State of the Science: Technology for Older Adults and Caregivers

George Demiris PhD, FACMI September 14, 2017

Elder Friendly Futures Conference

Informatics for Aging

- Use of information technology to increase assess to information, facilitate communication and empower older adults and families
- Shift from institution centric to patient centric care

Overview

- Various Examples
 - Community Setting
 - Smart Home
 - Fall Detection
 - Reminiscence
 - Social Isolation
- Obtrusiveness
- Challenges and Implications

health-e

home-based environmental assisted living technologies for healthy elders

http://www.health-e.info

Community Intervention Background

- Older adults vary in the development and progression of chronic disease and decline at varying rates in areas of well-being.
- Efforts to date have addressed a single aspect of older adults' wellness.
- Holistic approach to wellness is needed.
- Technology applications have the potential to introduce tools that enable non-obtrusive monitoring and assessment wellness.

Theoretical Framework: Wellness

health•e

Study Aims

- test an integrated monitoring system for wellness that utilizes diverse and innovative technologies
- utilize existing hardware systems that can be easily installed in a community setting
- assess issues of acceptance and usability

Subject and Setting

- Eligibility criteria included:
 - age of 62 years or older

technologies for healthy elders

- residents of an independent retirement community
- independent in activities of daily living (ADL)
- able to provide written informed consent
- Setting:
 - Community room

Technologies

• Telehealth Kiosk

Technologies (cont.)

• CogniFit

- a brain fitness web-based software solution
- assessment and over time the improvement of several key cognitive abilities
- tested for reliability and validity

health•e

Procedures

- Initial visit (informed consent, demographic information, baseline assessment)
- Participants come to community room:
 - 3 times a week provide cognitive assessment data (approx. 20 minutes per session)
 - Weekly to use telehealth kiosk
- Exit questionnaires
- Focus group

health•e

Methods: Assessment Technologies

health•e

Results: Sample

- 27 subjects
- 9 male and 18 female
- Average age 88.2 years (Range 78-94)
- Educational level:
 - Graduate degree 13 (52%)
 - Undergraduate degree 8 (32%)
 - Community college 3 (12%)
 - High school 1 (4%)
- Experience with computers:
 - Highly comfortable 3 (12%)
 - Moderately comfortable 13 (52%)
 - Slightly comfortable 7 (28%)
 - No experience with computers 2 (8%)

health•e

Results: Technology Adaption

- Adjustments needed to maximize usability for participants with various health conditions
- Assistance needed decreased over time; users became independent in short time
- Monthly reports were useful to some participants
- Visualization focus groups revealed diverse preferences for personal wellness records

HEALTH-E

Doctor's Note

Results looking good!

Hi Laura, I just reviewed the CT

result and looks good to me...

1

3

My Wellness in October 2011

Calendar

Oct 21, 2011

TODAY

Jane's Birthday 4:30 pm Hair Cut

TOMORROW

6 pm Jane's Birthday Party

Next Week

MONDAY

10:30 am Doctor's Appointm...12 pm Lunch with Paul, Harry...

TUESDAY

7 pm Movies night

THURSDAY

8 pm Happy Hour

FRIDAY

11 am Lunch with Amy, Sam 3 pm Shopping

Messages

Re: Happy Birthday Jane! 27 mins ago

Thanks, Laura :) I am having a wonderful day. Are you comi...

My progress over the last 12 months

7

Results: Focus Groups

- Positive attitudes towards wellness assessment
- Acceptance of technologies
- Alerts and reports led to changes in individual plans of care
- No privacy concerns
- Some participants self-monitored parameters (e.g. blood pressure, weight) at home prior to enrollment.
- Want to know how they could positively influence wellness on individual level (e.g. specific interventions) and how they compared to peers

Smart home

 A residence with embedded technology that facilitates passive monitoring of residents to enhance their safety, independence and wellbeing

Behavioral Sensing

- Capturing behavior and activities of daily living
- Replacing the need for human observers
- Eliminating reliance on self-report
- Shifting from episodic to continuous monitoring
- Assessment in the real world and not the lab
- Identifying events and trends and patterns

Smart Home Initiative at UW

• Funded by:

- *NSF-CDI-1028195:* Transforming Community-Based Elder Care through Heterogeneous Activity Sensing Analytics
- NSF-CNS-1405682 and NSF CNS-1625451 HomeSHARE Home-based
 Smart Health Applications across Research Environments
- NINR Aging and Informatics Training Program T32NR014833
- Microsoft Research

Current Sensor deployment

- Iongitudinal deployment study with older adults 65 years and above living in King County, WA.
- Three semi-structured interviews
- Participatory design approach to design visualizations for the sensor data

Sensors currently used

- Participants **given a choice** to choose the sensor(s) they would like to have installed within their home.
- Participants had to at least choose one sensor.

