
Introduction to Nuclear Physics and Nuclear Decay

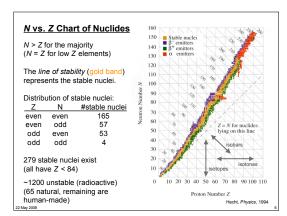
Larry MacDonald 22 May 2008

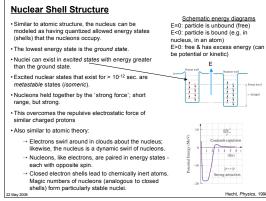
Course website (Nuclear Medicine Imaging) http://depts.washington.edu/uwmip/

<u>Mass and Energy Units</u> and Mass-Energy Equivalence			
Mass			
atomic mass unit, u (or amu): mass of $^{12}\mathrm{C}$ $\equiv~12.0$	000000 u		
1 u = 1.660540 x 10 ⁻²⁷ kg = 931.494 x 10 ⁶ eV/c ²			
Energy			
Electron volt, eV \equiv kinetic energy attained by an	electron accele	ated through 1.0 vo	
1 eV = 1.6 x10 ⁻¹⁹ J			
E = m	$E = mc^2$		
		speed of light	
		speed of light	
mass of proton, $m_p = 1.6724 \times 10^{-27} \text{ kg}$	= 1.007276 u		
mass of proton, m_p = 1.6724x10 ⁻²⁷ kg mass of neutron, m_n = 1.6747x10 ⁻²⁷ kg			
	= 1.008655 u	= 938.3 MeV/c ² = 939.6 MeV/c ²	

Nuclide Groups/Families

A nuclide is a nucleus with a specific *Z* and *A* ~1500 nuclides exist (Periodic Table typically lists distinct *Z*)

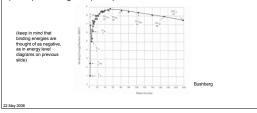

Nuclides with the same


Z (#protons) are *Isotopes*

N (#neutrons) are <u>Isotones</u>

A (#nucleons) are *Isobars*

A nuclide with the same Z and A (& thus also N) can also exist in different (excited & ground) states; these are <u>**Isomers**</u>



Binding Energy

The mass of a nuclide *is less than* the mass of the sum of the constituents. The difference in energy is the *binding energy*.

The consequence is that energy is liberated when nucleons join to form a nuclide.

The binding energy per nucleon dictates results when nuclides break apart (fission) or fuse together (fusion)

Radioactive Decay

Unstable nuclei change (decay) towards stable states

The transformation involves emission of secondary particles:

→ Radiation

$${}^{A}_{Z}X \rightarrow {}^{A'}_{Z'}Y^{[*]} + W + Q$$

X = parent nucleus, Y = daughter nucleus [possibly excited *], W = radiation particle(s), Q = additional energy liberated in the decay; Q is shared between the X, Y, and W particles. Y is frequently unstable itself.

Conservation principles:

- Energy (equivalently, mass)
 linear momentum
- angular momentum (including intrinsic spin)
 charge
 are all conserved in radioactive transitions

Radioactive Decay Processes

The decay processes are named for the (primary) radiation particle emitted in the transition:

 beta isobaric

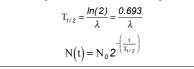
isobaric ${}^{A}_{Z}X \rightarrow {}^{A}_{Z_{\mp 1}}Y + \beta^{\pm} + v + Q$ alternative mechanism to β^{+} decay is *electron capture*

 $A[m]_{Z} X^{[*]} \rightarrow A_{Z} X + \gamma$

 $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + \alpha + Q$

gamma
 isomeric

alternative mechanism is internal conversion


The ionization (net charge) on particles can also be specified (upper-right)

The rate at which radionuclides decay is governed by a characteristic *decay time constant*, λ (units of λ are inverse-time, i.e. frequency or rate) $N(t) = N_o e^{-\lambda t}$

> N(t) = number of radionuclides at time t N_0 = number at time t = 0 λ = characteristic decay time constant

The *half-life*, $T_{1/2}$, is the time it takes for a sample to decay to one-half of its original number, or half of its original *activity*.

Alpha Decay

An alpha particle is the same as a helium nucleus; (two protons and two neutrons)

 $\alpha = {}^{4}_{2} \text{He}^{+2}$

General form of alpha decay process

$$X \rightarrow_{Z-2}^{A-4} Y +_{2}^{4} He^{+2} + Q$$

Alpha particle always carries Q energy as kinetic energy (monoenergetic)

Alpha decay occurs with heavy nuclides (A > 150)

Commonly followed by isomeric emission of photons,

which can also result in electron emission (see internal conversion slide)

Beta Decay

A beta(minus, β -) particle is an electron (or, it is indistinguishable from an electron).

