.0/0.0| 100.0/0.0

Table 5.1: Test suite performance on each version of thecebdile and customization
script, given by percent coverage / percent overgenerati@nsion Slave customization
was unable to produce a valid grammar for Finnish, and wasfibre untestable.

for languages | had not tested for yet. However, | did runieessin development over
the test suites for previous languages as a form of regresssbing. For example, at the
start of development for Version Slave, the system got 108%he Zulu test suite. After |

reached 100% on the Slave test suite, | made sure | was stihg&00% on the Zulu test
suite before starting development on Version Finnish.

As each version was determined complete, the system waanfiiozthat form. This
was done by tagging that revision in our Subversion repositdfter development for all
versions was complete, | took each frozen version and useditild grammars for all the
languages, and ran the test suites. | recorded the pereetbagrage and overgeneration

as:

(26) coverage = (number of grammatical test suite itemsgolarotal grammatical items)

(27) overgeneration = (number of ungrammatical test itearsqu / total ungrammatical

items).

These results are shown in table 5.1.
| also wanted to measure how much work was required to bringwalanguage up to

100%. While not necessarily a good measure of how much tinreestal energy was

57

no inflection to Zulu| 7%
Zulu to Slave 10%
Slave to Finnish 2%
Finnish to Uzbek 0%

Table 5.2: Percent change in the customization script td@@% test suite accuracy, cal-
culated as (number of lines added + number of lines removaainber of lines in starting
version.

required, | chose to look at how much the customization schipnged between versions.

| ran a diff between consecutive pairs of versions and catedlthe percent change as :

(28) (number of lines added + number of lines removed) / totethber of lines in the

script before the change

So for version Zulu to version Slave, | took:

(29) (number of lines added in v.Slave + number of lines rezdoivom v.Zulu) / total

number of lines in v.Zulu

These results are shown in table 5.2.

54 Results

Version Zulu was “blind” to the other languages, as no feelllieom the performance of
other languages went into its development. Similarly, MerSlave was “blind” to Uzbek

and Finnish, as was Version Finnish to Uzbek. It is theretorsurprising that the other
languages did not do as well in Version Zulu. The codebasegdthmore between version
Zulu and version Slave than between the pre-inflection systad version Zulu. | expected
the other three languages to perform equal or better inareSiave than in version Zulu.

This is in fact the case for Zulu and Uzbek (and trivially &gvbut version Slave was

58

unable to produce a valid grammar for Finnish at all, and s® wvdestable. This was due
to a minor oversight,and so with relatively few changes to the customizatiorpscriwas
able to get Finnish working. Version Finnish is able to progladequate grammars for all
four languages. No modifications were necessary to get 100%eoUzbek test suite, so
no additional version was created.

| find these results promising. While there are certainlyemaprphotactic phenomena
that need to be developed and tested, | was able to reach agb@onvergence for four
disparate languages. This suggests that the current sysbeitd work for a much larger

number of the world’s languages.

2Vfersion Slave did not allow for an affix to attach to multipéical types, a phenomenon which occurs
in Finnish. This produced a python error when running théaragation script. It was easily corrected by
storing the lexical types as a list rather than a single bégia

59

Chapter 6
CONCLUSION

The goal of the Grammar Matrix is to provide a cross-lingaistésource for creating
rule-based precision grammars. The customization systameant to provide a fast and
straightforward way to create starter grammars to jump-8ta development process. The
more structure and functionality provided in the custoriarasystem, the more complete
the starter-grammars will be. Languages utilize inflealanorphology for a wide range
of syntactic and semantic functions. By providing a generatphotactic framework, |
provide a general resource for future development of théoaugation system. As more
functionality is added, the relevant feature structureslmaadded to the lexical rules. A
common method for creating lexical rules provides consistén rule naming, typing, and
structure across the grammar and ensures that lexicaladted for different grammatical

phenomena interact properly with each other.

60

BIBLIOGRAPHY

Beesley, Kenneth R., and Lauri Karttunen. 20G&ite State Morphology Stanford CA:
CSLI Publications.

Bender, Emily M. 2007. Combining research and pedagogy éendévelopment of a
crosslinguistic grammar resource. In T. H. King and E. M. @&m(Eds.) Proceedings
of the GEAF07 WorkshoR6-45, Stanford, CA. CSLI.

Bender, Emily M., and Dan Flickinger. 2005. Rapid prototypiof scalable grammars:
Towards modularity in extensions to a language-indepeinztge. InProceedings of
the 2nd International Joint Conference on Natural Langugecessing IJCNLP-05
(Posters/Demos)eju Island, Korea.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002e grammar matrix: An
open-source starter-kit for the rapid development of clioggiistically consistent
broad-coverage precision grammars. Aroceedings of the Workshop in Grammar
Engineering and Evaluation at the 19th International Coefiee on Computational
Linguistics 8—14, Taipei, Taiwan.

Bender, Emily M., and Jeff Good. 2005. Implementation facdivery: A bipartite lexicon
to support morphological and syntactic analysis.Phoceedings of the 41st Annual
Meeting of the Chicago Linguistic Society

Bender, Emily M., Laurie Poulson, Scott Drellishak, andi€Rvans. 2007. Validation and
regression testing for a cross-linguistic grammar resaurn ACL 2007 Workshop
on Deep Linguistic Processing36—-143, Prague, Czech Republic. Association for
Computational Linguistics.

Booij, G.E. 2005.The grammar of words: an introduction to linguistic morpbgy. Ox-
ford: Oxford University press.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Maschi, and Christian Rohrer.
2002. The parallel grammar project. In J. Carroll, N. Ogktdind R. Sutcliffe (Eds.),
Proceedings of the Workshop on Grammar Engineering anduatain at the 19th
International Conference on Computational Linguistits?.

61

Callmeier, Ulrich. 2000. PET — A platform for experimentatiwith efficient HPSG
processing techniqueNatural Language Engineerirg)(1) (Special Issue on Efficient
Processing with HPSG):99 — 108.

Comrie, Bernard. 1981.anguage universals and linguistic typology: syntax andphol-
ogy. Chicago: University of Chicago Press.

Copestake, Ann. 2002mplementing Typed Feature Structure Gramméassanford, CA:
CSLI Publications.

Drellishak, Scott, and Emily M. Bender. 2005. A coordinatinodule for a crosslinguistic
grammar resource. In S. Miller (Ed.Jhe Proceedings of the 12th International
Conference on Head-Driven Phrase Structure Grammar, Diapant of Informatics,
University of Lisbon108-128, Stanford. CSLI Publications.