Wireless IP Camera

 Live video streaming

Door/Window sensor

 Door/window activity tracking

Multi-sensor

- Temperature
- Humidity
- Luminosity
 - Motion

Lessons Learned

- 52 participants from 3 projects
- Various smart home installations
- Different residential settings

Visualizing Smart Home Data

- Various stakeholders
- Various information needs and purposes of use
- Support efficient and effortless extraction of important information pertaining to events, trends and patterns

Density Map of Sensor Activity Per Hour

Time (Hours)

Using design mock-ups

- Various approaches (e.g., bar chart representing activity level over time with a "Norm Activity Index")
- Real user data
- Feedback incorporated in second and third iteration

24-0ct

Desirable Features

- Combination of environmental and behavioral data
- Granularity/ Interactivity
- Ability to annotate/ document
- Comparison to "healthy/ average/ peers"
- Detection of Trends
- Privacy Controls (choose when to share and with whom)

Desirable Features (cont.)

- Addressing visual limitations (e.g. font size, choice of colors)
- Preferred platforms: print-outs, web-page
- Abstraction

Motivation to Action

- Early signs of sedentary behavior
 - "did I really spend all that time just sitting in front of the TV? Wow.. So many hours... scary"
- Decrease of overall mobility inside the home
 - "yeah, I used the weather as an excuse to get lazy, have to change that, my doctor won't like [this] one bit"
- Increase of social isolation
 - "they [friends/ visitors] stop coming, some have died, some are not well, and then you stop visiting, and before you know it, you ['re] all alone"
- Change in patterns of activities of daily living
 - "fifty degrees? Why [did I] leave I the window open?... if I keep doing that, I'll freeze to death"

Motivational factors

- Adding context (*why* is this happening, *what* can be done)
- Ability to compare (to self, to peers)
- Ability to address the knowledge (social isolation vs. overall mobility)
- Motivation decreases over time
- Data sharing is a motivator for some

Informatics and Fall Detection

Falls in Older Adults

Health Impact

- 20-30% of older adults who fall experience physical injuries (Sterling, 2001)
- Falls are the leading cause of both fatal and nonfatal injuries
- In 2013 in the United States 25,464 older adults died from fall related injuries (CDC)

Wearable systems (57 projects)

Environmental systems (35 projects)

Wearable Systems

• Placed upon the person

- Most common location
 - trunk of the body (chest, waist, thorax)
- Other locations
 - the ears, arms, hands or feet of the subject

Wearable Systems

- Always with their person
- Experience the same acceleration or impact as their user
- Multiple people

- Battery Powered
- Uncomfortable
- Requires users to remember to wear the device

Environmental Systems

• Placed in the user's normal environment

- Many types
 - Cameras/Infrared
 Sensors
 - Acoustic sensors
 - Pressure sensors

Environmental Systems

- Do not rely on their user to remember to use the system
- Sustainable power source

- Limited to a specific space
- Privacy concerns
- Occlusion
- Trouble with multiple people

Study Context

Purpose

- Perform a real world test of the feasibility of such a device
- Understand the usability of a prototype fall detection device
- Understand which features affect older adult perceptions

Study Approach

 Participants asked to wear device for 4 months

• 18 subjects enrolled

 Interviews at baseline, 2 months and 4 months

Findings

 Opinions on device are dependent on subject

 Many participants unhappy with false alarms and other aspects of the device

• Feasibility of the device has yet to be proven

Technology for Leisure for Older Adults

-leisure activities are extremely beneficial for supporting older adults' mental and physical health.

