<u>Nucleons</u> (protons & neutrons) experience a very short range (~1 fm) strong attractive force that overcomes repulsive electrostatic force of protons to hold nucleus together. Nucleon mass =940 MeV/c² ($1.7x10^{-27}$ kg) (e-mass = 0.5MeV/c² ($9.1x10^{-31}$ kg)); nucleus ~ 10^{-14} m (atom~ 10^{-10} m)

Numbers of nucleons in nucleus

Nuclei with equal # are

Z (atomic number) = number of protons in nucleus, determines element	Isotopes
<i>N</i> = number of neutrons in nucleus	Isotones
A (atomic mass number) = Z + N	Isobars
Excited & ground state nuclei with identical Z, N, and A	Isomers

<u>Stable nuclei</u> have N > Z (more strong force to overcome larger electrostatic repulsion of more p) (except lowest A elements, where Z = N, up to O-16). Unstable nuclei exist on both sides of 'line of stability'

Alpha Decay: A>150	$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He^{+2}$	$\alpha = {}_{2}^{4} \operatorname{He}^{+2}$	mono-energetic, highly ionizing, no imaging appl.
Beta ± Decay: Isobaric	$^{\mathrm{A}}_{Z}X \rightarrow ^{\mathrm{A}}_{Z\mp1}Y + \beta^{\pm} + \nu$		hs/positrons, energy shared by $\beta \& v, \beta + \rightarrow PET$ petes with <u>electron capture</u> ; ${}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y + v$
Gamma Transi Isomeric	$\underbrace{tion:}_{Z} \overset{\mathrm{A[m]}}{Z} X^{[*]} \rightarrow^{\mathrm{A}}_{Z} X +$	<u>conversion</u>	β decay, mono-energetic, competes with <u>internal</u> <u>n</u> , in which an orbital e- is ejected instead of the $γ$
Decay Equatio	() 0	$T_{1/2} = \frac{\ln(2)}{\lambda} = \frac{1}{2}$	$\frac{0.693}{\lambda}$ Electron capture & internal conversion followed by characteristic x-rays (or Auger e-)

Radionuclide Production

Paul Kinahan Imaging Research Laboratory Department of Radiology

Emission versus Transmission Imaging

External versus internal radiation sources

Physics of Transmission Imaging

The Electromagnetic Spectrum

Injection of a Radiotracer

Short lived isotopes

- We would like to use short-lived isotopes to minimize partient radiation dose
- Unlike an X-ray device. we can't turn it off
- \bullet Recall that radition decays with an exponentially, characterized by a 'half-life' $\rm T_{\rm 1/2}$

$$A(t) = A(0)e^{-t(\ln(2)/T_{1/2})}$$

imaging time

- Naturaly-occuring isotopes are long-lived, naturally
- So if we want a short-lived isotope we must produce it

Making unstable isotopse

We have to change the ratio of neutrons (N) to protons (Z) to get outside the band of stability

Nulcear bombardment

Hit nucleus of stable atoms with sub-nuclear particles: neutrons, protons, alpha particles etc.

There are two main methods of performing this bombardment

- 1. Inserting target in a nuclear reactor fine for longer-lived isotopes as some time is needed for processing and shipment
- 2. Using a charged-particle accelerator called a 'cyclotron' needed locally for short-lived isotopes (T $_{1/2} \sim 1$ to 100 min). We have two here at UWMC
- 3. We can also use longer-lived isotopes from a nuclear reactor that decay to a short-lived radioisotope in a portable 'generator'

Common Radionuclides

Nuclide	Photons (keV)	Production mode	Decay mode	Half-life (T _{1/2})
⁶⁷ Ga	93, 185, 296, 388	Cyclotron	EC	78 hr
^{99m} Tc	140	Generator	IT	6 hr
¹¹¹ In	173, 247	Cyclotron	EC	68 hr
123	159	Cyclotron	EC	13 hr
125	27, 36	Reactor	EC	60 d
¹³¹	364	Fission product	β	8 d
¹³³ Xe	80	Fission product	β	5.3 d
²⁰¹ TI	70, 167	Cyclotron	ËC	73 hr

TABLE 9.1. Characteristics of common radionuclides

 β , beta decay; EC, electron capture; IT, isomeric transition.