There are also beta(plus, $\beta^*)$ particles. These are indistinguishable from electrons, except with positive charge (of the same magnitude).

The general form of β^{-} , β^{+} decay:

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + \beta^{-} + \overline{\nu} + Q$$

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + \beta^{+} + \nu + Q$$

$${}^{e.g.}_{g} {}^{18}_{g}F \rightarrow {}^{18}_{g}O + \beta^{+} + \nu + 0.635 MeV$$

In β decay, a nuclear **neutron is converted into a proton** (Z \rightarrow Z+1) In β ⁺ decay, a nuclear **proton is converted into a neutron** (Z \rightarrow Z-1)

In each case, the decay products include a neutrino (V) or an anti-neutrino (\overline{V}) Neutrinos have no charge, spin 1/2, and mass ~ 0.1 - 1 eV (?)

Beta decay is mediated by the 'weak force'.

22 May 2008

Electron Capture

An alternative (and competing mechanism) to β^+ decay is electron capture.

In electron capture, a proton is converted to a neutron, as in β^* decay, however, rather than emitting a β^* , an orbital electron (usually from inner electron shells) is captured by the nucleus, conversion of a proton to a neutron occurs, and a neutrino (and additional energy, Q) are emitted from the decay process:

 $^{A}_{Z}X + e^{-} \rightarrow ^{A}_{Z-1}Y + v + Q$

Capture of an electron creates a vacancy in an inner electron shell, which is filled by another electron from a higher shell. This results in characteristic x-rays, or Auger electrons.

An example of e.c. relevant to nuclear medicine is the following decay:

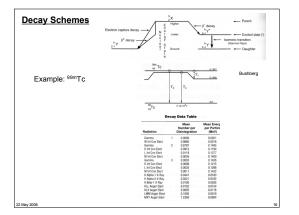
$$^{201}_{81}$$
Tl+ $e^{-} \rightarrow ^{201}_{80}$ Hg+v+Q

None of the products of this decay are used in imaging, rather, characteristic x-rays filling the vacancy are detected by gamma cameras. 22 May 2008

Gamma Emissions

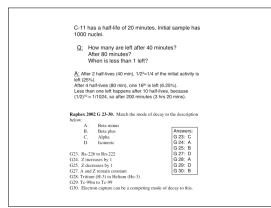
Gamma decay is an isomeric transition that follows the occurrence of alpha or beta decay.

$$A[m]_{Z} X^{[*]} \rightarrow^{A}_{Z} X + \gamma$$


The parent in this case (which is the daughter of the preceding α or β decay, or electron capture) can be in an excited state, *, that (essentially) immediately transitions to a lower state via emission of a gamma, or it can be in a *metastable* state m, which can have a life-time of between 10⁻¹² sec. and ~600 years. Decay of metastable states also follow the exponential decay law, and thus have characteristic decay times.

Internal Conversion

 Alternatively, the energy liberated from the isomeric transition can be delivered to an electron ejected from the atom (like Auger electrons vs. char. x-rays).
 Again, electrons rearrange to fill the vacancy left by the i.c. electron, resulting


in characteristic x-rays and/or Auger electrons.

Gamma emission and i.c. electron compete in the same nuclide decay.
 ^{22 May 2008}

D. 92	
E. Cannot tell from information given.	
⇒ C. Neutron Number N = A - Z = 146	
Raphex 2000, G15. Elements which have the sar	na Z hut different A are colle
A. Isotopes	ne z but different A are cane
B. Isomers	
C. Isotones	
D. Isobars	
⇒ Isotopes have the same number of pro	otons (atomic number, Z)

 Raphex 2003, G 16. In heavy nuclei such as ²³⁵U: A. There are more protons than neutrons.
 B. Protons and neutrons are equal in number.
C. There are more neutrons than protons.
 Cannot tell from information given.
⇒ C. With higher mass number, more neutrons needed to balance the attraction
of all masses (nucleons) with the repulsion between positively charged protons.
 Raphex 2003, G12. A 10MeV travels at the greatest
speed in a vacuum.
A. Alpha particle B. Neutron
B. Neutron C. Proton
D. Electron
⇒ D, 10MeV is the kinetic energy of the particle. The lightest one travels
fastest.
Raphex 2003 G 28. The following radioactive transformation
represents
$^{A}_{2}X \rightarrow ^{A}_{2}Y + \gamma + \gamma$
A. Alpha Decay
B. Beta minus Decay
C. Beta plus Decay
D. Electron capture
E. Isomeric transition
Answer: D As Z decreases by L it must be either beta plus
Answer: D As Z decreases by 1, it must be either beta plus or electron capture. However, no positron is created, so beta plus is

