
Incremental Decoding for Phrase-based Statistical Machine Translation

Baskaran Sankaran, Ajeet Grewal and Anoop Sarkar
Simon Fraser University, Canada

{baskaran, asg10, anoop}@cs.sfu.ca

Extended Abstract
Statistical Machine Translation has advanced

tremendously, resulting in the proliferation of sev-
eral web-based and commercial translation ser-
vices. In this paper we focus on the notion of in-
cremental translation to translate text one word at
a time. Such a translation service can be used for
language learning, where the user is fluent in the
target language and experiments with many differ-
ent source language sentences interactively, or in
real-time translation environments such as speech-
speech translation or translation during interactive
chats. Google (http://translate.google.com) seem-
ingly does incremental decoding, but the under-
lying algorithms are not public knowledge. They
may be simply re-translating the input each time
using a fast decoder or re-using prior decoder
states as we do here. In this paper we claim that
incremental decoding is faster if we start from a
partial state covering earlier words and decode just
the new words instead of re-decoding the input
from scratch each time.

We introduce an incremental decoder (ID) al-
gorithm, which is a modification of a beam search
decoder for phrase-based MT. When a new word
is added to an existing partial sentence, our de-
coder simply begins from the previous decoder
state. We propose delayed pruning (DP) a novel
pruning strategy to reduce the search errors in in-
cremental decoding.

We are not aware of any other work similar to
ours; the closest work is caitra (Koehn, 2009) –
a web based interactive tool for aided translation.
However, that work pre-translates the entire text;
also the interactions are limited to dynamic user
suggestions and not for dynamic translations.

In this work, we address the twin complexities
of partial future costs and search errors in incre-
mental decoding so as to allow for faster and effi-
cient incremental decoding. First, the future costs
change at every step as words are added to the par-
tial sentence. The decoder has to not only recom-
pute future costs at every step, it should also up-
date the previous partial decoder state to reflect

the new future costs. Second, some of the en-
tries that were pruned out in a prior partial decoder
state might actually turn out to better candidates
more of the input sentence is uncovered, resulting
in search errors.

Incremental decoding relies on a recompute and
update strategy for estimating future costs at every
step. We begin with a single bin for the first source
word and generate partial hypotheses. For each
new source word it recomputes the future costs for
all the phrases accounting for the new word and
also updates the previous decoder state with the
modified future costs. It then proceeds by extend-
ing older hypotheses and by generating new hy-
potheses resulting from the last word added using
the recomputed future costs and log-linear com-
bination of other feature scores including the lan-
guage model (LM) scores.

Algorithm 1 shows the pseudocode for our in-
cremental decoder. We use Ptype(l) to denote an
l-word phrase and Htype to denote the set of hy-
potheses; in both cases type correspond to either
old or new indicating if it was not known in the
previous decoding state or not. Given a partial
sentence Si (Si and si denote an i-word partial
sentence and ith word in a (partial) sentence re-
spectively) the decoder starts with a pre-process
step that retrieves the previous decoding state and
adds new bins corresponding to the words added.
It also extracts the new set of phrases (Pnew) for
the ith word and recomputes the future-costs (fc)
for all the phrases.

In the incremental decoding phase, it iterates
through the bins beginning from the first. At each
iteration, it updates the future costs and coverage
vector of the hypotheses in the partial decoding
state. It also adds any newly found phrase to the
bin subject to the distortion limit d (line 5).

The inner for-loop (lines 7 to 11) corresponds
to the extension of hypotheses sets (grouped by
same coverage vector) to generate new hypothe-
ses. While extending hypotheses from a previous
bin, this differs from the regular decoder in two
ways: i) by extending the existing hypotheses Hold



Algorithm 1 Incremental Decoder pseudocode
1: Input: (partial) sentence Sp: s1s2...si−1si

with ls words where si is the new word
2: PreProcess(Sp)
3: for every bin bj in (1 . . . i) do
4: Update future cost and cover set ∀ Hold

5: Add any new phrase of length bj (subject to
d)

6: for every bin bk in (bj−4 . . . bj−1) do
7: Generate Hnew for bj by extending:
8: Hold with every other Pnew(bj − bk)
9: Hnew with every other Pany(bj − bk)

10: Prune bin bj

of previous decoder state Si−1 with new phrases
Pnew (line 9) and ii) by generating new hypotheses
that are unknown in the previous state (line 10).

