
WXML Final Report: Discrete Hyperbolic Geometry

and Random Walks

Xinyue Peng, Haoran Li

Project Mentor: Ryokichi Tanaka

Graduate Mentor: Anthony Sanchez

Winter 2017

1 Abstract

In this project, we will conduct the simulation of random walks on hyperbolic plane. There

is still unresolved problem related to the question that whether it is uniformly distributed

when a random walker escape from the unit disk. We will visualize the movement of random

walk on hyperbolic plane and use unit disk as model to present the trajectory of random

walks. We are going to perform simulation of Random Walk using computational program

- Matlab, compute distribution plot and statistical histogram to help us with this problem.

2 Background and Motivation

2.1 Hyperbolic Plane

We will consider upper half plane as

H2 = {(x, y) ∈ R2 : y > 0}

i

Consider points in H2 as complex number

z = x+ iy

We will rewrite H2 as :

H2 = {(x, y) ∈ R2 : y > 0}

2.2 Application and Method

We will consider random walk on hyperbolic plane as following, supppose

A =

a b

c d

 a, b, c, d ∈ R, ad− bc 6= 0

Consider the fractional linear action on H2 viaa b

c d

 · z =
az + b

cz + d

For example 3 b

4 1

 · z =
3z + b

4z + 1

Random walk proceed faster on hyperbolic plane comparing the walk on Euclidean plane.

To learn more about the random walk pattern on hyperbolic plane, we will start with initial

point on unit disk, which also regard as our model, and transform the points from unit disk

to hyperbolic plane while perform random walk on hyperbolic plane. In order to show the

random walk points on hyperbolic plane, we will transform the points from hyperbolic plane

to unit disk.

We will consider finite number of steps random walk. In this case, there will be a finite

collection of rotational matrices.

A1, A2, A3, ...Ak

ii

For each matrix, there will be a probability such that determines the steps of the random

walker.

p1, p2, p3, ...pk

with

0 ≤ pi ≤ 1 and
∑
i

pi = 1

In this project, the rotational matrices applied are following

A =

 cos θa sin θ
a

− sin θ
a cos θa

B =

 cos θb t sin θ
b

− 1
t sin θ

b cos θb

where

t+
1

t
= 2

cos πa cos πb + cos πc
sin π

a sin π
b

(There are two roots of t and we will take the larger one. The choice of θ can be varied.)

iii

3 Computation Result

We will study different collections of matrices and probabilities, and draw pictures of the

paths that we get in H2.

Below are a simulation plot of Random Walks with 1000 steps and a plot of a single random

walk generated by four rotational matrices.

Figure 1: Complete trajectory of random walks

Figure 2: Random Walk generated by A,A−1,B,B−1

iv

Below is a plot of 1000 random walk distributed around radius 0.9 stage.

Figure 3: Distribution of random walk around radius 0.9

To be more interesting, if we have a considerable large number of random walks, i.e. 2000

and 3000 random walks, we will understand how the random walk perform for most of the

cases, which could help us understand the problem of the distribution of escaping location

on a unit disk. In order to see the result virtually, we have used Matlab to simulate the

random walk behavior, recorded every escape point and plot the relation of frequency of

escaping and locations about the edge of the unit disk.

We computed the histograms of distribution of different number of random walks at the

2500th step, which is also the last step based on our assumption.

On the histograms, x-axis represents locations on the unit disk, from −π to π and y-axis

represents for frequencies of escaping from corresponding locations. For comparison, we

have also tested random walk for 4000 random walks and 5000 random walks, if there are

preferred locations on the unit disk, we can see there are higher columns on some locations

than others.

v

Figure 4: 2000 Steps,Range: [−π, π]

Figure 5: 3000 Steps,Range: [−π, π]

vi

Figure 6: 4000 Steps,Range: [−π, π]

Figure 7: 5000 Steps,Range: [−π, π]

vii

Below are histograms for comparing our random walk histogram using uniform distribution.

Each “point” will randomly generate a escaping location so that each location has an equal

probability to choose.

Figure 8: Uniform distribution Histogram

4 Conclusion and Summary

From the comparison of Random Walk radiant distribution histograms and uniform distri-

bution histograms, we can conclude that the distribution of Random Walk is not uniformly

distributed. There exists a preferred area of the hyperbolic plane that random walk will

accumulate after a finite number of steps.

viii

A Matlab Code for random walk

c l o s e a l l ; c l e a r a l l ; c l c

a = 2 ; b = 3 ; c = 7 ; t = 1 . 3272 5 ; v = 2∗ ((cos (p i /a)∗ cos (p i /b)+cos (p i /c)) / (s i n (p i /a)∗ s i n (p i /b))) ;

x0 = 0+0 i ; % i n i t i a l po int at un i t d i sk

x1 = − i ∗ ((x0+1)/(x0−1)) ; %transform the po int to upper h a l f p lane

l = 50 ;

theta = pi /16;% rad i en t

A = [cos (p i /a) , s i n (p i /a);− s i n (p i /a) , cos (p i /a)] ;% r o t a t i o n a l matrix A

Ainv = inv (A) ;

B = [cos (p i /b) , t ∗ s i n (p i /b);−(1/ t)∗ (s i n (p i /b)) , cos (p i /b)] ; %r o t a t i o n a l matrix B

Bsq = Bˆ2 ;

Binv = inv (B) ;

N = 2000 ;D = 0.9;% thre sho ld

P = ze ro s (l ∗ l ,N) ;

%%

AA = [] ;

f o r j = 1 :N

nums = mod(reshape (randperm (l ∗ l) , l ∗ l , 1) , 3);%random permutation

M = eye (2) ; %i d e n t i t y matrix

f o r k = 1 : l ∗ l

i f nums(k , 1) == 0

M = M∗A;

e l s e i f nums(k , 1) == 1

M = M∗B;

e l s e i f nums(k , 1) == 2

M = M∗Bsq ;

ix

end

x2 = getrotateA (x1 ,M);%random walk step , get a new point on upper h a l f p lane

x3=(x2−i) / (x2+i) ; %send the po in t s back to un i t d i sk

P(k , j) = x3 ;

AA(k , j) = ang le (P(k , j)) ;% s t o r e po in t s

end

end

%% D i s t r i b u t i o n o f rad iant o f po in t s at 2500 th rad iu s

MM = [] ;

f o r i = 1 :N

a = angle (P(2500 , i)) ;

MM = [MM a] ;

end

f i g u r e (4)

histogram (MM, 5 0 0)

x

	Abstract
	Background and Motivation
	Hyperbolic Plane
	Application and Method

	Computation Result
	Conclusion and Summary
	Matlab Code for random walk