Goldsmith, John. 2001. Unsupervised learning of the mdggyoof a natural language.
Computational Linguistic7(2):153-198.

Karlsson, Fred. 1983Finnish Grammar Porvoo, Finland: WSOY.

Kim, Roger, Mary Dalrymple, Ronald M. Kaplan, Tracy Hollow&ing, Hiroshi Ma-
suichi, and Tomoko Ohkuma. 2003. Multlingual grammar depeient via grammar
porting. In E. M. Bender, D. Flickinger, F. Fouvry, and M. & (Eds.),Proceed-
ings of the ESSLLI 2003 Workshop “Ideas and Strategies fdtiligual Grammar
Development; 49-56, Vienna, Austria.

Koskenniemi, Kimmo. 1984. A general computational modeliord-form recognition
and production. IrProceedings of the 10th International Conference on Coaxput
tional Linguistics

Krieger, Hans-Ulrich, and Ulrich Schafer. 1994. Tdl — a tygescription language for
constraint-based grammars. Pnoceedings of the 15th international Conference on
Computational Linguistics893—899, Kyoto, Japan.

Maxwell, Mike. 2002. Resources for morphology learning amdluation. InLREC 2002:
Third International Conference on Language Resources aradiation Vol. 111, 967—
974.

Maxwell, Mike, Gary Simons, and Larry Hayashi. 2002. A maladgical glossing assis-
tant. InProceedings of the International LREC Workshop on Ressuaod Tools in
Field Linguistics

62

McShane, Marjorie, and Sergei Nirenberg. 2003. Blastingnagchoice space: Learning
inflectional morphology for NLPComputational Intelligenc&9(2):111-135.

McShane, Marjorie, Sergei Nirenburg, Jim Cowie, and RorhZeski. 2002. Embedding
knowledge elicitation and mt systems within a single agattiire. Machine Transla-
tion 17(4):271-305.

Nyembezi, CL Sibusiso, and Clement Martyn Doke. 198arn Zulu Pietermaritzburg:
Shuter and Shooter.

Oepen, Stephan. 2001incr tsdb()] — Competence and performance laboratory. User
manual. Technical report, COLI, Saarbriicken, Germany.

Oepen, Stephan, Erik Velldal, Jan Tore Lnning, Paul Mew@toria Rosn, and Dan
Flickinger. 2007. Towards hybrid quality-oriented maaehimanslation. On linguis-
tics and probabilities in MT. ITMI:07, Skvde, Sweden.

Pollard, Carl, and Ivan A. Sag. 199#lead-Driven Phrase Structure Grammathicago,
IL and Stanford, CA: The University of Chicago Press and CBublications.

Poulos, G, and Sonja E Bosch. 19Zulu. Munich: LINCOM Europa.

Rice, Keren. 1989.A grammar of Slave Vol. 5 of Mouton grammar library Berlin:
Mouton de Gruyter.

Salminen, Tapani. 1997undra Nenets inflectiorHelsinki: Suomalais-ugrilainen seura.

Sjoberg, Andree F. 1963Jzbek Structural Grammanol. 18 of Uralic and Altaic Series
Bloomington: Indiana University.

63

Appendix A
CHOICESFILES

These are the choices files from which the test grammars weagedl. Please note that
these were designed for modeling and testing a particulaf seorphological phenomena,
and not as true starter grammars for the languages in qonedtar example most of the
morpheme paradigms have only one or two affixes listed, wiheghe actual language there
are many more. They also contain a hodgepodge of orthogrdphms and morpheme
glosses, largely depending on which was the simplest foromemtode. Some decisions |
made regarding morpheme ordering will probably be diffetiean the analysis of a linguist
more familiar with the language. In addition, | did not ans\parts of the questionnaire
not directly relevant to my work. | am including these docutséhere simply as examples

of the choices file format.

A1l Zulu

version=2
section=language
language=Zulu

section=word-order
word-order=svo
has-dets=no

section=sentential-negation
infl-neg=on
neg-infl-type=main
neg-aff=prefix
neg-aff-orth=NEG-

64

section=coordination

section=matrix-yes-no
g-part=on
g-part-order=after
g-part-orth=na

section=inflection
morphltype=pdml
morphlaff=prefix
morphlopt=no
morphldtrl type=noun
morph2type=pdm3
morph2aff=prefix
morph2opt=yes
morph2dtrl type=tverb
morph3type=pdm4
morph3aff=prefix
morph3opt=yes
morph3dtrl type=iverb
morph3dtr2 type=morph2
morph4type=pdm2
morph4aff=prefix
morph4.opt=no
morph4dtrl type=morph3
morphatype=pdm5
morph5aff=suffix
morph5opt=no
morphadtrl type=morph4
morphadtr2_type=morph6
morphGtype=pdm6
morph6aff=prefix
morphGopt=yes
morph6dtrl type=morph4

section=infl-paradigms
pdmlname=NC
pdmlaffl_ name=C1l
pdmlaffl_orth=C1-
pdmZlaff2_name=C9
pdmlaff2_orth=C9-

pdm2name=SC
pdm2affl_name=SC1
pdm2affl_orth=SC1-
pdm2aff2_name=SC9
pdm2aff2_orth=SC9-
pdm3name=0C
pdm3affl_name=0C1
pdm3affl_orth=0C1-
pdm3aff2_name=0C9
pdm3aff2_orth=0C9-
pdm4name=tense
pdm4affl name=fut-tense
pdm4affl orth=FUT-
pdm4aff2_name=pres-tense
pdm4aff2_orth=PRES-
pdm5name=FV
pdm5affl_name=default-FV
pdm5affl orth=-a
pdmbhaff2_name=neg-FV
pdmbhaff2_orth=-e
pdm6name=negation
pdm6 orth=NEG-

section=basic-lexicon
nounl=ntwana
nounlpred=child_n_rel
nounldet=imp
noun2=yoka
noun2pred=snaken_rel
noun2det=imp
iverb=dlal
iverb-pred=play_v_rel
iverb-subj=np
tverb=bon
tverb-pred=seev_rel
tverb-subj=np
tverb-obj=np

section=test-sentences
sentencel=Cl-ntwana SC1-FUT-dlal-a
sentence2=C1-ntwana SC1-FUT-bon-a C9-yoka

