Statistical Techniques for Detecting and Validating Phonesthemes

Scott Drellishak
University of Washington
sfd@u.washington.edu

> Phonesthemes

- Psycholinguistic experiments
- Statistical methods
- Procedure and results
- Closing Remarks

Phonesthemes

• Consider these sound-meaning patterns in the lexicon of English:

```
gl- is associated with light or vision:
glisten, glitter, gleam, glow, glint, ...
sn- is associated with the nose:
sniff, sneeze, snout, snort, snore, ...
-ng is associated with noises:
bang, bong, clang, ding, ring, sing, ...
```

• In each case, a phonetic component (e.g. *gl-*, *sn-*) and a semantic component (e.g. 'light', 'nose')

Phonesthemes

- Origin of these patterns is obscure
- The words are not etymologically related
- The phonetic form is often sub-syllabic—not the sort of thing usually considered a morpheme in English (but see Rhodes and Lawler (1981)).
- Several analyses—morphemes, sound symbolism...
- Could they be merely coincidences in the lexicon? (Maybe there are enough *gl* words in English that the 'light; vision' ones only a very small subset)

Definition of Phonestheme

- I adopt Bergen's (2004) definition:
 - (1) [F]orm-meaning pairings that crucially are better attested in the lexicon of a language than would be predicted, all other things being equal. (293)
- Negative definition: not a phonestheme if we would otherwise predict the pairing (e.g. morphemes or etyma)
- Appeals to statistics: "better attested...than would be predicted"

- Phonesthemes
- > Psycholinguistic experiments
- Statistical methods
- Procedure and results
- Closing Remarks

Psychological Reality

- Even without consensus about an analysis, experiments can still be performed
- Test psychological reality: do phonesthemes form a part of the mental grammars of speaker?
- If so, some effect on processing should be measurable
- Researchers have studied comprehension and production of phonesthemes

Hutchins (1998) and Bergen (2004)

- Hutchins: 46 English phonesthemes from a survey of the literature, asking participants to rate soundmeaning associations using questionnaires
- Bergen: morphological priming studies on gl- and sn-
- Both studies found effects: speakers do seem to have knowledge (conscious and unconscious) of the sound-meaning associations
- Clearly part of participants' mental grammars

The Trouble with Experiments

- Phonesthemes are part of the mental grammar of speakers—but which phonesthemes?
- Chicken-and-egg problem: to evaluate phonesthemes, need phonesthemes to evaluate
- Experiments are expensive. It would be nice to have a method of finding candidate phonesthemes to test, or of validating the ones already proposed.
- In English, accumulated proposals at least give a starting point

- Phonesthemes
- Psycholinguistic experiments
- > Statistical methods
- Procedure and results
- Closing Remarks

A Statistical Method

- Recall that Bergen's (2004) definition was statistical
- Also did some simple counting in the Brown corpus:
 - 38.7% of word types and 59.8% of word tokens with glhave meanings associated with light or vision
- Intuitively, a strong association. But what percentage is convincing rather than coincidence?
- A statistical method, based on concepts from Latent Semantic Analysis (LSA) (Deerwester et. al. 1990), document classification, and mutual information.

Term-document Matrix

• Consider a set of documents. Count the number of occurrences of each word and arrange in a matrix:

	the	of	• • •	nose	light	
Doc 1	322	102	• • •	22	3	• • •
Doc 2	238	81	• • •	3	36	• • •
Doc 3	540	197	• • •	1	2	• • •

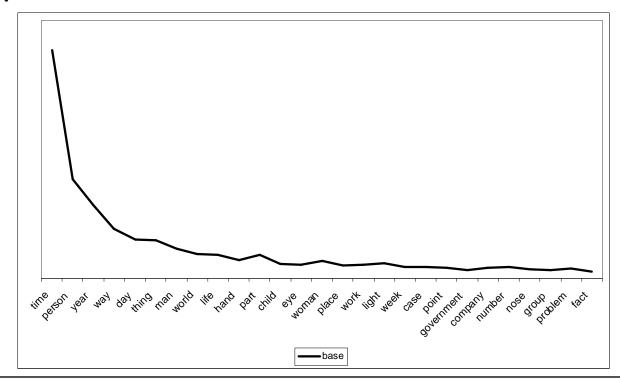
. . .

