

Updating the Science: (20-25 mins)

• To provide an updated review of the physiology, disposition, and genomics of vitamin D, and the assessment of its clinical status.

 To compare the clinical pharmacology between ergocalciferol (vitamin D₂) and cholecalciferol (vitamin D₃).

Interpreting Vitamin D Status in Practice: (10 mins)

• To discuss the current controversy on the definition of vitamin D deficiency and threshold of initiating vitamin D supplementation in older adults.

Bring to the Bedside and Clinic: (25 mins)

• To evaluate the impact on different vitamin D interventions on the major clinical outcomes in older adults

Looking to the Future: (5 mins)

• To overview the major ongoing clinical trials involving vitamin D interventions in older adults.

25(OH) Vitamin D Assays

- Competitive protein binding assay
- Chemiluminescence
- Immunoassays
 - EIA
 - RIA
- Direct UV detection-based HPLC assays
- GC-MS
- Liquid chromatography–tandem mass spectrometry (LC-MS/MS)

Baseline vitamin D2, vitamin D3 and metabolite ratio in a cohort

	Placebo (n = 8)	Vit. D2 (n = 17)	Vit. D3 (n = 9)
25(OH) D2 (ng/mL)	0.9 ± 2.1	3.8 ± 4.9	0.9 ± 2.7
25(OH) D3 (ng/mL)	17.6 ± 7.8	15.5 ± 6.9	21.3 ± 12.9
1,25(OH) D2 (pg/mL)	0.0 ± 0.0	2.8 ± 6.7	0.0 ± 0.0
1,25(OH) D3 (pg/mL)	30.3 ± 8.1	30.5 ± 9.0	35.4 ± 13.0

linical Debate:		
Iterpretation of Vitamin D Concentratio U.S. Preventive Services Task Force, Ann Intern Med. 2015;		
25-(OH)D Level Cutoff	Opinions of Expert and Professional Bodies About Cutoff Levels	Summary of Previous Research on the Associations Between 25-(OH)D Levels and Risk for Health Outcomes
< 20 ng/mL	Widely used by researchers and available guidelines as indicative of deficiency	Levels ≥50 nmol/L (≥20 ng/mL) have been associated with decreased risk for fractures, CVD, CRC, diabetes, depressed mood, cognitive decline, and death
20 – 30 ng/mL	Debate about whether these levels represent deficiency	Levels >60 nmol/L (>24 ng/mL) associated with decreased risk for CVD Levels >75 nmol/L (>30 ng/mL) associated with decreased risk for death and CRC Data conflict about whether levels >75 nmol/L (>30 ng/mL) are associated with decreased risk for fractures
30 – 50 ng/mL	General agreement that these levels do not represent deficiency; however, some recommend targeting 25-(OH)D levels to this range because results of 25-(OH)D testing vary	Levels between 87 and 100 nmol/L (35 to 40 ng/mL) may be associated with decreased for death and CRC
50 – 200 ng/mL	Debate about whether these levels are associated with adverse health outcomes	Possible U-shaped association between vitamin D levels and risk for death and pancreatic cancer

Distribution of serum 25-hydroxyvitamin D levels by racial/ethnic group in the US population aged 13 years and older, and in darkskinned, traditionally living peoples in equatorial Africa Weishaar T, et al. J Acad Nutr Diet. 2013;113:643-65 U.S. Non-Hispanic Blacks U.S. Mexican-Americans 5% U.S. Non-Hispanic Whites Percent of Group 4% raditionally-living dark-skinned individuals in equatorial Africa (estimated using normal distribution and mean and SD of 60 subjects) ^a 3% a: Data for Africa are from Luxwolda et al, Eur J Nutr. 2013;52(3):1115-2 2% 1% 15.0 19 46.1 (10.8) (6.9) (7. 95% CI ... THEFT 70 80 ng/mL 10 20 30 40 50 60 nmol/L 25 50 75 100 125 150 175 200 Distributions are smoothed by averaging each set of three adjacent data points. The area under each curve represents 100% of that group. Means, standard deviations (SD), and confidence intervals (CI) are shown near the X axis.