65

66

A.2 Save
version=2

section=language
language=Slave

section=word-order
word-order=sov
has-dets=no

section=sentential-negation
section=coordination
section=matrix-yes-no

section=inflection
morphltype=pdml
morphlaff=prefix
morphlopt=yes
morphldtrl type=verb
morph2type=pdm2
morph2aff=prefix
morph2opt=no
morph2dtrl type=morphl
morph3type=pdm3
morph3aff=prefix
morph3opt=no
morph3dtrl type=morph2
morph4type=pdm4
morph4aff=prefix
morph4.opt=yes
morph4dtrl type=morph3
morphatype=pdm5
morphSaff=prefix
morph5opt=yes
morphadtrl type=morph4
morphGtype=pdm6

morph6aff=prefix
morph6opt=yes

morph6dtrl type=morph5
morph7Ztype=pdm?7
morph7Zaff=prefix
morph7opt=yes

morph7dtrl type=morph6
morph8type=pdm8
morph8aff=prefix
morph8opt=yes

morph8dtrl type=morph7
morphQtype=pdm9
morphQaff=prefix
morphQopt=yes

morphQdtrl type=morph8
morphQdisreqltype=morph7
morphlQtype=pdm10
morphlQaff=prefix
morphlQopt=yes
morph1Qdtrl type=morph9
morphlltype=pdm11
morphllaff=prefix
morphllopt=yes
morphlldtrl type=morphl10
morphl2type=pdm12
morphl2aff=prefix
morphl2opt=yes
morphl2dtrl type=morphl10
morphl3type=pdm13
morphl3aff=prefix
morphl3opt=yes
morph13dtrl type=morphll
morph13dtr2 type=morph12
morphl4type=pdm14
morphl4aff=prefix
morphl4opt=yes
morphl4dtrl type=morphl13
morphl4forcesltype=morphl5
morphl5type=pdm15
morphl5aff=prefix
morphl5opt=yes

67

68

morphl15dtrl type=morphl4
morphl5reqltype=morphl4
morphl6type=pdm16
morphl6aff=prefix
morphl6opt=yes
morphl6dtrl type=morph15

section=infl-paradigms
pdmlname=classifier
pdmZlaffl_name=reciprocal
pdmZlaffl orth=d-
pdm2name=subject
pdm2affl name=1SG-SUBJ
pdm2affl_orth=h-
pdm2aff2_name=1PL-SUBJ
pdm2aff2_orth=id-
pdm2aff3_.name=3-SUBJ
pdm2aff3_.orth=NONE
pdm3name=mode
pdm3affl_name=perfective
pdm3affl_orth=n-
pdm3aff2_ name=imperfective
pdm3aff2_orth=NONE
pdm4.name=conjugation
pdm4.affl_name=ycon;
pdm4.affl_orth=y-
pdm4aff2_name=wcon]
pdm4.aff2_orth=w-
pdm5name=aspect
pdm5affl_name=inceptive
pdm5affl_orth=de-
pdm5aff2_name=serative
pdm5aff2_orth=i-
pdm6name=theme
pdm6affl_name=themel
pdm6affl_orth=ne-
pdm7name=deixis
pdm7.affl_name=3PL
pdm7.affl_orth=ke-
pdm8name=object
pdm8affl_name=3SG

pdm8affl orth=be-
pdm8aff2_name=1SG-OBJ
pdm8aff2_orth=se-
pdma8aff3_name=reciprocal-object
pdma8aff3_orth=ele-
pdm9name=number

pdmQaffl name=dual
pdmQaffl_orth=leh-
pdmlQname=incorporated-stem
pdml1Qaffl_name=laugh
pdm21Qaffl orth=dlo-
pdmllname=customary
pdm1llorth=na-
pdml2name=distributive
pdm1l2orth=ya-
pdml3name=adverbial
pdml3affl_name=avbll
pdm13affl orth=na-
pdml4name=incorporated-postposition
pdm1l14affl_name=into
pdm2l14affl_orth=keh-
pdml5name=postpos-object
pdml5affl_name=3-POSTPOS-OBJ
pdm1l15affl_orth=be-
pdmlGname=negation
pdml6orth=du-

section=basic-lexicon
nounl=teere
nounlpred=girl_n_rel
nounldet=imp
noun2=soba
noun2pred=moneyn_rel
noun2det=imp
iverb=d-shin
iverb-pred=sing.v_rel
iverb-subj=np
tverb=tah
tverb-pred=kick_v_rel
tverb-subj=np
tverb-obj=np

69

70

section=test-sentences
sentencel=teere d-shin
sentence2=h-d-shin

A.3 Finnish
version=2

section=language
language=Finnish

section=word-order
word-order=svo
has-dets=no

section=sentential-negation
section=coordination
section=matrix-yes-no

section=basic-lexicon
nounl=opiskelija
nounlpred=studentn_rel
nounldet=imp
noun2=omena
noun2pred=applen_rel
noun2det=imp
iverb=kAvele
iverb-pred=walk_v_rel
iverb-subj=np
tverb=pidA
tverb-pred=like_v _rel
tverb-subj=np
tverb-obj=np

section=inflection
morphltype=pdml
morphlaff=suffix

morphlopt=no
morphldtrl type=noun
morph2type=pdm?2
morph2aff=suffix
morph2opt=no
morph2dtrl type=morphl
morph3type=pdm3
morph3aff=suffix
morph3opt=yes
morph3dtrl type=morph2
morph4type=pdm4
morph4aff=suffix
morph4opt=yes
morph4dtrl type=morph3
morph4dtr2_type=morph8
morph5type=pdm8
morph5aff=suffix
morph5opt=yes
morphadtrl type=verb
morphGtype=pdm6
morph6aff=suffix
morph6opt=yes
morph6dtrl type=morph5
morph7Ztype=pdm?7
morph7Zaff=suffix
morph7Zopt=yes
morph7dtrl type=morph5
morph8type=pdm5
morph8aff=suffix
morph8opt=no
morph8dtrl type=morph6
morph8dtr2 type=morph7

section=infl-paradigms
pdmZLlname=number
pdmlaffl name=plural
pdmlaffl_orth=-PL
pdmZlaff2_ name=singular
pdmLlaff2_orth=NONE
pdm2name=case

