
WXML Final Report: Shapes of Julia Sets

Malik Younsi, Peter Lin, Chi-Yu Cheng, Siyuan Ni, Ryan
Pachauri and Xiao Li

Spring 2017

Abstract

In general, the complex graphical representation of Julia set is generated by a simple
polynomial after iterations. The goals of our project, shapes of Julia sets, are to find a
better computational algorithm for plotting filled Julia set and to approximate any set
of disjoint Jordan curves on the complex plane by plotting the Julia set of polynomial.

1 Introduction
The filled Julia set of a polynomial is defined by

K(P) = {z ∈ C : Pm(z) 6→ ∞ as m→∞}

where Pm(z) is the nth iterate of polynomial applied to z for m a natural number.
The Julia set of f(z) = zn + c is the set of those complex number z, such that fn(z)
does not approach infinity as n goes to infinity. For example, suppose that we have a
quadratic polynomial f(z) = z2 + c, where c is a complex parameter, then we plug
initial value z0 to the polynomial and get z1 such that z1 = f(z0) = z20 + c, and plug
z1 to the polynomial and get z2...... We keep doing this process n times as n → ∞, if
zn converge to infinity, then z0 is not in the filled Julia set of f(z). Otherwise, it’s in
the Julia set. As the parameter c varies, the filled Julia set varies as well, hence we can
produce the different shapes of Julia set. (Figure 1)

1

c = (−1, 0) c = (−0.8, 0.156)

FIGURE 1. The shapes of Julia set of polynomial change as c changes

2 Plotting Julia sets

2.1 The obvious method
The "obvious method" to determine if a complex number belongs to a Julia Set is to
iterate points in the complex plane to the polynomial n times and check when n→∞,
will the result converge to infinity as well.

This method is straight forward, but at the same time, the drawback of it is also
easy to see: in real life, we can’t iterate a point infinite times, we have to choose a
certain number, for example, in our program, 100 times, and set a threshold, in our
program, 10, and check after 100 times of iterations, will the magnitude of the result
greater than 10. But this will bring us a new issue: there exists some number that after
100 iterations, they are still less than 10 although they actually will converge to infinity
at last which means they are not part of the Julia set, but in our program, we will treat
this kind of points as part of it. And this would make our plot lack of accuracy.

FIGURE 2. z2 − 0.8 + 0.156i, c = (−0.8, 0.156), by obvious method

2

FIGURE 3. z2 − 1.2 + 0.156i, c = (−1.2, 0.156), by obvious method

2.2 The distance estimation method
Distance estimation method (DEM) is a powerful technique for plotting Julia sets. Ba-
sically, DEM is based on various behaviors after iteration of polynomial. For each
initial value of z0 and polynomial f(z) = z2 + c , we can form a sequence zn such
that z1 = f(z0), z2 = f(z1), z3 = f(z2)ââzn = f(zn−1), where n is the number of
iteration.

The process of DEM:
The sequence zn converges to the limit radius r, where r is a small positive real

number, this means all the points of the sequence zn are close to z0 with a sufficiently
small neighborhood. In this case, we say that z0 is in the Julia set and we label it as 0.

The sequencezn diverges to the limit radius r, then we compute and iterate its
derivative zn′ = 2zn−1zn−1

′. If the magnitude of zn′ is greater than or equal to defined
threshold, then we say that z0 is close to the Julia set and we label it as -1. Otherwise,
we estimate the distance of z0 by the following equation

d = 2
|zn|
|zn′|

log|zn|

and label it as 1.
Then we set the different colors depend on its label.

