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Abstract

An idealised model is presented and analysed to gain more fundamental understanding about the dynamics of phytoplankton blooms

in well-mixed, suspended sediment dominated estuaries. The model describes the behaviour of subtidal currents, suspended sediments,

nutrients and phytoplankton in a channel geometry. The initial growth of phytoplankton and its spatial distribution is calculated by

solving an eigenvalue problem. The growth rates depend on the position in the estuary due to along-estuary variations in nutrient

concentration and suspended sediment concentration. The model yields an insight into how the onset of blooms in the model depends on

physical and biological processes (turbulent mixing, fresh water discharge, light attenuation, imposed nutrient concentrations at the river

and sea side). In particular, the model demonstrates that the joint action of spatial variations in turbidity and in nutrients causes the

maximum phytoplankton concentrations to occur seaward of the estuarine turbidity maximum.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many estuaries characteristic (spatial and temporal)
patterns of phytoplankton (or chlorophyll) concentrations
are observed. Field data collected over two decades in San
Fransisco Bay (Cloern, 1991) revealed that during each
spring phytoplankton blooms occur and that the bloom is
more intense during neap tide than during spring tide.
Observations of algae in the York river (Sin et al., 1999), a
tributary to the Chesapeake Bay (VA), show that during
the winter–spring a strong algal bloom is often present in
the mid-reach of the mesohaline zone. During the summer
a smaller bloom often occurs in the transition zone from
fresh water to mesohaline water.

Concepts to explain the behaviour of phytoplankton
all use that phytoplankton growth is limited by light
and nutrients and that decay of phytoplankton is due to
e front matter r 2007 Elsevier Ltd. All rights reserved.
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A.
respiration, zooplankton grazing and benthic grazing.
It was argued by Sverdrup (1953) that blooms in the ocean
occur in early spring when the surface mixed layer becomes
so shallow (due to increasing heat input and reduced wind
input) that algae can reach areas where sufficient light is
available for them to grow. Also, vertical mixing needs
to be sufficiently intense that algae can come close to the
bottom where nutrient concentrations are largest.
As shown by Lucas et al. (1998), the concepts of

Sverdrup cannot be straightforwardly applied to explain
phytoplankton growth in coastal plain estuaries because of
the different processes that are at work there. First, density
stratification in estuaries is usually caused by differences in
salinity, not temperature. Second, tides cause strong
stirring of phytoplankton. Third, besides the bottom, the
discharging river is a main source of nutrients. Fourth,
local changes of nutrients and phytoplankton are also
affected by horizontal transport processes (Lucas et al.,
1999). Finally, light attenuation will be largely influenced
by the concentration of suspended sediments in the water
(May et al., 2003). The spatial and temporal distribution of
suspended sediments is controlled by external forcing
conditions, in particular tides and fresh water discharge
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(Burchard and Baumert, 1998) and by sediment properties
(Winterwerp, 2002).

The concepts mentioned above have been incorporated
into numerical models with an increasing degree of
complexity (see e.g., May et al., 2003). These models have
contributed considerable insight into the role of different
physical and biological processes on the occurrence of
phytoplankton blooms. In particular, the role of time-
varying vertical mixing on the tidal and spring–neap time
scale has been intensively explored.

For gaining further fundamental understanding of the
results of numerical models, it is often helpful to develop
and analyse idealised, semi-analytical models. Although
the latter often make severe assumptions on the
parameterization of processes that are accounted for, they
are fast and their results can be analysed and interpreted in
relatively straightforward manners. In this paper such a
simple model is considered for a well-mixed, suspended
sediment dominated estuary. It uses concepts that are
similar to those discussed in May et al. (2003), but the
focus here is on variations in currents, suspended matter
and phytoplankton concentrations in a longitudinal section
(from sea to river) rather than in a lateral cross-section.
The model is introduced in Section 2 and it is analysed
in Section 3. Results are presented and discussed in
Sections 4 and 5, respectively, and finally the conclusions
are given.
2. Model formulation

2.1. Domain, water motion and SSC distribution

The geometry that will be considered is that of an
idealised estuary with a constant width b and constant
depth h. A Cartesian coordinate system is chosen, where
x; y; z are longitudinal (increasing from sea to river), lateral
and vertical coordinates, respectively. Here, z ¼ 0 is the
undisturbed water level.

The equations describing the subtidal currents and
suspended sediment concentration (SSC) are equivalent
to those used in an accompanying paper (Talke et al.,
2007). The flow is described by the steady, linear width-
averaged shallow water equations and it is forced by an
imposed fresh water discharge at the river mouth and by a
horizontal density gradient due to a given salinity
distribution in the channel. At the surface the stress
vanishes (no wind), whilst at the bottom a no-slip condition
is imposed. Salinity is assumed to be well mixed in the
vertical. Using results of the above-cited study the along-
channel distribution of salinity is modelled as

sðxÞ ¼
1

2
s� 1� tanh

x� xc

L

� �h i
. (1)

