
Optimizing CYK parsing on modern processors

Aaron Dunlop
Oregon Health & Science University

dunlopa@cslu.ogi.edu

Brian Roark
Oregon Health & Science University

roark@cslu.ogi.edu

1 Introduction
Recent advances in processing power have en-
abled CYK parsing with increasingly complex
probabilistic grammars (PCFGs). Parsing speed
is now governed primarily by the size of the
grammar. That is, the overall complexity of
exhaustive inference is n3|G|, but for most in-
teresting grammars, the grammar constant is
more problematic than the cubic factor. Mem-
ory latency in modern architectures exacerbates
this limitation; RAM speeds have not kept pace
with increases in CPU power, so the execution
time of most algorithms is now dominated by
memory latency. In fact, execution time often
increases super-linearly as a program’s working
set expands beyond the CPU’s cache size, so
expanding a PCFG can dramatically increase
processing time (Cuppu et al., 2001; Klein and
Manning, 2001).

In this paper we describe a modified CYK
parsing algorithm which has several beneficial
properties vs. standard implementations. Our
algorithm: 1) Is cache-efficient on standard
CPUs; 2) Parallelizes easily and scales smoothly
to large processor counts; and 3) Adapts well to
cache-less throughput-oriented processors such
as graphics processors (GPUs).

2 Background
2.1 Parsing
We will focus on the inner loop in chart cell pop-
ulation. To populate a cell, we must intersect
the potential child non-terminals at each mid-
point with the grammar. We normally do this
intersection in one of two ways: 1) Examine each
potential child pair, looking each pair up in the
grammar; 2) Loop through the entire grammar,
looking for the children of each rule in the child
cells (a particular grammar may favor one ap-
proach over the other). In either case, we can
do the lookups through a hash table or by a
binary search, but both involve unpredictable,
non-sequential memory access patterns. This

is cache-inefficient, causing repeated processor
stalls. We are targeting a more linear access
pattern to improve cache hit rate.

2.2 Parallelizing Parsing
We also want to take advantage of multi-core
hardware by parallelizing CYK; we can do this
in several ways:
Sentence-level: The simplest approach is

to parse sentences independently on separate
CPU cores. Total parse throughput (sen-
tences/second) scales roughly linearly with the
number of cores available, but the time to parse
a single sentence is unchanged, so this approach
does not help with real-time latency constraints.
Row-level: We generally populate one chart

row fully before proceeding to the next higher
row. We can process all cells of a row in par-
allel, but the speedup may not be as great as
we would like, for several reasons: 1) High in
the chart, we have fewer cells per row, and are
forced to leave CPU cores idle. Those higher
rows are often the most densely populated, and
thus require the most processing. 2) Parallel
threads compete for shared caches and memory
bandwidth, so the threads populating separate
cells may stall one another. 3) Some filtering ap-
proaches improve efficiency, but introduce cell-
to-cell dependencies within the same row, limit-
ing this approach (e.g. Earley (1970)).
Cell-level: Parallelization within a chart cell

is more complex, but avoids the weaknesses of
the first two forms of parallelization. If we can
fully parallelize cell population, we can make use
of all available cores regardless of the cell itera-
tion order or the current position in the chart,
and we can expect to share cache and RAM
bandwidth between threads.

2.3 GPU Architecture
Graphics processors differ considerably from
CPUs. CPU designers spend most of their
transistors on cache, speculative execution, and
other memory latency reduction techniques.

GPUs instead focus on total throughput, im-
plementing a large number of arithmetic logic
units, and devoting less silicon to latency con-
cerns. For example, the NVIDIA GT200 GPU
contains 240 individual cores.1 GPUs generally
have wide memory busses, so accesses by sequen-
tial threads to sequential addresses can be com-
bined (‘coalesced’) into a single access, reducing
wait times. Threading on a CPU is primarily
handled in software, and context switches are
expensive, so a thread waiting for memory stalls
the CPU. In contrast, GPUs handle thread-
ing in hardware, so a thread waiting for mem-
ory can be context-switched out while it waits
(the GT200 can handle over 30,000 simultane-
ous threads). This helps hide memory latency,
although it pushes some the burden of manag-
ing that latency back onto the programmer. On
problems scalable to large thread counts, par-
ticularly those with sequential memory access
patterns, GPUs achieve tremendous speedups.
Certain dense matrix operations can be acceler-
ated by 100x or more. Multiplication of sparse
matrices and vectors (SpMV) is not as straight-
forward, but considerable work has been done
on optimizing GPU SpMV (Baskaran and Bor-
dawekar, 2008; Bell and Garland, 2009).

3 Methods and Preliminary Results

We transform the grammar intersection within a
cell into a series of vector and matrix operations,
allowing efficient parallelization and caching.
We represent the grammar as a matrix G in
which rows represent parent non-terminals and
columns pairs of child non-terminals (that is, a
sparse matrix of |V | rows and |V |2 columns).

We populate the CYK chart in the normal
bottom-to-top, left-to-right order. For each cell,
we first populate a vector of possible child non-
terminal pairs. For each midpoint, we take the
cartesian product of non-terminal pairs from
child cells, producing a sparse vector of length
|V |2. We then union those midpoint vectors to-
gether, choosing the most probable element.

We populate the target cell by multiplying G

1Contrast this to current Intel and AMD CPUs, which
contain 4 or 6 cores and process at most 12 simultaneous
threads

by the cartesian-product vector in the tropical
semiring. That is, for each parent non-terminal
(row), we choose the most probable child pair
(column) and its probability, rather than sum-
ming across all entries in the row. We handle
unary rules by a second, similar multiplication.

The cartesian product operations are indepen-
dent, and thus parallelizable; the union thereof
can be done in parallel as well, and each row of
the matrix product can be computed separately.
So we are able to scale smoothly to large thread
counts. Further, the inner loops of both opera-
tions access child cell contents and G in order,
allowing effective cache prediction on CPUs and
memory access coalescing on GPUs.

Preliminary timings of a GPU implementa-
tion are somewhat disappointing, but our CPU
implementation shows a speedup of 5.4x vs. a
filtered grammar-loop implementation. We are
exploring grammar transformations to improve
GPU memory access patterns in the cartesian-
product union.

4 Conclusion

We presented a relatively simple transforma-
tion of the standard CYK algorithm, which im-
proves CPU cache efficiently and is parallelizable
on CPU or GPU cores, and preliminary results
demonstrating the promise of this approach.

References

M. M. Baskaran and R. Bordawekar. 2008. Optimiz-
ing sparse Matrix-Vector multiplication on GPUs.
Technical report RC24704, NVIDIA Corporation.

N. Bell and M. Garland. 2009. Imple-
menting sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings
of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, pages 1–11.
ACM.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge.
2001. High-Performance DRAMs in workstation
environments. IEEE Transactions on Computers,
50(11):1133–1153.

J. Earley. 1970. An efficient context-free parsing
algorithm. Commun. ACM, 13(2):94–102.

D. Klein and C. D. Manning. 2001. Parsing with
treebank grammars: Empirical bounds, theoret-
ical models, and the structure of the penn tree-
bank. In Proceedings of 39th Annual Meeting of
the ACL, pages 338–345. ACL, July.