Raphex Question

An ideal radiopharmaceutical would have all the following except:

- a. Long half-life
- b. No particulate emissions
- c. Target specificity
- d. 150 to 250 keV photons
- e. Rapid biological distribution

Raphex Question and Answer

An ideal radiopharmaceutical would have all the following except:

- a. Long half-life
- b. No particulate emissions
- c. Target specificity
- d. 150 to 250 keV photons
- e. Rapid biological distribution

a: The ideal radionuclide has a short half-life to reduce the radiation dose to the patient

Reactor Produced Isotopes

Most important reaction ${}^{235}U + n \rightarrow {}^{236}U^*$ which decays spontaneously via nuclear fission and a (hopefully) controlled chain reaction producing lots of protons, neutrons, alpha particles etc.

We can have different types of reactions to produce desired isotopes from stable target materials

1.
$$(n, \gamma)$$
:
2. (n, p) :

$$\begin{array}{c} {}^{A}_{Z}X + n \rightarrow {}^{A+1}_{Z}X^{*} \rightarrow {}^{A+1}_{Z}X + \gamma \\ {}^{A}_{Z}X + n \rightarrow {}^{A}_{Z-1}Y + p \end{array}$$

Notes

If the number of protons (Z) changes, then so does the element

Because neutrons are added, activated materials tend to lie above the line of stability, and thus to decay by electron emission

Even in high neutron fluxes, only small amounts are activated, say 1:10⁶-

For (n, γ) production, which is most common, the element does not change, so it is difficult to get carrier-free product

Reactor Produced Isotopes

Some isotopes used in Nuclear Medicine

Table 7-1Some ReactorMedicine and		Radionuclides Used in N er Kinetics	luclear	
			Natural	
	Decay		Abundance of	
Radionuclide	Mode	Production Reaction	Target Isotope (%)	σ_c (b)*
¹⁴ C	β-	$^{14}N(n,p)^{14}C$	99.6	1.81
²⁴ Na	(β ⁻ ,γ)	23 Na(n, γ) ²⁴ Na	100	0.53
³² P	β-	$^{31}P(n,\gamma)^{32}P$	100	0.19
		$^{32}S(n,p)^{32}P$	95.0	_
³⁵ S	β^{-}	$^{35}Cl(n,p)^{35}S$	75.5	_
⁴² K	(β^{-},γ)	41 K(n, γ) 42 K	6.8	1.2
⁵¹ Cr	(EC, γ)	${}^{50}Cr(n,\gamma){}^{51}Cr$	4.3	17
⁵⁹ Fe	(β^-,γ)	58 Fe(n, γ) 59 Fe	0.3	1.1
⁷⁵ Se	(EC, γ)	74 Se $(n,\gamma)^{75}$ Se	0.9	30
¹²⁵ I	(EC, γ)	124 Xe(n, γ) 125 Xe $\stackrel{\text{EC}}{\rightarrow}$ 125 I	0.1	110
¹³¹ I	(β ⁻ ,γ)	$^{130}\text{Te}(n,\gamma)^{131}\text{Te}^{\underline{\beta}^{-}} {}^{131}\text{I}$	34.5	0.24

*Thermal neutron capture cross-section, in barns, for (n,γ) reactions (see Section D.1). Values from ref. 1.

Cyclotron Production

Basically a linear accelerator rolled up into a spiral. Typically accelerate an H^- ion using alternating electric fields. The magnet is used to bend the path of the charged particle. The proton then hits the target

Fig. 7-2. Schematic representation of a cyclotron; top (left) and side (right) views. D_1 and D_2 are the "dees" to which the accelerating voltage is applied by a high-frequency oscillator. Target line may feed directly to a radiochemistry area.