Here, s� is the salinity at sea, xc the position at which the
salinity is 50% of its value at sea and xc þ L is a measure of
the salt intrusion length (at x ¼ xc þ L the salinity is
0:12s�). The density of water, r, is calculated from

rðxÞ ¼ r0 þ bs, (2)

where r0ð�1020 kgm
�3) is a constant reference density and

bð�0:83 kgm�3 psu�1Þ is a coefficient. Turbidity currents
induced by gradients in concentration of suspended
sediments are neglected in the present model. The
Boussinesq approximation is applied, i.e., variations in
density are small compared to the reference density.
Finally, the rigid lid assumption is made, i.e., elevations
of the free surface are ignored, except in maintaining a
barotropic pressure gradient.
The longitudinal velocity component uðx; zÞ that obeys

the equations of motion and boundary conditions reads
(Officer, 1976)

uðx; zÞ ¼
gh3b

48r0Av

ds

dx
1� 9

z

h

� �2
� 8

z

h

� �3� �

þ
3Q

2bh
1�

z

h

� �2� �
, ð3Þ

where g is the acceleration due to gravity, Avð�10
�3 m2 s�1Þ

is a constant vertical eddy viscosity coefficient and
jQjð�102 m3 s�1Þ is the fresh water discharge. In this model
Q has negative values, because the x-axis points to the
upstream direction. The terms on the right-hand side
describe the currents driven by the horizontal salinity
gradient and by fresh water discharge, respectively. The
vertical velocity component wðx; zÞ follows from solving the
continuity equation and the result is

wðx; zÞ ¼ �

Z z

0

qu

qx
dz0. (4)

Together, u;w describe the classical gravitational (or
estuarine) circulation (Hansen and Rattray, 1965).
Mass conservation also implies that the net volume of

water transported through any cross-section is constant,
i.e.,Z 0

�h

uðx; z0Þdz0 ¼ q; q ¼
Q

b
. (5)

The distribution of suspended sediments is computed
from the tidally averaged concentration equation. The
particles are assumed to be noncohesive and have a
constant settling velocity ws ð�10

�3 ms�1Þ. The horizontal
and vertical eddy diffusion coefficients Kh and Kv are
assumed to be constant. Typical values are Kh�10

2 m2 s�1

and Kv�10
�3 m2 s�1. As shown in Talke et al. (2007)

horizontal transport processes play an important role in
maintaining an equilibrium distribution of sediment. The
solution for the concentration cðx; zÞ reads

cðx; zÞ ¼ cbðxÞf cðzÞ; f cðzÞ ¼ expð�wsðzþ hÞ=KvÞ (6)

and the near-bed concentration cb follows from imposing
the morphodynamic equilibrium condition (no net long-
itudinal transport of sediment), which was first used by
Friedrichs et al. (1998). Applying this condition yields the
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differential equation

J3
dcb

dx
þ J1cb ¼ 0, (7)

with

J1ðxÞ ¼

Z 0

�h

uðx; zÞf cðzÞdz; J3 ¼ �Kh

Z 0

�h

f cðzÞdz. (8)

Note that the two terms that appear in Eq. (7) represent
longitudinal transport of sediment due to horizontal
diffusion and advective transport, respectively. Since the
current and the vertical structure of the sediment concen-
tration are known, the function J1ðxÞ and coefficient J3 can
be explicitly evaluated. The solution for cb reads

cbðxÞ ¼ cb;max exp �

Z x

xe

J1ðx
0Þ

J3
dx0

� �
, (9)

where the constant cb;max is the maximum bottom
concentration. This maximum is attained at position
x ¼ xe, where J1ðxeÞ ¼ 0.
2.2. Biological module

Let P denote the phytoplankton population density and
N the nutrient concentration. To model their dynamics, the
following equations are used (see May et al., 2003;
Huisman et al., 2006, and references therein for an
extensive discussion of the model equations):

qP

qt
þ

qðuPÞ

qx
þ

qðwPÞ

qz

¼ mP�mPþ n
qP

qz
þ Kh

q2P
qx2
þ Kv

q2P

qz2
, ð10aÞ

qN

qt
þ

qðuNÞ

qx
þ

qðwNÞ

qz

¼ �amPþ damPþ Kh

q2N

qx2
þ Kv

q2N

qz2
. ð10bÞ

Here, m ¼ mðN; IÞ is the specific growth factor of the
phytoplankton as a function of nutrient availability N and
light intensity I , m the specific loss rate of the phytoplank-
ton, n the phytoplankton sinking velocity, Kv the vertical
turbulent diffusivity, a the nutrient content of the
phytoplankton and d the proportion of nutrient in dead
phytoplankton that is recycled. Typical values of the
parameters will be discussed later on.

The specific growth factor mðN; IÞ is modelled as

mðN; IÞ ¼ mmax

N

HN þN

� �
I

HI þ I

� �
, (11)

where mmax is the maximum specific growth factor and HN

and HI are the half-saturation constants for nutrient-
limited and light-limited growth, respectively. The light
intensity I decreases exponentially with depth according to
Lambert–Beer’s law:

I ¼ I0 exp kbgz� kc

Z 0

z

cðx; z0Þdz0
�

�kphyto

Z 0

z

Pðt; z0Þdz0
�
. ð12Þ

In this expression I0 is the incident light intensity and kbg,
kc and kphyto are the specific light absorption coefficient
due to the presence of background turbidity, suspended
sediment and phytoplankton in the water, respectively.
Note that z-values are negative (between �h and 0).
Boundary conditions are that Nðx ¼ 0Þ ¼ N0 and

