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1 Introduction

1.1 Notions of Dimension

When we refer to the “dimension” of a set, we are referring to some notion
of the set’s size. In particular, we are addressing two common notions of
dimension for a set A ⊂ Rn:

• Minkowski dimension, and

• Hausdorff dimension.

The Minkowski dimension (sometimes called Minkwski-Bouligand dimen-
sion) is often referred to simply as box-counting dimension. As a consequence
of the finite capacity of computing power, one often uses the box-counting di-
mension as an approximation of the Hausdorff dimension. A more thorough
treatise on box-counting and Hausdorff dimension, as well as other notions
of dimension, can be found in [1].

1.1.1 Box-Counting Dimension

Given a set A and n ∈ N, let N(ε) be the minimum number of squares (or
balls) of side length (resp. radius) ε which can cover A.

Consider the rate at which N(ε) grows as ε→ 0. That is, take

d = lim
ε→0

logN(ε)

log 1/ε
. (1)
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Provided this limit exists, we call d =: dimB(A) the box-counting dimension
of A.

For example, let A = [0, 1] ⊂ R. Given a square with sides of length
εn = 1/n, n squares are needed to cover A. Hence, N(εn) = n. By computing
the limit given in (1), we find that d = 1. This implies that the box-counting
dimension of the line segment is 1.

Similarly, consider the case where A = [0, 1]× [0, 1] ⊂ R2. Now, it would
take n2 squares with sides of length 1/n to cover A, which implies that
N(n) = n2. The limit in (1) gives that d = 2.

These two examples correspond with the intuitive understanding that a
line is one-dimensional and that a square is two-dimensional.

1.1.2 Hausdorff Dimension

In order to define the Hausdorff dimension, we must first define the Hausdorff
measure.

Definition 1. Let U ⊆ Rn. We say that diamU is the diameter of U ,
where

diamU = sup{‖x− y‖ | x, y ∈ U}.

Definition 2. Let s ≥ 0, A ⊂ Rn, and δ > 0. Define

Hs
δ (A) = inf

{
∞∑
k=1

(diamUk)
s |

∞⋃
k=1

Uk ⊇ A and diamUk < δ

}
.

Further, define
Hs(A) = lim

δ→0
Hs
δ (A).

We call Hs(A) the s-dimensional Hausdorff measure of A.

Now, let A ⊂ Rn, 0 < δ < 1, and 0 ≤ s < t. Suppose we have

∞⋃
k=1

Uk ⊇ A.

It follows that
∞∑
k=1

(diamUk)
t ≤ δt−s

∞∑
k=1

(diamUk)
s,
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which implies that
H t
δ(A) ≤ δt−sHs

δ (A).

Taking the limit of this inequality as δ → 0, we can see that if Hs
δ is not

infinity, then H t
δ(A) = 0. In particular, the point at which Hs

δ goes from
infinity to 0 is the Hausdorff dimension of the set A. This phenomenon can
be seen in the following plot:

More precisely, we have

Definition 3. The Hausdorff dimension of A ⊂ Rn is given by

dimH(A) = inf {s ≥ 0 | Hs(A) = 0} = sup {s ≥ 0 | Hs(A) =∞}.

We have a comparison with the box-counting dimension by the following

Theorem 1. (Proposition 3.8, [1]) For any set A,

dimH(A) ≤ dimB(A).

1.2 Brownian Frontier
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The first objective of this project was to analyze Brownian motion. Specifi-
cally, we wanted to calculate the Hausdorff dimension of the Brownian fron-
tier. For our purposes of discrete approximation, we appeal to Donsker’s the-
orem, which says that Brownian motion is a limit of scaled random walks.
The existence of Brownian motion and Donsker’s invariance principle are
beyond our scope, but a reference can be found in [2].

Definition 4. A one-dimensional Brownian motion {B(t) | 0 ≤ t <∞} is a
stochastic process with the following properties:

• B(t) is continuous almost surely.

• For any 0 ≤ s < t, B(t)−B(s)
d
= N(0, t− s).

• For any 0 ≤ t1 < t2 < · · · < tk, Xt1 , Xt2 −Xt1 , . . . , Xtk −Xtk−1
are all

independent.

A two-dimensional Brownian motion is simply a pair (B1, B2) where B1 and
B2 are two independent one-dimensional Brownian motions.

Let Xi, i ∈ N be independent and identically distributed random variables

P (Xi = 1) = 1/2 = P (Xi = −1). Define Sn =
n∑
i=1

Xi, and Sn(t) = Sdnte/
√
n.

Then,

Theorem 2. (Donsker’s Theorem) {S(t) | t ∈ [0, 1]} d→ {B(t) | t ∈ [0, 1]}
as distributions on the space of continuous real valued functions on [0, 1].

Further, we have

Definition 5. The frontier of Brownian motion is the boundary of the
unbounded component of the complement of Brownian motion.

In the above images, the frontier is highlighted in red.
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1.3 Brownian Earthworm

Suppose that there is a particle of soil at every point in Z2. The Brownian
earthworm model [3] is a random walk in the plane with the addition that the
earthworm leaves behind a set of holes. That is, the earthworm pushes the
particles of soil in front of it and leaves a hole in its wake. If the earthworm
moves in the direction of an already-created hole, then the displaced soil will
fill in the hole. This model can be visualized by the above images, where
each black point is a hole left behind by the earthworm.

