Morphological control achieving small molecule acceptor-based organic solar cells with efficiencies beyond 7%

He Yan
Hong Kong University of Science and Technology


Abstract

Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

Reference:

1. Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H., “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells.” Nat. Commun., 2014, 5, 5293.

2. Liu, Y., Jiang, K., Zhao, J., Li, Y., Zhang, L., Mu, C., Li, Z., Lai, Joshua., Hu, R., Huang, X., Tang, B. and Yan, H., “A tetraphenylethylene core-based 3D-structure small molecule acceptor enabling efficient non-fullerene organic solar cells.” Adv. Mater., (2014), DOI: 10.1002/adma.201404152, in press.

3. Zhao, J., Li, Y., Lin, H., Liu, Y., Jiang, K., Mu, C., Ma, T., Lai, Joshua. and Yan, H., “High-Efficiency Non-Fullerene Organic Solar Cells Enabled by a Difluorobenzothiadizole-Based Donor Polymer Combined with a Properly Matched Small Molecule Acceptor.” Energy & Environmental Science, (2014), DOI:10.1039/C4EE02990A, in press.