Nðx!1Þ ¼ N1, i.e., nutrient concentrations are pre-
scribed at the seaside and riverine side, respectively.
Furthermore, a no-flux condition for nutrients through
the bottom and free surface is used. For the phytoplank-
ton, we assume zero-flux boundary conditions at the
bottom and free surface and vanishing concentration
gradients on both the seaward and riverine boundary.
In order to simulate phytoplankton blooms we allow

both nutrients and phytoplankton to be functions of time.
Because the equations are averaged over a tidal period N

and P vary on the subtidal time scale.
3. Analysis of the biological equations: initial behaviour of

blooms

Eqs. (10a)–(10b) are two coupled nonlinear differential
equations and obtaining general solutions requires the use
of numerical methods. Zagaris et al. (2007) recently
pointed out that the conditions under which phytoplank-
ton blooms occur can be systematically explored by
considering only the stability properties of a state without
phytoplankton with respect to small perturbations in N

and P. This allows for a linearisation of the equations and
solutions can be found by analytical methods. Zagaris et al.
(2007) showed that their model reproduces the stability
bounds of the model of Huisman et al. (2006), which
describes the nonlinear behaviour of nutrients and
phytoplankton in a single water column in the deep sea.
Here, we employ their idea to the estuarine model that has
been discussed in the previous section.
First, scaling of Eqs. (10a)–(10b) shows that nonlinear

advection terms and horizontal diffusion terms are an
order of magnitude smaller than terms related to vertical
diffusion and local growth and decay processes. Ignoring
these small contributions it appears that the system
allows for a steady basic state P ¼ P̄ ¼ 0, N ¼ N̄ðxÞ,
which is characterised by the absence of phytoplankton
and by nutrients which are well mixed over the vertical.
The longitudinal structure of N̄ðxÞ is obtained by
integrating the full Eq. (10b) over the vertical and
applying the boundary conditions at the bottom and
free surface, as well as constraint (5) on the current. The
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Table 1

Biological quantities and parameter values for a typical estuary

Dimensional model

Quantity Symbol Value

Water depth h 7m

Vertical eddy diffusion coefficient Kv 1� 10�3 m2 s�1

Surface light intensity I0 400mmol photonsm�2 s�1

Nutrient concentration far upstream N1 10mmolm�3

Nutrient content of phytoplankton a 1� 10�6 mmolNcell�1 (a)

N recycling coefficient d 0:5 (a)

Specific loss rate m 2:8� 10�6 s�1 (a)

Maximum specific growth factor mmax 1:1� 10�5 s�1 (a)

Sinking velocity phytoplankton n 1:16� 10�5 m s�1 (a)

Half-saturation constant of N-limited

growth

HN 0:025mmolm�3 (a)

Half-saturation constant of I-limited

growth

HI 20mmol photonsm�2 s�1

(a)

Light absorption due to background

turbidity

kbg 1:0m�1 (b)

Light absorption due to SSC kc 50:0m�1 kg�1 m3 (b)

Light absorption coefficient of

phytoplankton

kphyto 6� 10�10 m2 cell�1 (a)

Sources are (a) Huisman et al. (2006), (b) May et al. (2003).
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result is

d

dx
qN̄ � Khh

dN̄

dx

� �
¼ 0. (13)

The solution of this equation that obeys the boundary
conditions (see Section 2.2) reads

N̄ðxÞ ¼ N1 þ ðN0 �N1Þ exp
qx

Khh

� �
. (14)

Note that in this expression q has a negative value. The
light intensity in the basic state is given by

Īðx; zÞ ¼ I0 exp �kbgz� kc

Z z

0

cðx; z0Þdz0
� �

, (15)

with cðx; z0Þ the known SSC.
Next, the dynamics of perturbations evolving on this

basic state are considered. Thus, solutions of the form

P ¼ P0; N ¼ N̄ðxÞ þN 0

are substituted in Eqs. (10a)–(10b). These perturbations are
assumed to be small, meaning that contributions which are
nonlinear in P0;N 0 can be ignored. This method is known
as a linear stability analysis. If only the dominant terms in
these equations are maintained the resulting equations are

qP0

qt
¼ mðN̄; ĪÞP0 �mP0 þ n

qP0

qz
þ Kv

q2P0

qz2
, (16a)

qN 0

qt
¼ �amðN̄; ĪÞP0 þ damP0 þ Kv

q2N 0

qz2
. (16b)

Note that the equation for P0 is decoupled from that of N 0,
so the equations can be separately solved.

Both equations allow for solutions that vary exponen-
tially in time, with an as yet unspecified initial growth
rate l:

ðN 0;P0Þ ¼ RfðN̂ ; P̂Þeltg.

Here R denotes the real part of the solution and N̂ ; P̂
govern the spatial structure of the solutions. Substituting
these solutions in the equations for N 0;P0 yields

Kv

q2P̂
qz2
þ n

qP̂

qz
¼ �ðm�m� lÞP̂, (17a)

Kv
q2N̂
qz2
� lN̂ ¼ aðm� dmÞP̂. (17b)

The equation for P̂, together with its boundary conditions,
defines for each longitudinal position x an eigenvalue

problem. Thus, l are the eigenvalues and P̂ are the
corresponding eigenfunctions. A solution for a specific l
and corresponding eigenfunction is called a mode. Appar-
ently, x enters the equation only as a parameter, so the
initial growth rate l depends parametrically on x. This
eigenvalue problem can be straightforwardly cast as a
Sturm-Liouville problem, which implies that the eigenva-
lues and eigenfunctions are real.
Once the solutions for P̂ are known, the solutions for the
nutrient perturbations can also be calculated. However,
because N 0 represents only a small correction to the
nutrient concentration N̄ðxÞ of the basic state, these
perturbations will not be considered.
In the experiments discussed hereafter solutions for lðxÞ

and the corresponding eigenfunctions were obtained by
discretizing equation (17a) on a regular grid. The resulting
matrix eigenvalue problem was solved numerically with a
standard LAPACK routine.

4. Results

In order to gain systematic understanding of the
behaviour of the model several experiments were designed
such that they describe situations with an increasing degree
of complexity. Two main cases will be distinguished, which
correspond to biological conditions that are horizontally
uniform and nonuniform, respectively.

