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Introduction 
 
Our project, Graphs and Machine Learning, held under the WXML, was inspired by a paper 
Sara Billey co-wrote with Bridget Tenner, entitled “Fingerprint Database for Theorems”. The 
initial goal of this project was to create a searchable database for graphs similar to the Online 
Encyclopedia of Integer Sequences (OEIS). The purpose of such a database is straightforward. 
Say a professor or researcher thinks they have made a new discovery and that said discovery 
produces a graph. Given the aforementioned database, the professor could then input a graph 
related to the theorem they produced and search if someone else has already discovered said 
theorem. If someone already has, then the professor could then find out who found the theorem 
and potentially other related theorems, via searching related graphs. Hence, our group aims to 
document certain forms of theorems from graph theory into an online searchable database, for 
which papers and references may be indexed by the graphs contained within them. In the 
process of creating this encyclopedia of graphs, or Graphlopedia, we developed a number of 
tools and made several design decisions for our database. During this past quarter, we created 
means by which to classify graphs and implement our database online. 
 

Graph Recognition from Images 
Despite the fact that our previous approach is better than the one we found in a published 
paper, our experiment shows that  it may still be inaccurate at some situations because we do 
not have much control over the image thinning,. The limitation is due to the nature of the 
exploration: we make decisions as we go, without knowledge of a bigger picture. Using the old 
method, at a point where an intersection occurs, the lack of information about the entire image 
may sometimes cause a wrong decision. Therefore we need an algorithm for higher accuracy. 
Lai’s focus for the quarter has been in improving the accuracy of these algorithms.  
 



 
Fig. GR09 The two major structures in a thinned graph image. 

The new idea comes from a key observation to the pictures we have seen. There are two types 
of structures as shown in Fig. GR09. Case A shows a structure where an edge is connecting 
two destinations, while Case B shows how a cross between two edges looks after being 
thinned. It is easy to handle Case A, but not the other one. The decision making is only needed 
in Case B. What makes the problem hard is essentially the part resulted from stretching a cross 
point, as highlighted in Fig. GR10(1). We used to make a decision whenever we see such a 
structure, but in our new approach, we first mark the two intersections as in Fig. GR10(2), and 
then we treat them as temporary vertices. Following this procedure, we can obtain a result like 
Fig. GR11. The good news now is that we no longer need to deal with the Case B structure in 
the resulting picture. Furthermore, we can use the weight function as mentioned earlier to 
evaluate vectors out of edges, and then store them as outgoing vectors for each vertex.  In the 
end, we can completely get rid of the original binary image by creating a new graph for which it 
is possible to apply well-developed algorithms. 
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Fig. GR10 Analysis of the problematic structure. 

 



 
Fig. GR11 The temporary vertices, marked with red ovals, are originally intersections. 

 
Overall, in the new graph we just obtained, each vertex is either a vertex of the original graph, or 
a temporary vertex we constructed from an intersection.  An edge in this graph exists if and only 
if there is a pixel-bridge connecting two destinations which can be a vertex-vertex, 
vertex-intersection, or intersection-intersection pair. Moreover, each vertex is storing a list of 
outgoing vectors evaluated in the binary image in some reasonable way. Our goal now is to 
determine an efficient algorithm to restore the original graph by grouping the temporary vertices 
so that the stretched parts are all eliminated. Fig. GR12 shows an example of ideal outputs. 
 



 
Fig. GR12 An ideal output where the temporary vertices are grouped correctly. Each group is now replaced by a single temporary 

vertex keeping only the outgoing vectors of the temporary vertices inside the group. 

 
We need to define an objective function which measures the cost of grouping a certain set of 
temporary vertices. First we can set the cost to infinity if there is some vertex in the group 
isolated from the rest so that we only need to focus on valid grouping options. Then we say that 
the cost is low if there exists a pairing option among the outgoing vectors in the group such that 
the two vectors in a pair come from different vertices and the angle between them is as closed 
to as possible. We then apply brute-force-search to exhaust all the results and find the oneπ  
with minimum cost. 
 
The experiments show that this new approach is highly reliable even when the image quality is 
low. This is not a big surprise since it is performing analysis with way more information than the 
previous methods do. Nevertheless, there are two problems of this new approach. Firstly, we 
know this method is time consuming due to the nature of brute-force-search. This issue may not 
be troublesome since our problem size is usually small. Secondly, we have not yet come up 
with a solution to the case where more than two edges are crossing at the same point. In this 
case, there are more than two intersections in each group when we are attempting to partition 
the temporary vertices. In the future, we will be focusing on solving these two problems. 