Cyclotron Production

Notes

Since we are using proton bombardment we change the element and typically lie below the line of stability. Thus decay is typically by positron emission.

Cyclotrons can be located locally, thus allowing for short lived isotopes, reducing patient dose.

Cylcotrons, however, are very expensive to buy and operate. Often there are distrubution networks.

Cyclotron Produced Isotopes

By far the most common is ¹⁸F in ¹⁸F-FDG for PET oncology

		Common Production	Natural Abundance of Target Isotope
Product	Decay Mode	Reaction	(%)
¹¹ C	β^+	${}^{10}B(d,n){}^{11}C$	19.7
		${}^{11}B(p,n){}^{11}C$	80.3
^{13}N	β^+	$^{12}C(d,n)^{13}N$	98.9
¹⁵ O	β^+	$^{14}N(d,n)^{15}O$	99.6
¹⁸ F	β [∔] ,EC	20 Ne(d, α) ¹⁸ F	90.9
²² Na	β^+ ,EC	23 Na(p,2n) ²² Na	100
⁴³ K	(β^-,γ)	40 Ar(α ,p) 43 K	99.6
⁶⁷ Ga	(EC, γ)	68 Zn(p,2n) 67 Ga	18.6
¹¹¹ In	(EC, γ)	109 Ag(α ,2n) 111 In	48.7
		$^{111}Cd(p,n)^{111}In$	12.8
$^{123}\mathbf{I}$	(EC, γ)	122 Te(d,n) 123 I	2.5
		124 Te(p,3n) 123 I	4.6
²⁰¹ Tl	(EC, γ)	201 Hg(d,2n) 201 Tl	13.2

Generators

Alternative to reactors or cylotron is to use a 'mother' isotope that has a long half-life that decays to a short half-life 'daughter' that can be used for imaging.

The mother isotope is produced in a nuclear reactor and then shipped in a 'generator'.

As needed, the daughter isotope is 'eluted' and combined into a radiopharmaceutical

Workhorse of general nuclear medicine

Generators

Alternative to reactors or cylotron is to use a 'mother' isotope that has a long half-life that decays to a short half-life 'daughter' that can be used for imaging.

The mother isotope is produced in a nuclear reactor and then shipped in a 'generator'.

As needed, the daughter isotope is 'eluted' and combined into a radiopharmaceutical

Workhorse of general nuclear medicine

Generator Radionuclides

- ^{99m}Tc (daughter isotopes) generators are by far the most common
- The mother isotope in ⁹⁹Mo, which is reactor produced.
- The generators typically replaced monthly

Medicine				
Daughter [†]	Decay Mode	$T_{1/2}$	Parent	$T_{1/2}$
⁶⁸ Ga	β^+ ,EC	68 min	⁶⁸ Ge	275 days
⁸² Rb	β^+, EC	1.3 min	⁸² Sr	25 days
^{87m} Sr	Im	2.8 hours	87 V	80 hours

†Generator product.

Generator Activity Levels

Fig. 7-6. Buildup and decay of 99m Tc generator eluted on days 0, 1, 1.4, 2, and 4.

Raphex Question

99mTc generators cannot be:

- a. Produced in a cyclotron
- b. Used to dispense more than 1 Ci
- c. Shipped by air
- d. Purchased by licensed users
- e. Used for more than 67 hours

Raphex Question and Answer

99mTc generators cannot be:

- a. Produced in a cyclotron
- b. Used to dispense more than 1 Ci
- c. Shipped by air
- d. Purchased by licensed users
- e. Used for more than 67 hours

a. ⁹⁹Mo can be produced in a reactor or from fission products, but it cannot be produced in a cyclotron (⁹⁹Mo is a beta emitter, requiring the addition of neutrons, not protons).