4.1. Horizontally uniform conditions

The first case is obtained when cb;max ¼ 0 (no suspended
matter available) and the nutrient concentration is
constant, N ¼ N�. The latter situation implies that
N0 ¼ N1 ¼ N�. In this situation the phytoplankton
dynamics are not affected by currents and SSC.
Values for the input parameters, which are representa-

tive for a typical well-mixed suspended sediment domi-
nated estuary at midlatitudes, are given in Table 1. Setting
these parameter values defines the default case. Although
the parameters a; d and kphyto occur in the basic model,
solutions of the eigenvalue problem (17a), which describes
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Fig. 1. (a) First eigenvalue l1 (scaled by maximum specific growth factor

mmax) versus surface light intensity I0 (scaled by the half saturation

parameter HI ). (b) Vertical structure of the eigenfunctions that

correspond to eigenvalues l1 (solid curve), l2 (dotted curve) and l3
(dashed curve).

# 1

# 2

# 3

# 4

# 5

Fig. 2. (a) Eigenvalues l12l5 (scaled by maximum phytoplankton growth

factor mmax and ordered according to their values) versus phytoplankton

vertical Péclet number Pe ¼ nh=Kv (parameter Kv is varied here).

(b) Contour plot of eigenfunction that corresponds to largest eigenvalue

l1 in the Pe2ðz=hÞ plane.
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the initial growth of phytoplankton, do not depend on
these parameters.

First, we investigate the dependence of phytoplankton
growth on the surface light intensity I0. In Fig. 1a
the largest eigenvalue l1 is shown as a function of I0.
This subfigure shows that phytoplankton will grow if
ðI0=HI Þ44:97, hence if the surface light intensity exceeds
99:4mmol photonsm�2 s�1. As is to be expected, the growth
rate monotonically increases with increasing light intensity.
For all values of I0 shown here l1 is the only positive
eigenvalue, which implies that there is only one initially
growing mode. In case that the surface irradiance has the
default value I0 ¼ 400mmol photonsm�2 s�1 the e-folding
time scale Tpref ¼ l�11 of the growing mode is �5 days.

Fig. 1b shows the vertical structure of the first three
eigenfunctions for the default case. Note that the growing
phytoplankton mode, represented by the solid line, is
almost uniform over the water column. Another interesting
observation is that the second and third eigenfunctions
change sign over the vertical. Mathematically, this is to be
expected: the number of zero-crossings will increase with
increasing mode number. Physically, this result means that
phytoplankton concentrations (which must be positive) can
not be described by eigenmodes 2 and 3 themselves.
However, a linear combination of modes, such that
concentration remains positive, may allow for growth
to occur.
Another important parameter that affects the phyto-

plankton growth is

Pe ¼
nh

Kv

, (18)

which is the phytoplankton vertical Péclet number. It
determines the ratio between the time scales related to
turbulent diffusion and settling, respectively. Fig. 2a
displays the dependence of the eigenvalues on Pe in this
model. The largest eigenvalue decreases monotonically
with increasing Pe and approaches a limiting value (which
is negative in this case) for large Pe. So, one so-called
bifurcation point is found, at which the stability of the
basic state changes from unstable to stable. The other
eigenvalues show a different dependence on Pe. For small
Pe they are strongly negative and they increase with
increasing Pe. After attaining a maximum they subse-
quently decrease with Pe and the difference between
successive eigenvalues becomes small. Interestingly, the
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maximum of l2 coincides with the minimum of l1, so two
modes exchange preference at this point. The reason why
eigenvalue l1 behaves so differently from the other
eigenvalues will be presented in the next section.

The corresponding phytoplankton distribution (Fig. 2b)
shows that with increasing values of Pe the phytoplankton
becomes more and more trapped near the bottom. This
tendency is understandable because increasing Pe means
that downward settling of phytoplankton becomes larger
with respect to upward vertical mixing of phytoplankton.
For 2oPeo8 the phytoplankton concentration of the first,
dominant mode has a remarkable vertical structure.
Starting from a high value at the bottom it first rapidly
decreases, then it becomes almost constant and towards the
surface it decreases more rapidly again. This property of
the eigenfunction will be explained later on.
Fig. 3. (a) Contour plot of specific growth factor of phytoplankton in the

channel. Here, x is the vertical coordinate (scaled by length L) and z the

vertical coordinate (scaled by depth h). (b) Initial growth rate of

phytoplankton (scaled by maximum specific growth factor mmax) versus

the distance to the seaward boundary (scaled by length L) for cb;max ¼

1kgm�3 (solid curve), cb;max ¼ 5 kgm�3 (dotted curve) and cb;max ¼

25kgm�3 (dashed curve). (c) Contour plot of the spatial distribution of

the fastest growing phytoplankton mode (cb;max ¼ 5kgm�3).
4.2. Nonuniform conditions: role of currents and SSC

We now systematically investigate the dependence of
phytoplankton growth on hydrodynamic forcing condi-
tions, sediment properties and on spatial variations in the
nutrient concentration.

The default values of the water depth and the biological
parameters are given in Table 1. However, the light
attenuation coefficient due to background turbidity in the
water is set to kbg ¼ 0:045m�1, following Huisman et al.
(2006), such that the light attenuation will be mainly due to
SSC. The physical parameters are s� ¼ 30 psu, xc ¼ 25 km,
L ¼ 50 km, Av ¼ 1� 10�3 m2 s�1 and q ¼ �0:03m2 s�1.
The settling velocity of the sediment particles is
ws ¼ 1� 10�3 m s�1. This implies that the e-folding depth
scale of SSC is d� ¼ ðAv=wsÞ ¼ 1m. For the present depth
of 7m values of surface SSC are a factor e�7 ’ 0:91� 10�3

smaller than bottom SSC. The default value for the
maximum SSC at the bottom, cb;max is chosen as
cb;max ¼ 5 kgm�3.

