GUIDELINES FOR EVALUATION OF OUTSIDE TRAUMA CT EXAMINATION ADEQUACY

CT CERVICAL SPINE

HMC STANDARD:

Axial recon thickness: 2.5 mm Axial recon interval 1.25 mm

Algorithm: BonePlus.

Sagittal reformations from 0.625 axial

dataset.

Coronal reformations from 0.625 axial

dataset.

Range: Skull base to T4.

OUTSIDE CT STANDARD

If no fracture:

Axial recon thickness: ≤ 3 mm Axial recon interval ≤ 3 mm Algorithm: Standard or bone.

Sagittal reformations obtained from thin section dataset (≤ 1.5 mm) or raw data*.

Range: Skull base to T1.

If cervical spine fracture: Axial recon thickness: ≤ 3mm Axial recon interval ≤ 3mm Algorithm: Standard.

Sagittal reformations from thin section dataset (≤ 1.5 mm) or raw data*.

Coronal reformats if dens fracture suspected.

Range: Skull base to T4*.

CT CHEST TO EXCLUDE AORTIC INJURY

HMC STANDARD:

Axial recon thickness: 2.5 mm Axial recon interval 2.5 mm

Algorithm: Standard.

Sagittal Candy-cane MPR 10mm at

2.5mm intervals.

Coronal Reformations 2.5mm @ 2.5mm.

Thoracic inlet to diaphragm.

Iv Contrast enhanced, systemic arterial

phase.

OUTSIDE STANDARD

If no periaortic hematoma

Axial recon thickness: ≤ 5 mm

Axial recon interval $\leq 5 \text{ mm}$

Algorithm: Standard.

No reformations necessary.

Thoracic inlet to diaphragm.

Iv Contrast enhanced, venous or arterial

phase†.

If periaortic hematoma or questionable

aortic injury:

Axial recon thickness: ≤ 3 mm

Axial recon interval $\leq 3 \text{ mm}$

Algorithm: Standard.

Coronal or sagittal reformations. Thoracic inlet to diaphragm.

Iv Contrast enhanced, arterial phase.

^{*} If a cervical spine fracture which increases the risk of a synchronous upper thoracic spine fracture is present then clearing the upper thoracic spine is essential. This is best performed by CT of this region.

† iv contrast is not essential if mediastinal hematoma can be confidently excluded on an outside non-contrast CT or with plain films.

CT ABDOMEN AND PELVIS

HMC STANDARD

Axial recon thickness: 2.5 mm Axial recon interval: 2.5 mm

Algorithm: Standard. Coronal reformations.

Dome of diaphragm to ischial

tuberosities.

Iv Contrast enhanced, portal venous phase

+ Delayed phase if suspected urinary injury or active extravasation.

OUTSIDE CT STANDARD

Axial recon thickness: ≤ 5 mm Axial recon interval ≤ 5 mm

Algorithm: Standard. No reformations necessary. Dome of diaphragm to ischial

tuberosities.

Iv Contrast enhanced, venous phase. Delays necessary if > Grade 2 renal injury or periureteric fluid seen[‡].

[‡] If the outside CT is non-contrast, there is no free intraperitoneal fluid and the patient is clinically stable, the necessity of repeating the CT with iv contrast is debatable.

CT LUMBAR SPINE

HMC STANDARD

Axial recon thickness: 2.5 mm Axial recon interval: 2.5 mm

Algorithm: Boneplus.

2.5 x 2.5mm sagittal reformations performed from 0.625 or 1.25mm dataset. Sagittal reformations are performed separately for the T and L spine*.

T12 to sacrum

Narrow R-FOV (16 - 18cm).

Reconstructed from CT Abdomen / Pelvis dataset, or as direct CT scan.

OUTSIDE CT STANDARD

Axial recon thickness: ≤ 3 mm Axial recon interval ≤ 3 mm Algorithm: Standard or sharp.

At least sagittal reformations from thin section dataset (≤ 1.5 mm) or raw data*.

T12 to sacrum

CT THORACIC SPINE

HMC STANDARD

Axial recon thickness: 2.5 mm Axial recon interval: 2.5 mm

Algorithm: Boneplus.

2.5 x 2.5mm sagittal reformations performed from 0.625 or 1.25mm dataset.

Sagittal reformations are performed separately for the T and L spine*. Narrow R-FOV (16 - 18cm).

Reconstructed from CT or CTA Chest dataset, or as direct CT scan.

OUTSIDE CT STANDARD

Axial recon thickness: ≤ 3 mm Axial recon interval ≤ 3 mm Algorithm: Standard or sharp.

At least sagittal reformations from thin section dataset (≤ 1.5mm) or raw data*. C7-L1 (Coverage may be more limited if adjacent levels are included in C or L spine CT.)

^{*} If a standard 512 x 512 or smaller matrix is used, sagittals (and coronals) of the thoracic and lumbar spine should be reformatted separately to maintain spatial resolution.