71

72

pdm2affl_name=elative
pdm2affl orth=-ELAT
pdm2aff2_name=nominative
pdm2aff2_orth=NONE
pdm3name=possessive
pdm3affl name=1SG-POSS
pdm3affl orth=-POSS1SG
pdm4.name=particle
pdm4.affl_name=also
pdm4.affl_orth=-kin
pdm5name=pernum-agr
pdm5affl name=1SG
pdm5affl orth=-1SG
pdm5aff2_name=3SG
pdm5aff2_orth=-3SG
pdm5aff3_name=indefinite
pdm5aff3_orth=-INDEF
pdm6name=tense
pdm6affl_name=past
pdm@6affl_orth=-PAST

pdmé6 aff2_name=nonpast
pdme6.aff2_orth=NONE
pdm7name=mood
pdm7.affl_name=conditional
pdm7.affl_orth=-COND
pdm8name=passive
pdm8orth=-PASS

section=test-sentences

sentencel=opiskelija pidA-3SG omena-ELAT
sentence2=kAvele-1SG

A.4 Uzbek
version=2

section=language
language=Uzbek

section=word-order

word-order=sov
has-dets=no

section=sentential-negation
section=coordination
section=matrix-yes-no

section=inflection
morphltype=pdml
morphlaff=suffix
morphlopt=yes
morphldtrltype=noun
morph2type=pdm?2
morph2aff=suffix
morph2opt=yes
morph2dtrl type=morphl
morph3type=pdm3
morph3aff=suffix
morph3opt=no
morph3dtrl type=morph2
morph4type=pdm4
morph4aff=suffix
morph4.opt=yes
morph4dtrl type=verb
morphStype=pdm5
morph5aff=suffix
morph5opt=no
morphadtrl type=morph4
morphGtype=pdm6
morph6aff=suffix
morph6opt=yes
morph6dtrl type=morph5
morph7Ztype=pdm?7
morph7Zaff=suffix
morph7opt=no
morph7dtrl type=morph6
morph8type=pdm8
morph8aff=suffix
morph8opt=yes

73

74

morph8dtrl type=morph7

section=infl-paradigms
pdmlname=plural
pdmZlorth=-PL
pdm2name=possessive
pdm2affl name=1SGPOS
pdm2affl_orth=-1SGPOS
pdm3name=case
pdm3affl_name=accusative
pdm3affl orth=-ACC
pdma3aff2_name=nominative
pdm3aff2_orth=NONE
pdm4.name=negation
pdm4.orth=-NEG
pdm5name=TAM1
pdm5affl_ name=nonpast
pdm5affl_orth=-NONPST
pdm5aff2_name=past-perfective
pdmb5aff2_orth=-PSTPRF
pdm6name=TAM2
pdm6.affl_name=nonhabitual
pdme6affl_orth=-NONHAB
pdm7.name=subject-agr
pdm7affl_name=1SG
pdm7.affl_orth=-1SG
pdm7aff2_ name=3SG
pdm7aff2_orth=-3SG
pdm8name=question
pdm8.orth=-QUES

section=basic-lexicon
nounl=oquwci
nounlpred=studentn_rel
nounldet=imp
noun2=olma
noun2pred=applen_rel
noun2det=imp

iverb=kel
iverb-pred=comev_rel
iverb-subj=np

tverb=ye
tverb-pred=eatv_rel
tverb-subj=np
tverb-obj=np

section=test-sentences
sentencel=kel-PSTPRF-1SG
sentence2=oquwci olma-ACC ye-NONPST-3SG

75

76

Appendix B
TEST SUITES

B.1 Zulu

Judgment: ungrammatical
NC-ntwana SC-TENSE-dlal-FV
“the child play”

Judgment: grammatical
Cl-ntwana SC1-FUT-dlal-a
“The child will play”

Judgment: grammatical
Cl-ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: grammatical
Cl-ntwana SC1-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana SC1-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana dlal-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana PRES-dlal-a
“The child plays”

Judgment: ungrammatical
ntwana-C1l SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana PRES-SC1-dlal-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana PRES-a-SC1-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana PRES-SC1-a-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana a-PRES-SC1-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana a-SC1-PRES-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana SC1-a-PRES-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana SC1-PRES-a-dlal
“The child plays”

Judgment: ungrammatical

77

78

Cl-ntwana a-SC1-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana SC1l-a-dlal
“The child plays”

Judgment: ungrammatical
Cl-ntwana SC1-dlal-PRES-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana PRES-dlal-SC1-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-PRES-SC1-a
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-a-PRES-SC1
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-PRES-a-SC1
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-a-SC1-PRES
“The child plays”

Judgment: ungrammatical
Cl-ntwana dlal-SC1-a-PRES
“The child plays”

Judgment: ungrammatical
SC1-ntwana SC1-PRES-dlal-a
“The child plays”

Judgment: ungrammatical
PRES-ntwana SC1-PRES-dlal-a

“The child plays”

Judgment: ungrammatical
Cl-ntwana SC1-FUT-OC-bon-a NC-yoka
“The child will see the snake”

Judgment: grammatical
Cl-ntwana SC1-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
Cl-ntwana SC1-FUT-OC9-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
Cl-ntwana SC1-FUT-OC9-bon-a
“The child will see it”

Judgment: grammatical
SC1-FUT-OC9-bon-a C9-yoka
“He/she will see the snake”

Judgment: grammatical
SC1-FUT-OC9-bon-a
“He/she will see it”

Judgment: ungrammatical
Cl-ntwana OC9-SC1-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
Cl-ntwana SC1-OC9-FUT-bon-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
Cl-ntwana SC1-FUT-bon-OC9-a C9-yoka
“The child will see the snake”

Judgment: ungrammatical
Cl-ntwana SC1-FUT-bon-a-OC9 C9-yoka
“The child will see the snake”

79

80

Judgment: ungrammatical
Cl-ntwana SC1-FUT-OC9-bon-a OC9-yoka
“The child will see the snake”

Judgment: ungrammatical
Cl-ntwana SC1-FUT-C9-bon-a C9-yoka
“The child will see the snake”

Judgment: grammatical
Cl-ntwana NEG-SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
NEG-C1l-ntwana SC1-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
NEG-ntwana SC1-PRES-dlal-e
“The child doesn't play”

Judgment: ungrammatical
Cl-ntwana-NEG SC1-PRES-dlal-e
“The child doesn't play”

Judgment: ungrammatical
Cl-ntwana SC1-NEG-PRES-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
Cl-ntwana SC1-PRES-NEG-dlal-e
“The child doesn’t play”

Judgment: ungrammatical
Cl-ntwana SC1-PRES-dlal-NEG-e
“The child doesn't play”

Judgment: ungrammatical
Cl-ntwana SC1-PRES-dlal-e-NEG
“The child doesn't play”

B.2 Slave

Judgment: grammatical
h-d-shin

1SG-d-shin

| sing.