Fig. 3a displays a contour plot of the specific growth
factor m of phytoplankton for the default parameter
setting. It shows that the strongest decay of this growth
factor with depth occurs at location x=L ’ 1:6, i.e., at
about 80 km from the seaward boundary. This is because
here the SSCs attain their largest values, thereby causing
the strongest attenuation of light with increasing depth.

In Fig. 3b the spatial variation of the first eigenvalue l1,
which represents the largest initial growth rate of
phytoplankton concentration in the channel, is plotted
for different values of the maximum SSC bottom
concentration cb;max. The other eigenvalues have negative
values. By moving from sea to river, the initial growth rate
decreases due to increasing SSC, reaches a minimum at the
location of the estuarine turbidity maximum (ETM) and
then increases again due to decreasing SSC. Once cb;max

exceeds a critical value (in this case a value of ’ 7 kgm�3)
there is a region around the ETM where phytoplankton
will not grow.
The spatial structure of the corresponding eigenfunction
is shown in Fig. 3c. It reveals that, while moving from sea
to river, the vertical level at which the maximum
phytoplankton concentration occurs shifts from the bottom
to higher levels. An explanation for this phenomenon will be
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Fig. 4. (a) As Fig. 3a, but for cb;max ¼ 5kgm�3 and q ¼ �0:03m2 s�1 (solid

curve), q ¼ �0:06m2 s�1 (dotted curve) and q ¼ �0:015m2 s�1 (dashed

curve). (b) As above, but for xc ¼ 25 km (solid curve), xc ¼ 40 km (dotted

curve) and xc ¼ 15km (dashed curve). (c) As above, but for L ¼ 50km

(solid curve), L ¼ 70 km (dotted curve) and L ¼ 30km (dashed curve).
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given in the next section. Note that vertical variations in
the eigenfunction are weak for the presently chosen values
of the parameters.

The longitudinal distribution of the initial growth rate
also depends on parameters q;xc and L, which determine
the spatial structure of SSC. In Fig. 4a curves of lðxÞ are
shown for different values of the fresh water discharge per
unit width, jqj and a fixed value cb;max ¼ 5 kgm�3 for the
maximum bottom concentration. With increasing (decreas-
ing) jqj, the location of the ETM shifts downstream
(upstream), which causes the preferred region of phyto-
plankton growth to shift upstream (downstream). In
Fig. 4b and Fig. 4c curves are shown of lðxÞ for different
values of parameters xc and L, respectively. As discussed in
Section 2 they determine the locations at which the salinity
is 50% and 12% of its value at sea. For larger xc and/or L

salinity gradients become weaker in the downstream region
of the estuary, thereby causing the ETM to shift seaward.
Consequently, the growth of phytoplankton becomes
smaller (larger) in the downstream (upstream) region.
The opposite trends are found if smaller values of xc and/or
L are considered.

Fig. 5a shows the longitudinal variation of the growth
rate of phytoplankton for different values of the settling
velocity ws. In Fig. 5b similar curves are shown, but for
different values of the turbulent eddy viscosity coefficient
Az and eddy diffusion coefficient Kv. Varying the settling
velocity implies that the sediment Péclet number changes,
but the Péclet number of the phytoplankton remains
unchanged. When the turbulent eddy diffusion coefficient
Kz is varied both Péclet numbers change. Moreover,
because it is assumed here that Kv ¼ Av, the spatial pattern
of the estuarine circulation changes, which affects the SSC
distribution.

In the case that ws is increased (decreased), i.e., coarser
(finer) grains, the sediment gets more (less) trapped to the
bottom and, thus, light will penetrate more (less) deep in
the water. This results in an enhanced (reduced) phyto-
plankton growth. The dependence on eddy viscosity and
eddy diffusion is more subtle. When turbulent mixing and
diffusion are enhanced three important changes occur.
First, the density-driven flow weakens, as can be seen from
the first term on the right-hand side of Eq. (3). This causes
the ETM to shift seaward. Second, the sediments in
suspension extend over a larger part of the water column,
thereby causing stronger light attenuation. Third, the
vertical phytoplankton Péclet number will become smaller
and phytoplankton will be more uniformly distributed over
depth. The final result is that phytoplankton growth
becomes smaller, in particular in the seaward part of the
domain. The opposite occurs in case turbulent mixing and
diffusion are reduced.

Fig. 6a shows the longitudinal variation of the growth
rate of phytoplankton for different values of the nutrient
concentrations N0 (at sea) and N1 (at the river). It reveals
that, while moving downstream, decreasing nutrient con-
centrations can cause phytoplankton growth to become
nutrient limited. Consequently, the maximum phytoplank-
ton concentrations will occur at a location between the
seaward boundary and the location of the ETM. Finally,
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Fig. 6. (a) As Fig. 3a, but for N0 ¼ N1 ¼ 10mmolm�3 (solid curve), N0 ¼

0;N1 ¼ 10mmolm�3 (dotted curve) and N0 ¼ 0;N1 ¼ 1mmolm�3

(dashed curve). (b) As above, but for depth h ¼ 7m (solid curve), h ¼

14m (dotted curve) and h ¼ 3:5m (dashed curve).

Fig. 5. (a) As Fig. 3a, but for ws ¼ 1� 10�3 ms�1 (solid curve), ws ¼

2� 10�3 ms�1 (dotted curve) and ws ¼ 5� 10�4 ms�2 (dashed curve).