Does Vitami post-menop	in D Prevent bausal wome	D Prevent Fractures in sal women and older men? Avenell A, et al, Cochrane Database Syst Rev. 2014;(4);CD0002	
Treatment	Outcomes	Risk Ratio (vs placebo)	95% CI
Vitamin D alone	Hip and new fractures	1.12	0.98 to 1.29
Vitamin D + calcium	Hip fracture	0.84	0.74 to 0.96
Vitamin D + calcium	Non-vertebral fractures	0.95	0.90 to 0.99

Hazard Ratios (95%CIs) for Fallers, Injured Fallers, and Multiple Fallers

	No exercise	No exercise	Placebo + Exercise	Vitamin D + Exercise
All fallers	HR = 1.00	HR = 0.77 (0.54 - 1.11)	HR = 0.93 (0.66 - 1.31)	HR = 0.91 (0.64 - 1.28)
Injured fallers	1.00	0.89 (0.47 - 1.69)	0.47 (0.23 - 0.99)	0.38 (0.17 - 0.83)
Multiple fallers	1.00	1.07 (0.71 - 1.62)	1.14 (0.76 - 1.71)	1.14 (0.77 - 1.71)

Does Treating Vitamin D Insufficiency Improves Calcium Absorption and Bone Density?

- Goal:
 - Determine if maintaining 25(OH)D levels > 30 ng/mL for 1 year would increase total fractional calcium absorption (TFCA) and BMD more than low-dose vitamin D3 or placebo

Hansen KE, et al, JAMA Intern Med. 2015;175:1612-1621

- Interventions:
 - Enrollment criteria- 25(OH)D between 14 and 27 ng/mL
 - Loading dose 50,000 IU D3 daily x15 days; then
 - 800 IU/day OR
 - 50,000 IU q 15 days (~ 3,333 IU/day)
- Assessments:
 - BMD, Muscle mass
 - Dual stable calcium isotope methods for TFCA

	plement	Hansen KE, et al, JAMA	Intern Med. 2015;175
	Placebo	800 IU/day	50,000 IU 2x/month
TFCA Changes	↓ 1.3%	↓ 2%	↑1%
 No differences betwee The absolute or ann mean total hip, or to Trabecular bone sco Muscle mass, Number of falls, or r 	een treatmer ualized perce tal-body BMD pre number of falle	it arms: intage change in ; ers	lumbar spine

Clinical Out	comes			
 SPPB score the treatment Functional and qualitatively state 	did not di t groups (nd muscle similar.	ffer signif (P = .26) e mass ei	ficantly an	a. 2016;176:175-183 Nong were
Falls Assessment	24,000 IU	60,000 IU	24,000 IU + 25(OH)D	P value
Incidence of falls	47.9%	66.9%	66.1%	0.048
Adjust mean # of falls	0.94	1.47	1.24	0.09

		Jin X et al, JAMA. 2016
	Vitamin D (n = 209)	Placebo (n = 204)
Study site		
Hobart, No. (%)	129 (61)	132 (64)
Melbourne, No. (%)	80 (38)	72 (35)
Age, mean (SD), y	63.5 (6.9)	62.9 (7.2)
Women, No. (%)	106 (50)	102 (50)
Body mass index, mean (SD) ^a	29.6 (5.4)	29.6 (4.6)
Serum 25-hydroxyvitamin D, mean (SD), nmol/L	43.7 (11.8)	43.8 (12.7)
Radiographic osteoarthritis, No. (%)	163 (96)	157 (96)
Total WOMAC score (0-2400), mean (SD) ^b	687.3 (426.3)	664.7 (390.8)
Pain (0-500)	137.9 (88.8)	134.7 (83.4)
Stiffness (0-200)	61.5 (41.5)	61.7 (40.1)
Function (0-1700)	487.9 (318.1)	467.6 (292.8)