• This matrix tells what words are associated with what documents

Document Classification

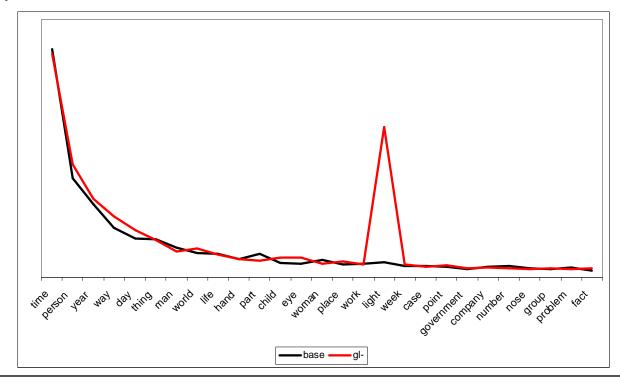
- Natural language processing technique
- Freely available BOW toolkit (McCallum 1996)
- Train a statistical classifier on two or more sets of documents (rows in the matrix)
- New documents are classified based on their similarity to documents in the training sets
- One way to gauge this similarity is **mutual** information

Mutual Information

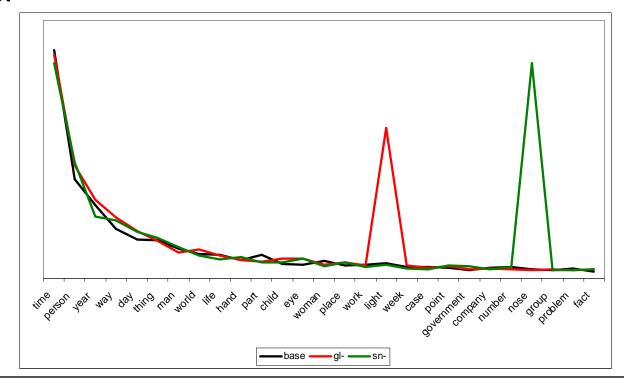

- From information theory. MI of two random variables is the amount of information knowing the value of one tells you about the value of the other.
- Formula: $I(C; W_t) = \sum_{c \in C} \sum_{f_t \in \{0,1\}} P(c, f_t) \log \left(\frac{P(c, f_t)}{P(c)P(f_t)} \right)$
- This can be calculated straightforwardly from the term-document matrix:
 - -P(c) = tokens in class c / total tokens
 - $-P(f_t)$ = occurrences of some target word / total tokens
 - $-P(c,f_t)$ = occurrences of target in class c / total tokens

Dataset

- To use them to examine phonesthemes, we need data we can view through the lens of these techniques
- A freely available English dictionary (1913 edition of Webster's) processed to remove all formatting
- Treat each headword as a document whose content is its definition
- Look for form-meaning correlations: use orthography as a proxy for phonetic content, definition words as a proxy for meaning


Form-meaning Pairings

• If phonesthetic meanings occur with greater than chance frequency, we should see this in the distribution of definition words:


Form-meaning Pairings

• If phonesthetic meanings occur with greater than chance frequency, we should see this in the distribution of definition words:

Form-meaning Pairings

• If phonesthetic meanings occur with greater than chance frequency, we should see this in the distribution of definition words:

- Phonesthemes
- Psycholinguistic experiments
- Statistical methods
- > Procedure and results
- Closing Remarks

Procedure

- Obtained and formatted a dictionary
- Treating definitions as documents, calculated the termdocument matrix
- For each candidate phonestheme, considered two sets of definitions (rows in the matrix):
 - Headwords with the phonestheme's phonetic form (e.g. all sn- words)
 - All headwords in the dictionary
- For each definition word, calculated the MI between two random variables:
 - Whether or not the word appears in a definition
 - Whether the definition belongs to the phonestheme class
- Sorted words by MI value and examine the most informative ones—if they have the phonesthetic meaning, that supports the candidate form-meaning correlation.