Utilizing the arXiv 
The arXiv is a vast database of published scientific articles from math, physics, astronomy, etc. 
We currently have downloaded a portion of the arXiv, consisting of compressed LaTeX and PDF 
files. We plan on systematically going through all articles in the arXiv and using our code to 
extract all images and vector graphics, determine which images and vector graphics are graph 
representations, and extract the graph from the representation and adding it to our database. 
Casper and Farn took the lead role this quarter on information extraction from the arXiv.  This 
automation of information collection has been a huge success.  
 

Graph Classification with Convolutional Neural 
Networks 

The first challenge is to create a dataset for training. Our images are extracted from the arXiv, 
both graphs and ‘non-graphs’. These images are inputted through a program that looked for 
closed curves and lines between closed curves, and other criteria characterizing a scientific 
graph with vertices/edges. Using this method, we extract a number of graph and non-graph 
images in PostScript format for our training set. We then go through the "probably graph" 
images and manually label a few thousand examples (1 for graph, 0 for non-graph). We will use 
a random subset containing about 15-20% of the training set as a validation set. We use this 
rather than k-fold cross validation due to the training time of the CNN and lack of computational 
resources. The subsection below details the conversion from PostScript files to a usable format.  
Trinh and Tsun were the leaders on implementing CNN on graphs this quarter. 
 
Image Preprocessing 
 
To get our images in an acceptable format for applying machine learning techniques, we 
perform some preprocessing. Initially, we are given unlabelled images in postscript format. We 
simply loop through the postscript files in a python script and then convert/save them into JPEG 
files (Note: we specifically use GhostScript for the image conversion as other software had 
errors on older PostScript files). We then resize all of the images to have their minimum 
dimension to be at most M pixels (where M will depend on experiments in following sections), 
while maintaining the aspect ratio. We then convert all of these JPEGs into a matrix of pixels in 
grey scale, flatten them into a single feature vector, and write the data into a CSV. Finally, we 
also whitened our data, which improved our results. Since each image is of different size, we did 
a per-image normalization. For each image, we simply treat all of its pixels are an array of 
numbers. We calculate the mean and standard deviation, and standardize each image by 
subtracting the mean and divide by the standard deviation from each pixel. This helps a lot 
because there is a universal learning rate for all features, and they will all be on the same 
standardized scale now. 



 
 
 
 
Convolutional Neural Networks (CNN’s) 
 
Our first approach for classification will be a small multi-layer convolutional neural network. For 
an initial experiment, we resize our images to be the same size of 28x28 and then used the 
example model CNN from a TensorFlow tutorial. We end up with an average of 70% accuracy. 
This provides us with a baseline for comparison with accuracies after optimization and tweaks. 
 
Image Sizes 
 
The dataset we use contains images of varying dimensions, ranging from a minimum 
width/height of 13 pixels to 10,000. Due to the varying image sizes, we test larger images since 
28x28 could result in way too much a loss of information for larger images. We run the same 
experiment as the initial, but with 64x64 inputs. However, the run time ends up to be more than 
double the initial experiment, with no improvement in accuracy at all. It seems that either most of 
the images in the dataset have their main content scaled in a way to not be terribly affected by 
dramatic reduction in size, or the reduction in size with a square ratio is ineffective. Thus, we 
find that one of the issues that arises is loss of aspect ratio which may be important information, 
so we keep the minimum dimension to be at most 28 pixels for the following experiments while 
preserving aspect ratio. 
 
Spatial Pyramid Pooling 
 
We want our CNN to run on images of arbitrary aspect ratio (with minimum dimension M pixels), 
so we implement Spatial Pyramid Pooling (SPP). The only thing in the CNN architecture that 
requires all images to be of the same size is the fully-connected layer. We use the SPP layer to 
replace last Max-Pooling layer after the second convolution layer. This layer allows us to take 
the output of the convolutional layer and create a fixed size output, which we can then connect 
to the fully-connected layer as usual. SPP is still a pooling layer, but it is different only in how it 
applies pooling. We have pre-specified parameters {a1, ..., an}, and the output will be flattened 

with dimension . For each i = 1, ..., n, we partition the image into a grid of size  × . We∑
n

i=1
ai
2 ai ai  

then apply pooling to each grid section and get an output of size . For example, if  = 2, weai ai  
would split the image into 4 equal sections and apply max-pooling on each, to get 4 numbers. 
The SPP layer performs this pooling function for each depth of the feature map that comes out 
of the second convolution layer. Then, all the outputs are concatenated into a flattened array 
and fed into the fully connected layer afterwards. Otherwise, the network is the trained in the 
same way.  
 