Judgment: ungrammatical
d-shin-h

d-sing-1SG

| sing.

Judgment: grammatical
d-shin

d-sing

S/he sings.

Judgment: grammatical
ke-d-shin
3Pl.Human-d-sing
They sing.

Judgment: ungrammatical
d-shin-ke
d-sing-3PL.Human

They sing.

Judgment: grammatical
de-h-d-shin
INCEP-1SG-d-sing

| start to sing.

Judgment: ungrammatical
h-d-shin-de
1SG-d-sing-INCEP

| start to sing.

Judgment: ungrammatical
h-de-d-shin
1SG-INCEP-d-sing

| start to sing.

81

82

Judgment: grammatical
y-n-h-d-shin
yCONJ-PFV-1SG-d-sing
| sang.

Judgment: ungrammatical
n-y-h-d-shin
PFV-yCONJ-1SG-d-sing

| sang

Judgment: ungrammatical
y-h-n-d-shin
yCONJ-1SG-PVF-d-sing

| sang.

Judgment: ungrammatical
h-y-n-d-shin
1SG-yCONJ-PFV-d-sing

| sang.

Judgment: ungrammatical
h-y-d-shin-n
1SG-yCONJ-d-sing-PFV

| sang.

Judgment: ungrammatical
h-n-d-shin-y
1SG-PFV-d-sing-yCONJ

| sang.

Judgment: ungrammatical
h-d-shin-n-y
1SG-d-sing-PFV-yCONJ

| sang.

Judgment: ungrammatical
h-d-shin-y-n
1SG-d-sing-yCONJ-PFV

| sang.

Judgment: grammatical
y-n-d-shin
yCONJ-PFV-d-sing
S/He sang.

Judgment: grammatical
ke-de-y-n-d-shin
3PL.Human-INCEP-yCONJ-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-ke-y-n-d-shin
INCEP.3PL.Human-yCONJ-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-y-ke-n-d-shin
INCEP-yCONJ-3PL.Human-PFV-d-sing
They started to sing.

Judgment: ungrammatical
de-y-n-ke-d-shin
INCEP-yCONJ-PFV-3PL.Human-d-sing
They started to sing.

Judgment: ungrammatical
ke-y-de-n-d-shin
3PL.Human-yCONJ-INCEP-PFV-d-sing
They started to sing.

Judgment: ungrammatical
ke-y-n-de-d-shin
3PL.Human-yCONJ-PFV-INCEP-d-sing
They started to sing.

Judgment: ungrammatical
y-n-ke-de-d-shin
yCONJ-PVF-3PL.Human-INCEP-d-sing
They started to sing

Judgment: ungrammatical

83

84

y-n-de-ke-d-shin
yCONJ-PFV-INCEP-3PL.Human-d-sing
They started to sing.

Judgment: grammatical
na-h-d-shin
HAB-1SG-d-sing

| sing customarily/habitually.

Judgment: ungrammatical
h-na-d-shin
1SG-HAB-d-sing

| sing habitually.

Judgment: ungrammatical
h-d-shin-na
1SG-d-sing-HAB

| sing habitually.

Judgment: grammatical
du-h-d-shin
NEG-1SG-d-sing

| don’t sing.

Judgment: ungrammatical
h-du-d-shin
1SG-NEG-d-sing

| don’t sing.

Judgment: ungrammatical
h-d-shin-du
1SG-d-sing-NEG

| don’t sing.

Judgment: grammatical

na-be-ne-w-n-h-tah
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kicked him/her.

Judgment: grammatical
na-ne-w-n-h-tah

THM1-THM8-wCONj-PFV-1sg-move.foot
| kicked him/her.

Judgment: ungrammatical
ne-na-w-n-h-tah
THM8-THM1-wCONJ-PVF-h-move.foot
| kicked him/her.

Judgment: ungrammatical
na-w-ne-n-h-tah
THM1-wCONJ-THM8-PFV-1SG-move.foot
| kicked him/her.

Judgment: ungrammatical
na-w-n-ne-h-tah
THM1-wCONJ-PFV-THM8-1SG-move.foot
| kicked him/her.

Judgment: ungrammatical
na-w-n-h-ne-tah
THM1-wCONJ-PFV-1SG-THM8-move.foot
| kicked him/her

Judgment: ungrammatical
na-w-n-h-tah-ne
THM1-wCONJ-PFV-1SG-THM8-move.foot
| kicked him/her.

Judgment: ungrammatical

be-na-ne-w-n-h-tah
3SG.Human-THM1-THM8-wCONJ-PFV-1SG-move.foot
| kicked him/her.

Judgment: ungrammatical

na-ne-be-w-n-h-tah
THM1-THM8-3SG.Human-wCONJ-PFV-1SG-move.foot
| kicked him/her.

Judgment: ungrammatical
na-ne-w-be-n-h-tah
THM1-THM8-wCONJ-3SG.Human-PFV-1SG-move.foot

85

86

| kicked him/her.

Judgment: ungrammatical

na-ne-w-n-be-h-tah
THM1-THM8-wCONJ-PFV-3SG.Human-1SG-move.foot
| kicked him/her.

Judgment: ungrammatical

na-ne-w-n-h-be-tah
THM1-THM8-wCONJ-PFV-1SG-3SG.Human-move.foot
| kicked him/her.

Judgment: ungrammatical

na-ne-w-n-h-tah-be
THM1-THM8-wCONJ-PFV-1SG-move.foot-3SG.Human
| kicked him/her.

Judgment: grammatical
na-ele-ke-ne-w-n-d-tah
THM1-RECP-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

ele-na-ke-ne-w-n-d-tah
RECP-THM1-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

na-ke-ele-ne-w-n-d-tah
THM1-3PL.Human-RECP-THM8-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

na-ke-ne-ele-w-n-d-tah
THM1-3PL.Human-THM8-RECP-wCONJ-PFV-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

na-ke-ne-w-ele-n-d-tah
THM1-3PL.Human-THM8-wCONJ-RECP-PFV-RECP-move.foot
They kicked each other.

87

Judgment: ungrammatical

na-ke-ne-w-n-ele-d-tah
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

na-ke-ne-w-n-d-ele-tah
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-RECP-move.foot
They kicked each other.