Sample Results

sn- 'nose; snobbish'		gl- 'light; visio	gl- 'light; vision'		st- 'firm; upright; linear'	
def. word	MI	def. word	MI	def. word	MI	
nose	0.0000565307	smooth	0.0000232839	to	0.0000340000	
sharp	0.0000163574	specious	0.0000222555	firm	0.0000234677	
reprimand	0.0000133541	spherical	0.0000200744	fixed	0.0000201057	
seize	0.0000121417	look	0.0000186537	in	0.0000138853	
contempt	0.0000119126	sullen	0.0000183769	upright	0.0000127493	
short	0.0000118340	light	0.0000181011	vessel	0.0000118034	
bite	0.0000116533	shine	0.0000179517	walk	0.0000104120	
with	0.0000097613	viscous	0.0000157358	precipitous	0.0000099669	
laugh	0.0000097334	bright	0.0000121656	post	0.0000094312	
nasal	0.0000090017	luster	0.0000120111	walking	0.0000093334	
angry	0.0000088951	ice	0.0000116167	any	0.0000087957	
check	0.0000087179	stare	0.0000114393	antimony	0.0000086452	
air	0.0000085600	acid	0.0000114003	resolute	0.0000085401	
nip	0.0000082975	comments	0.0000106663	position	0.0000081814	
catch	0.0000082894	sugar	0.0000101909	course	0.0000081642	
fellow	0.0000082605	white	0.0000100298	spasmodic	0.0000079706	
mucus	0.0000081098	and	0.0000088907	pointed	0.0000078469	
surly	0.0000081098	dilute	0.0000088024	obstinate	0.0000077918	
rebuke	0.0000079575	vitreous	0.0000088024	cease	0.0000076854	
mean	0.0000079168	commentator	0.0000086735	thrust	0.0000076060	

Two Tests for Significance

- Directly estimate confidence interval p (per word)
 - Apply the procedure once, then apply it 1000 more times
 with random sets of the same size as the candidate set
 - A word's p = # times a random word had higher MI / 1000
- Estimate *p* based on rank of words (per phonestheme)
 - For V total word types and w words with the phonesthetic meaning, the chance of finding one or more in the top n is:

$$p = 1 - \prod_{i=1}^{w} \frac{V - n - i + 1}{V}$$

- For n = 20, p < 0.05 if there are 68 or fewer words w

Significance

- The direct estimate can be calculated per word, but *p* is generally higher
- The rank test requires additional hypotheses (the words that will be considered "hits"), but produces much lower estimates of *p*
- Three kinds of phonesthemes, based on significance:
 - − Strongly confirmed: both *p* values < 0.05
 - Weakly confirmed: only rank estimate < 0.05
 - Unconfirmed: neither estimate < 0.05

Results

- Of Hutchins' 46 candidate phonesthemes:
 - 4 strongly confirmed: sn- 'nose; snobbish', st- 'firm;
 upright; linear', -Vng 'ringing sound', and spr- 'to radiate out; elongated'
 - 33 weakly confirmed, including: *gl* 'light; vision', *cl* 'noise from a collision', *fl* 'motion, repeated or fluid', str- 'linear, forceful action'
 - 9 unconfirmed, including: -am 'restrain in a small space',
 sm- 'insulting, pejorative term', and -ip 'quick movement or action'
- (See handout for the full results)