Results 



 
We achieve our best results on the CNN, using 128 minimum dimension image inputs, no data 
augmentation, 3x3 filters for our two convolution layers, with 48 and 96 number of filters 
respectively, 25 Epochs, [1,2,3,4,5] SPP Pyramids, 512 features for our first fully connected 
layer with a keep probability of 0.55 during dropout, then map to 2 features for our CNN output. 
Then we introduce non-linearity with the sigmoid function, and minimize our Cross Entropy loss 
function using the Adam Optimizer with learning rate 10−4 and epsilon 10−5 for our best 
consistent results. We thus, achieve an average accuracy of 88.53% using our CNN. The best 
accuracy we achieved was 89.9%. 

 
Getting Online 

 
Another of the main tasks we were working toward this quarter was launching a live website for 
searching the database. In the fall quarter, we created a mock-up web application for this 
purpose, but we only hosted it locally prior to this quarter. As the leading provider of web 
hosting, Amazon Web Services (AWS) was an enticing path to our online goal. We were able to 
receive free credit, through AWS Educate, which eased our minds of any initial costs. The 
application will be run on a linux based EC2 instance, with the database build in MongoDB. 
MongoDB is a flexible document database software; it is easily scalable and allows new input as 
we expand the database. We are grateful that Bode and Bautista have taken the lead on 
implementing MongoDB on  AWS.  
 
We currently have all of the necessary requirements loaded on our AWS server, but the server 
runs python 2.7 by default. Our application is written using python 3, so we will need to set up a 
virtual environment on the server to run the correct version on our programs. This summer, we 
will be rebuilding the web application using a different development tool. It is currently built in 
Flask, a lightweight, python-based web framework. Flask is not optimized for scaling and 
long-term web use, so we will build a new version in a more traditional way for easier 
implementation. 
 

Error Checking 
 

As we move toward hosting a bigger broader database, we need to make sure all of our 
information is accurate, well written, and not redundant. Information integrity is critically 
important to our mission to create a useful database of graphs for researchers and students 
around the world.  
 
We have started implementing some error checking procedures. Some of the currently 
automated checks include matching degree sequences to edge sets, and other isomorphism 
invariants.  Using Sage and the McKay canonical form, we can now easily detect isomorphic 



graphs up to a reasonably large size.   A more difficult check is to confirm that a graph is the 
actual graph that wants to be inputted, that is really does appear in the cited papers, and that it 
is an “interesting graph”. Thankfully our graph recognition and extraction programs have 
become very accurate and can be used to assist this, but some of it requires human 
intervention. We have started including more images in our database entries. We use both the 
stock image, produced by the publication, and an embedding, created by one of our programs. 
Billey is currently leading the charge on database editing along with recent help from Zach 
Hamaker.  
 
 

Conclusion 
 

We had several big achievements this quarter. First, since the website is not quite live, a 
prototype version of our database - complete with images! -  is now available at 
https://sites.math.washington.edu/~billey/graphlopedia.html . This is a pdf document which can 
be searched using the pdf viewer tools like command-f. One might search for a particular 
degree sequence or a key-word. Second, improvements were made to the algorithm for graph 
recognition from images. Third, we have a new tool to classify graphs using machine learning, 
which will help automate database expansion. We are hopeful to increase the size of the 
database rapidly now that we have a well defined set of tools. Lastly, we are on the verge of 
launching our interactive, dedicated website for the database. With many error checking 
procedures in place, we are nearly ready to implement the database at full scale.  
 
Our future plans include adding different types of graphs like directed and hypergraphs. 
Furthermore, we wish to implement features such as graph families and more searchable graph 
invariants. All of these tools will make the website more user-friendly, and make finding the right 
graph easier. 
 
 

https://sites.math.washington.edu/~billey/graphlopedia.html