3

FIGURE 4. z2 − 0.8 + 0.156i, c = (−0.8, 0.156), by DEM

FIGURE 5. z2 − 1.2 + 0.156i, c = (−1.2, 0.156), by DEM

3 Approximation
From a paper our mentor M.Younsi co-wrote, entitled "Fekete Polynomials and Shapes
of Julia Sets", we have a polynomial function:

Pn,s(z) := z
e−ns/2

cap(E)n

n∏
j=1

(z − zj)

In this function, E is the set of all points of the given Jordan curves, zjs are called leja
points, and is defined as following: consider z1 to be a random point in E, then z2 is
the point which could maximize the value |z2−z1|, and z3 is the point that maximizing
|z3 − z1||z3 − z2|, n is the number of leja points, so for zn, we want to find the point
that could maximize |zn−z1||zn−z2|· · ·|zn−zn−1|. cap(E) is called the logarithmic
capacity, it is calculated by

lim
n→∞

(

n∏
j=1

|zn+1 − zj |)1/n

4

and s is any small positive number. Here, n and s are the parameters that determine
the accuracy of our approximation. Our first guess is that to produce more accurate
approximation, we should set the n to be large integer and s to be small positive real
number

(
we normally set s = 1

n for computational purpose) because that if we have
a larger n, this is, we have more leja points, then we have more understanding of the
Jordan curves. Thus, we could produce more accurate approximations. (Figure 6)

n = 100 and s = 0.0100 n = 600 and s = 0.00167

FIGURE 6. An approximation of a square with different values of n

3.1 Changing n

At first glance, a higher number of leja points would mean that we should arrive at a
more accurate picture. However, we found that it was possible to have too many leja
points.

n = 1200 and s = 0.0008333 n = 1800 and s = 0.000555

FIGURE 7. An approximation of a letter with different values of n

5

As you can see with the above pictures, with more leja points (and keeping the n : s
ratio the same), fewer points in the complex plane are in the Julia set. Many points that
we would have wanted in the Julia set are not included.

3.2 Changing s

In general, we set s = 1
n to produce a better approximation. We found if we slightly

change the value of s, then we will get the dramatically different results. (Figure 7)

s < 1
n s = 1

n s > 1
n

FIGURE 8. An approximation of a letter with different values of s

4 Critical Points
By definition, a critical point of a differentiable polynomial is any value in its domain
where its derivative is 0. We want to find and plot the critical points of polynomial to
see the behavior of the critical points. It is a theorem that states all the critical points
should be inside the filled Julia set if the shape has only one connected component. In
Figure 8, we can clearly see that 100 critical points (red dots) are inside the boundary,
this is, they are all inside the filled Julia set. However, the theorem does not hold for
the multiple connected components. In Figure 9, we can see that not all critical points
are inside the boundary of each component, and some of them are outside each com-
ponents.

FIGURE 9. 100 critical points of a rabbit

6

FIGURE 10. 100 critical points of letters

5 Fractal pattern
One interesting thing about Julia set is that it is a fractal that exhibit self-similarity, this
is because that any filled Julia set either has a unique component or infinitely many
component which would result in that the whole has the similar shape as its parts.
Speaking intuitively, when we zoom in around the edge of fractal, we should still be
able to see the similar shapes as the outlier appear to be. Below is an example showing
this feature.

FIGURE 11. Original shape

7

FIGURE 12.

The above images are simply to show where we evaluated our polynomial (i.e. these
are zoomed in versions Figure 11, but they are not exact results of evaluating our poly-
nomial). The green box is where we decided to evaluate our polynomial.

200x zoom 400x zoom 2000x zoom
FIGURE 13.

The above images are the result of evaluating our polynomial on a smaller range of
complex values at a higher resolutions. As you can see, there are copies of shapes from
the original image albeit they are skewed. The only ones we can see, however, are a
heart and a fish. We do not see zoomed in version of the diamond because we are along
the edge of the original diamond. A point of interest moving forward would be if we
can see tiny diamonds along the edge of the zoomed in heart/fish.

8

	Introduction
	Plotting Julia sets
	The obvious method
	The distance estimation method

	Approximation
	Changing n
	Changing s

	Critical Points
	Fractal pattern