Strongly, Weakly, and Unconfirmed

sn- 'nose; snobbish' (170	sn- 'nos	; snobbish'	(170)
---------------------------	----------	-------------	-------

sn- 'nose; snobbisn' (170)				
def. word	MI	1 - p		
nose	0.0000565307	0.997		
sharp	0.0000163574	0.673		
reprimand	0.0000133541	0.471		
seize	0.0000121417	0.332		
contempt	0.0000119126	0.312		
short	0.0000118340	0.301		
bite	0.0000116533	0.276		
with	0.0000097613	0.128		
laugh	0.0000097334	0.126		
nasal	0.0000090017	0.049		
angry	0.0000088951	0.042		
check	0.0000087179	0.034		
air	0.0000085600	0.027		
nip	0.0000082975	0.017		
catch	0.0000082894	0.017		
fellow	0.0000082605	0.014		
mucus	0.0000081098	0.011		
surly	0.0000081098	0.011		
rebuke	0.0000079575	0.007		
mean	0.0000079168	0.007		

str-	'linear:	forceful	action'	(337)
SUI -	minear,	iorcciui	acuon	(1 00

su- inicai, forceful action (331)					
def. word	MI	1 - p			
narrow	0.0000145430	0.567			
wander	0.0000126039	0.363			
force	0.0000121471	0.317			
effort	0.0000098820	0.084			
ostriches	0.0000097624	0.082			
blow	0.0000097241	0.079			
extend	0.0000093615	0.056			
shrill	0.0000091543	0.053			
efforts	0.0000090490	0.049			
instrument	0.0000089795	0.048			
variant	0.0000083508	0.020			
line	0.0000078391	0.005			
piston	0.0000075273	0.001			
apart	0.0000074958	0.001			
layers	0.0000073124	0.000			
course	0.0000071581	0.000			
clock	0.0000071525	0.000			
movement	0.0000069809	0.000			
conch	0.0000069075	0.000			
rigorously	0.0000069075	0.000			

-ip 'quick movement or action' (417)

-ip quick movement of action (+17					
def. w	ord	MI	1 - p		
office		0.0003148235	1.000		
of		0.0000398346	0.986		
dignit	y	0.0000289241	0.976		
skill		0.0000233392	0.925		
the		0.0000223715	0.906		
positio	on	0.0000210027	0.872		
persor	nality	0.0000206979	0.858		
condit	ion	0.0000164920	0.695		
being		0.0000160896	0.680		
slips		0.0000150358	0.619		
off		0.0000149070	0.609		
lash		0.0000116416	0.266		
footin	g	0.0000106075	0.170		
rank		0.0000105299	0.163		
cutting	g	0.0000105119	0.163		
charac	cter	0.0000103407	0.142		
lips		0.0000098893	0.084		
board		0.0000092905	0.049		
tear		0.0000086817	0.019		
vessel		0.0000086547	0.018		

- Phonesthemes
- Psycholinguistic experiments
- Statistical methods
- Procedure and results
- > Closing Remarks

Closing Remarks

- Described a technique for confirming the soundmeaning pairings underlying phonesthemes
- Given a dictionary and a hypothesis about the phonetic form of phonesthemes, possible to test all possible variants of that form
- Technique is language independent, but requires word segmentation and phonetic information. Some orthographies will be troublesome.
- Technique also finds morphemes and etyma. Unintended, but possibly useful.

References

- Bergen, Benjamin K. 2004. The psychological reality of phonaesthemes. Language 80.290-311.
- Deerwester, Scott, Susan Dumais, George Furnas, Thomas Landauer, Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science 41 No. 1: 391-407. Firth, John R. 1930. Speech. In The tongues of men and Speech, ed. by Peter Strevens. Oxford, UK: Oxford University Press.
- Hutchins, Sharon Suzanne. 1998. The psychological reality, variability, and compositionality of English phonesthemes. Atlanta, GA: Emory University dissertation.
- McCallum, Andrew. 1996. BOW: A toolkit for statistical language modeling, text retrieval, classification and clustering. http://www-2.cs.cmu.edu/~mccallum/bow/
- Rhodes, Richard A. and John M. Lawler. 1981. Athematic metaphors. Papers from the seventeenth regional meeting of the Chicago linguistic society 1981 (CLS 17), ed. by Roberta Hendrick, Carrie Masek, and Mary Frances Miller. 318-342.