
WXML Final Report: AKS Primality Test

Amos Turchet, Travis Scholl, Rohan Hiatt, Daria Mićović,
Blanca Viña Patiño, Bryan Tun Pey Quah

Winter 2017

1 Introduction

Prime numbers are fascinating objects in mathematics, fundamental to num-
ber theory and cryptography. A primality test takes an integer as input and
outputs whether that number is prime or composite. Most practical applica-
tions require primality tests to be efficient. Today, the largest known prime
number has over twenty million digits so proving that a number of this size
is prime can be computationally expensive. In 2002, Agrawal, Kayal, and
Saxena published the first deterministic primality test that also runs in poly-
nomial time relative to the binary representation of the input. Although
their algorithm represents an important breakthrough in the field of com-
putational number theory, it is seldom used in practice. Our objective was
to determine why this idealized algorithm is not practical enough compared
to other primality tests. We have re-created the algorithm and optimized
our initial näıve implementation by studying each step to achieve optimal
complexity using Fermat’s Little Theorem, modular arithmetic, and the Fast
Fourier Transform for multiplicative efficiency. To confirm that probabilistic
methods are still preferred, we compared execution times and accuracy of
other tests to our own results.

1.1 The initial problem

Agrawal, Kayal, and Saxena published the first deterministic primality algo-
rithm that runs in polynomial time. Prior to their discovery, most tests used
are probabilistic and do not guarantee that any given prime number is in fact

1



prime. For example, Fermat’s Little Theorem shows that for any integer a,
a given number n, will satisfy the following congruence if n is prime:

an ≡ a (mod n)

However, this fails to filter pseudo-primes, called Carmichael Numbers, which
satisfy the congruence even though they are composite integers. Some of the
first Carmichael numbers include 561, 1105, 1729. However, this was a prop-
erty that was thought only prime numbers could satisfy, so Fermat’s Little
Theorem is not the most accurate method for identifying primes. Further-
more, deterministic primality tests such as trial by division simply take too
long. Trial by division takes O(2n) in the worst case relative to the binary
representation of the input. This time complexity is exponential, so trial by
division is not an efficient primality test. After studying these two algorithms,
we began looking at AKS. Even though AKS is deterministic, meaning that
it correctly identifies all integers as either prime or composite, and runs in
polynomial time, it is still rarely used in industry.

1.2 New directions

When testing huge crypto-size primes, polynomial time is still too slow.
Mathematicians and cryptographers prefer other methods that may not be
as accurate as AKS to save time when testing large numbers. The main
reason we studied the AKS primality test was to understand every step of
the algorithm to figure out where it takes a long time and why. The overall

runtime of our algorithm is O (̃log
21
2 (n)) where most of the toll is taken at

the step where we use polynomials with modular arithmetic (polynom mod()
in Figure 1).

2 Progress

2.1 Computational

The first step is to check if the number is a perfect power. This filters out
Carmichael numbers that would pass the polynomial mod step that imple-
ments Fermat’s. Then we find the smallest r that satisfies the conditions
explained in the theoretical section. Then we test as and return composite
if a and n are not coprime. If n ≤ r then we return prime. Once all of these

2



steps have been completed we go into the polynomial mod function which
will be explained in the theoretical section.

Figure 1: Sage code implementation of AKS algorithm

To study how well our version of the AKS algorithm performs, we wrote
another primality test which utilizes Fermat’s Little Theorem to test for
primes (see Figure 2).

Figure 2: Implementation of algorithm using Fermat’s Little Theorem (FLT)

3



In Figure 3 the blue dots are primes identified by AKS, the black dots are
primes identified by FLT, the green dots are composites found by FLT, and
the red dots are composites found by AKS. We can see that AKS takes longer
to identify a prime number but less time to identify a composite number.
Figure 4 shows Carmichael Numbers being identified as primes by FLT and
as composites by AKS.

2e5 4e5 6e5 8e5 1e6

20

40

60

80

100

120

140

Figure 3: Graph of Number vs Time Taken for Primality Test

4



2e5 4e5 6e5 8e5 1e6

20

40

60

80

100

120

140

Figure 4: Graph of Number vs Time Taken for Primality Test

2.2 Theoretical

The main theorem that the AKS algorithm implements is a generalization
of Fermat’s Little Theorem. This generalization says that for a ∈ Z, n ∈
N, n ≥ 2, where a and n are coprime then n is prime if and only if

(X + a)n ≡ Xn + a(mod n)

This reduces the coefficients of the polynomials, however, the computation
is still long. If we reduce the polynomial (X + a)n to a smaller degree then
less computation on the coefficients is required. Thus the algorithm uses

(X + a)n ≡ Xn + a(mod Xr − 1, n)

In order to efficiently use this as a test for primality, we need to set sufficient
bounds on r to both reduce the complexity and to correctly categorize n.
The original AKS paper sets a bound with a lemma that states that there
exists an r ≤ max(3, dlog5(n)e) such that the or(n) > log2(n) and where r
and n are coprime. Here, or(n) is the order of n modulo r. This is the final
step of the algorithm. The numbers that pass this test but are not prime
are filtered out in earlier steps of the algorithm. We implement this for our
polinomial mod function.

5



3 Future directions

Initial investigations into the AKS primality algorithm opened up many in-
teresting avenues for future pursuit of research. Our team identified multiple
areas in which we could move forward and potentially inherently improve our
implementation, or understand more about the algorithm and its function-
ality.

One of the key next steps we outline involves taking our implementation out
of Sage, and using proprietary Python to code the algorithm independently.
Currently, Sage has multiple functions and methods which have nebulous
time complexities and operations. Coding our algorithm completely from
scratch would allow for maximum control over runtime, as well as precise
knowledge as to which operations utilize the most resources. More rigorous
scrutiny of time complexity would be a boon for any future investigations of
AKS. Our analysis would then be significantly more robust and controlled,
leading into our next potential direction.
As we have noted throughout our investigations, AKS is currently not an
industry standard. Our attempts to understand why this is the case have
been functionally trivial at best. Thus, having complete control over run-
time analysis would allow our team to proceed with more rigorous tests which
compare AKS to the current industry standard primality algorithms. Having
the ability to closely examine which specific aspects of AKS run better or
worse than similar aspects of other algorithms could even provide insight into
potential systemic improvements.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. of Math.
(2), 160(2):781–793, 2004.

[2] A. Granville. It is easy to determine whether a given integer is prime.
Bull. Amer. Math. Soc. (N.S.), 42(1):3–38, 2005.

[3] L. Rempe-Gillen and R. Waldecker. Primality testing for beginners, vol-
ume 70 of Student Mathematical Library. American Mathematical Soci-
ety, Providence, RI, 2014.

6



[4] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 6.10), 2016. http://www.sagemath.org.

7