Judgment: ungrammatical

na-ke-ne-w-n-d-tah-ele
THM1-3PL.Human-THM8-wCONJ-PFV-RECP-move.foot-RECP
They kicked each other.

Judgment: grammatical

na-leh-ele-ne-w-n-d-tah
THM1-DU-RECP-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical

na-leh-ele-ke-ne-w-n-d-tah
THM1-DU-RECP-3PL.Human-THM8-wCONJ-PFV-RECP-movetfoo
They two kicked each other.

Judgment: ungrammatical

leh-na-ele-ne-w-n-d-tah
DU-THM1-RECP-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical

na-ele-leh-ne-w-n-d-tah
THM1-RECP-DU-THM8-wCONJ-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical

na-ele-ne-leh-w-n-d-tah
THM1-RECP-THM8-DU-wCONJ-PFV-RECP-move.foot
They two kicked each other.

88

Judgment: ungrammatical

na-ele-ne-w-leh-n-d-tah
THM1-RECP-THM8-wCONJ-DU-PFV-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical

na-ele-ne-w-n-leh-d-tah
THM1-RECP-THM8-wCONJ-PFV-DU-RECP-move.foot
They two kicked each other.

Judgment: ungrammatical

na-ele-ne-w-n-d-leh-tah
THM1-RECP-THM8-wCONJ-PFV-RECP-DU-move.foot
They two kicked each other.

Judgment: ungrammatical

na-ele-ne-w-n-d-tah-leh
THM1-RECP-THM8-wCONJ-PFV-RECP-move.foot-DU
They two kicked each other.

Judgment: grammatical

na-dlo-be-ne-w-n-h-tah
THM1-laugh-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

dlo-na-be-ne-w-n-h-tah
laugh-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

na-be-dlo-ne-w-n-h-tah
THM1-3SG.Human-laugh-THM8-wCONJ-PFV-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

na-be-ne-dlo-w-n-h-tah
THM1-3SG.Human-THM8-laugh-wCONJ-PFV-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

89

na-be-ne-w-dlo-n-h-tah
THM1-3SG.Human-THM8-wCONJ-laugh-PFV-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

na-be-ne-w-n-dlo-h-tah
THM1-3SG.Human-THM8-wCONJ-PFV-dlo-1SG-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

na-be-ne-w-n-h-dlo-tah
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-dlo-move.foot
| kicked him/her while laughing.

Judgment: ungrammatical

na-be-ne-w-n-h-tah-dlo
THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot-laugh
| kicked him/her while laughing.

Judgment: grammatical

na-ya-be-ne-i-w-n-h-tah
THM1-DISTR-3SG.Human-THM8-SER-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

i-na-ya-be-ne-w-n-h-tah
SER-THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-i-ya-be-ne-w-n-h-tah
THM1-SER-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-ya-i-be-ne-w-n-h-tah
THM1-DISTR-SER-3SG.Human-THM8-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical
na-ya-be-i-ne-w-n-h-tah

90

THM1-DISTR-3SG.Human-SER-THM8-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-ya-be-ne-w-i-n-h-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-SER-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-ya-be-ne-w-n-i-h-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-SER-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-ya-be-ne-w-n-h-i-tah
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-SER-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-ya-be-ne-w-n-h-tah-i
THM1-DISTR-3SG.Human-THM8-wCONJ-PFV-1SG-move.fodrs
| kicked him/her repeatedly.

Judgment: ungrammatical

ya-na-be-ne-i-w-n-h-tah
DISTR-THM1-3SG.Human-THM8-SER-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ya-ne-i-w-n-h-tah
THM1-3SG.Human-DISTR-THM8-SER-wWCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ne-ya-i-w-n-h-tah
THM1-3SG.Human-THM8-DISTR-SER-wCONJ-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical
na-be-ne-i-ya-w-n-h-tah
THM1-3SG.Human-THM8-SER-DISTR-wCONJ-PFV-1SG-movetfo

91

| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ne-i-w-ya-n-h-tah
THM1-3SG.Human-THM8-SER-wCONJ-DISTR-PFV-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ne-i-w-n-ya-h-tah
THM1-3SG.Human-THM8-SER-wCONJ-PFV-DISTR-1SG-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ne-i-w-n-h-ya-tah
THM1-3SG.Human-THM8-SER-wWCONJ-PFV-1SG-DISTR-movetfo
| kicked him/her repeatedly.

Judgment: ungrammatical

na-be-ne-i-w-n-h-tah-ya
THM1-3SG.Human-THM8-SER-wCONJ-PFV-1SG-move.foot-DIRS
| kicked him/her repeatedly.

Judgment: grammatical

be-keh-na-be-ne-w-n-h-tah
3SG-into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-w-n-h-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-be-na-be-ne-w-n-h-tah
into-3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

92

Judgment: ungrammatical

keh-na-be-be-ne-w-n-h-tah
into-THM1-3SG-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-be-w-n-h-tah
into-THM1-3SG.Human-THM8-3SG-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-w-be-n-h-tah
into-THM1-3SG.Human-THM8-wCONJ-3SG-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-w-n-be-h-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-3SG-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-w-n-h-be-tah
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-3SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

keh-na-be-ne-w-n-h-tah-be
into-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot3S
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foot
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-keh-be-ne-w-n-h-tah
3SG-THM1-into-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-keh-ne-w-n-h-tah
3SG-THM1-3SG.Human-into-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-keh-w-n-h-tah
3SG-THM1-3SG.Human-THM8-into-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-keh-n-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-into-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-n-keh-h-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-into-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-n-h-keh-tah
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-into-movetfoo
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

be-na-be-ne-w-n-h-tah-keh
3SG-THM1-3SG.Human-THM8-wCONJ-PFV-1SG-move.foobint
| kick him/her into it (e.g. hole).

Judgment: ungrammatical

na-be-keh-be-ne-w-n-h-tah
THM1-3SG-into-3SG.Human-THM8-wCONJ-PFV-1SG-movetfoo
| kick him/her into it (e.g. hole).

Judgment: grammatical

du-be-keh-na-ya-dlo-leh-ele-ne-i-w-n-id-d-tah
NEG-3SG-into-THM-DISTR-laugh-DU-RECP-THM-SER-wCONJFV-1DU-RECP-
move.foot

We two didn't kick each other into it (e.g. a hole) repeateslhjle laughing.