2 Methods

2.1 Computation

Our first task was to simulate Brownian motion and isolate the frontier. So,
we set up a simulation of a random walk in Z2 in Python and allowed it to
run for millions of steps. Obviously, our simulation only took on discrete
values, which meant that we had to scale our walks by some value so that
they converged to Brownian motion (cf. Donsker’s Theorem). In order to
actually calculate the frontier points, which we found to be a nontrivial task,
we contained our walk of fixed length in a rectangle of fixed size. Then, we
took points from the boundary of the rectangle and moved them “inward”
until they landed on a point in the walk. We repeated this process until the
entire frontier was covered.

The simulation of the earthworm model again began with a random walk
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in Z2 in Python. Instead of letting the simulation run for a fixed number of
steps and then performing calculations on our set of data points, we main-
tained a list of the set of holes as the simulation was running. This was largely
because holes can be filled in as the earthworm travels and because we found
a list to be more efficient than, say, a two-dimensional array representation
of the lattice.

2.2 Counting Method

This method of estimating the Hausdorff dimension is directly motivated by
the box-counting dimension approximation. It can be applied to any set in
Z2, but we describe how it applies specifically to our models.

For a simulated random walk with n steps, let S ⊂ Z2 be the set in
which we are to estimate the Hausdorff dimension. For instance, S could be
the set of points in the frontier or the collection of holes from the Brownian
earthworm. It follows that S will have a diameter diamS. As an aside, this
diameter in either model is close to the maximum distance a random walker
travels from the origin in n steps, which has an expected value proportional
to
√
n which we see in the plots of the diameter.

Say we observe that diamS is approximately nd for some d ∈ R and
similarly that the size of S is approximately nh for some h ∈ R. By the
definition of diameter, S is contained in a square of side length nd. Further,
there are n2d vertices in this square. As a result, each vertex in this square
can be thought of as small box of side length εn = 1/nd. (Essentially, this
amounts to normalizing the large square to have unit mass.) This means
that the number of boxes needed to cover S, call it N(εn), is |S| ≈ nh.
By plugging these values directly into the corresponding entries for the box
counting dimension given in (1), we see that

dimB S ≈
logN(εn)

log(1/εn)
=

log nh

log nd
.

Since εn → 0 as n→∞, we estimate the box counting dimension by taking
many observations for increasingly large values of n.

In practice, this amounts to plotting the growth rate of the size of the set
against the growth rate of the diameter on a log-log scale.
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2.3 Averaging Method

The method stems from the intuition behind the Hausdorff dimension. If a
set S has Hausdorff dimension d and s is a point in S, then, in layman’s
terms, the volume (Hausdorff measure) of a ball of radius r around s is
approximately rd. We can isolate d by taking logarithms and dividing by
log r.

Since our set is discrete, we allow the number of steps to increase to
infinity and let r vary within a finite range. We then record the “volume”
(number of vertices) within a radius of r and further take the average volume
across all values of r.

More precisely, let r ∈ N. For each element s in our set of unknown
dimension, we want to find the number of elements that are within a ball of
radius r from s. That is, we want to find |Bs,r| = |{x ∈ S | |s − x| ≤ r}|.
Then, we calculate the average, Qr, of all such |Bs,r|. We see that the number
Qr = rα for some α ∈ R. Again, we can find the dimension of the set by
plotting Qr against r on a log-log scale.

3 Results

3.1 Brownian Frontier

Since the dimension of the Brownian motion is known to be 2 and the di-
mension of the Brownian frontier is known to be 4/3 [4], we wished to verify
that our two methods for calculating the Hausdorff dimension produced the
desired results.

With the Counting Method, we first calculated the coefficient correspond-
ing to the growth rate of the diameter to be 0.4986 (Figure 1 below). We
then used this value to find the dimensions of Brownian motion (Figure 2)
and the Brownian frontier (Figure 3) to be 1.8662 and 1.3364, respectively.
Our result for the dimension of the frontier was close to the actual value,
although our calculated dimension of Brownian motion was not as close as
we would have liked.
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Figure 1: Diameter

Figure 2: Brownian Motion Figure 3: Brownian Frontier

We next used the Averaging Method to attempt to corroborate our re-
sults. We focused this method on the Brownian frontier in particular since
this was our main interest. In fact, this second method gave a very similar
value, 1.3430, to our first calculated value and the actual value.
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3.2 Brownian Earthworm

We proceeded in a similar fashion with the Brownian earthworm model.
However, in this case, we did not know what the actual value for the set of
holes as this is presently an open question.

After performing hundreds of simulations with the number of steps rang-
ing from 10 to 10, 000, 000, we performed the Counting Method. We cal-
culated the Hausdorff dimension for the set of holes to be approximately
1.5539.

We again used the Averaging Method to double check our results. This
second method gave a fairly similar value for the dimension: 1.5458. Since our
two methods gave similar results, we gained confidence in our methodologies
for calculating the Hausdorff dimension.
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4 Conclusions

After collecting our findings, we consulted with Professor Burdzy about our
progress. As it turns out, our methods seem to support the conjecture that
the Hausdorff dimension of the set of holes of the Brownian earthworm is
close to, and strictly greater than, 1.5.

Toward the end of this project, we began performing some preliminary
analysis on the connected components of the Brownian earthworm. In par-
ticular, we wanted to consider the growth rate of the number of connected
components. Our initial tests seemed to indicate that the plurality of con-
nected components were singletons, although these singletons accounted for
only a very small percentage of the total “area” of the holes.
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