The entries in the bin are then pruned according
to the specified beam size and/or threshold. How-
ever, as noted above, some of the pruned entries
could potentially become better candidates as the
sentence is completed later. Thus using the con-
ventional pruning methods could result in search
error lowering the BLEU score.

We overcome the search errors issue by intro-
ducing delayed pruning (DP). The idea is to de-
lay pruning of hypotheses earlier on. A hypothesis
having a poor score at a particular decoding state,
we call a tortoise having a slow start as opposed to
a high scoring hare hypothesis in the same state.
We hypothesize that, given enough chance a tor-
toise might improve its score and move ahead of a
hare in terms of log-linear score1.

We achieve this by relaxing the cube pruning to
generate a small, fixed number of hypotheses for
hyper-edges that are not represented in the priority
queue of the bin and place them in the bin. These
hypotheses are distinct from the regular top-k hare
derivations. Though this reduces the search error,
it leads to increasing number of possibilities to be
explored at later stages with vast majority of them
being worse.

We use a two level strategy to avoid this pro-
liferation of worse hypotheses and at the same
time to reduce search error. At the first level, we
choose few hypotheses by comparing their nor-
malized language model scores against a thresh-
old and flag them as tortoises. These are extended

1Here we are concerned not with the speed but with avoid-
ing search errors and we consider log-linear score as a good-
ness measure for a partial hypothesis

minimally at each subsequent decoder state sub-
ject to their normalized LM score.

At the second level, poor scoring tortoises are
pruned out beyond a threshold number of bins
called race-course limit. When a tortoise improves
in score and breaks into the beam through the cube
pruning step, it is removed from the tortoise set
and placed in the regular decoding stream.

The evaluation of our decoder was performed
using our implementation of a beam-search de-
coder which is similar to Moses (Koehn et al.,
2007). The decoder was written in Java and in-
cluded cube pruning (Huang and Chiang, 2007)
and lazier cube pruning (Pust and Knight, 2009)
as part of the decoder. We used Giza++ and Moses
respectively for aligning the sentences and training
the system and used 7 standard features identical
to Moses. The decoder objects were serialized in
the memory and retrieved as required by the ID.

We experimented in three language pairs us-
ing WMT07 and WMT10 datasets for French-
English, English-French and in English-Spanish.
Our experiments focused on comparing incremen-
tal decoding with regular decoding in terms of
search errors (as measured by BLEU) and transla-
tion speed. We also studied the effects of different
race course limits on search error.

Due to space constraint, we provide below
brief results only for French-English translation
in Table1. We would like to note that our in-
house decoder compares favourably with Moses:
the slightly better bleu score for our decoder could
be due to the minor differences in the correspond-
ing config settings.

Decoder Bleu TER
Moses 26.98 55.11
Regular decoding 27.53 54.18
ID w/o delay pruning 27.01 54.74
ID w delay pruning 27.62 54.55

Table 1: French-English using WMT07 dataset

Secondly, the incremental decoding without the
delay pruning resulted in poor candidates either in
terms of translation score or its quality. However,
the incremental decoding showed noticeable im-
provement when the delayed pruning was turned
on as can be seen in the bleu; the TER scores also
show a similar pattern. Furthermore, our results
showed the incremental decoding with DP to be
faster than the regular decoding by about 50%.



References
Liang Huang and David Chiang. 2007. Forest rescor-

ing: Faster decoding with integrated language mod-
els. In In Proceedings of ACL-07, Prague, Czech
Republic, June.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
In Proceedings of ACL-07: Demo and Poster Ses-
sions, Prague, Czech Republic, June.

Philipp Koehn. 2009. A web-based interactive com-
puter aided translation tool. In In Proceedings of
ACL-IJCNLP 2009: Software Demonstrations, Sun-
tec, Singapore, August.

Michael Pust and Kevin Knight. 2009. Faster mt de-
coding through pervasive laziness. In In Proceed-
ings of NAACL-HLT, Boulder, Colorado, June.