93

94

B.3 Finnish

Judgment: grammatical

opiskelija pidA-3SG omena-ELAT
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: ungrammatical
opiskelija 3SG-pidA ELAT-omena
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: ungrammatical
opiskelija pidA-ELAT omena-3SG
student(NOM) like-3SG apple-ELAT
“The student likes the apple”

Judgment: grammatical

opiskelija pidA-3SG omena-PL-ELAT
student(NOM) like-3SG apple-PL-ELAT
“The student likes the apples”

Judgment: ungrammatical

opiskelija pidA-3SG omena-ELAT-PL
student(NOM) like-3SG apple-ELAT-PL
“The student likes the apples”

Judgment: ungrammatical

opiskelija pidA-3SG PL-omena-ELAT
student(NOM) like-3SG PL-apple-ELAT
“The student likes the apples”

Judgment: ungrammatical

opiskelija pidA-3SG-PL omena-ELAT
student(NOM) like-3SG-PL apple-ELAT
“The student likes the apples”

Judgment: ungrammatical

opiskelija pidA-PL-3SG omena-ELAT
student(NOM) like-PL-3SG apple-ELAT
“The student likes the apples”

Judgment: grammatical

opiskelija pidA-3SG omena-PL-ELAT-POSS1SG
student(NOM) like-3SG apple-PI-ELAT-POSS1SG
“The student likes my apples”

Judgment: ungrammatical

opiskelija pidA-3SG omena-PL-POSS1SG-ELAT
student(NOM) like-3SG apple-PI-POSS1SG-ELAT
“The student likes my apples”

Judgment: ungrammatical

opiskelija pidA-3SG omena-POSS1SG-PL-ELAT
student(NOM) like-3SG apple-POSS1SG-PL-ELAT
“The student likes my apples”

Judgment: grammatical

opiskelija pidA-3SG omena-ELAT-POSS1SG
student(NOM) like-3SG apple-ELAT-POSS1SG
“The student likes my apple”

Judgment: ungrammatical

opiskelija pidA-3SG-POSS1SG omena-ELAT
student(NOM) like-3SG-POSS1SG apple-ELAT
“The student likes my apple”

Judgment: ungrammatical

opiskelija pidA-POSS1SG-3SG omena-ELAT
student(NOM) like-POSS1SG-3SG apple-ELAT
“The student likes my apple”

Judgment: grammatical

opiskelija pidA-3SG omena-ELAT-POSS1SG
student(NOM) like-3SG apple-ELAT-POSS1SG
“The student likes my apple”

Judgment: grammatical
opiskelija pidA-3SG omena-PL-ELAT-POSS1SG-kin
student like-3SG apple-PL-ELAT-POSS1SG-also

“The student likes my apples also (in addition to liking atttengs).”

95

96

Judgment: grammatical
opiskelija kAvele-3SG
student(NOM) walk-3SG
“The student walks”

Judgment: grammatical
kAvele-1SG

walk-1SG

“I walk”

Judgment: grammatical
kAvele-PAST-1SG
walk-PAST-1SG

“I walked”

Judgment: ungrammatical
kAvele-1SG-PAST
walk-1SG-PAST

“I walked”

Judgment: ungrammatical
kAvele-PAST

walk-PAST

“I walked”

Judgment: grammatical
kAvele-COND-1SG
walk-COND-1SG

“l would walk”

Judgment: ungrammatical
kAvele-1SG-COND
walk-1SG-COND

“I would walk”

Judgment: ungrammatical
kAvele-COND
walk-COND

“| walked”

Judgment: ungrammatical

kAvele-COND-PAST-1SG
walk-COND-PAST-1SG
“l would have walked”

Judgment: ungrammatical
kAvele-PAST-COND-1SG
walk-PAST-COND-1SG

“I would have walked”

Judgment: grammatical
kAvele-PASS-INDEF
walk-PASS-INDEF
“One walks”

Judgment: grammatical
kAvele-PASS-PAST-INDEF
walk-PASS-PAST-INDEF
“One walked”

Judgment: grammatical
kavele-PASS-COND-INDEF
walk-PASS-COND-INDEF
“One would walk”

Judgment: grammatical
kavele-PASS-COND-INDEF-kin
walk-PASS-COND-INDEF-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-PASS-INDEF-kin
walk-COND-PASS-INDEF-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-INDEF-PASS-kin
walk-COND-INDEF-PASS-also
“One would also walk”

Judgment: ungrammatical
kavele-COND-INDEF-kin-PASS

97

98

walk-COND-INDEF-also-PASS
“One would also walk”

Judgment: ungrammatical
kavele-PASS-COND-kin-INDEF
walk-PASS-COND-also-INDEF
“One would also walk”

Judgment: ungrammatical
kavele-PASS-kin-COND-INDEF
walk-PASS-also-COND-INDEF
“One would also walk”

Judgment: ungrammatical
kavele-also-PASS-COND-INDEF
walk-also-PASS-COND-INDEF
“One would also walk”

B.4 Uzbek

Judgment: grammatical
kel-PSTPRF-1SG
come-PST.PRF-1SG

"I came, | have come”

Judgment: ungrammatical
1SG-kel-PSTPRF
1SG-come-PST.PRF

"I came, | have come”

Judgment: ungrammatical
kel-1SG-PSTPRF
come-1SG-PST.PRF

"I came, | have come”

Judgment: ungrammatical
PSTPRF-kel-1SG
PSTPRF-come-1SG

"I came, | have come”

Judgment: ungrammatical
kel-1SG

come-1SG

"l came, | have come”

Judgment: grammatical
oquwci kel-PSTPRF-3SG
student come-PST.PRF-3SG
"The student came”

Judgment: ungrammatical
oquwci-3SG kel-PSTPRF
student come-PST.PRF
"The student came”

Judgment: ungrammatical
oquwci-PSTPRF kel-3SG
student-PST.PRF come-3SG
"The student came”

Judgment: grammatical
kel-NEG-PSTPRF-1SG
come-NEG-PST.PRF-1SG
"I didn’'t come”

Judgment: ungrammatical
NEG-kel-PSTPRF-1SG
NEG-come-PST.PRF-1SG
"I didn’t come”

Judgment: ungrammatical
kel-PSTPRF-NEG-1SG
come-PST.PRF-NEG-1SG
"I didn’'t come”

Judgment: ungrammatical
kel-PSTPRF-1SG-NEG
come-PST.PRF-1SG-NEG
"I didn’t come”

Judgment: grammatical

99

100

kel-NEG-PSTPRF-1SG-QUES
come-NEG-PST.PRF-1SG-QUES
"Didn’t | come?”