(b) As above, but for Av ¼ Kv ¼ 1� 10�3 m2 s�1 (solid curve), Av ¼ Kv ¼

2� 10�3 m2 s�1 (dotted curve) and Av ¼ Kv ¼ 5� 10�4 m2 s�1 (dashed

curve).

H.E. de Swart et al. / Continental Shelf Research 29 (2009) 136–147 143
Fig. 6b shows the along-estuary variation of initial
phytoplankton growth rates for different depths h. If a
larger depth is considered, the density-driven flow becomes
stronger and the ETM shifts landward. Furthermore, the
thickness of the suspended sediment layer remains un-
changed, such that at a fixed location in the water column
the light intensity will be larger. Thus, phytoplankton
grows more rapidly, in particular in the seaward part of the
domain.

5. Discussion

5.1. Interpretation of results

Below, we discuss and explain some of the results of the
previous section. All arguments are based on Eq. (16a) that
governs the initial growth of phytoplankton. It shows that
the local mass of phytoplankton per volume changes due to
local mass gain and loss (first two terms on the right-hand
side) and due to the vertical gradient of the phytoplankton
flux component

F ¼ � nP0 þ Kv

qP0

qz

� �
(19)

(last two terms on the right-hand side of Eq. (16a)). Note
that F consists of two components, the settling flux
(directed downward) and the vertical diffusive flux. The
boundary conditions are that this flux vanishes at both the
sea surface and at the bottom. Since there is no flux of
phytoplankton entering or leaving the water column the
amount of phytoplankton mass stored in a water column
with unit surface area is only affected by the integrated
gain and loss terms. This can also be seen by integrating
Eq. (16a) over the depth and using the boundary
conditions, yielding

q
qt

Z 0

�h

P0 dz ¼

Z 0

�h

½mðzÞ �m�P0 dz. (20)



ARTICLE IN PRESS
H.E. de Swart et al. / Continental Shelf Research 29 (2009) 136–147144
From Eq. (20) several conclusions can be drawn. First, it
shows that a necessary and sufficient condition for growth
of phytoplankton is that the depth-averaged specific
growth factor, m̄, exceeds the specific loss rate m. In
Section 3 it was shown that in this model the specific
growth factor m at a fixed location x is determined only by
the light intensity, which decreases towards the bottom.
Nutrients do not affect the vertical structure of m because
they are uniformly distributed in the water column.
Consequently, the value of m̄ depends on the water depth,
the light absorption coefficient due to background turbid-
ity, kbg and on the amount of light that is attenuated due to
the presence of suspended sediments in the water. In the
case that no SSC is considered (Section 4.1), it appears that
m̄ is a monotonically decreasing function of depth h. Thus,
if the depth exceeds a critical value no initial growth of
phytoplankton will occur.

In the case that light is also attenuated by SSC (Section
4.2) the dependence of m̄ on depth h is more complicated.
This is because attenuation of light due to SSC in the upper
part of the water column will reduce with increasing depth,
because the sediment becomes more trapped near the
bottom (the Péclet number is larger). This favours increase
of m̄ with depth. As long as depths are smaller than k�1bg

(in this case �25m) this effect exceeds the decrease of m̄
that is due to light absorption by background turbidity.
This is why the phytoplankton growth rates shown in
Fig. 5b are larger for larger depth. Only for depths of order
k�1bg and larger, the growth rates will decline with depth,
until again a critical depth is reached beyond which no
growth of phytoplankton occurs.

As shown in Fig. 2 the largest eigenvalue monotonically
decreases with increasing values of the Péclet number Pe.
To understand this behaviour consider first the case of a
small Péclet number. According to definition (18) this
means that the time scale of vertical diffusion is much
smaller than the time scale of settling. As a consequence the
phytoplankton will be distributed almost uniformly over
the water column and Eq. (20) reduces to

qP0

qt
h ¼

Z 0

�h

mðzÞdz�mh

� �
P0. (21)

Since P0� expðl1tÞ, it follows that l1�ðm̄�mÞ for small
Péclet numbers.

In case of large Pe the phytoplankton is trapped in a thin
boundary layer (thickness of order h=Pe) and, hence, the
gain and loss of mass will take place only in that layer.
Thus, Eq. (20) can be approximated by

q
qt

Z 0

�h

P0dz ¼ ðm̂�mÞ

Z 0

�h

P0 dz, (22)

where m̂ ¼ mðz ¼ �hÞ is the specific growth factor at the
bottom. Again, substitution of a solution P0� expðl1tÞ

yields l1�ðm̂�mÞ for large Péclet numbers. Obviously, for
intermediate values of Pe the largest eigenvalue will be
between these extreme values.
Another remarkable aspect of Fig. 2a is that the largest
eigenvalue has quite a different dependence on the Péclet
number than all other eigenvalues. To explain this it is
useful to analyse the eigenvalue problem (17a) for a
constant specific growth factor m ¼ m̄. Physically this
means that we analyse the local mass balance of
phytoplankton in a water column in which attenuation of
light is negligible. The advantage of this assumption is that
the eigenvalue problem allows for analytical solutions. As
is shown in Appendix A, two types of eigenmodes are
obtained. The first is a mode that has an eigenvalue
l1 ¼ hm�mi, independent of the Péclet number. Its
vertical structure is characterised by a vanishing vertical
flux F (where F is defined in Eq. (19) above) in the entire
water column, which results in an exponential distribution
of phytoplankton population density that increases to-
wards the bottom. The other eigenmodes follow from a
different root of the eigenvalue problem and they are
smaller than that of the first mode. These eigenvalues are
characterised by the fact that they become strongly
negative for both small and large values of the Péclet
number. For intermediate Pe they attain a local maximum.
Further, they have a mixed oscillatory-exponential struc-
ture in the vertical.
Next, we present arguments for why Figs. 2b and 3c

