Radiation Detection and Measurement

1 June 2006 Larry MacDonald macdon@u.washington.edu

ad. Detect & Measure, 2006 (L

Types of radiation relevant to **Nuclear Medicine** Particle Mass (MeV/c2) Symbol Charge Electron e-, β -0.511 0.511 Positron e+, β+ Alpha 3700 +2 **Photon** no rest mass none

Basic Radiation Detector Systems

What do you want to know about the radiation?

Energy?

Position (where did it come from)?

How many / how much?

Important properties of radiation detectors

(depends on application)

Energy resolution

Spatial resolution

Sensitivity

Counting Speed

Rad. Detect & Measure, 2006 (LF

Pulse Mode versus Current Mode

- Pulse mode
 - Detect individual photons
 - Required for NM imaging applications
- Current mode
- Measures average rates of photon flux
- Avoids dead-time losses

Rad. Detect & Measure, 2006 (LRI)

Types of Radiation Detectors

detection modes / functionality

- Counters
- Number of interactions
- Pulse mode
- Spectrometers
- Number and energy of interactions
- Pulse mode
- Dosimeters
 - Net amount of energy deposited
 - Current mode
- Imaging Systems
 - CT = current mode
 - NM = pulse mode

Rad. Detect & Measure, 2006 (LRM

Types of Radiation Detectors

physical composition

- Gas-filled detectors
- · Solid-state (semiconductor) detectors
- Organic scintillators (liquid & plastic)
- · Inorganic scintillators

scintillators operate with a photo-sensor

(i.e. another detector)

ad. Detect & Measure, 200

Semiconductor Detectors Works on same principle as gas-filled detectors (i.e., production of electron-hole pairs in semiconductor material) Only ~3 eV required for ionization (~34 eV, air) Usually needs to be cooled (thermal noise) Usually requires very high purity materials or introduction of "compensating" impurities that donate electrons to fill electron traps caused by other impurities

Sources of Error

- Systematic errors
 - Consistently get the same error
- Random errors
 - Radiation emission and detection are random processes
- Blunder
- operator error

ad. Detect & Measure, 2006 (LRN

Measures of Central Tendency

- Mean
- Average value
- Median
 - Middlemost measurement (or value)
 - Less affected by outliers

Example: 8, 14, 5, 9, 12 Mean = 9.6 Median = 9

ad. Detect & Measure, 2006 (Li

Measures of Variability • Variance - Measure of variability: $\sigma^2 = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_N - \overline{x})^2}{N - 1}$ • Standard deviation - Square root of variance $\sigma = \sqrt{\sigma^2}$

Statistical Models for Random Trials

- · Binomial Distribution
- · Poisson Distribution
 - Simplification of binomial distribution with certain constraints
- · Gaussian or Normal Distribution
 - Further simplification if average number of successes is large (e.g., >20)

of Datast & Manager 2000 (LD)

Binomial probability density function mean and variance

$$\overline{x} = pN$$
 and $\sigma = \sqrt{pN(1-p)}$

- · N is total number of trials
- p is probability of success
- \overline{x} is mean, σ is standard deviation

If *p* is very small and a constant then:

$$\sigma = \sqrt{pN(1-p)} \approx \sqrt{pN} = \sqrt{\bar{x}}$$

Same as Poisson random process.

Rad. Detect & Measure, 2006 (LR

Poisson PDF

- Radioactive decay and detection are Poisson random processes
 - Observation time is short compared to the half-life of the source
 - probability of radioactive decays (i.e., p) remains constant
 probability of a given nucleus undergoing decay is small
- Variance
 - Variance = mean = $pN = \overline{x}$
- Standard deviation
- Standard deviation = $\sqrt{\text{variance}}$ = $\sqrt{\text{pN}}$ = $\sqrt{\overline{x}}$
- Can estimate standard deviation from a single measurement

Detect & Measure, 2006 (LRI