Judgment: ungrammatical
QUES-kel-NEG-PSTPRF-1SG
QUES-come-NEG-PST.PRF-1SG
"Didn’t | come?”

Judgment: ungrammatical
kel-QUES-NEG-PSTPRF-1SG
come-QUES-NEG-PST.PRF-1SG
"Didn’t | come?”

Judgment: ungrammatical
kel-NEG-QUES-PSTPRF-1SG
come-NEG-QUES-PST.PRF-1SG
"Didn’t | come?”

Judgment: ungrammatical
kel-NEG-PSTPRF-QUES-1SG
come-NEG-PST.PRF-QUES-1SG
"Didn’t | come?”

Judgment: grammatical

ogquwci kel-NEG-PSTPRF-3SG
student come-NEG-PST.PRF-3SG
"The student didn’t come”

Judgment: ungrammatical
oquwci-NEG kel-PSTPRF-3SG
student come-PST.PRF-3SG
"The student didn’t come”

Judgment: grammatical

oquwci kel-PSTPRF-3SG-QUES
student come-PST.PRF-3SG-QUES
"Did the student come?”

Judgment: ungrammatical
oquwci-QUES kel-PSTPRF-3SG

student come-PST.PRF-3SG
"Did the student come?”

Judgment: grammatical

oguwci olma-ACC ye-NONPST-3SG
student apple-ACC eat-NONPST-3SG
"The student eats/will eat the apple”

Judgment: ungrammatical

oguwci ACC-olma ye-NONPST-3SG
student ACC-apple eat-NONPST-3SG
"The student eats/will eat the apple”

Judgment: ungrammatical

oquwci olma ye-NONPST-3SG-ACC
student apple eat-NONPST-3SG-ACC
"The student eats/will eat the apple”

Judgment: ungrammatical

oguwci olma ye-NONPST-ACC-3SG
student apple eat-NONPST-ACC-3SG
"The student eats/will eat the apple”

Judgment: ungrammatical

oquwci olma ye-ACC-NONPST-3SG
student apple eat-ACC-NONPST-3SG
"The student eats/will eat the apple”

Judgment: ungrammatical

ogquwci olma ACC-ye-NONPST-3SG
student apple ACC-eat-NONPST-3SG
"The student eats/will eat the apple”

Judgment: grammatical

oguwci olma-PL-ACC ye-NONPST-3SG
student apple-PL-ACC eat-NONPST-3SG
"The student eats/will eat the apples”

Judgment: grammatical
oquwci-PL olma-ACC ye-NONPST-3SG
student-PL apple-ACC eat-NONPST-3SG

101

102

"The students eat/will eat the apple”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-NONPST-3SG-PL
student apple-PL-ACC eat-NONPST-3SG-PL
"The student eats/will eat the apples”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-NONPST-PL-3SG
student apple-PL-ACC eat-NONPST-PL-3SG
"The student eats/will eat the apples”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-PL-NONPST-3SG
student apple-PL-ACC eat-PL-NONPST-3SG
"The student eats/will eat the apples”

Judgment: ungrammatical

oguwci olma-PL-ACC PL-ye-NONPST-3SG
student apple-PL-ACC PL-eat-NONPST-3SG
"The student eats/will eat the apples”

Judgment: grammatical

oguwci olma-PL-1SGPOS-ACC ye-NONPST-3SG
student apple-PL-1SG.POS-ACC eat-NONPST-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

oguwci 1SGPOS-olma-PL-ACC ye-NONPST-3SG
student 1SG.POS-apple-PL-ACC eat-NONPST-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

ogquwci olma-1SGPOS-PL-ACC ye-NONPST-3SG
student apple-1SG.POS-PL-ACC eat-NONPST-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

oquwci olma-PL-ACC-1SGPOS ye-NONPST-3SG
student apple-PL-ACC-1SG.POS eat-NONPST-3SG
"The student eats/will eat my apples”

103

Judgment: ungrammatical

oguwci olma-PL-ACC 1SGPOS-ye-NONPST-3SG
student apple-PL-ACC 1SG.POS-eat-NONPST-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-1SGPOS-NONPST-3SG
student apple-PL-ACC eat-1SG.POS-NONPST-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-NONPST-1SGPOS-3SG
student apple-PL-ACC eat-NONPST-1SG.POS-3SG
"The student eats/will eat my apples”

Judgment: ungrammatical

oguwci olma-PL-ACC ye-NONPST-3SG-1SGPOS
student apple-PL-ACC eat-NONPST-3SG-1SGPOS
"The student eats/will eat my apples”

Judgment: grammatical

oquwci olma-ACC ye-NONPST-NONHAB-3SG
student apple-ACC eat-NONPST-NONHAB-3SG
"The student is eating the apple”

Judgment: ungrammatical

oguwci olma-ACC NONHAB-ye-NONPST-3SG
student apple-ACC NONHAB-eat-NONPST-3SG
"The student is eating the apple”

Judgment: ungrammatical

oquwci olma-ACC ye-NONPST-3SG-NONHAB
student apple-ACC eat-NONPST-3SG-NONHAB
"The student is eating the apple”

Judgment: grammatical

oquwci olma-PL-1SGPOS-ACC ye-NEG-NONPST-NONHAB-3SGEZR)J
student apple-PL-1SG.POS-ACC eat-NEG-NONPST-NONHABIBJES
"Isn’t the student eating the apple?”

104

Appendix C
SAMPLE RULE HIERARCHY

This is rule hierarchy for the section of the Zulu grammaevaht to the lexical rule
types. Any parts of the grammar not created or changed by trphnotactic system are
omitted. Also please note that this is the hierarchy fromghranmar generated by the
sample choices file, which was used to model various morptioghenomena for testing
purposes. As such, it was not necessary to include the fraldigm for every morpheme
slot. A complete grammar for Zulu would have a much more estterhierarchy.

word-or-lexrule

basic-verb-lex Iex-rle SC-rule-dtr tense-rule-dtr RNerdtr

- !
verb-lex w -lex-rule [tow-eul
— = |

=———— Z——
————
rleg-rule FV-lex-rule

rverb OC1-ex-rule OC9-lex-rule

C1l-lex-rule C9-lex-rule

SC1-lex-rule SC9-lex-ryle

future-lex-rule present-lex-rule default-FV-lex-rule egiFV-lex-rule