show that the phytoplankton distribution of the first mode
over the vertical can have a local extremum at some
distance from the bed. This is due to the decreasing specific
growth factor m while moving from sea surface to bottom.
As was discussed above, in the case that m is constant the
vertical distribution is characterised by a vanishing flux F

in the entire water column, i.e., everywhere local loss
of phytoplankton is compensated by local gain. Once m
varies with z this balance is no longer possible. Assume
that m ¼ m̄þ ~mðzÞ, where ~m is small compared to the
constant m̄. In that case the local mass balance for the
first mode reads

qF

qz
¼ ~mP0. (23)

In the upper part of the water column the specific growth
factor is larger than its depth-averaged value, hence ~m40.
The mass balance (23) shows that in this area the vertical
flux of phytoplankton is divergent. As F ¼ 0 at the sea
surface this means that the flux is negative in this area;
hence, settling prevails over vertical diffusion. Using the
definition of F it follows that

�1

P0
qP0

qz
o1, (24)

so the vertical gradient of P0 will be smaller than that
obtained for ~m ¼ 0.
Likewise, close to the bottom ~m is negative and thus the

flux F is convergent. As F ¼ 0 at the bottom it follows that
F is also negative in this area and again, the vertical
gradient of P0 is smaller than in the situation that ~m ¼ 0.
Fig. 3c reveals that this gradient of P0 changes sign, so that
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in part of the water column P0 increases from the bottom
towards the surface, such that a local extremum of P0

above the bottom occurs.
A final remarkable aspect of this model that deserves

some discussion is that it predicts that phytoplankton
growth will reduce if turbulent stirring and mixing are
enhanced. This seems in contradiction to field observations
(Cloern, 1991), which indicate that phytoplankton blooms
usually occur around spring tide, when tidal stirring is
maximum. The reason for this discrepancy is that our
model predicts that, for increasing vertical eddy diffusion,
suspended sediments become more uniformly distributed
over the water column. However, in the results shown in
Fig. 5 the same value of the maximum bottom concentra-
tion was kept. This means that, when doubling Kv, the
total amount of suspended sediments in the water column
is almost doubled as well. If the total amount of sediment
that is suspended in the water column would be kept fixed,
then phytoplankton growth rates in the upstream part of
the domain become larger than those obtained for the
default case.

5.2. Model limitations

Several strong assumptions have been made in develop-
ing our model. Most of them we mention only briefly,
because they are extensively discussed in Talke et al. (2007).
First, tides are not explicitly accounted for. Thus, processes
like nonlinear advection of momentum and material by
tidal currents, depth-dependent friction and net mass
transport by tidal currents are ignored and time-varying
mixing of momentum and diffusion of material are
neglected. Many studies (cf. Postma, 1954; Jay and
Musiak, 1994; Li and O’Donnell, 1997; Schuttelaars and
De Swart, 2000; May et al., 2003; Lerczak and Geyer,
2004) have shown that these processes affect subtidal flow,
SSC distribution and/or the distribution of phytoplankton.
Second, sediment particles are assumed to be noncohesive,
whereas in many natural estuaries the sediment is cohesive.
This implies processes like flocculation which, again, can
strongly influence the hydrodynamics (through mixing), as
well as SSC (Winterwerp, 2002) and phytoplankton
distributions. Also, gradients in SSC are assumed to be
sufficiently small such that turbidity currents can be
ignored with respect to currents driven by salt gradients
and fresh water discharge. This is a noticeable difference
with the paper of Talke et al. (2007) which considers
subtidal flow and SSC in highly turbid model estuaries.
Third, eddy viscosity coefficients and eddy diffusion
coefficients are not only assumed to be constant in time,
but also in space and the salinity field is considered as
given (no feedback from flow to density field). Both field
observations (Helder and Ruardij, 1982; Monismith
et al., 2002) and theoretical considerations (Zimmerman,
1986, and references herein) indicate that, in particular,
horizontal eddy viscosity coefficients show strong along-
estuary variations.
The fourth important limitation is that biological
variables do not affect the hydrodynamics and the
distribution of SSC. In reality, feedbacks from the biology
to the sediment dynamics are certainly important (Wid-
dows et al., 2000) and this is currently a topic of intense
research (cf. Tolhurst et al., 2006). Finally, our model
results only yield information about the initial growth of
phytoplankton, which behaves exponentially in time. In
this phase the feedback from phytoplankton to light is
negligible. However, when phytoplankton concentrations
become large they will cause strong attenuation of light,
which causes P0 to have finite amplitude behaviour over the
long term. Finally, we remark that the present model does
not yield information about the along-estuary distribution
of the eigenmodes. In fact, eigenfunctions can be calculated
at any position x in the domain, but the amplitude is only
known up to an arbitrary constant AðxÞ. In principle there
is a method to solve for this unknown constant, but that is
beyond the scope of the present paper.