-multi-functional computer systems with a variety of applications such as games, communication tools, and media for reminiscence

Digital Companions

Supporting interaction, engaging in activities, functioning as reminder and adherence coach

Demographics of pilot study participants

Age (mean; range)	78.3 Years (68-89)
Female Gender	100% (10)
Race	
White/Caucasian	90% (9)
Native American	10% (1)
Ever owned a pet	100% (10)
Comfort Using Technology	
Very Uncomfortable	0%
Somewhat Uncomfortable	10% (1)
Neutral	10% (1)
Somewhat Comfortable	70% (7)
Very Comfortable	10% (1)
Use of Technology for Leisure	
Strongly Dislike	10% (1)
Dislike	10% (1)
Neutral	20% (2)
Like	50% (5)
Strongly Like	10% (1)

Pre-Post Assessment for Pilot Study Participants

Measure (Tool)	Pre-Test (Baseline n=10)	Post-Test (n=8)	Average individual change T1 to T2 (n=8)			
Cognition (MOCA)	21.9 (7.3)	23.5 (3.3)	+.13			
Social Support (MOS SSS) Subscale	69.9 (14.5)	72.6 (15.9)	+1.36			
Emotional/Informational	65.6 (23.1)	69.5 (22.0)	+1.17			
Tangible	72.5 (17.2)	71.1 (25.9)				
Affectionate	65.0 (30.9)	67.7 (30.7)	+2.08			
Positive social interaction	66.7 (21.9)	77.1 (20.1)	+6.25			
Anxiety (GAD-7)	2.5 (1.7)	2.9 (2.6)	+.13			
Depressive symptoms						
PHQ-9	3.5 (2.1)	2.5 (1.8)	88			
Difficulty to do things at work, home, get along with other people if problem noted in general PHQ-9						
Not difficult at all or N/A	80%	75%				
Somewhat difficult	20%	25%				

Motivation

- "it's just an adventure; like, I like going to the secret film festival because we don't know ahead of time what movies we're going to see."
- "I am very sorry that I don't have a pet here because I've always had pets. They're an integral part of the way I relate to life."

Benefits

- "checking on you regularly and asking if things are ok when [the pet] hears a strange noise or sees something strange."
- "I would have it right next to my chair, the hearts would go. When people would come, they'd say, "What's that?" I said, "Those are just little love notes."
- "I talked to him about the bird bath that I have out there, and the two crows who are really funny in it. He found a birdbath with some crows in it on Google. He was always very good-very sensitive to what I was trying to do."

Weaknesses

- "I wish it was something you can hug, that you can touch, like a real cat or dog."
- communication was at few times problematic: limited vocabulary, being repetitive in its questions, not remembering details of previous conversations or interrupting at inappropriate times

Obtrusiveness

 A summary evaluation by the user based on characteristics or effects associated with the technology that are perceived as undesirable and physically and/or psychologically prominent

Hensel, B. K., Demiris, G., & Courtney, K. L. (2006). Defining obtrusiveness of home telehealth technologies: A conceptual framework. *Journal of the American Medical Informatics Association, 13*(4), 428-431.

Obtrusiveness Framework

 Physical Dimension Functional dependence Discomfort or strain Excessive noise Obstruction or impediment in space Aesthetic incongruence 	 Usability Dimension Lack of user friendliness or accessibility Additional demands on time and effort 	 Privacy Dimension Invasion of personal information Violation of the personal space of home 	 Function Dimension Malfunction or sub- optimal performance Inaccurate measurement Restriction in distance or time away from home Perception of lack of usefulness 		
User Perception of Obtrusiveness					
 Threat to replace in- person visits Lack of human response in emergencies Detrimental effects on relationships 	 Symbol of loss of independence Cause of embarrassment or stigma 	 Interference with daily activities Acquisition of new rituals 	 Concern about affordability Concern about future needs and abilities 		
Human Interaction Dimension	Self-concept Dimension	Routine Dimension	Sustainability Dimension		

Hensel, B. K., Demiris, G., & Courtney, K. L. (2006). Defining obtrusiveness of home telehealth technologies: A conceptual framework. *Journal of the American Medical Informatics Association, 13*(4), 428-431.

Lessons Learned

- Assumption of older adults being technophobic is not valid
- Perceived ease of use and perceived usefulness
- Engage older adults in early stages of the design
- Always test with representatives of the target population
- Consider unintended consequences
- Train next generation of health care providers
- Technology is the platform but not the intervention.

Contact

George Demiris

gdemiris@uw.edu

health•e