6. Conclusions

In this paper we presented and analysed an idealised
model with the objective to gain more knowledge about
spatial variations of phytoplankton growth in well-mixed
suspended sediment dominated estuaries. The domain
considered is a channel having a constant depth and width
and extending from the seaward boundary (salt water) to
the upstream boundary (fresh water). The dynamics of
phytoplankton are described by a mass balance equation
which involves advection, settling, turbulent diffusion and
specific growth and decay terms. The specific growth factor
of phytoplankton is limited by the availability of nutrients
and light. The distribution of nutrients is calculated by
solving a mass balance equation that involves similar terms
as the phytoplankton equation.
The attenuation of light is modelled as a function of

background turbidity, amount of suspended sediments and
of phytoplankton concentration in the water column. The
suspended sediment concentration (SSC) follows from mass
conservation and depends on the hydrodynamic conditions
and sediment properties. Here, noncohesive fine sediment is
considered and the subtidal flow is governed by fresh water
discharge and a prescribed horizontal density gradient. Tides
act only to mix momentum, diffuse material and stir
sediment from the bottom. Turbulent eddy viscosity and
eddy diffusion coefficients are assumed to be constants, both
in space and time. Thus, the equations for the current and
SSC follow from those used by Festa and Hansen (1978) in
the limit of weak advection (with respect to diffusion). In this
paper the SSC pattern is calculated by imposing the
condition of vanishing net horizontal transport of sediment
(morphodynamic equilibrium).
It was demonstrated that the system allows for a basic

state which is characterised by the absence of phytoplank-
ton and a vertically homogeneous nutrient concentration,
which has a known along-estuary distribution. Upon
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introducing small perturbations in phytoplankton and
nutrient concentration, equations were derived that govern
the initial evolution of these perturbations. The final result
was an eigenvalue problem for the phytoplankton con-
centration P0, where the eigenvalues represent the initial
growth rate of the free modes whose vertical structure is
given by the corresponding eigenfunctions.

Analysis of the eigenvalue problem revealed that
phytoplankton will grow, due to an inherent feedback
mechanism, if nutrient concentration and light intensity are
sufficiently high (the latter occurs if SSC is sufficiently low)
and if the ratio of time scales of turbulent mixing to the
settling of phytoplankton are sufficiently large. For a range
of parameter values that are representative of typical
estuaries, the number of growing modes varies between 0
and 2. The eigenvalues vary when moving from the
seaward boundary towards the river, because the currents
determine the along-estuary variation of the background
(basic state) nutrient concentration and of SSC, which in
turn affect the local specific growth factor of phytoplank-
ton. A sensitivity study demonstrated that the actual
spatial pattern of the largest initial growth rate, apart from
depending on biological parameters and depth, strongly
depends on the fresh water discharge and salinity distribu-
tion, sediment properties and the eddy diffusion coeffi-
cients. For realistic values of the parameters the preferred
region of phytoplankton growth was found between the
seaward boundary and the estuarine turbidity maximum
(ETM). This is because near the seaward boundary the
phytoplankton growth is nutrient limited, whereas near the
ETM the growth is light limited. As the SSC distribution is
asymmetric with respect to the location of the ETM (values
of SSC are larger on the landside than on the seaside) the
phytoplankton prefers the region seaward of the ETM.

The model predicts that the growth of phytoplankton
increases when values of eddy viscosity and eddy diffusivity
are increased, while keeping the total amount of sediment
mass suspended in the water constant. Furthermore, in the
case that light attenuation is dominated by suspended
sediment in the water, rather than by background
turbidity, an increase of water depth enhances the growth
of phytoplankton, because the available sediment is
distributed over a larger domain.

The present model is not designed to be validated against
field data. In particular, including tides and using more
sophisticated formulations for eddy viscosity and eddy
diffusion coefficients are necessary to make this step.
Despite these drawbacks the strength of the model is its
transparency and the insight it provides into understanding
basic characteristics of phytoplankton dynamics in relation
to external forcing conditions.
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Appendix A. Analytical solution of the eigenvalue problem

Consider the eigenvalue problem (17a) for m ¼ m̄ is
constant. This equation allows for exponential solutions
P̂�eaz. Substitution yields a quartic in a, which has
solutions a�. So the general solution of the equation reads

P̂ ¼ Aeaþz þ Bea�z; a� ¼
�n� ðn2 � 4KvrÞ1=2

2Kv

,

r ¼ m̄�m� l. ðA:1Þ

The no-flux boundary conditions at surface z ¼ 0 and
bottom z ¼ �h yield two homogeneous equations for the
constants A and B. Imposing the condition of non-trivial
solutions results in

ðKvaþ þ nÞðKva� þ nÞðea�h � eaþhÞ ¼ 0. (A.2)

As ðKvaþ þ nÞ is always positive this equation has two
roots.

(1) Kva� þ n ¼ 0.
This yields r ¼ 0; hence, aþ ¼ 0 and l1 ¼ m̄�m.

Substitution in Eq. (17a) shows that the equation for the
eigenmode P̂1 becomes

q
qz

Kv

qP̂1

qz
þ nP̂1

 !
¼ 0. (A.3)

Note that the terms between brackets denote the spatial
pattern of the vertical component of the flux of phyto-
plankton. Using the boundary conditions it follows that
the solution of this equation reads

P̂1 ¼ A expð�Pe z=hÞ, (A.4)

with Pe the Péclet number defined in Eq. (18).

(2) ea�h � eaþh ¼ 0.
This condition yields the solutions

ðaþ � a�Þh ¼ 2pi so r ¼
n2 þ 4n2p2K2

v=h2

4Kv

. (A.5)

Using the definition of parameter r (see Eq. (A.1)) and that
of the Péclet number it follows that

lnþ1 ¼ m̄�m�
n
4h

1

Pe
Pe2 þ 4n2p2
� 	

; n ¼ 1; 2; . . . .

(A.6)

Note that ln !�1 for both Pe! 0 and Pe!1.
Straightforward algebra shows that mode n can have a
positive growth rate if m̄4mþ nph=n.
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